考点三:动能定理求位移
功、功率与动能定理(解析版)
构建知识网络:考情分析:功和功率、动能和动能定理、机械能守恒定律、能量守恒定律是力学的重点,也是高考考查的重点,常以选择题、计算题的形式出现,考查常与生产生活实际联系紧密,题目的综合性较强。
复习中要特别注意功和功率的计算,动能定理、机械能守恒定律的应用以及与平抛运动、圆周运动知识的综合应用重点知识梳理: 一、功1.做功的两个要素(1)作用在物体上的力. (2)物体在力的方向上发生的位移. 2.功的物理意义 功是能量转化的量度. 3.公式 W =Fl cos_α(1)α是力与位移方向之间的夹角,l 为物体对地的位移. (2)该公式只适用于恒力做功. 4.功的正负(1)当0≤α<π2时,W >0,力对物体做正功.(2)当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功.(3)当α=π2时,W =0,力对物体不做功.通晓两类力做功特点(1)重力、弹簧弹力和电场力都属于“保守力”,做功均与路径无关,仅由作用对象的初、末位置(即位移)决定。
(2)摩擦力属于“耗散力”,做功与路径有关。
二、功率1.物理意义:描述力对物体做功的快慢.2.公式:(1)P =Wt ,P 为时间t 内的物体做功的快慢.(2)P =Fv①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率. 3.对公式P =Fv 的几点认识:(1)公式P =Fv 适用于力F 的方向与速度v 的方向在一条直线上的情况. (2)功率是标量,只有大小,没有方向;只有正值,没有负值.(3)当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解. 4.额定功率:机械正常工作时的最大功率.5.实际功率:机械实际工作时的功率,要求不能大于额定功率. 三、动能1.定义:物体由于运动而具有的能.2.公式:E k =12mv 2.3.物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关.4.单位:焦耳,1J =1N·m =1kg·m 2/s 2.5.动能的相对性:由于速度具有相对性,所以动能也具有相对性.6.动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-12mv 12.四、动能定理1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:(1)W =ΔE k . (2)W =E k2-E k1. (3)W =12mv 22-12mv 12.3.物理意义:合外力做的功是物体动能变化的量度.4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用. 【名师提醒】一对平衡力做功绝对值肯定相等;一对相互作用力做功的绝对值不一定相等,可以同为正或同为负,也可以一个做功一个不做功,可以一正一负绝对值不一定相等---因为相互作用力作用在不同的物体上,不同的物体位移不一定相等。
高中物理 动能定理的应用 专题讲义
动能定理的应用一、复习旧知1.动能定理内容合外力做的功或各外力做功的代数和等于物体动能的变化量。
二、重难、考点 2、表达式(1)2022121mv mv W t -=和 (2)2023212121...mv mv W W W W t n -=++++ 三、考点:(1)动能定理的计算式为标量式,v 为相对同一参考系的速度,中学物理中的一般取地球为参考系。
(2)动能定理的研究对象是单一物体,或者可以看成单一物体的物体系。
(3)动能定理既适用于物体的直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用,只要求出在作用过程中各力做功的多少和正负即可。
这些正是动能定理解题的优越性所在。
(4)若物体运动过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以全过程为整体来处理。
四、例题讲解【例1】:如图,一个质量m ,带电荷-q 的小物体,可在水平绝缘轨道ox 上运动,O 端有一与轨道垂直的固定墙,轨道处于匀强电场中,场强大小为E ,方向沿Ox 正向。
小物体以初速v 0从位置x 0沿Ox 轨道运动,受到大小不变的摩擦力f 作用,且f <q E 。
设小物体与墙壁碰撞时不损失机械能,且电量保持不变,求它在停止运动前所通过的总路程。
