【免费下载】华师版七年级数学下册期中测评试卷
华师版七年级数学下册期中测试卷附答案
华师版七年级数学下册期中测试卷一、选择题(每题3分,共30分)1.已知x >y ,下列不等式一定成立的是( )A .ax >byB .3x <3yC .a 2x >b 2yD .-2x <-2y2.方程组⎩⎨⎧x -y =2,2x -y =3y -2的解为( ) A.⎩⎨⎧x =1,y =-1 B.⎩⎨⎧x =3,y =-1 C.⎩⎨⎧x =5,y =3 D.⎩⎨⎧x =7,y =53.若-4(1-x )7的值是非正数,则x 的取值范围是( ) A .x ≤-1 B .x ≥-1 C .x ≥1 D .x ≤14.下列方程变形中,正确的是( ) A .由 3x =-4,系数化为1得x =-34B .由 5=2-x ,移项得 x =5-2C .由x -16-2x +38=1,去分母得 4(x -1)-3(2x +3)=1D .由 3x -(2-4x )=5,去括号得 3x +4x -2=55.不等式组⎩⎨⎧2x -2≤0,x >-1的解集在数轴上表示为( )6.关于x 的方程ax +b =0的解的情况如下:当a ≠0时,方程有唯一解x =-b a ;当a =0,b ≠0时,方程无解;当a =0,b =0时,方程有无数解.若关于x 的方程mx +23=n 3-x 有无数解,则m +n 的值为( ) A .-1 B .1 C .2 D .以上都不对7.若方程组⎩⎨⎧2x +3y =1,(k -1)x +(k +1)y =4的解x 与y 相等,则k 的值为( ) A .3 B .20 C .10 D .08.某小组有m 人,计划做n 个“中国结”,若每人做5个,则可比计划多做9个;若每人做4个,则将比计划少做15个,现有下列四个方程:①5m +9=4m -15;②n +95=n +154;③n +95=n -154;④5m -9=4m +15.其中正确的是( )A .①②B .②④C .①③D .③④9.关于x 的一元一次不等式组⎩⎨⎧2x -1<3(x -1),x <m有三个整数解,则m 的取值范围是( ) A .5≤m <6 B .5<m <6 C .5≤m ≤6 D .5<m ≤610.如图,根据图中给出的信息,若放入体积相同的大球、体积相同的小球各2个,水面将上升到( )(第10题)A .35 cmB .36 cmC .37 cmD .39 cm二、填空题(每题3分,共15分)11.在梯形面积公式S =12(a +b )h 中,已知S =60,b =6,h =12,则a =________. 12.已知方程2x -3=3和方程1-3m -x 3=0有相同的解,则m 的值为________.13.若关于x 的一元一次不等式组⎩⎨⎧x -m >0,2x +1>3的解集为x >1,则m 的取值范围是________________.14.某校举行了以“永远跟党走”为主题的党史知识竞赛,共有20道题.答对一道题记10分,答错(或不答)一道题记-5分,小明参加本次竞赛,得分要超100分,他至少要答对________道题.15.三个同学对问题“若方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是⎩⎨⎧x =1,y =2,求方程组⎩⎨⎧a 1x +2b 1y =3c 1,a 2x +2b 2y =3c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以3,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________________.三、解答题(16~17题每题6分,18~22题每题10分,23题13分,共75分)16.解方程:1-x 3-x =10-x 4.17.解不等式组⎩⎪⎨⎪⎧5x ≥8+x ,1+2x 3>x -2,并把解集在数轴上表示出来.18.已知不等式3(x -2)+5<4(x -1)+6的最小整数解为关于x 的方程2x -xy =6的解,求x ,y 的值.19.春节逛“大庙会”已成为成都老百姓的年俗,每年成都武侯祠博物馆举办的成都大庙会都会吸引大量的游客前往参观游玩.武侯祠大街某商家抓住商机采购了一批玩具熊猫,按成本价提高50%后标价,为了增加销量,又以9折优惠进行销售,每个售价为108元.(1)这批玩具熊猫每个的成本价是多少元?(2)这批玩具熊猫按此售价卖出三分之二以后,商家清仓换新,决定将剩下的玩具熊猫以每个72元的价格出售,若销售完这批玩具熊猫该商家共盈利4 800元,求这批玩具熊猫的采购数量和销售利润率.20.已知关于x ,y 的二元一次方程组⎩⎨⎧x +2y =1,x -2y =m .(1)求这个方程组的解;(2)当此方程组的解x ,y 的值都不大于1时,求m 的取值范围.21.已知关于x 的不等式组⎩⎨⎧2x +1>3,a -x >1.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围.22.某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A ,B两种型号的新型公交车,已知购买1辆A 型公交车和2辆B 型公交车需要165万元;购买2辆A 型公交车和3辆B 型公交车需要270万元.(1)A 型公交车和B 型公交车每辆各多少万元?(2)公交公司计划购买A 型公交车和B 型公交车共140辆,且购买A 型公交车的总费用不高于B 型公交车的总费用,那么该公司最多购买多少辆A 型公交车?23.三星堆遗址最新出土的“黄金大面具”来自于5号坑,由四川省文物考古研究院与四川大学考古文博学院联合发掘.为保护文物,特别设计了A,B两种型号的运土车.已知2辆A型运土车与3辆B型运土车一次共运输土方31立方米,5辆A型运土车与6辆B型运土车一次共运输土方70立方米.(1)一辆A型运土车和一辆B型运土车一次各运输土方多少立方米?(2)考古专家组决定派出A,B两种型号运土车共20辆参与运输土方,若每次运输土方总量不小于148立方米,且B型运土车至少派出2辆,则有哪几种派车方案?答案一、1.D 2.C 3.D 4.D 5.B6.B 提示:mx +23=n 3-x ,即(m +1)x =n -23,因为关于x 的方程mx +23=n 3-x 有无数解,所以m +1=0,n -2=0,解得m =-1,n =2,所以m +n =-1+2=1.7.C 8.D9.D 提示:⎩⎨⎧2x -1<3(x -1),①x <m ,②由①得x >2,由②得x <m ,由题意可知不等式组的解集是2<x <m .因为不等式组有三个整数解,所以整数解是3,4,5.所以5<m ≤6.10.B 提示:设一个大球使水面上升x cm ,一个小球使水面上升y cm ,依据题意得⎩⎨⎧2x +3y =38-26,x +2y =33-26,化简得⎩⎨⎧2x +3y =12,x +2y =7,解得⎩⎨⎧x =3,y =2.所以放入体积相同的大球、体积相同的小球各2个,水面将上升到26+2(3+2)=36(cm).二、11.4 12.2 13.m ≤1 14.1415.⎩⎨⎧x =3,y =3提示:把⎩⎨⎧x =1,y =2代入⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2得⎩⎨⎧a 1+2b 1=c 1,a 2+2b 2=c 2, 所以(a 2-a 1)+2(b 2-b 1)=c 2-c 1,由方程组⎩⎨⎧a 1x +2b 1y =3c 1,a 2x +2b 2y =3c 2可得(a 2-a 1)x +2(b 2-b 1)y =3(c 2-c 1),又易得3(c 2-c 1)=3(a 2-a 1)+6(b 2-b 1),所以(a 2-a 1)x +2(b 2-b 1)y =3(a 2-a 1)+6(b 2-b 1),解得⎩⎨⎧x =3,y =3.三、16.解:去分母,得4(1-x )-12x =3(10-x ),去括号,得4-4x -12x =30-3x ,移项,得-4x -12x +3x =30-4,合并同类项,得-13x =26,系数化为1,得x =-2.17.解:解不等式5x ≥8+x ,得x ≥2, 解不等式1+2x 3>x -2,得x <7,则不等式组的解集为2≤x <7,将不等式组的解集在数轴上表示,如图所示.(第17题)18.解:3(x -2)+5<4(x -1)+6,去括号,得3x -6+5<4x -4+6,移项,得3x -4x <-4+6+6-5,合并同类项,得-x <3,系数化为1,得x >-3,所以该不等式的最小整数解是-2,所以关于x 的方程2x -xy =6的解是x =-2,把x =-2代入2x -xy =6,得y =5.19.解:(1)设这批玩具熊猫每个的成本价是x 元,则标价为x (1+50%)元,9折优惠后售价为x (1+50%)×90%元,由题意得x (1+50%)×90%=108,解得x =80.答:这批玩具熊猫每个的成本价是80元.(2)设这批玩具熊猫的采购数量为y 个,则根据题意可得⎝ ⎛⎭⎪⎫23y ×108+13y ×72-80y =4 800,解得y =300, 利润率=4 800300×80×100%=20%. 答:这批玩具熊猫的采购数量为300个,销售利润率为20%.20.解:(1)⎩⎨⎧x +2y =1,①x -2y =m ,②①+②,得2x =1+m ,解得x =1+m 2,把x =1+m 2代入①,得1+m 2+2y =1,解得y =1-m 4,所以该方程组的解为⎩⎪⎨⎪⎧x =1+m 2,y =1-m 4.(2)因为方程组的解x ,y 的值都不大于1,所以⎩⎪⎨⎪⎧1+m 2≤1,1-m 4≤1,解不等式1+m 2≤1,得m ≤1,解不等式1-m 4≤1,得m ≥-3,所以不等式组的解集为-3≤m ≤1,即m 的取值范围为-3≤m ≤1.21.解:(1)解不等式2x +1>3,得x >1,解不等式a -x >1,得x <a -1,因为不等式组的解集是1<x <2,所以a -1=2,解得a =3.(2)因为不等式组无解,所以a -1≤1,解得a ≤2.22.解:(1)设A 型公交车每辆x 万元,B 型公交车每辆y 万元,由题意得⎩⎨⎧x +2y =165,2x +3y =270,解得⎩⎨⎧x =45,y =60.答:A 型公交车每辆45万元,B 型公交车每辆60万元.(2)设该公司购买m 辆A 型公交车,则购买(140-m )辆B 型公交车,由题意得45m ≤60(140-m ),解得m ≤80.答:该公司最多购买80辆A 型公交车.23.解:(1)设一辆A 型运土车一次运输土方x 立方米,一辆B 型运土车一次运输土方y 立方米,依题意得⎩⎨⎧2x +3y =31,5x +6y =70,解得⎩⎨⎧x =8,y =5.答:一辆A 型运土车一次运输土方8立方米,一辆B 型运土车一次运输土方5立方米.(2)设派出B 型运土车m 辆,则派出A 型运土车(20-m )辆,依题意得⎩⎨⎧8(20-m )+5m ≥148,m ≥2,解得2≤m ≤4. 又∵m 为整数,∴m =2,3或4,∴共有3种派车方案,方案1:派出18辆A 型运土车,2辆B 型运土车; 方案2:派出17辆A 型运土车,3辆B 型运土车; 方案3:派出16辆A 型运土车,4辆B 型运土车.。
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列各式中,是一元一次方程的是()A .x ﹣y =2B .x =1C .2x ﹣3D .x 2+x =22.若12x y =⎧⎨=⎩是方程2nx ﹣y =2的解,则n 的值是()A .﹣1B .1C .2D .03.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A .x≥-1B .x>1C .-3<x≤-1D .x>-34.在下列方程的变形中,正确的是()A .由3+x =5,得x =5+3B .由225=x ,得522=⨯x C .由7x =﹣4,得x =74-D .由216+-=x ,得﹣x +2=65.下列根据语句列出的不等式错误的是()A .“a 的2倍与4的差是正数”,表示为2a ﹣4>0B .“a 与b 的差是非负数”,表示为a ﹣b ≥0.C .“b 不是正数”,表示为b ≤0.D .“a 、b 两数的和的3倍不小于这两个数的积”,表示为3a +b ≥ab .6.如果a <b ,c <0,那么下列不等式中不成立的是()A .a +c <b +cB .ac >bcC .11+>+a b ccD .ac 2>bc 27.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内的数字为y ,则列出的方程正确的是()A .12530y y ⨯=+B .5(120)10030y y +=+C .5(120)30y y+=D .1210030y y +=+8.《孙子算经》记载:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剥余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,求共有多少人多少车?设有x 人、y 辆车,据题意可列方程组为()A .3(2)29y x y x-=⎧⎨+=⎩B .3(2)29y x y x+=⎧⎨-=⎩C .3229y x y x-=⎧⎨+=⎩D .3(2)29y x y x-=⎧⎨-=⎩9.定义一种运算:a ※b =ab ﹣a +b ﹣2.例如:2※5=2×5﹣2+5﹣2=11.那么不等式3※x ≤2的正整数解是()A .1B .74C .0或1D .210.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒现有m 张长方形纸板和n 张正方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m +n 的值可能是()A .2018B .2019C .2020D .2021二、填空题11.写出方程x +3y =11的一个整数解___.12.已知关于x 的一元一次方程12021x ﹣3=2x +b 的解为x =999,那么关于y 的一元一次方程12021(y ﹣1)﹣3=2(y ﹣1)+b 的解为y =_____.13.若关于x 的方程3k ﹣5x =﹣9的解是非负数,则k 的取值范围为_________.14.如图,一块长4厘米、宽1厘米的长方形纸板①,一块长5厘米、宽2厘米的长方形纸板②与一块正方形纸板③以及另两块长方形纸板④和⑤,恰好拼成一个大正方形,则大正方形的面积是______平方厘米.15.小聪和小明完成了数学实验《钟面上的数学》之后,自制了一个模拟钟面.如图,O 为模拟钟面圆心,M 、O 、N 在一条直线上,指针OA 、OB 分别从OM 、ON 同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒25°,OB 运动速度为每秒5°,当某一根指针与起始位置重合时,转动停止.设转动的时间为t 秒,则当t =___秒时,∠AOB =20°.三、解答题16.解方程:432.425--=x x .17.解方程组3220021530x y x y -+=⎧⎨+-=⎩18.解不等式组:2(1)4137136x x x x +<+⎧⎪--⎨-≤⎪⎩并把解集在数轴上表示出来.19.生活中除了用米或厘米作单位测量物体的长度,有时候用“拃(zhǎ)”、“步”、“庹(tuǒ)”来估测也很方便小华和小芳用“拃”作单位,测量同一个物体的长度,测量的结果是:小华用了5拃,小芳用了4拃.(1)①根据上面的数量关系,补全下面的线段图;②由线段图直接写出:小华1拃长度是小芳1拃长度的几分之几?答:.(2)小华和小芳合作用拃来量一张长度为117cm 的桌子,小华从左到右量了6拃,小芳从右到左量了3拃,刚好把桌子量完,求小华和小芳1拃各有多长?20.在学习《用二元一次方程组解决实际问题》这一课时,李老师让同学们根据已知条件探索还能求出哪些量,某船的载重为260吨,容积为1000m 3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m 3,乙种货物每吨体积为2m 3.若要充分利用这艘船的载重与容积,且装运货物时不留空隙(刚好满载一次运完).(1)小宇同学根据题意列出了一个尚不完整的方程组*82m n m n +=⎧⎪⎨+=⎪⎩,请写出小宇所列方程组中未知数m 、n 表示的意义:m 表示,n 表示,该方程组中“?”处的数应是,“*”处的数应是.(2)小琼同学的思路是:设甲种货物有x 吨,乙种货物y 吨,请按照小琼的思路列出方程组,并求甲种货物和乙种货物各有多少吨?21.已知56x y =⎧⎨=⎩与310x y =-⎧⎨=-⎩,都是关于x 、y 的方程y =kx +b 的解.(1)求k 、b 的值;(2)若y 的值不大于0,求x 的取值范围;(3)若﹣1≤x <2,求y 的取值范围.22.(教材呈现)如左图是华师版七年级下册数学教材第10﹣11页的部分内容,右图是小东同学类比课堂学习完成的一道课外作业题.认真阅读教材内容,结合小东作业,完成下列问题:(1)小东解方程的结果“x=2”是不是原方程的解?请写出判断过程;(2)解方程413111--=--xx x,并判断所求“结果”是不是原方程的解,简要说明理由.(3)反思以上过程,你有什么疑问请写下来(一条即可).23.学校为举行社团活动,准备向某商家购买A、B两种文化衫.已知购买3件A种文化衫和2件B种文化衫需要180元:购买2件A种文化衫和4件B种文化衫需要200元.(1)求A、B两种文化衫的单价;(2)学校决定向该商家购买A、B两种文化衫共100件(其中A种文化衫不超过50件),恰逢商家摘促销,现有两种优惠活动,如图所示,设购买A种文化衫m件,根据以上信息解答下列问题:①试用含m的代数式分别表示按照活动一、活动二购买100件文化衫各需付款多少元(直接写出化简结果)?②请说明学校按照哪种活动方案购买更划算.参考答案1.B【分析】根据一元一次方程的定义,即含有一个未知数,未知数的最高次数为1的整式方程叫一元一次方程,逐项判断即可.【详解】解:A、有两个未知数,不是一元一次方程,故本选项错误,不符合题意;B、是一元一次方程,故本选项正确,符合题意;C、是代数式,不是方程,故本选项错误,不符合题意;D、未知数的最高次数为2,不是一元一次方程,故本选项错误,不符合题意;故选:B.【点睛】本题主要考查了一元一次方程的定义,解题的关键是熟练掌握含有一个未知数,未知数的最高次数为1的整式方程叫一元一次方程.2.C 【分析】把方程组的解,代入方程,得到一个含有未知数n 的一元一次方程,从而可以求出n 的值.【详解】解:∵12x y =⎧⎨=⎩是方程2nx ﹣y =2的解,∴222n -=,解得:2n =.故选:C .【点睛】本题主要考查了二元一次方程的解,解一元一次方程,解题的关键是把方程的解代入原方程,使原方程转化为以系数n 为未知数的方程.3.A 【详解】>-3,≥-1,大大取大,所以选A4.B 【分析】根据等式性质移项,去分母等的方法变式即可.【详解】解:A ,由3+x =5,得x =5-3,故此项不合题意;B ,由225x =,得522x =⨯,故此项符合题意;C ,由7x =﹣4,得47x -=,故此项不合题意;D ,由216x +-=,得26x --=,故此项不合题意;故答案选:B .【点睛】此题考查方程的计算,涉及等式的性质,难度一般.5.D根据题意列出对应的不等式即可判断.【详解】解:A 、“a 的2倍与4的差是正数”,表示为2a ﹣4>0,此说法正确,不合题意;B 、“a 与b 的差是非负数”,表示为a ﹣b ≥0,此说法正确,不合题意;C 、“b 不是正数”,表示为b ≤0,此说法正确,不合题意;D 、“a 、b 两数的和的3倍不小于这两个数的积”,表示为3a +3b ≥ab ,此说法错误,符合题意;故选D.【点睛】本题主要考查了根据描述列出不等式,解题的关键在于能够熟练掌握相关知识进行求解.6.D 【分析】根据不等式的性质解答即可.【详解】解:A 、由a <b ,c <0得到:a +c <b +c ,原变形正确,故此选项不符合题意;B 、由a <b ,c <0得到:ac >bc ,原变形正确,故此选项不符合题意;C 、由a <b ,c <0得到:11+>+ab c c,原变形正确,故此选项不符合题意;D 、由a <b ,c <0得到:ac 2<bc 2,原变形错误,故此选项符合题意.故选D .【点睛】本题考查了不等式的性质,解题的关键是明确不等式的性质是不等式变形的主要依据.要认真弄清不等式的性质与等式的性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数是否等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.7.B 【分析】由给定的乘法竖式,即可得出关于y 的一元一次方程,此题得解.解:依题意得:5(120+y )=100y +30.故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.A 【分析】设有x 人,y 辆车,根据每3人共乘一车,最终剥余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,即可得出关于x ,y 的二元一次方程组.【详解】解:设有x 人,y 辆车,根据车的辆数不变列出等量关系,每3人共乘一车,最终剩余2辆车,则车辆数为:23x y +=,每2人共乘一车,最终剩余9个人无车可乘,则车辆数为:92x y -=,∴整理得::()3229y xy x⎧-=⎨+=⎩.故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程是解题的关键.9.A 【分析】根据定义的新运算,可列出不等式,解出即可求解.【详解】解:∵3※x =3x -3+x -2,根据题意得:3x -3+x -2≤2,解得:74x ≤,∴不等式3※x ≤2的正整数解是1.【点睛】本题主要考查了一元一次不等式的应用,理解定义一种运算:a ※b =ab ﹣a +b ﹣2,列出不等式是解题的关键.10.C 【分析】设做竖式和横式的两种无盖纸盒分别为x 个、y 个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x 、y 的系数表示出m +n 并判断m +n 为5的倍数,然后选择答案即可.【详解】解:设做竖式和横式的两种无盖纸盒分别为x 个、y 个,由题意得:432x y mx y n +=⎧⎨+=⎩,两式相加得,m +n =5(x +y ),∵x 、y 都是正整数,∴m +n 是5的倍数,∵2018、2019、2020、2021四个数中只有2020是5的倍数,∴m +n 的值可能是2020,故选C .【点睛】本题考查了二元一次方程组的应用,根据未知数系数的特点,计算出所需两种纸板的张数的和正好是5的倍数是解题的关键.11.81x y =⎧⎨=⎩(答案不唯一,x +3y =11即可)【分析】先给x 一个整数值,再确定y 的值即可.【详解】解:当8x =时,有8311y +=,解得:1y =,∴81x y =⎧⎨=⎩是方程x +3y =11的一个整数解;当5x =时,有5311y +=,解得:2y =,∴52=⎧⎨=⎩x y 是方程x +3y =11的一个整数解;由于二元一次方程有无数个整数解,所以答案不唯一,故答案为:81x y =⎧⎨=⎩(答案不唯一,x +3y =11即可).【点睛】本题考查了二元一次方程的解,先给出未知数的一个整数值,再确定另一个的值是解题的关键.12.1000【分析】根据两个方程的关系:第二个方程中的y +1相当于第一个方程中的x ,据此即可求解.【详解】解:∵关于x 的一元一次方程12021x ﹣3=2x +b 的解为x =999,∴关于y 的一元一次方程12021(y ﹣1)﹣3=2(y ﹣1)+b 中y ﹣1=999,解得:y =1000,故答案为:1000.【点睛】此题考查解一元一次方程,利用整体思想,将第二个方程中的y +1看作第一个方程中的x 是解题的关键.13.k ≥-3【分析】把k 看作已知数表示出方程的解,根据解为非负数,确定出k 的范围即可.【详解】解:方程3k ﹣5x =9,解得:x 395k -=,由题意得:395k -≥0,解得:k ≥3.故答案为:k ≥3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.36.【分析】设小正方形的边长为x ,依据小正方形的边长的表达式,可得方程1245x x ++=+-,进而得出大正方形的边长及面积.【详解】解:设小正方形的边长为x ,依题意得1+x +2=4+5﹣x ,解得:x =3,∴大正方形的边长为6厘米,∴大正方形的面积是6×6=36(平方厘米),答:大正方形的面积是36平方厘米.故答案为:36.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.8或10【分析】分两者相遇前和相遇后,列方程求解即可得到答案.【详解】解:当OA 与OB 相遇前,由题意可得:∠AOB =180°+∠NOB -∠AOM ,∴180°+5t -25t =20°,∴t =8s ;当OA 与OB 相遇后,由题意可知:∠AOB =∠AOM -180°-∠NOB∴25t -180°-5t =20°,∴t =10s∴当t =8s 或10s 时,∠AOB =20°,故答案为:8或10.【点睛】本题主要考查了一元一次方程的实际应用,解题的关键在于能够根据题意找到等量关系列出方程求解.16.x =4【分析】先去分母,然后移项,然后化系数为1解一元一次方程即可.【详解】解:432.425--=x x 去分母得:()24546x x --=,去括号得:4456x x -=,移项得:1144x =,化系数为1得:4x =,∴方程的解为:4x =.【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法.17.61x y =-⎧⎨=⎩【分析】方程组适当变形后,给②×3-①×2即可消去x ,解关于y 的一元一次方程,再将y 值代入①式,即可解出y .【详解】解:由3220021530x y x y -+=⎧⎨+-=⎩可得32202153x y x y -=-⎧⎨+=⎩①②②×3-①×2得3()2(322)313(20)52x y x y --=⨯-⨯-+,即4949y =,解得y=1,将y=1代入①式得32120x -⨯=-,解得6x =-.故该方程组的解为61x y =-⎧⎨=⎩.【点睛】本题考查解二元一次方程组.解二元一次方程主要用到“消元思想”,将二元一次方程组化为一元一次方程求解.主要方法有加减消元法和代入消元法,熟练掌握这两种方法并能灵活利用是解题关键.18.12x -≤<,见解析;【分析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【详解】2(1)4137136x x x x +<+⎧⎪⎨---≤⎪⎩①②,解:解不等式①得2x <,解不等式②得1x ≥-,∴不等式组的解集为12x -≤<,把不等式组的解集在数轴上表示为:.【点睛】本题考查了解已于一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集,也考查了用数轴表示不等式的解集.19.(1)①见解析;②45;(2)小华1柞长12cm ,小芳1柞长15cm【分析】(1)①根据测量同一个物体的长度,测量的结果是:小华用了5拃,小芳用了4排的数量关系,补全线段图即可;②根据比例的定义即可求解;(2)设小芳1拃长度为xcm ,则小华1拃长度为45xcm ,根据“小华和小芳合作用拃来量一张长度为117cm 的桌子,小华从左到右量了6拃,小芳从右到左量了3拃,”可列出方程,即可解答.【详解】解:(1)①如图,②∵小华5拃长度等于小芳4拃长度,∴小华1拃长度是小芳1拃长度的45,故答案为:45;(2)设小芳1拃长度为xcm ,则小华1拃长度为45xcm ,根据题意得:4631175x x ⨯+=,解得:15x =,则44151255x =⨯=,答:小华1柞长12cm ,小芳1柞长15cm .【点睛】本题主要考查了一元一次方程的应用,求一个数是另一个数的几分之几,明确题意,准确得到等量关系是解题的关键.20.(1)甲种货物的体积,乙种货物的体积,1000,260;(2)这艘船装甲货物80吨,装乙货物180吨【分析】(1)根据82m n +,结合题意即可知,m n 表示的意义,进而求得“?”处的数以及“*”处的数;(2)设甲种货物有x 吨,乙种货物y 吨,根据货物总重量为260吨,总体积为1000m 3,列二元一次方程组即可解决问题.【详解】(1)根据82m n +,结合题意即可知,m n 分别表示甲、乙货物的体积,则“?”处的数为1000,“*”处的数为260;故答案为:甲种货物的体积,乙种货物的体积,1000,260;(2)设甲种货物有x 吨,乙种货物y 吨,根据题意,得:260821000x y x y +=⎧⎨+=⎩解得80180x y =⎧⎨=⎩答:甲种货物有80吨,乙种货物180吨.【点睛】本题考查了用二元一次方程组解决实际问题,根据题意找到定量关系列出二元一次方程组是解题的关键.21.(1)24k b =⎧⎨=-⎩;(2)2x ≤;(3)60y -≤<【分析】(1)把56x y =⎧⎨=⎩与310x y =-⎧⎨=-⎩代入y =kx +b 即可求得.(2)根据k 、b 的值求得方程,由y 的值不大于0,得出2x -4≤0,解得x ≤2;(3)根据不等式的性质即可求得.【详解】(1)把56x y =⎧⎨=⎩与310x y =-⎧⎨=-⎩代入y =kx +b 得:56310k b k b +⎧⎨-+-⎩==,解得;24k b =⎧⎨=-⎩;(2)由(1)得24y x =-,∵0y ≤,∴240x -≤,解得2x ≤;(3)∵12x -≤<,∴224x -≤<,∴6240x -≤-<,即60y -≤<.【点睛】本题考查了解二元一次方程组,解一元一次不等式(组),依据不等式的性质把不等式进行变形是解题的关键.22.(1)“x =2”是原方程的解,判断过程见解析;(2)不是原方程的解,理由见解析;(3)答案不唯--,为什么所求结果不一定是原方程的解,问题出在哪里?【分析】(1)把x =2代入原方程中,看等式两边是否相等即可;(2)直接解分式方程,然后把解得的结果代入原方程进行检验即可;(3)根据解分式方程产生的根不是方程的解得情况提出合理的问题即可.【详解】解:(1)x =2是原方程的解,理由如下:把x =2代入原方程中:等式左边为:13223+=-,等式右边为:24221-=-,∴等式两边相等,∴x =2是原方程的解;(2)413111--=--x x x 解:去分母得:()4113x x ---=,去括号得:4113x x --+=,移项得:4311x x -=-+,合并同类项得:33x =,系数化为1得:1x =,∵分母10x -≠,∴1x ≠,∴1x =不是方程的解;(3)为什么所求结果不一定是原方程的解,问题出在哪里?【点睛】本题主要考查了解分式方程,解题的关键在于能够熟练掌握解分式方程的方法.23.(1)A 种文化衫的单价为40元,B 文化衫的单价为30元;(2)①若按活动一需付款:20m +1200,若按活动二需付款:-20m +3000;②当m <45时,选择活动一购买更划算,当a =45时,选择两种活动费用相同,当45<m ≤50时,选择活动二购买更划算.【分析】(1)设A 种文化衫的单价为x 元,B 文化衫的单价为y 元,根据“购买3件A 种文化衫和2件B 种文化衫需要180元;购买2件A 种文化衫和4件B 种文化衫需要200元”列出方程组,再解即可;(2)①按活动一购买,共需付款:A 种文化衫m 件的花费+B 种文化衫(100-m )件的花费;按活动二购买:A 种文化衫m 件的花费+B 种文化衫(100-m -m )件的花费;②根据题意列出不等式,再解即可.【详解】解:(1)设A 种文化衫的单价为x 元,B 文化衫的单价为y 元,由题意可得:3218024200x y x y +⎧⎨+⎩==,解得:4030x y ⎧⎨⎩==,答:A 种文化衫的单价为40元,B 文化衫的单价为30元;(2)①若按活动一购买,共需付款:()40m 0.8300.4100m 20m 1200⨯+⨯⨯-=+,若按活动二购买,共需付款:40m 30(100m m)20m 3000+--=-+,②令201200203000m =m +-+,解得:45m=,当m <45时,201200203000m m ++<-,选择活动一购买更划算;当m=45时,m=m+-+,201200203000选择两种活动费用相同当m>45时,>-,++201200203000m m选择活动二购买更划算.【点睛】此题主要考查了一元一次方程和二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系求出两种文化衫的单价.。
华师大版七年级下学期数学《期中考试试题》含答案
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
A.98B.99C.100D.101
[答案]B
[解析]
[分析]
设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,然后对各选项进行判断.
[详解]设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,
[详解]根据题意得:
,
解得: ,
则2m﹣n2=20﹣100=﹣80.
故答案为﹣80 .
[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
15.若方程组 的解也是x+y=1的一个解,则a=_____.
[答案]-
[解析]
[分析]
利用二元一次方程组的解的定义得到方程组 的解也是方程组 的解,然后解方程组 后把x、y的值代入9﹣2a=10中可求出a的值,
华 东 师 大 版 数 学七年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的
1.下列方程中,不是一元一次方程的是()
A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D. +1=0
[答案]A
[解析]
[分析]
等量关系为:7×组数+2=8×组数﹣4,把相关数值代入即可.
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.若x =2是关于x 的方程12x +a =-1的解,则a 的值为()A .0B .2C .-2D .-62.根据等式性质,下列结论正确的是()A .如果22a b -=,那么a b =-B .如果22a b -=-,那么a b=-C .如果22a b =-,那么a b=D .如果122a b =,那么a b=3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A .0个B .1个C .2个D .3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A .27B .51C .65D .725.若关于x ,y 的方程组24232x y x y m +=⎧⎨+=-+⎩的解满足32x y ->-,则m 的最小整数解为()A .﹣3B .﹣2C .﹣1D .06.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A .6折B .7折C .8折D .9折7.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为()A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩8.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是()A .①②③B .①③C .②③D .①②9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x 天相遇,可列方程为()A .9x 7x 1-=B .9x 7x 1++C .11x x 179+=D .11x x 179-=10.关于x 的不等式组x 15x 322x 2x a 3<+⎧-⎪⎪⎨+⎪+⎪⎩只有4个整数解,则a 的取值范围是()A .145a 3-≤≤-B .145a 3-≤<-C .145a 3-<≤-D .145a 3-<<-二、填空题11.方程210x -=的解是_______.12.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解相同,则a =_____.13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x+y >0,则m 的取值范围是____.14.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm.15.一列方程如下排列:1142x x -+=的解是2x =,2162x x -+=的解是3x =,3182x x -+=的解是4x =,……根据观察得到的规律,写出其中解是2020x =的方程_____。
华师大版数学七年级下学期《期中考试试题》附答案
故选C.
3.若x>y,则下列不等式不一定成立的是()
A.x+1>y+1B. 2x>2y
C. > D.x2>y2
[答案]D
[解析]
A选项:两边都加1,不等号的方向不变,故A不符合题意;
B选项:两边都乘以2,不等号的方向不变,故B不符合题意;
C选项:两边都除以2,不等号的方向不变,故C不符合题意;
[答案]
[解析]
[分析]
原式利用题中的新定义计算即可得到结果.
[详解]根据题意得: ,
①+②得:a=-1,b=2,
则x*y=-x+2y,
∴2*(-3)=-2+2×(-3)=-8.
故答案 -8
[点睛]此题考查了解二元一次方程组,以及有理数的混合运算,弄清题中的新定义计算即可得到结果.
三、解答题((9大题共 86分,解答过程写在答题卡相应位置上)
17.解方程
(1) (2)
[答案](1) ;(2)
[解析]
[分析]
(1)方程去括号,移项合并,将x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.
[详解](1)解:
,
;
(2)解:
,
,
.
[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.
合并同类项,得2x=6,
系数化为1,得x=3,
把x=3代入6x=3+5a中,
得6×3=3+5a,
∴a=3.
故选C.
[点睛]本题考查了同解方程.解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号.因为两方程解相同,把求得x的值代入方程,即可求得常数项的值.