【对应练习1】:如图所示,在光滑绝缘竖直细杆上,套有一个有小孔的小球,小球质量为m 、带电量为-q ,杆与以正电荷Q 为圆心的某一圆周交于B 、C 两点,小球从A 点无初速度释放,已知AB =BC =h ,小球滑到B 点时速度大小为。
求小球滑到C 点时的速度大小及AC 两点间的电势差。
【例2】:如图所示,木板质量为M ,长度为L ,小木块质量为m ,水平地面光滑,一根不计质量的轻绳通过定滑轮分别与M 和m 连接,小木块与木板间的动摩擦因数为μ,开始时木块静止在木板左端,现用水平向右的力将m 拉至右端,拉力至少做功为( )A 、mgL μB 、mgL μ2C 、2/mgL μD 、gL m M )(+μ【对应练习2】:如图9所示,质量为M 、长度为L 的木板静止在光滑的水平面上,质量为m 的小物体(可视为质点)放在木板上最左端,现用一水平恒力F 作用在小物体上,使物体从静止开始做匀加速直线运动,已知物体和木板之间的摩擦力为F f 当物体滑到木板的最右端时,木板运动的距离为x ,则在此过程中( )A 、物体到达木板最右端时具有的动能为(F -F f )(L +x )B 、物体到达木板最右端时,木板具有的动能为F f xC 、物体克服摩擦力所做的功为F f LD 、物体和木板增加的机械能为F x【例3】:如图所示水平轨道BC ,左端与半径为R 的四分之一圆周AB 连接,右端与的四分之三圆周CDEF 连接,圆心分别为O 1,O 2,质量为m 的过山车从高为R 的A 处由静止滑下,正好能够通过右侧圆轨道最高点E ,不计一切摩擦阻力,求: ⑴过山车在B 点时的速度⑵过山车过C 点后瞬间对轨道压力的大小 ⑶过山车过D 点时加速度的大小【对应练习3】:如图所示,质量m=0.5kg 的小球从距地面高H=5m 处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m ,小球到达槽最低点时的速率为10m /s ,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次,设摩擦力大小恒定不变: (1)求小球第一次离槽上升的高度h(2)小球最多能飞出槽外几次(g 取10m /s 2)?【例4】:过山车是游乐场中常见的设施。
动能定理_精品文档
动能定理及其应用考点一对动能定理的理解和应用1.动能(1)定义:物体由于□01运动而具有的能叫动能。
(2)公式:E k=□0212mv2。
(3)单位:□03焦耳,1 J=1 N·m=1 kg·m2/s2。
(4)性质:动能是状态量,是□04标量。
2.动能定理(1)内容:在一个过程中合力对物体做的功,等于物体在这个过程中□05动能的变化量。
(2)表达式:W=□06ΔE k=E k2-E k1=□0712mv22-12mv21。
(3)物理意义:□08合外力的功是物体动能变化的量度。
(4)适用条件①动能定理既适用于直线运动,也适用于□09曲线运动。
②既适用于恒力做功,也适用于□10变力做功。
③力可以是各种性质的力,既可以同时作用,也可以□11分阶段作用。
3.对动能定理的理解(1)动能定理表明了“三个关系”①数量关系:合外力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合外力做的功。
②因果关系:合外力做功是引起物体动能变化的原因。
③量纲关系:单位相同,国际单位都是焦耳。
(2)标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。
当然动能定理也就不存在分量的表达式。
(3)相对性动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。
(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体。
电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增加到v2时,上升高度为H,则在这个过程中,下列说法或表达式正确的是()A .对物体,动能定理的表达式为W N =12mv 22,其中W N 为支持力的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力的功C .对物体,动能定理的表达式为W N -mgH =12mv 22-12mv 21,其中W N 为支持力的功D .对电梯,其所受合力做功为12Mv 22-12Mv 211.(人教版必修2 P 74·T 1改编)改变汽车的质量和速度,都能使汽车的动能发生变化,在下面几种情况中,汽车的动能是原来的2倍的是( )A .质量不变,速度变为原来的2倍B .质量和速度都变为原来的2倍C .质量变为原来的2倍,速度减半D .质量减半,速度变为原来的2倍2.(人教版必修2 P 74·T 3改编)子弹的速度为v ,打穿一块固定的木块后速度刚好变为零。
2024届高考一轮复习物理教案(新教材粤教版):动能定理及其应用
第2讲动能定理及其应用目标要求 1.理解动能、动能定理,会用动能定理解决一些基本问题.2.能利用动能定理求变力做的功.3.掌握解决动能定理与图像结合的问题的方法.考点一动能定理的理解和基本应用1.动能(1)定义:物体由于运动而具有的能量叫作动能.(2)公式:E k=12m v2,单位:焦耳(J).1J=1N·m=1kg·m2/s2.(3)动能是标量、状态量.2.动能定理(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.(2)表达式:W=ΔE k=E k2-E k1=12m v22-12m v12.(3)物理意义:合力做的功是物体动能变化的量度.1.一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.(√) 2.物体在合外力作用下做变速运动时,动能一定变化.(×)3.物体的动能不变,所受的合外力必定为零.(×)4.合力对物体做正功,物体的动能增加;合力对物体做负功,物体的动能减少.(√)1.应用动能定理解题应抓住“两状态,一过程”,“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定在这一过程中研究对象的受力情况和位置变化或位移信息.2.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解,也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.例1如图所示,AB 为四分之一圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,它由轨道顶端A 从静止开始下滑,恰好运动到C 处停止,不计空气阻力,重力加速度为g ,那么物体在AB 段克服摩擦力所做的功为()A .μmgR B.12mgR C .mgR D .(1-μ)mgR答案D解析BC 段物体所受摩擦力为f =μmg ,位移为R ,故BC 段摩擦力对物体做功W =-fR =-μmgR ,对全程由动能定理可知mgR +W 1+W =0,解得W 1=μmgR -mgR ,故AB 段克服摩擦力做功为W 克=mgR -μmgR =(1-μ)mgR ,选D.例2(2021·河北卷·6)一半径为R 的圆柱体水平固定,横截面如图所示,长度为πR 、不可伸长的轻细绳,一端固定在圆柱体最高点P 处,另一端系一个小球,小球位于P 点右侧同一水平高度的Q 点时,绳刚好拉直,将小球从Q 点由静止释放,当与圆柱体未接触部分的细绳竖直时,小球的速度大小为(重力加速度为g ,不计空气阻力)()A.(2+π)gRB.2πgRC.2(1+π)gR D .2gR答案A解析小球下落的高度为h =πR -π2R +R =π+22R ,小球下落过程中,根据动能定理有mgh =12m v 2,综上有v =(π+2)gR ,故选A.例3一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v 时,上升的最大高度为H ,如图所示,当物块的初速度为v2时,上升的最大高度记为h .重力加速度大小为g .物块与斜坡间的动摩擦因数和h 分别为()A .tan θ,H 2B.v 22gH-1θ,H 2C .tan θ,H4 D.v 22gH-1θ,H 4答案D解析物块以初速度v 上升的过程,由动能定理得-mgH -μmg cos θ·H sin θ=0-12m v 2,解得μv 22gH -1θ.当物块的初速度为v2时,由动能定理得-mgh -μmg cos θ·h sin θ=0-12m v2,解得h =H4,故选D.例4如图所示,粗糙水平地面AB 与半径R =0.4m 的光滑半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量m =1kg 的小物块在9N 的水平恒力F 的作用下,从A 点由静止开始做匀加速直线运动.已知x AB =5m ,小物块与水平地面间的动摩擦因数为μ=0.1,当小物块运动到B点时撤去力F ,取重力加速度g =10m/s 2,求:(1)小物块到达B 点时速度的大小;(2)小物块运动到D 点时,轨道对小物块作用力的大小.