华师大版七年级下册数学期中考试试题带答案
华师大版七年级下册数学期中考试试卷一、选择题:(满分30分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下.1.(3分)下列方程中,是一元一次方程的是()A.+2=0B.3a+6=4a﹣8C.x2+2x=7D.2x﹣7=3y+12.(3分)方程3x+y=9在正整数范围内的解的个数是()A.1个B.2个C.3个D.有无数个3.(3分)下列方程中,解为x=4的是()A.2x+1=10B.﹣3x﹣8=5C.x+3=2x﹣2D.2(x﹣1)=6 4.(3分)若a<b,则下面错误的变形是()A.6a<6b B.a﹣3<b﹣3C.a+4<b+3D.﹣>﹣5.(3分)下列方程变形正确的是()A.由3﹣x=﹣2得x=3+2B.由3x=﹣5得x=﹣C.由y=0得y=4D.由4+x=6得x=6+46.(3分)不等式﹣3<x≤2的所有整数解的和是()A.0B.6C.﹣3D.37.(3分)方程组的解是()A.B.C.D.8.(3分)甲数的2倍比乙数大3,甲数的3倍比乙数的2倍小1,若设甲数为x,乙数为y,则根据题意可列出的方程组为()A.B.C.D.9.(3分)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是()A.B.C.D.10.(3分)如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.90二、填空题:(满分24分,每小题3分)11.(3分)若a>b,则ac2bc2.12.(3分)已知二元一次方程组的解是,则a﹣b的值是.13.(3分)若(x+y﹣3)2+5|x﹣y﹣1|=0,则y x=.14.(3分)若方程组的解也是方程3x+ky=10的一个解,则k=.15.(3分)关于x的方程(2﹣3a)x=1的解为负数,则a的取值范围是.16.(3分)不等式组的解集是.17.(3分)一玩具加工厂2011年用电3千万度,比2010年减少了5%,若设2010年用电x度,则可列方程为.18.(3分)一罐柠檬茶和一瓶1千克橙汁的价钱分别是5元和12元.如果小雪有100元,而她想买6瓶橙汁和若干罐柠檬茶,则她最多可以买罐柠檬茶.三、解答题:(本大题满分66分)19.(20分)解下列方程(组)或不等式(组)(1)2(2x+1)=1﹣5(x﹣2)(2)(3)(4).20.(6分)已知方程mx+ny=10,有两个解分别是和,求m﹣n的值.21.(7分)已知不等式5x﹣2<6x﹣1的最小正整数解是方程的解,试求a 的值.22.(7分)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?23.(7分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.24.(9分)阅读下列解方程组的方法,然后回答问题.解方程组解:由①﹣②得2x+2y=2即x+y=1③×16得16x+16y=16④②﹣④得x=﹣1,从而可得y=2∴原方程组的解是.(1)请你仿上面的解法解方程组;(2)请大胆猜测关于x、y的方程组的解是什么?25.(10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?价格进价(元/台)售价(元/台)种类电视机20002100冰箱24002500洗衣机16001700参考答案与试题解析一、选择题:(满分30分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下.1.(3分)(2016春•安岳县期中)下列方程中,是一元一次方程的是()A.+2=0B.3a+6=4a﹣8C.x2+2x=7D.2x﹣7=3y+1【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、分母中含有未知数,不是一元一次方程;B、符合一元一次方程的定义;C、未知数的最高次幂为2,不是一元一次方程;D、含有两个未知数,不是一元一次方程.故选B.【点评】判断一个方程是否为一元一次方程关键看它是否同时具备:(1)只含有一个未知数,且未知数的次数为1;(2)分母里不含有字母;具备这两个条件即为一元一次方程,否则不是.2.(3分)(2016春•沈丘县期末)方程3x+y=9在正整数范围内的解的个数是()A.1个B.2个C.3个D.有无数个【分析】由题意求方程的解且要使x,y都是正整数,将方程移项将x和y互相表示出来,在由题意要求x>0,y>0根据以上两个条件可夹出合适的x值从而代入方程得到相应的y 值.【解答】解:由题意求方程3x+y=9的解且要使x,y都是正整数,∴y=9﹣3x>0,∴x≤2,又∵x≥0且x为正整数,∴x值只能是x=1,2,代入方程得相应的y值为y=6,3.∴方程3x+y=9的解是:,;故选:B.【点评】本题是求不定方程的整数解,主要考查方程的移项,合并同类项,系数化为1等技能,先将方程做适当变形,确定其中一个未知数的取值范围,然后枚举出适合条件的所有整数值,再求出另一个未知数的值.3.(3分)(2016春•安岳县期中)下列方程中,解为x=4的是()A.2x+1=10B.﹣3x﹣8=5C.x+3=2x﹣2D.2(x﹣1)=6【分析】根据一元一次方程的解就是使方程的左右两边相等的未知数的值,把x=4代入各选项进行验证即可得解.【解答】解:A、左边=2×4﹣1=7,右边=10,左边≠右边,故本选项错误;B、左边=﹣3×4﹣8=﹣20,右边=5,左边≠右边,故本选项错误;C、左边=×4+3=5,右边=2×4﹣2=6,左边≠右边,故本选项错误;D、左边=2(4﹣1)=6,右边=6,左边=右边,故本选项正确.故选:D.【点评】本题考查了一元一次方程的解,数据方程解的定义,对各选项准确进行计算是解题的关键.4.(3分)(2016春•沈丘县期末)若a<b,则下面错误的变形是()A.6a<6b B.a﹣3<b﹣3C.a+4<b+3D.﹣>﹣【分析】根据不等式的性质,逐个进行判断,再选出即可.【解答】解:A、∵a<b,∴6a<6b,正确,不符合题意;B、∵a<b,∴a﹣3<b﹣3,正确,不符合题意;C、根据a<b不能判断a+4和b+3的大小,错误,符合题意;D、∵a<b,∴﹣>﹣,正确,不符合题意.故选C.【点评】本题考查了对不等式的基本性质的应用,注意:不等式的两边都乘以或除以同一个负数,不等号的方向要改变.5.(3分)(2016春•安岳县期中)下列方程变形正确的是()A.由3﹣x=﹣2得x=3+2B.由3x=﹣5得x=﹣C.由y=0得y=4D.由4+x=6得x=6+4【分析】根据等式的性质两边都加或都减同一个数或等式,结果不变,可判断A、D,根据等式的两边都乘或除以同一个部位0的数或整式,结果不变,可判断B、C.【解答】解;A、3﹣x=﹣2,x=3+2,故A正确;B、3x=﹣5,x=﹣,故B错误;C、=0,y=0,故C错误;D、4+x=6,x=2,故D错误;故选:A.【点评】本题考查了等式的性质,等式的性质两边都加或都减同一个数或等式,结果不变,根据等式的两边都乘或除以同一个部位0的数或整式,结果不变.6.(3分)(2014春•福清市校级期末)不等式﹣3<x≤2的所有整数解的和是()A.0B.6C.﹣3D.3【分析】首先求出不等式﹣3<x≤2的所有整数解,然后求它们的和.【解答】解:不等式﹣3<x≤2的所有整数解为:﹣2,﹣1,0,1,2,则﹣2﹣1+0+1+2=0,故选A.【点评】本题是一道较为简单的问题,利用数轴就能直观的理解题意,可借助数轴得出不等式﹣3<x≤2的所有整数解.7.(3分)(2016•闸北区二模)方程组的解是()A.B.C.D.【分析】本题解法有多种.可用加减消元法或代入消元法解方程组,解得x、y 的值;也可以将A、B、C、D四个选项的数值代入原方程检验,能使每个方程的左右两边相等的x、y的值即是方程的解.【解答】解:将方程组中4x﹣y=13乘以2,得8x﹣2y=26①,将方程①与方程3x+2y=7相加,得x=3.再将x=3代入4x﹣y=13中,得y=﹣1.故选B.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法.8.(3分)(2016春•安岳县期中)甲数的2倍比乙数大3,甲数的3倍比乙数的2倍小1,若设甲数为x,乙数为y,则根据题意可列出的方程组为()A.B.C.D.【分析】根据甲数的2倍比乙数大3可得2x=y+3,甲数的3倍比乙数的2倍小1可得3x=2y﹣1,联立两个方程即可.【解答】解:设甲数为x,乙数为y,根据题意得:,故选:C.【点评】此题主要考查了二元一次方程组,关键是找出题目中的等量关系,列出方程.9.(3分)(2011•宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是()A.B.C.D.【分析】设这个两位数的个位数字为x,十位数字为y,则两位数可表示为10y+x,对调后的两位数为10x+y,根据题中的两个数字之和为8及对调后的等量关系可列出方程组,求解即可.【解答】解:设这个两位数的个位数字为x,十位数字为y,根据题意得:.故选B.【点评】本题考查了关于数字问题的二元一次方程组的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.10.(3分)(2015秋•鄂城区期末)如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.90【分析】由题意可知,三角形每条边上有3盆花,共计3×3﹣3盆花,正四边形每条边上有4盆花,共计4×4﹣4盆花,正五边形每条边上有5盆花,共计5×5﹣5盆花,…则正n变形每条边上有n盆花,共计n×n﹣n盆花,结合图形的个数解决问题.2﹣3盆花,【解答】解:∵第一个图形:三角形每条边上有3盆花,共计32﹣4盆花,第二个图形:正四边形每条边上有4盆花,共计42﹣5盆花,第三个图形:正五边形每条边上有5盆花,共计5…2﹣(n+2)盆花,第n个图形:正n+2边形每条边上有n盆花,共计(n+2)2﹣(8+2)=90盆.则第8个图形中花盆的个数为(8+2)故选:D.【点评】本题主要考查归纳与总结的能力,关键在于根据题意总结归纳出花盆总数的变化规律.二、填空题:(满分24分,每小题3分)11.(3分)(2016春•安岳县期中)若a>b,则ac2≥bc2.2的符号,进而判断出不等式的方向即可.【分析】先判断出c【解答】解:∵何数的平方一定大于或等于02≥0∴c2>0时,ac2>bc2∴cc2=0时,则ac2=bc22≥bc2.∴若a>b,则ac【点评】不等式两边乘(或除以)同一个正数,不等号的方向不变;还要注意两边同乘以0时的情况.12.(3分)(2016春•安岳县期中)已知二元一次方程组的解是,则a﹣b的值是1.【分析】将x、y的值代入二元一次方程组,得到关于a、b的二元一次方程组,两式相减可得a﹣b.【解答】解:把代入中,得,两式相减,得2a﹣2b=2,即a﹣b=1,故答案为:1.【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.13.(3分)(2016春•安岳县期中)若(x+y﹣3)2+5|x﹣y﹣1|=0,则y x=1.【分析】根据几个非负数的和为零的性质得到,再利用加减消元法解方程x计算即可.组得到,然后把它们代入y2+5|x﹣y﹣1|=0,【解答】解:∵(x+y﹣3)∴,①+②得2x﹣4=0,解得x=2,①﹣②得2y﹣2=0,解得y=1,所以方程组的解为,x=12=1.所以y故答案为1.【点评】本题考查了解二元一次方程组:利用代入法或加减消元法把二元一次方程转化为一元一次方程求解.也考查了几个非负数的和为零的性质.14.(3分)(2010春•江都市期末)若方程组的解也是方程3x+ky=10的一个解,则k=﹣.【分析】由题意求得x,y的值,再代入3x+ky=10中,求得k的值.【解答】解:由题意得组,解得,代入3x+ky=10,得9﹣2k=10,解得k=﹣.故本题答案为:﹣.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.15.(3分)(2016春•安岳县期中)关于x的方程(2﹣3a)x=1的解为负数,则a的取值范围是a>.【分析】根据题意可得x<0,将x化成关于a的一元一次方程,然后根据x的取值可求出a的取值.【解答】解:∵(2﹣3a)x=1∴x=又∵x<0∴2﹣3a<0∴a>【点评】此题考查的是一元一次方程的解法,将x用a来表示,根据x的取值范围可求出a 的取值.16.(3分)(2016春•安岳县期中)不等式组的解集是﹣2<x≤3.【分析】分别解出两不等式的解集再求其公共解.【解答】解:由(1)得:x>﹣2;由(2)得:x≤3,不等式组的解集是﹣2<x≤3.故填﹣2<x≤3.【点评】求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.17.(3分)(2016春•安岳县期中)一玩具加工厂2011年用电3千万度,比2010年减少了5%,若设2010年用电x度,则可列方程为(1﹣5%)x=30000000.【分析】首先理解题意找出题中存在的等量关系:2010年的用电度数(1﹣5%)=2011年的用电度数,根据等量关系列方程即可.【解答】解:设2010年用电x度,根据等量关系列方程得:(1﹣5%)x=30000000.故答案为:(1﹣5%)x=30000000.【点评】此题考查了由实际问题抽象出一元一次方程的知识,解题的关键是理解“比2006年减少了5%”这一句话.18.(3分)(2016春•安岳县期中)一罐柠檬茶和一瓶1千克橙汁的价钱分别是5元和12元.如果小雪有100元,而她想买6瓶橙汁和若干罐柠檬茶,则她最多可以买5罐柠檬茶.【分析】根据买柠檬茶的钱数+买橙汁的钱数≤100据此,可列出不等式,进而求出即可.【解答】解:设她最多可以买x罐柠檬茶,根据题意得,5x+12×6≤100,解这个不等式,得x≤5,又由于买柠檬茶的罐数应为正整数,且最大,所以x=5答:她最多可以买5罐柠檬茶.故答案为:5.【点评】此题主要考查了一元一次不等式的应用,列不等式解决实际问题,可以参照列方程的基本思想,分析如何用代数式表示相关量,寻求已知量和未知量之间的关系,要注意题意中“至少”“不少于”等语句所隐含的不等关系,从实际问题中抽象出数量关系,从列出代数式到不等式,转化为纯数学问题求解.让同学们通过实践,体会不等式和方程同样是刻画现实世界数量关系的重要模型.三、解答题:(本大题满分66分)19.(20分)(2016春•安岳县期中)解下列方程(组)或不等式(组)(1)2(2x+1)=1﹣5(x﹣2)(2)(3)(4).【分析】(1)先去括号、移项、合并同类项、系数化为1,即可求解;(2)根据加减消元法先消去y,求出x,再代入计算即可求解;(3)根据加减消元法先消去z,得到关于x,y的方程组,解方程组求出x,y,再代入计算即可求解;(4)先求出不等式组中每个不等式的解集,再求出两个不等式的解集的公共部分即为所求.【解答】解:(1)2(2x+1)=1﹣5(x﹣2)4x+2=1﹣5x+10,4x+5x=1+10﹣2,9x=9,x=1;(2)①×2+②得5x=10,解得x=2,把x=2代入②得2+2y=﹣2,解得y=﹣2.故方程组的解为;(3),①×2+②得3x﹣y=13④,③﹣①得2x+y=﹣2⑤,则,解得,把代入①得z=﹣10.2.故方程组的解为;(4),解①得x<4,解②得x<﹣6.故不等式组的解集为x<﹣6.【点评】考查了解二元一次方程组,关键是熟练掌握代入法和加减法解二元一次方程组的一般步骤.同时考查了解三元一次方程组,关键是熟练掌握解三元一次方程组的一般步骤.考查了解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.同时考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(6分)(2016春•安岳县期中)已知方程mx+ny=10,有两个解分别是和,求m﹣n的值.【分析】将x与y的两对值代入方程得到关于m与n的方程组,求出方程组的解得到m 与n的值,即可确定出m﹣n的值.【解答】解:将和代入方程mx+ny=10,得,解得:,则m﹣n=10﹣10=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.21.(7分)(2016春•安岳县期中)已知不等式5x﹣2<6x﹣1的最小正整数解是方程的解,试求a的值.【分析】首先解不等式确定不等式的最小整数解,然后代入方程,即可得到关于a的方程,求得a的值.【解答】解:∵5x﹣2<6x﹣1,∴x>﹣1,∴不等式5x﹣2<6x﹣1的最小正整数解为x=1,∵x=1是方程的解,∴a=﹣2.【点评】本题考查了不等式的解法和方程的解的定义,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.22.(7分)(2016春•安岳县期中)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?【分析】本题可以通过看图找出两个等量关系:长方形的长+宽=50cm,长方形的长×2=长+宽×4,据此可以设未知数列方程组求解.【解答】解:设每块长方形的长是xcm,宽是ycm,根据题意得解得答:长是40cm,宽是10cm.【点评】二元一次方程组中的等量关系一般是通过分析题意得出的,但如果附有参考图,也可以从图中找.23.(7分)(2016春•安岳县期中)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.【分析】设捐款2元和5元的学生人数分别为x人、y人,根据总人数是55人,捐款数是274元,列出方程组,求出方程组的解即可.【解答】解:设捐款2元和5元的学生人数分别为x人、y人,依题意得:,,解方程组,得,答:捐款2元的有4人,捐款5元的有38人.【点评】此题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组,本题的等量关系是总人数=1元的人数+2元的人数+5元的人数+10元的人数,总钱数=捐1元的总数+捐2元的总数+捐5元的总数+捐10元的总数.24.(9分)(2016春•安岳县期中)阅读下列解方程组的方法,然后回答问题.解方程组解:由①﹣②得2x+2y=2即x+y=1③×16得16x+16y=16④②﹣④得x=﹣1,从而可得y=2∴原方程组的解是.(1)请你仿上面的解法解方程组;(2)请大胆猜测关于x、y的方程组的解是什么?【分析】(1)对于方程组,先用①﹣②可得到x+y=1③,然后③与①或②组成方程组,运用加减消元法很快求出x、y,从而得到方程组的解;(2)和(1)一样,先把两个方程相减得到x+y=1,然后运用加减消元法可求出x、y,从而得到方程组的解.【解答】解:(1),①﹣②得2x+2y=2,即x+y=1③,①﹣③×2011得x=﹣1,把x=﹣1代入③得﹣1+y=1,解得y=2,所以原方程组的解为;(2).【点评】本题考查了解二元一次方程组:利用代入法或加减消元法把二元一次方程转化为一元一次方程求解.也考查了阅读理解能力.25.(10分)(2009•河南)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?价格进价(元/台)售价(元/台)种类电视机20002100冰箱24002500洗衣机16001700【分析】(1)由题意可知:电视机的数量和冰箱的数量相同,则洗衣机的数量等于总台数减去2倍的电视机或洗衣机的数量,又知洗衣机数量不大于电视机数量的一半,则15﹣2x≤x;根据各个电器的单价以及数量,可列不等式2000x+2400x+1600(15﹣2x)≤32400;根据这两个不等式可以求得x的取值,根据x的取值可以确定有几种方案;(2)分别计算出方案一和方案二的家电销售的总额,分别将总额乘以13%,即可求得补贴农民的钱数.【解答】解:(1)设购进电视机、冰箱各x台,则洗衣机为(15﹣2x)台依题意得:解这个不等式组,得6≤x≤7∵x为正整数,∴x=6或7;方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台;(2)方案1需补贴:(6×2100+6×2500+3×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);答:国家的财政收入最多需补贴农民4407元.【点评】对于方案设计的问题,首先考虑的是如何根据已知条件列出不等式,在所求得的取值范围中找出符合题意的值,得出可能产生的几种方案.。
(完整版)华师大七年级下期中考试数学试卷
华师大七年级下册期中考试数学试卷(本检测题满分:100分,时间:60分钟)一、选择题(每题 3 分,共 24 分)1、以下方程中,是一元一次方程的是()A .x 2y 1 0 B.C.x2 2x 1 0 D.y 4x 57 x 2 3 42、 (2015?江苏无锡 )方程 2x﹣ 1=3x+2 的解为()A . x=1B .x=﹣ 1C. x=3 D . x=﹣ 33、( 2014 年广东汕尾)若x> y,则以下式子中错误的选项是()A. x﹣ 3> y﹣ 3B.>C. x+3 > y+3D.﹣ 3x>﹣ 3y4、( 2014?德州)不等式组的解集在数轴上可表示为()A.B.C.D.5、 (2014 年广西钦州 )不等式组的整数解共有()A . 1 个B. 2 个C. 3 个 D . 4 个6、( 2015?广东广州)已知 a, b 知足方程组,则a+b的值为()A .﹣4 B. 4 C.﹣2 D. 27、某村原有林地108 公顷,旱地54 公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把 x 公顷旱地改为林地,则可列方程()A. 54- x=20%×108B. 54- x=20%×(108+ x)C. 54+x=20%×162 D . 108- x=20%(54+ x)8、一张试卷有25 道题,做对一道题得 4 分,做错一道题扣 1 分,一个学生做完整部题目,总得分不低于70 分,则他起码要答对()题.A. 17B. 18C.19D.20二、填空题(每题 3 分,共 21 分)9、在二元一次方程 2 x y 5 0 中,用含x的代数式表示y,则 y = __________10、写出一个解为x 1 的一元一次不等式11、不等式2x+3<- 1 的解集是: __________.12、已知对于x 的方程 2x+a﹣5=0 的解是x=2 ,则 a 的值为.13、方程组的解是.x+2≥014、一元一次不等式组5x–1>0的解集是15、( 2014?攀枝花)已知 x, y 知足方程组,则x﹣y的值是.三、解答题(6 大题, 8+8+9+10+10+10 =55分)16、解不等式≤,并求出它的正整数解.17、解方程组:.18、)求不等式组的解集,并把它们的解集在数轴上表示出来.19、( 2013?泰州)某地为了打造风光带,将一段长为360m 的河流整顿任务由甲、乙两个工程队先后接力达成,共用时 20 天,已知甲工程队每日整顿 24m,乙工程队每日整顿 16m.求甲、乙两个工程队分别整顿了多长的河流.20、( 2014?四川宜宾)在我市举行的中学生安全知识比赛中共有20 道题.每一题答对得 5 分,答错或不答都扣 3 分.(1)小李考了 60 分,那么小李答对了多少道题?(2)小王获取二等奖( 75~85 分),请你算算小王答对了几道题?21、某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购置若干钢笔和笔录本(每支钢笔的价钱同样,每本笔录本的价钱同样)作为奖品.若购置 2 支钢笔和 3 本笔录本共需 62 元,购置 5 支钢笔和 1 本笔录本共需90 元.(1)购置一支钢笔和一本笔录本各需多少元?(2)工会准备购置钢笔和笔录本共80 件作奖品,依据规定购置的总花费不超出1100 元,则工会最多能够购置多少支钢笔?。