答案(1)45m/s(2)150N解析(1)从A 到B 过程,据动能定理可得(F -μmg )x AB =12m v B 2解得小物块到达B 点时速度的大小为v B =45m/s(2)从B 到D 过程,据动能定理可得-mg ·2R =12m v D 2-12m v B 2在D 点由牛顿第二定律可得F N +mg =mv D 2R联立解得小物块运动到D 点时,轨道对小物块作用力的大小为F N =150N.应用动能定理的解题流程考点二应用动能定理求变力做功例5质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(重力加速度大小为g )()A.12m v 02-μmg (s +x ) B.12m v 02-μmgx C .μmgs D .μmg (s +x )答案A解析根据功的定义式可知物体克服摩擦力做功为W f =μmg (s +x ),由动能定理可得-W 弹-W f =0-12m v 02,则W 弹=12m v 02-μmg (s +x ),故选项A 正确.例6(2023·广东深圳市光明区名校联考)如图所示,一半圆弧形细杆ABC 竖直固定在水平地面上,AC 为其水平直径,圆弧半径BO =3.6m .质量为m =4.0kg 的小圆环(可视为质点,小环直径略大于杆的粗细)套在细杆上,在大小为50N 、沿圆的切线方向的拉力F 作用下,从A 点由静止开始运动,到达B 点时对细杆的压力恰好为0.已知π取3.14,重力加速度g 取10m/s 2,在这一过程中摩擦力做的功为()A .66.6JB .-66.6JC .210.6JD .-210.6J答案B解析小圆环到达B 点时对细杆的压力恰好为0,则mg =m v 2r,拉力F 沿圆的切线方向,根据动能定理F 2πr 4-mgr +W f =12m v 2,又r =3.6m ,摩擦力做的功为W f =-66.6J ,故选B.在一个有变力做功的过程中,当变力做功无法直接通过功的公式求解时,可用动能定理W 变+W 恒=12m v 22-12m v 12,物体初、末速度已知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=12m v 22-12m v 12-W 恒,就可以求出变力做的功了.考点三动能定理与图像问题的结合图像与横轴所围“面积”或图像斜率的含义例7(2021·湖北卷·4)如图(a)所示,一物块以一定初速度沿倾角为30°的固定斜面上滑,运动过程中摩擦力大小f 恒定,物块动能E k 与运动路程s 的关系如图(b)所示.重力加速度大小取10m/s 2,物块质量m 和所受摩擦力大小f 分别为()A.m=0.7kg,f=0.5NB.m=0.7kg,f=1.0NC.m=0.8kg,f=0.5ND.m=0.8kg,f=1.0N答案A解析0~10m内物块上滑,由动能定理得-mg sin30°·s-fs=E k-E k0,整理得E k=E k0-(mg sin30°+f)s,结合0~10m内的图像得,斜率的绝对值|k|=mg sin30°+f=4N,10~20m内物块下滑,由动能定理得(mg sin30°-f)(s-s1)=E k,整理得E k=(mg sin30°-f)s-(mg sin30°-f)s1,结合10~20m内的图像得,斜率k′=mg sin30°-f=3N,联立解得f=0.5N,m=0.7kg,故选A.例8A、B两物体分别在水平恒力F1和F2的作用下沿水平面运动,先后撤去F1、F2后,两物体最终停下,它们的v-t图像如图所示.已知两物体所受的滑动摩擦力大小相等,则下列说法正确的是()A.F1、F2大小之比为1∶2B.F1对A、F2对B做功之比为1∶2C.A、B质量之比为2∶1D.全过程中A、B克服摩擦力做功之比为2∶1答案C解析由v-t图像可知,两个匀减速运动的加速度大小之比为1∶2,由题可知A、B所受摩擦力大小相等,所以A、B的质量关系是2∶1,故C正确.由v-t图像可知,A、B两物体运动的位移相等,且匀加速运动位移之比为1∶2,匀减速运动的位移之比为2∶1,由动能定理可得F1与摩擦力的关系:F1·s-f1·3s=0-0,F2与摩擦力的关系:F2·2s-f2·3s=0-0,因此可得:F1=3f1,F2=32f2,f1=f2,所以F1=2F2.全过程中A、B克服摩擦力做的功相等,F1对A、F2对B做的功大小相等,故A、B、D错误.例9(2020·江苏卷·4)如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图像是()答案A解决图像问题的基本步骤(1)观察题目给出的图像,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线之间的交点、图线与横轴围成的面积所对应的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量.