华师大版七年级下册数学期中考试试题及答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列方程中,解是x =4的是()A .3x +1=11B .–2x –4=0C .3x –8=4D .4x =12.下列方程的变形正确的有()①360x -=,变形为20x -=②533x x +=-,变形为42=x ③325x =,变形为310x =④42x =-,变形为2x =-A .①③B .③④C .①②④D .①②③3.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x 元,根据题意,可得到的方程是A .x(1+50%)⨯80%=x-250B .x(1+50%)⨯80%=x+250C .(1+50%x)⨯80%=x-250D .(1+50%x)⨯80%=250-x 4.对于方程5112232x x -+-=,去分母后得到的方程是()A .51212x x--=+B .()516312x x --=+C .()2(51)6312x x --=+D .()2(51)12312x x --=+5.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是()A .B .C .D .6.已知方程组2{231y x m y x m -=+=+的解x 、y 满足2x+y≥0,则m 的取值范围是()A .m≥-43B .m≥43C .m≥1D .-43≤m≤17.若a>b ,且c 为有理数,则()A .ac>bc B .ac<bc C .ac 2>bc 2D .ac 2≥bc 28.如果(1)1m x m +<+的解集是1x >,那么m 的取值范围是()A .0m <B .1m <-C .1m >-D .m 是任意有理数9.若不等式组0422x a x x +≥⎧⎨->-⎩有解,则实数a 的取值范围是()A .2a ≥-B .2a <-C .2a ≤-D .2a >-10.某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A .3分钟B .4分钟C .4.5分钟D .5分钟二、填空题11.已知方程(a ﹣4)x |a|﹣3+2=0是关于x 的一元一次方程,则a=___12.若对213+x 的值比223x -的值小1,则x 的值为___________.13.21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a -b 的值是______.14.对于实数a ,符号[a]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.如果[a]=-2,那么a 的取值范围是_____.15.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过___小时两车相距50千米.三、解答题16.解方程:(1)2(2)3(41)9(1)x x x ---=-;(2)312143x x -+-=-.17.解方程组:(1)35821x y x y +=⎧⎨-=⎩①②;(2)23(2)622x yyx+-=⎧⎪⎨-=⎪⎩①②.18.解不等式(组),并把它们的解集在数轴上表示出来.(1)5x-12≤2(4x-3);(2)3(2)4 1213x xx x--≤⎧⎪+⎨>-⎪⎩.19.已知关于x、y的二元一次方程组26322x y mx y m+=⎧⎨-=⎩的解满足二元一次方程435x y-=,求m的值.20.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?21.如图,在长为10米,宽为8米的长方形空地上,沿平行于长方形边的方向分割出三个形状、大小完全一样的小长方形花圃(阴影部分).求其中一个小长方形的长和宽.22.某市绿化提质改造工程如火如荼地进行,一施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?23.某商店需要购进A型、B型两种节能台灯共160盏,其进价和售价如下表所示.类型A型B型价格进价/(元/盏)1535销售价/(元/盏)2045(1)若商店计划销售完这批台灯后能获利1100元,问A型、B型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.参考答案1.C【分析】把x=4代入各方程检验即可.【详解】把x=4代入各方程检验即可.经检验,解是x=4的方程是3x–8=4.故选C.【点睛】本题考查了方程的解,方程的解就是能使方程左右两边相等的未知数的值.2.A【分析】根据等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式进行分析即可.【详解】解:①3x-6=0,两边都除以3变形为x-2=0,正确;②x+5=3-3x,移项、合并同类项可变形为4x=-2,错误;③325x=,两边都乘以5可变形为3x=10,正确;④4x=-2,两边都除以4可变形为x=12-,错误;故选:A.【点睛】此题主要等式的性质,关键是掌握等式的性质定理.3.B【详解】标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%,则可列方程为:(1+50%)x×80%=x+250,故选B.4.D【分析】方程的两边同时乘以各分母的最小公倍数6即可变形.【详解】解:方程的两边同时乘以6,得2(5x-1)-12=3(1+2x).故选:D.【点睛】本题考查了解一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.5.D试题分析:10{360xx-≤-<①②,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.6.A【详解】试题分析:2{231y x my x m-=+=+①②,②-①×2得,7x=-m+1,解得x=17m-+---③;把③代入①得,y=527m+---④;∵2x+y≥0,∴17m-+×2+527m+≥0,解得m≥-4 3.故选A.考点:1.二元一次方程组,2.一元一次不等式7.D【分析】根据不等式的性质,可得答案.【详解】A、c≤0时,ac≤bc,故A错误;B、c=0时,ac=bc,故B错误;C、c2≥0,ac2≥bc2,故C错误;D、c2≥0,ac2≥bc2,故D正确.【点睛】本题考查了不等式的性质,注意要考虑c 等于零时的情况.8.B【分析】已知()11m x m +<+的解集是1x >,根据不等式的基本性质3可得m+1<0,解不等式即可求得m 的取值范围.【详解】∵()11m x m +<+的解集是1x >,∴m+1<0,∴1m <-.故选B.【点睛】本题考查了不等式的基本性质,熟知不等式两边同乘以(或除以)同一个负数,不等号的方向改变是解决问题的关键.9.D【详解】试题解析:0422x a x x +≥⎧⎨->-⎩①②由①得:x a ≥-.由②得:224x x -->--36x ->-2x <.因不等式组有解:可画图表示为:由图可得使不等式组有解的a 的取值范围为:2a -<.∴2a >-.故选D .【分析】设这人跑了x 分钟,则走了(18-x )分钟,根据速度×时间=路程结合要在18分钟内到达,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其中的最小值即可得出结论.【详解】解:设这人跑了x 分钟,则走了(18-x )分钟,根据题意得:210x+90(18-x )≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.-4【分析】根据一元一次方程的定义,得出|a|-3=1,注意a-4≠0,进而得出答案.【详解】由题意得:|a|-3=1,a-4≠0,解得:a=-4.故答案为-4.【点睛】此题主要考查了一元一次方程的定义,正确把握定义得出是解题关键.12.135-【详解】试题解析:根据题意列方程为:3122 1.23x x +-=-去分母得:3(3x +1)=2(2x −2)−6,去括号得,9x +3=4x −4−6,移项、合并得:5x=−13,系数化为1得:13.5 x=-故答案为13. 5 -13.-1【分析】由题意把21xy=⎧⎨=⎩代入方程组71ax byax by+=⎧⎨-=⎩即可得到关于a、b的方程组,即可求得a、b的值,从而可以求得结果【详解】解:由题意得2721a ba b+=⎧⎨-=⎩,解得23ab=⎧⎨=⎩,则1a b-=-.【点睛】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.14.−2≤a<−1【详解】∵符号[a]表示不大于a的最大整数,[a]=−2,∴−2≤a<−1,故答案为−2≤a<−1.【点睛】此题考查了取整计算、解一元一次不等式组、求整数解等知识,主要考查学生的阅读能力和计算能力.解题的关键是理解新定义将方程转化为不等式组求解.15.2或2.5【分析】设经过x小时两车相距50千米,分甲、乙两车相遇前和甲、乙两车相遇后两种情况,再根据路程、时间、速度建立方程,解方程即可得.【详解】解:设经过x小时两车相距50千米,由题意,分以下两种情况:(1)在甲、乙两车相遇前,则4501208050x x --=,解得2x =;(2)在甲、乙两车相遇后,则1208045050x x +-=,解得 2.5x =;综上,经过2小时或2.5小时,两车相距50千米,故答案为:2或2.5.【点睛】本题考查了一元一次方程的实际应用,正确分两种情况讨论是解题关键.16.(1)x =﹣10;(2)x =15-.【分析】(1)先去括号、再移项、合并同类项,将系数化为1求解;(2)去分母、去括号、再移项、合并同类项,将系数化为1求解.【详解】解:(1)去括号,得:2x -4-12x +3=9-9x ,移项,合并,得:−x =10,系数化为1,得:x =−10;(2)去分母,得9x -3-4x -8=-12,移项合并,得5x =-1,解得x =15-.【点睛】此题考查解一元一次方程,掌握解一元一次方程的步骤:去分母、去括号、再移项、合并同类项,将系数化为1是解题的关键.17.(1)11x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩.【分析】(1)方程组利用加减消元法求出解即可.(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)①+②×5,得13x =13,解得x=1.把x=1代入②,得y=1,则方程组的解为11 xy=⎧⎨=⎩;(2)将方程组整理,得23121 242x yx y+=⎧⎨-=⎩,①-②,得4y=8,解得y=2,把y=2代入②,得x=3,则方程组的解为32 xy=⎧⎨=⎩;【点睛】本题考查了二元一次方程组的解法,解题的关键是能熟练运用加减消元法解二元一次方程组.18.(1)x≥-2,不等式的解集在数轴上表示见解析;(2)14x≤<,不等式组的解集在数轴上表示见解析.【分析】(1)由去括号、移项,合并同类项,系数化为1,即可求出不等式的解集,再把解集表示在数轴上即可;(2)分别求出每个不等式的解集,然后取公共部分,得到不等式组的解集,再表示在数轴上即可.【详解】解:(1)5x-12≤2(4x-3),去括号,得5x-12≤8x-6,移项,得5x-8x≤-6+12,合并同类项,得-3x≤6,系数化为1,得x≥-2;不等式的解集在数轴上表示如下:.(2)解:3(2)41213x x x x --≤⎧⎪⎨+>-⎪⎩①②,由①,得:x ≥1;由②,得:x <4;∴这个不等式组的解集是:14x ≤<;数轴如下:【点睛】本题考查的是解一元一次不等式(组),熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.m=15【详解】试题分析:首先根据题意联立成三元一次方程组,利用消元法求出y=4m-30和y=2m ,然后根据y 值相等得出m 的值.试题解析:解:由题意得三元一次方程组:,化简得,①+②-③得:,则④,②×2-①×3得:,则⑤,由④⑤得:,,∴.20.剩下的衬衫促销价格定为每件128元时,销售完这批衬衫恰好盈利10800元.【详解】试题分析:分别表示出140元时的利润以及降价后的利润,再利用销量得出利润,进而得出等式求出答案.解:设剩下的衬衫促销价格定为每件x 元时,销售完这批衬衫恰好盈利10800元,根据题意可得:(140﹣120)×500+(x ﹣120)×100=10800,解得:x=128.答:剩下的衬衫促销价格定为每件128元时,销售完这批衬衫恰好盈利10800元.考点:一元一次方程的应用.21.8【详解】【分析】设小长方形的长为x 米,宽为y 米.依题意有:210,28,x y x y +=⎧⎨+=⎩解方程组即可.【详解】解:设小长方形的长为x 米,宽为y 米.依题意有:210,28,x y x y +=⎧⎨+=⎩解此方程组得:4,2.x y =⎧⎨=⎩故,小长方形的长为4米,宽为2米.【点睛】本题考核知识点:列方程组解应用题.解题关键点:根据已知列出方程组.22.(1)购买甲种树苗500棵,则购买乙种树苗100棵;(2)至少应购买甲种树苗400棵【分析】(1)设购买甲种树苗x 棵,购买乙种树苗y 棵,根据题意列二元一次方程组解决问题;(2)设应购买甲种树苗a 棵,则购买乙种树苗()600a -棵,根据题意中的不等关系“购买甲种树苗的金额不少于购买乙种树苗的金额”列一元一次不等式解决问题.【详解】解:(1)设购买甲种树苗x 棵,购买乙种树苗y 棵由题意,得60010020070000x y x y +=⎧⎨+=⎩,解得:500100x y =⎧⎨=⎩,答:购买甲种树苗500棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a 棵,则购买乙种树苗()600a -棵,由题意,得()100200600a a ≥-,解得:400a ≥.答:至少应购买甲种树苗400棵.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,理解题意列方程组和不等式是解题的关键.23.(1)A 型台灯购进100盏,B 型台灯购进60盏;(2)有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出一元一次方程组求解.【详解】(1)设分别购进A 型、B 型台灯x 盏、y 盏,根据题意,得160,5101100.x y x y +=⎧⎨+=⎩解得:100,60.x y =⎧⎨=⎩答:A 型台灯购进100盏,B 型台灯购进60盏.(2)设购进a 盏A 型台灯,则购进(160)a -盏B 型台灯,根据题意,得1535(160)4300,510(160)1260.a a a a +-<⎧⎨+->⎩解之,得6568a <<.∵a 为非负整数,∴a 取66,67.∴160a -相应取94,93.∵当a=66时,5×66+10×94=1270(元),当a=67时,5×67+10×93=1265(元),∴方案一获利最大,答:有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【点睛】本题考查二元一次方程组与一元一次不等式的综合运用,在正确理解题意的基础上列出适合的二元一次方程组与一元一次不等式求解是解题关键.。
华师大版初一数学下册期中水平测试 含答案
华师大七年级下学期期中水平测试数学试卷时间100分钟 满分120分题号 一 二 三 总分 分数一、选择题(每题3分,共30分)1、下列四个式子中,是方程的是( )A 、3+2=5B 、1x =C 、230x -<D 、222a ab b ++2、在下列方程组中,不是二元一次方程组的是( )A 、3634x y x y -=⎧⎨+=⎩B 、264212x y x y -=⎧⎨+=⎩C 、34x y y z +=⎧⎨+=⎩D 、325657x y x y +=⎧⎨+=⎩3、在下列方程的变形中,错误的是( )A 、由43x -=得34x =- B 、由20x =得0x = C 、由23x =-得32x =- D 、由1124x =得12x =4、下列不等式一定成立的是( )A 、54a a >B 、23x x +<+C 、2a a ->-D 、42a a>5、对于方程5112232x x-+-=,去分母后得到的方程是( ) A 、51212x x --=+B 、5163(12)x x --=+C 、2(51)63(12)x x --=+D 、2(51)123(12)x x --=+6、不等式360x -+>的正整数解有( )A 、1个B 、2个C 、3个D 、无数多个 7、若a b >,且c 为有理数,则下列各式正确的是( ) A 、ac bc > B 、ac bc < C 、22ac bc < D 、22ac bc ≥8、某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土。
已知全班共用箩筐59个,扁担36根,求抬土、挑土的学生各多少人?如果设抬土的学生x 人,挑土的学生y 人,则可得方程组( )A 、2()592362y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩B 、2592362x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C 、2592236x y x y ⎧+=⎪⎨⎪+=⎩D 、259236x y x y +=⎧⎨+=⎩9、某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x 组,则可列方程为( )A 、7284x x +=-B 、7284x x -=+C 、7284x x +=+D 、7284x x -=-10、如果(1)1a x a +<+的解集是1x >,那么a 的取值范围是( ) A 、0a < B 、1a <- C 、1a >- D 、a 是任意有理数 二、填空题(每题3分,共30分)11、若347a b x y 与332b a x y +-是同类项,则a = ,b = . 12、当x = 时,代数式45x -与39x -的值互为相反数13、已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -= .14、已知方程1825x y -=,用含y 的代数式表示x ,那么x = .15、轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距 千米.16、若不等式组121x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_________.17、不等式2x-1<6的所有正整数解之和为_________. 18、已知a+b=3,2b-c=2,则2a+c=_________.19、若关于x 的方程kx-1=2x 的解为正数,则k 的取值范围是_________.20、不等式组204060x x x +>⎧⎪-≥⎨⎪-≤⎩的解集是_______.三、解答题(7个小题,共60分) 21、(10分)解方程(1)2(2)3(41)9(1)x x x ---=- (2)121146x x -+-=22.(10分)解方程组(1)8423x yx y+=⎧⎪⎨+=⎪⎩(2)1225224x y zx y zx y++=⎧⎪++=⎨⎪=⎩23、(10分)解不等式(组),并把(2)的解集在数轴上表示出来.(1)2132x x-<+;(2)21381x xx x<+⎧⎨+≥-⎩.24、(6分)已知关于x的方程3(2)x m x+=-的解是正数,求m的取值范围.25、(8分)m为何值时,方程组3523518x y mx y m-=⎧⎨+=-⎩的解互为相反数?求这个方程组的解。
华师大版七年级下册数学期中考试试卷及答案
华师大版七年级下册数学期中考试试题一、单选题1.下列方程,是一元一次方程的是()A .32x x-=B .2x y +=C .2210x x ++=D .11x x+=2.下列四则选项中,不一定成立的是()A .若x=y,则2x=x+yB .若ac=bc,则a=bC .若a=b,则a 2=b 2D .若x=y,则2x=2y3.若关于 x 的方程 23x a +=与 27x a +=的解相同,则 a 的值为()A .23-B .113C .113-D .234.下列方程变形中正确的是()A .由32a =,得32a =B .由233x x -=,得3x =C .由310.9x -=,得1030109x -=D .由232a b=+,得2312a b =+5.小明在解方程21133x x a -+=-去分母时,方程右边的﹣1没有乘3,因而求得的解为x =2,则原方程的解为()A .x =0B .x =﹣1C .x =2D .x =﹣26.关于x ,y 的二元一次方程2x+3y =20的非负整数解的个数为()A .2B .3C .4D .57.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是()A .﹣1B .1C .﹣5D .58.下列方程组中是二元一次方程组的是()A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723x x y=⎧⎪⎨+=⎪⎩9.由方程组43x m y m+=-⎧⎨-=⎩可得出x 与y 之间的关系是()A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-10.方程组1232008321244880x y x y +=⎧⎨+=⎩①②,x y +的值为是()A .0B .1C .1-D .211.关于x 的不等式组1x ax ⎧⎨⎩>>的解集为x >1,则a 的取值范围是()A .a≥1B .a >1C .a≤1D .a <112.若不等式组12x x k <≤⎧⎨>⎩无解,则k 的取值范围是()A .2k ≥B .1k <C .k 2≤D .12k ≤<13.若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是().A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤14.已知xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则x :y :z 等于()A .3:2:1B .1:2:3C .4:5:3D .3:4:515.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为()A .449x y y x y x-=+⎧⎨-=+⎩B .449x y y x y x-=+⎧⎨-=-⎩C .449x y y x y x-=-⎧⎨-=+⎩D .449x y y x y x-=-⎧⎨-=-⎩16.小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km ?设他家到学校的路程是xkm ,则据题意列出的方程是()A .10515601260x x +=-B .10515601260x x -=+C .10515601260x x -=-D .+1051512x x =-17.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,44max =.按照这个规定,那么方程{},21max x x x -=+的解为()A .-1B .13-C .1D .-1或13-18.关于x 的不等式(1)3(1)a x a -<-的解都能使不等式5x a <-成立,则a 的取值范围是()A .2a =B .2a ≤C .12a <≤D .1a <或2a ≥二、填空题19.若关于x 的方程||1(2)21a a x ---=是一元一次方程,则=a ____________.20.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________.21.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为_____元.22.解方程组278ax by cx y +=⎧⎨-=⎩时,一学生把c 看错得22x y =-⎧⎨=⎩,已知方程组的正确解是32x y =⎧⎨=-⎩,则abc 值为__________.23.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______.24.关于x 、y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.25.不等式组112251x x ⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.26.把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.27.如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则小长方形的面积为_______.28.已知关于x 、y 的方程组343x y a x y a +=-⎧⎨-=⎩,其中﹣3≤a≤1,给出下列结论:①11x y =⎧⎨=⎩是方程组的解;②当a =﹣2时,x+y =0;③若y≤1,则1≤x≤4;④若S =3x ﹣y+2a ,则S 的最大值为11.其中正确的有_______.三、解答题29.(1)12223x x x -+-=-(2)34105642x y x y -=⎧⎨+=⎩(3)32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②(本小题把解集在数轴上表示出来)30.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.31.一项工程,甲队单独完成需60天,乙队单独完成需75天.(1)若甲队单独做24天后两队再合作,求:甲乙两队再合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费用为5000元,乙队每天的施工费用为6000元,求完成此项工程需付给甲、乙两队共多少元?32.已知:23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y kx b =+的解.(1)求k 、b 的值;(2)若不等式323x m x +>+的最大整数解是k ,求m 的取值范围.33.已知关于x y 、的方程组731x y m x y m +=--⎧⎨-=+⎩的解满足00x y ≤<,.(1)求m 的取值范围;(2)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >?34.为了加强建设“经济强、环境美、后劲足、群众富”的实力城镇,聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶计划.现决定将A 、B 两种类型鱼苗共320箱运到某村养殖,其中A 种鱼苗比B 种鱼苗多80箱.(1)求A 种鱼苗和B 种鱼苗各多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批鱼苗全部运往同一目的地.已知甲种货车最多可装A 种鱼苗40箱和B 种鱼苗10箱,乙种货车最多可装A 种鱼苗和B 种鱼苗各20箱.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,则安排甲、乙两种货车有哪几种不同的方案?并说明选择哪种方案可使运输费最少?最少运输费是多少元?参考答案1.A【分析】根据一元一次方程的定义即可得出答案.【详解】A:是一元一次方程,故A正确;B:有两个未知数,所以不是一元一次方程,故B错误;C:方程次数为2次,所以不是一元一次方程,故C错误;D:是分式方程,故D错误;故答案选择A.【点睛】本题考查的是一元一次方程的定义:只有一个未知数并且未知数的次数为1的整式方程. 2.B【分析】根据等式的性质逐项判断即可.【详解】=+,一定成立A.若x y=,两边同加x,等式不变,即2x x y=,两边同除以一个不为0的数,等式不变;因为不知c是否为0,所以a b=不一B.若ac bc定成立C.若a b=,两边同时平方,等式不变,即22a b=,一定成立D.若x y =,两边同乘以一个数(如2),等式不变,即22x y =,一定成立故答案为:B.3.B 【分析】先把a 看做常数,分别根据两个方程解出x 的值,再令两个x 的值相等即可得出答案.【详解】∵23x a +=∴32ax -=又∵27x a +=∴x=7-2a又23x a +=与27x a +=的解相同∴3722aa -=-解得:113a =故答案选择B.【点睛】本题考查的是解一元一次方程,难度适中,根据两个方程的解相同列出等式是解决本题的关键.4.D 【分析】根据等式的基本性质判断各选项即可.【详解】解:A 、由32a =,得23a =,故本选项错误;B 、由233x x -=,得3x =-,故本选项错误;C 、由310.9x -=,得103019x -=,故本选项错误;D 、由232a b=+,得2312a b =+,故本选项正确.故选:D .【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.5.A 【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x ﹣1=x+a ﹣1,把x =2代入方程即可得到一个关于a 的方程,求得a 的值,然后把a 的值代入原方程,解这个方程即可求得方程的解.【详解】解:根据题意,得:2x ﹣1=x+a ﹣1,把x =2代入这个方程,得:3=2+a ﹣1,解得:a =2,代入原方程,得:212133x x -+=-,去分母,得:2x ﹣1=x+2﹣3,移项、合并同类项,得:x =0,故选A .【点睛】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.6.C 【解析】【分析】把x 作为已知数表示出y ,即可确定出非负整数解.【详解】方程2320x y +=解得:2023xy -=当1x =时,6y =当4x =时,4y =当7x =时,2y =当10x =时,0y =综上,二元一次方程的非负整数解的个数有4个故选:C.【点睛】本题考查了二元一次方程的特殊解的解法,掌握方程的解法是解题关键.7.A 【解析】【分析】把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案.【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-,故选A .【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.8.D 【解析】【分析】二元一次方程是指含有两个未知数,并且所含未知数的项的次数都是1的方程.两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组.【详解】A 选项中最高次数为2次,则不是;B 选项中第二个方程不是整式方程,则不是;C 选项中含有3个未知数,则不是;故选:D .【点睛】本题主要考查的就是二元一次方程组的定义问题.在解决定义问题的时候特别要注意所有方程都必须是整式方程,否则就不是二元一次方程组.9.B 【解析】【分析】根据题意由方程组消去m 即可得到y 与x 的关系式,进行判断即可.【详解】解:43x m y m +-⎧⎨-⎩=①=②,把②代入①得:x+y-3=-4,则x+y=-1.故选:B .【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.10.D 【解析】【分析】先把两个二元一次方程相加,进而即可得到答案.【详解】1232008321244880x y x y +=⎧⎨+=⎩①②,由①+②得:444x+444y=888,∴x y +=2.故选D .【点睛】本题主要考查解二元一次方程,掌握等式的基本性质,是解题的关键.11.C 【解析】【分析】根据不等式组解集的确定法则:大大取大即可得出答案.【详解】解:∵不等式组的解集为x >1,根据大大取大可得:a≤1,故选C .【点睛】本题主要考查的是求不等式组的解集,属于基础题型.理解不等式组的解集与不等式的解之间的关系是解决这个问题的关键.12.A 【解析】【分析】由已知不等式组无解,确定出k 的范围即可.【详解】解:∵不等式组12x x k <≤⎧⎨>⎩无解,∴k 的范围为k≥2,故选:A .【点睛】此题考查了不等式组的解集,熟练掌握确定每个不等式的解集是解本题的关键.13.A 【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.B【解析】【分析】由4520430x y zx y z-+⎧⎨+-⎩=①=②,①×3+②×2,得出x与y的关系式,①×4+②×5,得出x与z的关系式,从而算出xyz的比值即可.【详解】∵4520430x y zx y z-+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y,①×4+②×5,得3x=z,∴x:y:z=x:2x:3x=1:2:3,故选B.【点睛】本题考查了三元一次方程组的解法,用含有x的代数式表示y与z是解此题的关键.15.D【解析】【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x ì-=-ïïíï-=-ïî,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.16.A【解析】【分析】设他家到学校的路程是xkm ,将时间单位转化成小时,然后根据题意列方程即可.【详解】设他家到学校的路程是xkm ,∵10分钟=1060小时,5分钟=560小时,∴10+1560x =12x ﹣560.故选:A .【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.17.B【解析】【分析】利用题中的新定义化简已知方程,求解即可.【详解】解:当x x >-时0x >,{},max x x x -=,方程化简得21x x =+,解得1x =-(不符合题意,舍去)当x x <-时0x <,{},-max x x x -=,方程化简得-21x x =+,解得13x =-故选:B【点睛】此题考查了实数的运算,以及解一元一次方程,熟练掌握运算法则是解本题的关键.18.C【解析】【分析】根据关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,列出关于a 的不等式,即可解答.【详解】解:∵关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,∴a-1>0,即a >1,解不等式(a-1)x <3(a-1),得:x <3,则有:5-a≥3,解得:a≤2,则a 的取值范围是1<a≤2.故选:C .【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变.19.-2【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的整式方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).【详解】由一元一次方程的特点得:11a -=,20a -≠,解得:2a =-.故答案为:2a =-.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.20.13k ≤【解析】【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132kx -=∵方程的解是非负数∴1302k -≥解得13k ≤故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式.21.180【解析】【分析】根据“售价=进价×(1+利润率)”可以列出相应的方程,解方程即可.【详解】设这种商品每件的进价为x 元,根据题意得:x (1+20%)=270×0.8解得:x=180.故答案为180.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.﹣40【解析】【分析】将x =−2、y =2代入第1个方程,将x =3、y =−2代入两个方程可得关于a 、b 、c 的方程组,解之可得答案.【详解】解:由题意得:-2+223223148a b a b c =⎧⎪-=⎨⎪+=⎩,解得:45-2 abc=⎧⎪=⎨⎪=⎩,()=45-2=-40abc⨯⨯,故答案为:﹣40.【点睛】本题主要考查二元一次方程组的解的问题,解题的关键是理解相关概念,其中二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.23.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方法一:利用关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩可得m、n的数值,代入关于a、b的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=5 2()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是12a ba b+=⎧⎨-=⎩,再利用加减消元法即可求出a,b.【详解】解:方法一,∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,可得m=﹣1,n=2,∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩,整理为:42546a ba+=⎧⎨=⎩,解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩.方法二:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,解12a b a b +=⎧⎨-=⎩,得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解、运用在此题体现明显.24.2m <-【解析】【分析】先解关于关于x ,y 的二元一次方程组313x y m x y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可.【详解】313x y m x y +=+⎧⎨+=⎩①②由①+②得4x+2y=4+m ,422m x y ++=,∴由21x y +<,得412m +<,解得:2m <-.故答案为2m <-.【点睛】考查解一元一次不等式,解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.25.1x =【解析】【分析】先解不等式组,再求整数解的最大值.【详解】112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >-故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键.26.26【解析】【分析】设共有x 名学生,根据每人分3本,那么余8本,可得图书共有(3x +8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【详解】解:设共有x 名学生,则图书共有(3x +8)本,由题意得,0<3x +8−5(x−1)<3,解得:5<x <6.5,∵x 为非负整数,∴x =6.∴书的数量为:3×6+8=26.故答案为26.【点睛】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.27.20cm 2##20平方厘米【解析】【分析】设小长方形的长为xcm ,宽为163x -cm ,观察图形即可列出关于x 的一元一次方程,解之即可得出x 的值,即可求出结论.【详解】设小长方形的长为xcm ,宽为163x -cm ,由题意得:2×163x -+8=x+163x -,解得:x=10,所以163x -=2,∴小长方形的面积为20;故答案是:20cm 2.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.28.①②③④【解析】【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,逐一判断即可.【详解】343x y a x y a +=-⎧⎨-=⎩①②,①⨯3+②得:x+2y=3,把11x y =⎧⎨=⎩代入得1+2=3,即11x y =⎧⎨=⎩是方程组的解,故①正确a=-2时,366x y x y +=⎧⎨-=-⎩,整理的x+y=0,故②正确,若y≤1,32x -≤1,解得:x ≥1,∵x-y=3a ,∴x-32x -=3a ,由﹣3≤a≤1得:53x -≤≤,所以y≤1时,14x ≤≤,故③正确,∵343x y a x y a+=-⎧⎨-=⎩,∴2x=2+4a ,∵S=3x-y+2a=2x+3a+2a=9a+2,﹣3≤a≤1∴S 的最大值为9+2=11,故④正确,故答案为①②③④【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.根据条件,求出x 、y 的表达式及x 、y 的取值范围是解题关键.29.(1)x =1;(2)62x y =⎧⎨=⎩;(3)211x y z =⎧⎪=-⎨⎪=⎩;(4)x≤1,见解析【解析】【分析】(1)首先去分母,然后移项合并同类项即可求解;(2)利用加减消元法进行求解,首先消去y ,然后将x 的值代入方程即可求解;(3)利用加减消元法进行求解,首先消去z ,然后将x 、y 的值代入方程即可求解;(4)首先解两个不等式,然后将不等式的解表示在数轴上即可.【详解】(1)去分母得:6x ﹣3x+3=12﹣2x ﹣4,移项合并得:5x =5,解得:x =1.(2)①×3得:9x ﹣12y =30③②×2得:10x+12y =84④③+④得19x =114,x =6把x =6代入②,解得y =2原方程组的解是62x y =⎧⎨=⎩(3)②+③×3,得3x+17y =﹣11④,④﹣①,得19y =﹣19,解得,y =﹣1,将y =﹣1代入①,得x =2,将y =﹣1代入②,得z =1,故原方程组的解是211x y z =⎧⎪=-⎨⎪=⎩.(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②,由①得,x≤1,由②得,x <4,故此不等式组的解集为:x≤1.在数轴上表示为:;【点睛】本题考查了解一元一次方程,二元一次方程组,三元一次方程组和一元一次不等式组,考查较细,消元思想和降次思想是解决多元方程和高次方程的关键.30.4【解析】【分析】先解出不等式5(x-2)+8<6(x-1)+7的解,再求出不等式的最小整数解,然后把不等式的最小整数解代入方程2x-ax=4即可求出答案【详解】解:解不等式得x>-3,所以最小整数解为x =-2.所以2×(-2)-a×(-2)=4,解得a =4.故答案为4.【点睛】本题考查一元一次不等式的解,解不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.31.(1)甲乙再合作20天才能把该工程完成;(2)完成此项工程需付给甲、乙两队共340000元.【解析】【分析】(1)设甲乙再合作x天才能把该工程完成,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总施工费用=甲队每天的施工费用×甲队工作的时间+乙队每天的施工费用×乙队工作的时间,即可求出结论.