课时精练1.(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增大到v2时,上升高度为H,重力加速度为g ,则在这个过程中,下列说法正确的是()A .对物体,动能定理的表达式为W =12m v 22-12m v 12,其中W 为支持力做的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力做的功C .对物体,动能定理的表达式为W -mgH =12m v 22-12m v 12,其中W 为支持力做的功D .对电梯,其所受的合力做功为12M v 22-12M v 12答案CD解析电梯上升的过程中,对物体做功的有重力mg 、支持力F N ,这两个力的总功(即合力做的功)才等于物体动能的增量,即W 合=W -mgH =12m v 22-12m v 12,其中W 为支持力做的功,A 、B 错误,C 正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力做的功一定等于其动能的增量,即12M v 22-12M v 12,D 正确.2.如图所示,光滑的固定斜面顶端固定一弹簧,质量为m 的小球以速度v 自最低点A 冲上斜面.压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,重力加速度为g ,则小球从A 到C 的过程中弹簧弹力做功是()A .mgh -12m v 2B.12m v 2-mgh C .-mgh D .-(mgh +12m v 2)答案A解析小球从A 到C 过程中,由动能定理可得W G +W F =0-12m v 2,W G =-mgh ,解得W F =mgh -12m v 2,故选A.3.(多选)(2023·云南昆明市第一中学、宁夏银川一中模拟)如图,若小滑块以某一初速度v 0从斜面底端沿光滑斜面上滑,恰能运动到斜面顶端.现仅将光滑斜面改为粗糙斜面,仍让滑块以初速度v 0从斜面底端上滑时,滑块恰能运动到距离斜面底端长度的34处.则()A .滑块滑上斜面后能再次滑回斜面底端B .滑块滑上斜面后不能再次滑回斜面底端C .滑块在斜面上运动的整个过程产生的热量为18m v 02D .滑块在斜面上运动的整个过程产生的热量为14m v 02答案AD解析设斜面长度为L ,斜面倾角为θ,由题意可知12m v 02=mgL sin θ,12m v 02=mgs sin θ+μmgs cos θ,其中的s =34L ,解得μ=13tan θ,因mg sin θ>μmg cos θ,则当滑块滑上斜面到达最高点后能再次滑回斜面底端,选项A 正确,B 错误;整个过程产生的热量为Q =2μmgs cos θ=12mgL sin θ=14m v 02,选项C 错误,D 正确.4.(2023·广东揭阳市普宁二中月考)如图,质量为m 的滑雪运动员(含滑雪板)从斜面上距离水平面高为h 的位置静止滑下,停在水平面上的b 处;若从同一位置以初速度v 滑下,则停在同一水平面上的c 处,且ab 与bc 相等.已知重力加速度为g ,不计空气阻力与通过a 处的机械能损失,则该运动员(含滑雪板)在斜面上克服阻力做的功为()A .mgh B.12m v 2C .mgh -12m v 2D .mgh +12m v 2答案C解析设运动员从静止开始滑下,停在水平面上b 处时,在斜面上克服阻力做的功为W 1,在水平面上克服摩擦力做的功为W 2,由动能定理得mgh -W 1-W 2=0,当运动员以速度v 从同一高度下滑时,停在同一水平面上的c 处,且ab 与bc 相等,由动能定理可得mgh -W 1-2W 2=0-12m v 2,联立两式求得W 1=mgh -12m v 2,故选C.5.(2023·湖南怀化市模拟)如图所示,DO 是水平面,AB 是斜面,初速度为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零,如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度(已知物体与斜面及水平面之间的动摩擦因数处处相同且不为零,不计B 、C 处能量损失)()A .等于v 0B .大于v 0C .小于v 0D .