【详解】(1)设甲乙再合作x天才能把该工程完成,依题意,得:246075x x++=1,解得:x=20.答:甲乙再合作20天才能把该工程完成.(2)5000×(24+20)+6000×20=340000(元).答:完成此项工程需付给甲、乙两队共340000元.【点睛】此题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)k的值是2,b的值是﹣1;(2)0≤m<1.【解析】【分析】(1)把23xy=⎧⎨=⎩和25xy=-⎧⎨=-⎩代入y kx b=+,得到方程组,解方程组可得答案;(2)首先根据一元一次不等式的解法,可得x<3-m,然后根据不等式3+2x>m+3x的最大整数解是k,可得2<3-m≤3,据此求出m的取值范围即可.【详解】解:(1)∵23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y =kx+b 的解,∴2325k b k b +=⎧⎨-+=-⎩①②,①-②得:48,k =2,k ∴=把2k =代入①得:1,b =-所以方程组的解是:21k b =⎧⎨=-⎩.∴k 的值是2,b 的值是﹣1.(2)∵3+2x >m+3x ,∴x <3﹣m ,∵不等式3+2x >m+3x 的最大整数解是k ,2k =,∴2<3﹣m≤3,∴m 的取值范围是:0≤m <1.【点睛】本题主要考查解二元一次方程组和一元一次不等式,解题的关键是掌握解二元一次方程组的能力,并根据不等式的整数解情况列出关于m 的不等式组.33.(1)23m -<≤;(2)m=−1.【解析】【分析】(1)先由二元一次方程组求得x 、y 的表达式,再由00x y ≤<,,解得m 的取值范围,再化简即可;(2)关键是把原不等式整理成(2m+1)x<2m+1,根据1x >两边都乘以2m+1不等号方向改变,得出2m+1<0.【详解】(1)方程组731x y m x y m +=--⎧⎨-=+⎩①②,①+②得2x=2m−6,∴x=m−3;①−②得2y=−4m−8,∴y=−2m−4,∵00x y ≤<,,∴30240m m -≤⎧⎨--<⎩③④,解得:23m -<≤;(2)(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴m<12-,又∵23m -<≤∴122m -<<-,∵m 为整数,∴m=−1.【点睛】本题考查了二元一次方程组及一元一次不等式组的解法,有一定的综合性.掌握解二元一次方程组和一元一次不等式组的方法是解题关键.34.(1)A 种鱼苗有200箱,B 种鱼苗有120箱(2)3种方案(方案见解析),方案①运费最少,最少运费是29600元.【解析】【分析】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,利用A 、B 两种类型鱼苗共320箱,A 种鱼苗比B 种鱼苗多80箱,可列两个方程组成方程组,然后解方程组即可;(2)设租用甲种货车x 辆,利用甲乙货车装A 种鱼苗的数量和甲乙货车装B 种鱼苗的数量列不等式组,解不等式求出它的正整数解可得到运输方案,然后比较各方案的运输费即可.【详解】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,根据题意得320{80x y x y +=-=解得200{120x y ==,答∶A 种鱼苗有200箱,B 种鱼苗有120箱;(2)设租用甲种货车x辆,根据题意得()()1020812040208200x xx x⎧+-≥⎪⎨+-≥⎪⎩,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为∶方案甲车乙车运费①262⨯4000+6⨯3600=29600②353⨯4000+5⨯3600=30000③444⨯4000+4⨯3600=30400所以方案①运费最少,最少运费是29600元.【点睛】此题考查二元一次方程组的实际应用和一元一次不等式组的应用,解题关键在于列出方程组.。
华东师大版七年级数学下册期中测试卷(完整版)
华东师大版七年级数学下册期中测试卷(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.点A在数轴上,点A所对应的数用21a+表示,且点A到原点的距离等于3,则a的值为()A.2-或1 B.2-或2 C.2-D.16.下列运算正确的是()A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣a|+|b﹣c|的结果是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.分解因式:32x2x x-+=_________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)1311 48x x---=2.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、A6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、20°.3、()2 x x1-.4、-405、2或2.56、2或-8三、解答题(本大题共6小题,共72分)1、(1):x=5;(2)x=﹣9.2、±33、24°.4、(1)略;(2)MB=MC.略;(3)MB=MC还成立,略.5、(1)50;72;(2)详见解析;(3)330.6、(1)收工时在A地的正东方向,距A地39km;(2)需加15升.。
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列四个式子中,是方程的是()A .2x =B .1a +C .23x -D .3 25+=2.下列各数中,是方程215x +=-的解的是()A .0B .2C .3-D .2-3.设,,x y c 是有理数,则下列判断错误的是()A .若x y =,则22x c y c +=+B .若x y =,则a cx a cy -=-C .若x y =,则=x yc cD .若23x y=,则32x y =4.若1x =-是关于x 的一元一次方程20ax +=的解,则a 的值是()A .-2B .-1C .1D .25.若代数式235x -和233x -的值相同,则x 的值是()A .9B .﹣32C .32D .836.若方程6323x x -=-的解与关于x 的方程6226k x -=+的解相同,则k 的值为().A .59B .59-C .95D .95-7.为减少雾霾天气对身体的伤害,班主任王老师在某网站为班上的每一位学生购买防雾霾口罩,每个防霾口罩的价格是15元,在结算时卖家说:“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”,王老师说:“那好吧,我就再给自己买一个,谢谢.”根据两人的对话,判断王老师的班级学生人数应为()A .38B .39C .40D .418.二元一次方程3x+2y =15的正整数解的对数是()A .1对B .2对C .3对D .4对9.当1a =时,方程()10a x b -+=(其中x 是未知数,b 是已知数)()A .有且只有一个解B .无解C .有无限多个解D .无解或有无限多个解10.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值x ,y 的值不可能是互为相反数;③x ,y 都为自然数的解有4对;④若28x y +=,则2a =.正确的有几个()A .1B .2C .3D .4二、填空题11.x 的3倍与y 的和等于5,用等式表示为_______.12.若2a -4与a +7互为相反数,则a =________.13.如果关于,x y 的二元一次方程组241x y kx y k -=⎧⎨+=+⎩的解,x y 满足3x y +=,则k 的值是__________.14.若关于x 的不等式20x m ->的负整数解为1,2,3---.则m 的取值范围是_________.15.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算4751⨯,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为____________.三、解答题16.解方程(1)3328x x +=-+(2)2151136x x +--=17.解方程组:34282151136x y x x x +=-+⎧⎪+-⎨-=⎪⎩18.不等式:()5332x x +<+,并把解集在数轴上表示出来.19.已知12x y =⎧⎨=⎩是关于,x y 的方程组14ax by bx ay -=-⎧⎨-=-⎩的一个解,求代数式()23a b a --的值.20.列方程解应用题:2021年3月28日10时,随着洛阳地铁1号线首发列车缓缓始离牡丹广场站,标志着洛阳地铁1号线正式开通运营,古都洛阳正式迈入“地铁时代”,成为中西部地区首个开通地铁的非省会城市.已知1号线采用按里程分段计价的票制,其中全程最高票价为5元,学生可享受半价.周日,七年级某班师生共36人从始发站“红山”乘地铁至终点站“杨湾”,感受“地铁速度”,其中学生均购半价票,单程共付车票费用105元.求他们购买全价票与半价票各多少张?21.要比较两个数,a b 的大小,有时可以通过比较-a b 与0的大小来解决:如果0a b ->,则a b >;如果0a b -=,则a b =;如果0a b -<,则a b <.(1)若223x a b =+,231y a b =+-,试比较,x y 的大小.(2)若224A m m =+-,232B m m =--,试比较A 与2B 的大小关系.22.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?23.在数学课外小组活动中,老师提出了如下问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>a(a>0)和|x|<a(a>0)的解集.小明同学的探究过程如下:先从特殊情况入手,求|x|>2和|x|<2的解集.确定|x|>2的解集过程如下:先根据绝对值的几何定义,在数轴上找到到原点的距离大于2的所有点所表示的数,在数轴上确定范围如下:所以,|x|>2的解集是x>2或.再来确定|x|<2的解集:同样根据绝对值的几何定义,在数轴上找到到原点的距离小于2的所有点所表示的数,在数轴上确定范围如下:所以,|x|<2的解集为:.经过大量特殊实例的实验,小明得到绝对值不等式|x|>a(a>0)的解集为,|x|<a(a>0)的解集为.请你根据小明的探究过程及得出的结论,解决下列问题:(1)请将小明的探究过程补充完整;(2)求绝对值不等式2|x+1|-3<5的解集.参考答案1.A【分析】根据方程的定义:含有未知数的等式;判断即可.【详解】x=,属于方程,符合题意;解:A、2a+,不是等式,不属于方程,不符合题意;B、1x-,不是等式,不属于方程,不符合题意;C、23+=,没有未知数,不属于方程,不符合题意;D、3 25故选:A.【点睛】本题考查了方程的定义,解题的关键是熟练运用方程的定义,本题属于基础题型.2.C【分析】方程移项合并,把x系数化为1,求出解,即可做出判断.【详解】解:方程2x+1=−5,移项合并同类项得:2x=−6,解得:x=−3.故选:C.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.C【分析】根据等式的性质一一判断即可.【详解】解:A、若x=y,则x+2c=y+2c,故A选项不符合题意;B、若x=y,则a﹣cx=a﹣cy,故B选项不符合题意;C、c=0时,等式不成立,故C选项符合题意;D 、若23x y=,则3x =2y ,故D 选项不符合题意;故选C .【点睛】此题考查等式的性质,解题的关键在于能够熟练掌握等式的性质.4.D 【分析】将1x =-代入方程,即可得出a 的值.【详解】将1x =-代入方程,得20a -+=∴2a =故选:D.【点睛】此题主要考查利用一元一次方程的解求参数的值,熟练掌握,即可解题.5.A 【分析】根据题意列出方程,求出方程的解即可得到x 的值.【详解】根据题意得:235x -=233x-,去分母得到:6x ﹣9=10x ﹣45,移项合并得:﹣4x =﹣36,解得:x =9.故选:A .【点睛】此题考查了解一元一次方程,以及代数式求值,熟练掌握方程的解法是解本题的关键.6.B 【详解】解方程6x-3=2-3x 得x=59,再由两个方程的解相同可得,6-2k=2×59+6,解得k=59-,故选B.7.B【分析】设王老师的班级学生人数x人.则依据“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”列方程解答即可.【详解】解:设王老师的班级学生人数x人,根据题意,得:15x-15(x+1)×90%=45,解得:x=39.故选B.【点睛】本题考查了一元一次方程的应用.8.B【分析】将x=1,2,…,分别代入3x+2y=15,求出方程的正整数解的对数是多少即可.【详解】解:当x=1时,方程变形为3+2y=15,解得y=6;当x=3时,方程变形为9+2y=15,解得y=3;∴二元一次方程3x+2y=15的正整数解的对数是2对:16xy=⎧⎨=⎩和33xy=⎧⎨=⎩.故选:B.【点睛】此题主要考查了二元一次方程组的解,要熟练掌握,注意解中x与y必须为正整数.9.D【分析】根据一元一次方程的定义即可判断求解.【详解】解:当a=1时,b≠0时,方程为b=0,与b≠0矛盾,故无解;当a=1时,b=0时,方程为b=0,当x取任意值皆可,故有无数解,故选D.【点睛】此题主要考查一元一次方程的解,解题的关键是熟知方程解得含义.10.D 【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a +1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解;③根据试值法求二元一次方程x +y =3的自然数解即可得结论;④根据整体代入的方法即可求解.【详解】解:25241x y a x y a +=-⎧⎨-=-⎩,方程组上式-下式得366y a=-22y a ∴=-,将22y a =-代人方程组下式得21x a =+,∴方程组的解为2122x a y a=+⎧⎨=-⎩当1a =时30x y =⎧⎨=⎩,3x y +=,213a +=,∴①正确;②212230x y a a +=++-=≠ ,∴②正确;③3x y += 、x ,y 为自然数,03x y =⎧∴⎨=⎩或12x y =⎧⎨=⎩或21x y =⎧⎨=⎩或30x y =⎧⎨=⎩,∴有4对,∴③正确;④()2221228x y a a +=++-=,解得2a =,∴④正确.故选:D 【点睛】本题考查二元一次方程的解,二元一次方程组的解,解二元一次方程组,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.11.35x y +=.【分析】先表示出x 的3倍再与y 求和即可写出等式.【详解】解:根据题意,得35x y +=,故答案为35x y +=.【点睛】读懂题意,抓住关键词,弄清运算的先后顺序是列出等式的关键.12.-1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】解:∵2a -4与a +7互为相反数,∴2a-4+a+7=0,解得:a=-1,故答案为:-1.【点睛】此题考查了解一元一次方程,以及相反数的性质,熟练掌握运算法则是解本题的关键.13.4【分析】把方程组的两个方程相加,再把x +y =3代入即可求解.【详解】解:241x y k x y k -=⎧⎨+=+⎩①②,①+②得:3x +3y =2k +1,即3(x +y )=2k +1,∵x +y =3,∴3×3=2k +1,解得k =4.故答案为:4.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.86m -≤<-【分析】首先解不等式求得解集,然后根据不等式只有负整数解为-1,-2,-3,得到关于m 的不等式,求得m 的范围.【详解】解:∵2x -m >0,∴2x >m ,∴x >2m .∵不等式的负整数解只有-1,-2,-3则432m-≤<-,解得:86m -≤<-.故答案为:86m -≤<-.【点睛】此题考查了根据不等式解集的情况求参数的取值范围,根据x 的取值范围正确确定2m的范围是解题的关键.15.3【分析】根据“格子乘法”可得10(2a -2-a )+(-a +6-1)=4a ,解方程可得.【详解】解:根据题意可得10(2a -2-a )+(-a +6-1)=4a 解得a =3故答案为:3.【点睛】根据“格子乘法”分析图示,列出方程是关键.16.(1)x=1;(2)x=-3【分析】(1)通过移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,即可求解.【详解】(1)3328x x +=-+,移项得:3283x x +=-,合并同类项得:55=x ,解得:x=1;(2)2151136x x +--=,去分母得:()()221516x x +--=,去括号得:42516x x +-+=,合并,移项得:3x -=,解得:x=-3.【点睛】本题主要考查解一元一次方程,熟练掌握解一元一次方程的基本步骤,是解题的关键.17.3234x y =-⎧⎪⎨=⎪⎩【分析】将原式化简整理为54836x y x +=⎧⎨-+=⎩①②,解方程②得到的结果代入①即可得到方程组的解.【详解】解:34282151136x y x x x +=-+⎧⎪+-⎨-=⎪⎩,原式整理为:54836x y x +=⎧⎨-+=⎩①②,解方程②得:3x =-,将3x =-代入①中得:1548y -+=解得234y =,则方程组的解为3234x y =-⎧⎪⎨=⎪⎩.【点睛】此题考查了解二元一次方程组,以及一元一次方程,利用了消元的思想,消元的方法有两种:代入消元法、加减消元法.18.32x <,见解析【分析】先解一元一次不等式,然后再数轴上表示出不等式的解集即可得到答案.【详解】解:去括号得,5363x x +<+,移项得,5363x x -<-,合并同类项得,23x <,系数化为1得,32x <.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.19.-6【分析】将12x y =⎧⎨=⎩代入原方程组中得2124a b b a -=-⎧⎨-=-⎩①②,然后解方程求出a 、b ,然后求代数式的值即可.【详解】解:将12x y =⎧⎨=⎩代入原方程组中得2124a b b a -=-⎧⎨-=-⎩①②将①变形为2-1a b =③代入②:-4+2-4b b =,解得2b =,代入③得3a =∴()2222333236a b a --=--=-()【点睛】本题主要考查了解二元一次方程组,代数式求解,解题的关键在于能够熟练掌握解二元一次方程组的方法.20.购买全价票6张,半价票30张.【分析】可设购买全价票x 张,半价票y 张,根据题意列二元一次方程组求解即可.【详解】解:购买全价票x 张,半价票y 张,根据题意得:36551052x y x y +=⎧⎪⎨+=⎪⎩解得:630x y =⎧⎨=⎩答:购买全价票6张,半价票30张.【点睛】本题考查了二元一次方程组的实际应用,设出变量,根据题意列出二元一次方程组是解题的关键.21.(1)x y >;(2)当 0m >时,20A B ->,所以2A B >;当0m =时,2A B =;当 0m <时,2A B<【分析】(1)用x y -,得到的结果与0比较大小即可得到答案;(2)先算出2B ,然后算出2A B -得到的结果与0比较大小即可得到答案.【详解】解:(1)∵223x a b =+,23-1y a b =+∴()222233-11x y a b a b a -=+-+=+∵20a ≥∴2110a +≥>即0x y ->.∴x y >.(2)∵232B m m =--∴22264B m m =--∵224A m m =+-∴()222242647AB m m m m m -=+----=,当0m >时,20A B ->,所以2A B >,当0m =时,20A B -=,所以2A B =,当0m <时,20A B -<,所以2A B <.【点睛】本题主要考查了利用作差法比较大小,解题的关键在于能够根据题意进行计算.22.(1)乙种树每棵200元,丙种树每棵300元(2)甲种树600棵,乙种树300棵,丙种树100棵(3)201棵【详解】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,∴乙种树每棵200元,丙种树每棵32×200=300(元).(2)设购买乙种树x 棵,则购买甲种树2x 棵,丙种树(1000-3x )棵.根据题意:200·2x +200x +300(1000-3x )=210000,解得x =300.∴2x =600,1000-3x =100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵.(3)设购买丙种树y 棵,则甲、乙两种树共(1000-y )棵,根据题意得:200(1000-y )+300y ≤210000+10120,解得:y ≤201.2.∵y 为正整数,∴y 最大为201.答:丙种树最多可以购买201棵.(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数.(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵,得出等式方程,求出即可.(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,根据题意列不等式,求出即可23.29.(1)x<-2;图见解析;-2<x<2;x>a或x<-a;-a<x<a;(2)-5<x<3【分析】(1)根据题意即可得;(2)将2|x+1|的数字因数2化为1后,根据以上结论即可得.【详解】(1)①x<-2②③-2<x<2④x>a或x<-a⑤-a<x<a故答案为:x<-2,,-2<x<2,x>a或x<-a,-a<x <a(2)∵2|x+1|-3<5∴2|x+1|<8∴|x+1|<4∴-4<x+1<4∴-5<x<3∴原绝对值不等式的解集是-5<x<3【点睛】本题考查了一元一次不等式的解法、绝对值的性质;熟练掌握一元一次不等式的解法是解决问题的关键.。
华师大版数学七年级下学期《期中考试试卷》附答案
A. B. C. D.
[答案]B
[解析]
[分析]
A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
C:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.
14.不等式 的解集是_______________.
15.方程组 的解是__________________.
16.数轴上100个点所表示的数分别为 、 、 …、 ,且当 为奇数时, ,当 为偶数时, ,① ______;②若 ,则 ______.
三、解答题:本题共9小题,共86分.解答应写出文字说明或演算步骤.
A 1组B.2组C.3组D.4组
[答案]C
[解析]
[分析]
先变形得出x=10-3y,再取正整数解即可.
[详解]x+3y=10,
x=10-3y,
当y=1时,x=7;
当y=2时,x=4,
当y=3时,x=1;
所以共有3组解.
故选C.
[点睛]考查了解二元一次方程,能求出符合的所有正整数解是解此题的关键.
10.定义:对于任意数 ,符号 表示不大于 的最大整数,例如: , , .若 ,则 的取值范围是().
A. 8、2B. 8、-2C. 2、2D. 2、-2
6.已知 ,下列不等式中错误的是().
A. B. C. D.
7.在解方程 过程中,变形正确的是().
A. B.
C. D.
8.方程组 的解是 ,则方程组 的解是()
A. B. C. D.
华师大版七年级数学(下)期中测试题
七年级(下)期中练习题一、选择题1.下列方程中是一元一次方程的是( )A.012=-xB. 12=x C. 12=+y x D. 213=-x2.下列方程中,解是x=2的方程是( )A 、063=+xB 、02141=+-x C 、232=x D 、135=-x3、若()62=-x m 是关于x 的一元一次方程,则m 的取值为( )A 、不等于2的数B 、任何数C 、2D 、1或2 4、已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江、黄河的长分别是x 千米,y 千米,则下列方程组中正确的是 ( ) A 、836561284x y x y -=⎧⎨-=⎩ B 、836651284y x y x -=⎧⎨-=⎩ C 、836651284x y y x -=⎧⎨-=⎩D 、836561284y x x y -=⎧⎨-=⎩5.已知⎩⎨⎧==21y x 和⎩⎨⎧=-=01y x 是方程1=-by ax 的解,则a 、b 的值为 ( )A 、1,1-=-=b aB 、1,1=-=b aC 、1,0-==b aD 、0,1=-=b a 6、已知345x y z ==,则2x y z x++的值是( )A 1B 2C 12D -17、如果ax>a 的解是x<1,那么a 必须满足( ) A 、 a<0B 、a>1C 、a>-1D 、a<-18.已知|x -y -5|+(2x+3y-15)2=0,则x 十Y=( ) A.7 B.6 C.5 D.1二、填空题(本题共6小题,每题3分,共18分)9、已知x=4-3y,用含x 的代数式表示y=9、请写出二元一次方程 73=+y x 的所有正整数解: 。
10、已知关于x 的方程 3k-5x=-9的解是非负数,则k 的取值范围是 __________. 11、如果532y xab+与2244x ya b-- 是同类项,则x = ,y = .12、若不等式组⎩⎨⎧><mx x 8无解,则m 的取值范围是______________.三、解方程(组)或不等式(组)(本题共6小题,每题4分,共24分) 13. 3y-2=5(y-1)-2 14. --23x 514+x =1x 3-1520328x y x y -=⎧⎨+=⎩16、解不等式5243+-x ≥32+x , 17、解不等式组2151232513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩四、解答题18、x取什么值时,代数式232+x的值比311--x的值小5 ?19、解不等式组331213(1)8xxx x-⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解20、已知方程组51542ax yx by+=⎧⎨-=-⎩,由于甲看错了方程①中的a得到方程组的解为131xy=-⎧⎨=-⎩,乙看错了方程②中的b得到方程组的解为54xy=⎧⎨=⎩。
华师大版七年级数学下期中综合提优测试卷(pdf版含详解)
故b 从 而 b, 当 b, d=2, d 同号, d 同正 时, b
{
x+ 4 0, y=2
x=1 6 0, 解得 8 5 x+9 0 08 0 0. 0. y=2 y=8
{
得 ② 当 x >2 0 0 时,
{
x+y=2 4 0,
解得
{
x=5 3
1, 3
7 5 x+9 0 08 0 0. y=2
( ) 不存在 , 和必为 3 的倍数 . 2
{
4 x+3 0, y=2 3 x+ 0. y=1
解得
{
1 5. m>8㊀1 6. 3㊀1 7. 2 0 0
原不等式组可化为 1 8.-4<aɤ -3㊀ 提 示 :
) 设两校人数之和为 a. 3 0.( 1
所以一本笔记本 2 元 , 一枝钢笔 4 元 . 若 a>2 则 a=1 0 0, 80 0 0ː7 5=2 4 0.
则 1 1.将方 程 2 x +y =6 写 成 用 含 x 的 代 数 式 表 示 y,
x+2 4 y=5 二 ㊁填空题 ( 每题 2 分 , 共2 0分)
{
x, y=2
D ������
{
x, y=2
x+y=5 4
{
2 若 y<0, 则 m 的取 值 1 5.已知| 3 x-1 2 |+ ( 2 x-y-m) =0,
a+1的 大 小 关 系 是 a+2, 2 则 M =a, P= 8.若 a>1, N= 3 3 ( ㊀㊀ ) .
那么 m 的 9.如果方程 7 x+2 m=5+x 的解在 -1 和 1 之间 , 取值范围是 ( ㊀㊀ ) . 1 1 1 D ������ - <m< 2 2 他们分为植树和挑水两 1 0.某班有 5 4 人参加义务植树劳动 , 组, 要求 挑 水 人 数 是 植 树 人 数 的 2 倍, 设 有 x 人 挑 水, C ������ - 则下列方程组中正确的是 ( ㊀㊀ ) . y 人植树 , , , x =2 x=2 y y B ������ A ������ x+y=5 4 2 x+y=5 4 A ������ 1 <m<3 2 1 1 1 <m< 2 2 B ������ 7 <m<3 3 C ������ N >P>M A ������ P>N >M B ������ M >N >P D ������ M >P>N 2 2.解方程组 :
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.方程38x +=解为()A .5B .10C .12D .152.利用加减消元法解方程组3416,5614.x y x y +=⎧⎨-=⎩①②下列做法正确的是()A .要消去y ,可以将23①②⨯+⨯B .要消去x ,可以将()35⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将()53⨯-+⨯①②3.不等式3x+2≥5的解集是()A .x≥1B .x≥73C .x≤1D .x≤﹣14.下列过程中,变形正确的是()A .由23x =得23x =B .由11132x x---=得()()21131x x --=-C .由12x -=得21x =-D .由()312x -+=得332x --=5.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是()A .3201036x y x y -=⎧⎨+=⎩B .3201036x y x y +=⎧⎨+=⎩C .3201036y x x y -=⎧⎨+=⎩D .3102036x y x y +=⎧⎨+=⎩6.若x=-3是方程2()6x m -=的解,则m 的值是()A .6B .-6C .12D .-127.不等式x+1≥2x ﹣1的解集在数轴上表示为()A .B .C .D .8.关于y 的方程ay -2=4与2y -5=-1的解相同,则a 的值为()A .2B .3C .4D .2-9.若m >n ,则下列不等式正确的是()A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n10.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x 、y 分钟,则列出的二元一次方程组是()A .1x y {3200x 70y 3350+=+=B .x y 20{70x 200y 3350+=+=C .1x y {370x 200y 3350+=+=D .x y 20{200x 70y 3350+=+=二、填空题11.不等式812x ->的解集是______.12.已知x ,y 满足方程组2524x y x y +=⎧⎨+=⎩,则x ﹣y 的值=__________.13.有一个密码系统,其原理如下面的框图所示:当输出为10时,则输入的x =___________.14.小刚解出了方程组332x y x y -=⎧⎨+=∆⎩的解为4x y =⎧⎨=⎩.因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则∆、W 分别为___________.15.若不等式211133x ax +-+>的解集是53x <,则a 的值为___________.16.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为26,请写出符合条件的所有x 的值_____.三、解答题17.(1)32126x x---=(2)0.10.30.020.0110.20.03x x -+-=.18.解方程组:(1)10216x y x y +=⎧⎨+=⎩(2)33814x y x y -=⎧⎨-=⎩19.(1)求不等式126x -<的所有负整数解;(2)解不等式:()()13211223x x --≥,并在数轴上把解集表示出来.20.已知42x y =⎧⎨=⎩与13x y =-⎧⎨=-⎩都满足等式y kx b =+.(1)求k 与b 的值;(2)求当5x =时,y 的值.21.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围;(2)试比较2x -+与23x -+的大小.22.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?23.已知关于x 、y 的二元一次方程组3x my 52x ny 6-=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,求关于a 、b 的二元一次方程组3()()52()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解.24.某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?参考答案1.A【分析】直接进行移项解方程即可得到答案.【详解】解:∵38x+=∴83x=-解得5x=故选A.【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握基本知识进行求解. 2.D【分析】利用加减消元法判断即可.【详解】解:利用加减消元法解方程组34165614x yx y+=⎧⎨-=⎩①②,要消元y,可以将①×3+②×2;要消去x,可以将①×(-5)+②×3,故选D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.A【详解】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A.点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.4.D【分析】根据等式的性质进行计算并作出正确的选择即可.【详解】A、在等式2x=3的两边同时除以2得到:x=32,故本选项错误;B、在等式x11x132---=的两边同时乘以6得到:2(x-1)-6=3(1-x),故本选项错误;C、在等式x-1=2的两边同时加上1得到x=3,故本选项错误;D、由-3(x+1)=2得到:-3x-3=2,故本选项正确;故选D.【点睛】本题考查了等式的性质.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.B【详解】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.6.B【分析】把x=-3,代入方程得到一个关于m的方程,即可求解.【详解】解:把x=-3代入方程得:2(-3-m)=6,解得:m=-6.故选:B.【点睛】本题考查了方程的解的定义,理解定义是关键.7.B【分析】先求出不等式的解集,再根据不等式解集的表示方法,可得答案.【详解】移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:.故选B.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.B【分析】求出第二个方程的解得到y的值,代入第一个方程即可求出a的值.【详解】解:由2y-5=-1,得到y=2,将y=2代入ay-2=4中,得:2a-2=4,解得:a=3.故选B.【点睛】此题考查了同解方程,同解方程即为两方程的解相同.9.B【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:m n44>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误,故选B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.D【详解】解:由他骑自行车和步行的时间分别为x、y分钟,根据关键语句“到学校共用时20分钟”可得方程:x+y=20,根据关键语句“骑自行车的平均速度是200米/分,步行的平均速度是70米/分.他家离学校的距离是3350米”可得方程:200x+70y=3350,两个方程组合可得方程组:x y20{200x70y3350+=+=.故选D.11.10x>【分析】按照去分母、移项、合并同类项的步骤求解即可.【详解】解:原不等式去分母得82x ->,移项得82x >+,合并同类项得10x >.故答案为:10x >.【点睛】题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.12.-1【分析】根据加减消元法,直接可求出x-y 的值.【详解】解:2524x y x y +=⎧⎨+=⎩①②②-①得:x-y=-1.故答案为-1.【点睛】此题主要考查了二元一次方程组的解法的应用,合理选择加减消元法求解即可,比较简单.13.2【分析】根据框图得出方程2x +6=10,解方程.即可【详解】解:由题意得:2x +6=10,解得:x =2,∴当输出为10时,则输入的x =2.故答案为:2.【点睛】本题考查一元一次方程的应用,读懂框图,正确列出方程是解答的关键.14.17,9【分析】把4x =代入33x y -=中求出y ,再把x ,y 代入另外一个不等式计算即可;【详解】将4x =代入33x y -=,∴123y -=,∴9y =,将4x =,9y =代入2x y +=△中,∴8917=+=V ;故答案是:17,9.【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.15.5【分析】本题不等式211133x ax +-+>的解集是53x <,求得x 的解集,再根据解集即可求得a 的值.【详解】解:211133x ax +-+>,2131x ax ++>-,25x ax ->-,(2)5a x ->-∵不等式211133x ax +-+>的解集是53x <,∴20a -<,∴23a -=-,解得:5a =,故答案为:5.【点睛】此题考查了解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.16.2,8【解析】试题分析:根据输出结果,由运算程序求出所有x 的值即可.解:根据题意得:3x+2=26,解得:x=8;根据题意得:3x+2=8,解得:x=2,则所有正数x 的值为2,8.故答案为2,8.考点:有理数的混合运算.17.(1)174x =;(2)17x =-【分析】(1)先去分母,再解一元一次方程;(2)先把分母化成整数,在解一元一次方程;【详解】(1)32126x x---=,()3326x x --+=,3926x x --+=,417x =,174x =;(2)0.10.30.020.0110.20.03x x -+-=,321123x x -+-=,()()336221x x --=+,39642x x --=+,17x =-;【点睛】本题主要考查了一元一次方程的求解,准确计算是解题的关键.18.(1)64x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩.【分析】(1)利用加减消元法,②-①即可求解;(2)利用加减消元法,由①×3-②求解即可.【详解】解:(1)10216x y x y +=⎧⎨+=⎩①②,②-①得:6x =,把6x =代入①得:4y =,方程缉的解为64x y =⎧⎨=⎩(2)33814x y x y -=⎧⎨-=⎩①②,①×3-②得:55y =-,即1y =-,将1y =-,①得:2x =,方程组的解为21x y =⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,解二元一次方程组要利用消元的思想,消元的方法有:代入消元和加减消元.19.(1)2-、1-;(2)12x ≤,图见解析【分析】(1)先移项,合并同类项,把x 的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x 的系数化为1即可.【详解】解:(1)移项,得261x -<-,合并同类,得25x -<,系数化为1,得52x >-,故其所有负整数解为2-、1-;(2)去分母,得()()212921x x -≥-,去括号,得24189x x -≥-,移项,得41892x x --≥--,含并同类项,得2211x -≥-,系数化为1,得12x ≤,数轴如图:.【点睛】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.20.(1)1k =,2b =-;(2)3y =【分析】(1)将42x y =⎧⎨=⎩和13x y =-⎧⎨=-⎩分别代入y kx b =+,得到关于k 、b 的二元一次方程组,求解即可;(2)由(1)得2y x =-,将5x =代入,即可求得y 得值.【详解】解:(1)将42x y =⎧⎨=⎩和13x y =-⎧⎨=-⎩分别代入y kx b =+,得243k b k b =+⎧⎨-=-+⎩①②解得1k =,2b =-.(2)由(1)和2y x =-.将5x =代入2y x =-,得3y =.【点睛】本题考查了二元一次方程组的解法,以及求代数式的值,是基础知识要熟练掌握.21.(1)1x <;(2)223x x -+-+<【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据作差法,即2(23)1x x x -+--+=-,根据(1)中x 得取值范围判断差的正负即可.【详解】解:(1)由数轴上的点表示的数右边的总比左边的大,得231x -+>,解得1x <;(2)2(23)1x x x -+--+=-,由1x <,得10x -<,∴2(23)0x x -+--+<∴223x x -+-+<.【点睛】本题考查了一元一次不等式,解题的关键运用作差法比较代数式的大小.22.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克.(2)需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据总价=单价×购进数量,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克,根据总价=单价×购进数量,即可得出w 关于a 的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题【详解】(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意得:818170010201700300x y x y +=⎧⎨+=+⎩,解得:10050x y =⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克,根据题意得:w=10a+20(120﹣a )=﹣10a+2400,∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a ),解得:a≤90,∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500,∴月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,弄清题意,找准等量关系列出方程组,找出各数量间的关系列出函数解析式是解题的关键.23.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【分析】对比两个方程组,可得a+b就是第一个方程组中的x,即a+b=1,同理:a﹣b=2,可得方程组解出即可.【详解】∵关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩满足12a ba b+=⎧⎨-=⎩,解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩.∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解是3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查解二元一次方程组,通过对比得出以a、b为未知数的方程组是解题关键. 24.每节火车车皮装物资50吨,每辆汽车装物资6吨.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得25130 43218x yx y+=⎧⎨+=⎩,求解即可;【详解】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得25130 43218 x yx y+=⎧⎨+=⎩,∴506xy=⎧⎨=⎩,∴每节火车车皮装物资50吨,每辆汽车装物资6吨.【点睛】本题考查二元一次方程组的应用,能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.。
华师大版七年级(下)期中数学试卷(含答案)
华师大版七年级(下)期中数学试卷一、选择题(每小题3分;共30分)1.方程2x −1=3x +2的解为 A .x =−3B .x =−1C .x =3D .x =12.若53=x 是关于x 的方程5x −m =0的解,则m 的值为 A .3- B .31 C .3 D .31-3.在解方程5113--=x x 时,去分母后正确的是 A .5x =3−3(x −1) B .5x =15−3(x −1) C .5x =1−3(x −1)D .x =1−(3x −1)4.下列各组值中,是方程3x +y =5的解的是 A .⎪⎩⎪⎨⎧=-=1,2y xB. ⎪⎩⎪⎨⎧==1,2y xC .⎪⎩⎪⎨⎧==2,1y xD .⎪⎩⎪⎨⎧-==5,0y x5.已知 ⎪⎩⎪⎨⎧=-=1,1y x 是二元一次方程组⎪⎩⎪⎨⎧=-=+1,23y nx m y x 的解,则m -n 的值是A .1B .-2C .3D .-4 6.同时适合方程 2x +y =5 和 3x +2y =8 的解是 A .⎪⎩⎪⎨⎧==2,1y xB .⎪⎩⎪⎨⎧==1,2y xC .⎪⎩⎪⎨⎧==1,3y xD .⎪⎩⎪⎨⎧-==1,3y x7.不等式 −2x <4 的解集是A .x >−2B .x <−2C .x >2D .x <2 8.不等式组的解集在数轴上如图所示,则该不等式组是A .⎪⎩⎪⎨⎧+-31,31<<x xB .⎪⎩⎪⎨⎧+-31,31><x xC .⎪⎩⎪⎨⎧+-31,31>>x xD .⎪⎩⎪⎨⎧+-31,31<>x x9.如果不等式3x −m ≤0的正整数解是1,2,3,那么m 的取值范围是 A .m >9B .m <12C .129<≤mD .129≤<m10.《九章算术 》 是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是 《九章算术 》 最高的数学成就.《九章算术 》中记载:“今有牛五、羊二,直金十两:牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为A .⎪⎩⎪⎨⎧=+=+1052,825y x y xB .⎪⎩⎪⎨⎧=+=+852,2y x y xC .⎪⎩⎪⎨⎧=+=+85,1025y x y xD .⎪⎩⎪⎨⎧=+=+852,1025y x y x二、填空题(每小题3分,共15分)11.若关于x 的方程ax +3x =2的解是x =1,则a 的值为 .12.若关于x ,y 的二元一次方程组⎪⎩⎪⎨⎧+=+-=+1212k y x k y x ,的解互为相反数,则k 的值为 .13.若关于x 的不等式()1212+<+m x m 的解集是x >1,则m 的取值范围是 . 14.如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上.已知AB 边上的数是3,BC 边上的数是7,CD 边上的数是12,则AD 边上的数是 .15.已知c b a 、、满足:⎪⎩⎪⎨⎧=+-=+-0432032c b a c b a ,则a ∶b ∶c 等于 .三、解答题.(8+9+9+9+9+10+10+11=75分)16.解方程:1675413=---x x17.解方程组:⎪⎩⎪⎨⎧+-==+.32,732y x y x18.关于y x 、的方程组⎪⎩⎪⎨⎧-=+=-152by ax y x 和⎪⎩⎪⎨⎧=+=+221123by ax y x 的解相同,求a 、b 的值.19.解不等式组()⎪⎪⎩⎪⎪⎨⎧--+≤+37510714x x x x <并写出该不等式组的所有非负整数解.20.某种商品有大小盒两种包装,3大盒、4小盒共装108瓶;2大盒、3小盒共装76瓶,大盒与小盒每盒各装多少瓶?21.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,经过市场调查,购买一台A 型设备比购买一台B 型设备多花费2万元,购买2台A 型设备比购买3台B 型设备少花费6万元.(1)购买一台A 型设备、购买一台B 型设备各需要多少万元;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案?22.阅读下列材料:解答“已知x −y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法: 解:∵ x −y =2, 又∵ x >1, ∴y +2>1, ∴ y >−1. 又 y <0,∴-1<y <0, ……① 同理得:1<x <2, ……② 由①+②得−1+1<y +x <0+2, ∴x +y 的取值范围是:0<x +y <2. 请按照上述方法,完成下列问题:已知关于x ,y 的方程组⎪⎩⎪⎨⎧+=+-=-332523a y x a y x 的解都为正数.(1)求a 的取值范围;(2)已知a −b =4,且b <2,求a +b 的取值范围;(3)已知a −b =m (m 是大于0的常数),且b ≤1,直接写出b a 212 的最大值 .(用含m 的代数式表示)23.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8米的钢管100根,还需要长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的.经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)试问:把一根长为6米的钢管进行裁剪,有下面几种方法, 请完成填空(余料作废).方法①:只裁成为0.8米的用料时,最多可裁7根;方法②:先裁下1根2.5米长的用料,余下部分最多能裁成为0.8米长的用料 根; 方法③:先裁下2根2.5米长的用料,余下部分最多能裁成为0.8米长的用料1 根. (2)分别用(1)中的方法②和方法③各裁剪多少根6米长的钢管,才能刚好得到所需要的相应数量的材料?(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6米长的钢管与(2)中根数相同?数学试题参考答案一、选择题(每小题3分;共30分)1~5 ACBCA 6~10 BABCD 二、填空题(每小题3分,共15分)11、-1; 12、0; 13、21-<m ; 14、8; 15、1∶2∶1三、解答题.(8+9+9+9+9+10+10+11=75分)16、解:去分母得:3(3x −1)−2(5x −7)=12,。
华师大版七年级(下)期中检测数学试卷(含答案)
华师大版七年级下学期期中数学检测试卷班级__________姓名____________总分___________一、选择题1.下面不等式不一定成立的是( )A. x >-xB. 3≥-2C. x 2-1<x 2+1D. -x -2<-x2.用加减法解方程组x +y =-3(1),3x +y =6(2),由(2)-(1)消去未知数y ,所得到的一元一次方程是( )A. 2x =9B. 2x =3C. -2x =-9D. 4x =33.不等式组 215,3112x x x -<⎧⎪⎨-+≥⎪⎩ 的解集在数轴上表示正确的是( )A. B.C. D.4.若甲数为x ,乙数为y ,则“甲数的3倍比乙数的一半少2”,列成方程是( ) A. 1322x y += B. 1322x y -= C. 1322y x -= D. 1232y x += 5.当1≤x ≤3时,mx +2>0,则m 的取值范围是( ) A. m >-B. m >-2C. m >-且m ≠0 D. m >-2且m ≠06.如果单项式22m nxy +与4423m n x y --是同类项,则m 、n 的值为( )A. m =-1 , n =2.5;B. m =1 , n =1.5C. m =2 , n =1D. m =-2, n =-1 7.若关于x 的不等式组的整数解共有5个,则m 的取值范围是( )A. 7≤m ≤8B. 7≤m <8C. 7<m ≤8D. 7<m <8 8.把方程213148x x--=-去分母后,正确的结果是( ) A. 2x -1=1-(3-x ) ;B. 2(2x -1)=1-(3-x ) ;C. 2(2x -1)=8-3-x ;D. 2(2x -1)=8-3+x9.已知方程组352{23x y k x y k+=++=,x 与y 的值之和等于2,则k 的值为( )A. 4B. -4C. 3D. -310.一个长方形的长比宽多3 cm ,如果把它的长和宽分别增加2 cm 后,面积增加14 cm 2,设原长方形宽为x cm ,依题意列方程应为( )A. (x +3)(x +2)-x 2=14B. (x +2)(x +5)-x 2=14C. (x +2)(x +5)-x (x +3)=14D. x (x +2)=1411.若a :2=b :3=c :7,且a ﹣b +c =12,则2a ﹣3b +c 等于( ) A. 2 B. 4 C. 37D. 12 12.若关于x 的不等式0{721x m x -<-≤的整数解共有4个,则m 的取值范围是( )A. 67m <<B. 67m ≤<C. 67m ≤≤D. 67m <≤ 二、填空题13.在方程2x - 5y =1中,用含x 的代数式表示y 为________________________14.我校七年级(2)班举办了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张.设这个班共有x 名学生,则可列方程为 ;15.若(x -y +1)2与27x y +-的值互为相反数,则2232x xy y -+的值为_________. 16.已知数列1121123211234321,,,,,,,,,,,,,,,1222333334444444…,记第一个数1a ,第二个数为2a ,…,第n个数为n a ,若n a 是方程131123x x +-=+的解,则n =___________.三、解答题 17.解下列方程 221146x x +--=18.解下列方程组 (1) (2)19.若关于x ,y 的二元一次方程组的解是,则关于x , y 的方程组的解是多少? 此题解法上的技巧是什么? 试根据两个方程组的特点加以分析并求解。
华师版七年级数学下册期中测评试卷.doc
华师版七年级数学下册期中测评卷一、选择题(每小题3分,共30分)1、rh x<y 得ax>ay,则a 应满足的条件是()A 、a^OB 、a < 0C 、 a > 0D 、 a < 0下列不是二元一次方程的是()①3m -2n=5 2y 2x 2y .亠=11 ◎——+亠=15 7 ◎ 7⑤ 3m+2n ⑥ p+7=2 D 、4个2、 @2x+z=33、下列方程变形正确的是A、方程3x-2=2x+1,移项,得3x・2x“+24、B、C、D、解方程组方程3x+8=2-(5x+1),去括号,得3x+8=2-5x+12 方程3方程6T一亦=],〔3兀-5『=6①2x —3y = 4 ②•^ = 1 ,系数化为1,得xh可化为3x=6时,将②x3■①x2得()A、・3y=2 B 、4y+1=0C 、y=0D 、7y=-86、已知(兀+ 3尸+ 3x + y + m =0,且y是负数, 则m的取值范围是A 、m>9B 、m<9C 、m>-9x + 9 Y 5x + l值范围是A 、m<1 C 、 m<1 x 》b8、若a>b,贝怀等式组XYQ 的解集是()C 、 b< x<aD 、无解9、下列说法中,错误的是 ( )A 、 不等式x< 2的正整数解只有1个B 、 ・2是不等式2x 「〈01个解C 、 不等式-3x>9的解集是x>-3D 、不等式x 〈 10整数解有无数个10、有20道竞赛题,答对1题给6分,不答或答错一题扣3分,小志在这次竞赛屮得分不少于80分,但又不超过90分,则小志答对的题数是 ( )1、填空题(每小题3分,共30分)11、已知关于x 的方程(加+ 3)丿丨+18 = 0 12、把方程§兀+玄歹=3,写成用含x 的代数式表示yD 、m<-9 7、不等式组x 》加+ 1的解集是x>2,则m 的取 B 、m^1 D 、 m>lA 、 x<aB 、x>b的形式是——13、 一种药品现在售价为每盒85元,比原来降低了 15%,问原售价为 -- 元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
x
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
华师版七年级数学下册期中测评卷
1、选择题(每小题 3 分,共 30 分)
1、由 x<y 得 ax>ay,则 a 应满足的条件是( )
A、a≧0 B 、a ≤ 0 C、 a > 0 D 、 a < 0
2、下列不是二元一次方程的是( )①3m -2n=5
②
x 5
2y 7
11
⑤3m+2n ⑥p+7=2
个,则 a 的取值范围是 ____ .
19、幼儿园老师把新购进的一批玩具分给小朋友,若每人
3 件,那么还剩余 59 件,若每人 5 件,那么最一
个小朋友分到了玩具,但不足 4 件,这批玩具共有( )件
三、解答题:(共 60 分)
21、解方程和方程组:(①②小题 4 分,③小题分 ,
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
可化为 3x=6
时,将②×3-①×2 得(
B 、4y+1=0
D 、 7y=-8
④2x+z=3
()
()
B 、m<9
()
)
C 、m>-9
x 9 5x 1 7、不等式组 x m 1
值范围是
A 、 m<1
C 、 m≤1
8、若 a> b,
A 、 x<a
C、 b< x<a
9、下列说法中,错误的是
①
②
共 14 分)
3 2
2 3
1 4
x
3x 4 y 10①
5
x
③解不等式组
6
轴上表示出来。
y
1
2
42②
5x 2 3x 1
x
2
2
7
2
3 2
7
22、当正数 x 取不大于 2 的值时,试求代数式 8 6x 的
a
B、x >b
B 、m≧1
D 、 m>1
的解集是
D 、无解
3 分,小志在这次竞赛中得分不少于 80 分,但又不
超过 90 分,则小志答对的题数是
二、填空题(每小题 3 分,共 30 分)
11、已知关于 x 的方程 m 3x m4 18 0
12、把方程
1 3
x
1 4
y
1 2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
3 2
x 0.5
3x 5y 6①
2
x
3y
,系数化为 1,得 x=1
1
4②
,
6、已知 (x 3)2 3x y m 0 ,且 y 是负数,
则 m 的取值范围是
A 、m>9
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。