取决于斜面答案A解析物体从D 点滑动到顶点A 过程中,由动能定理可得-mg ·s AO -μmg ·s DB -μmg cos α·s AB=0-12v 02,α为斜面倾角,由几何关系有s AB cos α=s OB ,因而上式可以简化为-mg ·s AO -μmg ·s OD =0-12m v 02,从上式可以看出,物体的初速度与路径无关.故选A.6.电梯是一种以电动机为动力的垂直升降机,用于多层建筑载人或载运货物.某次电梯从地面由静止启动,加速度a 与离地高度h 的关系图像如图所示,则()A .2h 0~3h 0范围内电梯向上做匀减速直线运动B .电梯在0~h 0和2h 0~3h 0范围内的速度变化量相等C .电梯在3h 0处的速度大小为2a 0h 0D .电梯上升的最大高度可能为3h 0答案C解析由题图可知从0到2h 0,电梯先做加速度增大的加速运动再做匀加速运动,从2h 0到3h 0做加速度减小的加速运动,当加速度为零时,电梯向上的速度不为零,仍会向上运动,则电梯上升的最大高度一定大于3h 0,故A 、D 错误;根据动能定理可得12m v 2=Fh =mah =mS 面积,则v =2S 面积,则电梯在h 0处的速度大小为a 0h 0,在2h 0处的速度大小为3a 0h 0,在3h 0处的速度大小为2a 0h 0,所以电梯在0~h 0和2h 0~3h 0范围内的速度变化量不相等,故B 错误,C 正确.7.(2023·广东省清中、河中、北中、惠中联考)如图所示,竖直圆轨道固定在水平面上,其中A为最低点,B 为最高点,C 为与圆心等高的点,质量为1kg 且可视为质点的小球在轨道内做完整的圆周运动.已知小球动能E k 的变化范围为10~20J ,忽略一切摩擦,重力加速度g =10m/s 2,则下列说法正确的是()A .轨道半径为1mB .小球对轨道的最大压力与最小压力的大小之比为3∶1C .小球在C 点时对轨道的压力大小为45ND .以地面为势能零点参考平面,小球在C 点的重力势能等于动能答案B 解析在A 点F N1-mg =m v max 2R ,在B 点F N2+mg =m v min 2R ,A 到B 过程,根据动能定理有-mg ×2R =12m v min 2-12m v max 2,又有12m v max 2=20J ,12m v min 2=10J ,解得R =0.5m ,小球对轨道的最大压力与最小压力之比F N1′F N2′=F N1F N2=31,A 错误,B 正确;在C 点F N3=m v C 2R,A 到C 过程,根据动能定理有-mgR =12m v C 2-12m v max 2,解得小球在C 点时对轨道的压力大小F N3′=F N3=60N ,C 错误;以地面为势能零点参考平面,小球在C 点的重力势能E p =mgR =5J ,小球在C 点的动能E k =12m v C 2=15J ,D 错误.8.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示.重力加速度取10m/s 2.该物体的质量为()A .2kgB .1.5kgC .1kgD .0.5kg 答案C 解析法一:特殊值法画出运动示意图.设该外力的大小为F ,据动能定理知A →B (上升过程):-(mg +F )h =E k B -E k AB →A (下落过程):(mg -F )h =E k A ′-E k B ′整理以上两式并代入数据得物体的质量m =1kg ,选项C 正确.法二:写表达式根据斜率求解上升过程:-(mg +F )h =E k -E k0,则E k =-(mg +F )h +E k0下落过程:(mg -F )h =E k ′-E k0′,则E k ′=(mg -F )h +E k0′,结合题图可知mg +F =72-363-0N =12N ,mg -F =48-243-0N =8N 联立可得m =1kg ,选项C 正确.9.(多选)如图所示为一滑草场.某条滑道由上下两段高均为h 、与水平面夹角分别为45°和37°的滑道组成,载人滑草车与草地各处间的动摩擦因数均为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计载人滑草车在两段滑道交接处的能量损失,重力加速度大小为g ,sin 37°=0.6,cos 37°=0.8).则()A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g 答案AB 解析对载人滑草车从坡顶由静止开始滑到底端的全过程分析,由动能定理可知:mg ·2h -μmg cos 45°·h sin 45°-μmg cos 37°·h sin 37°=0,解得μ=67,选项A 正确;滑草车在滑道上段加速,在滑道下段减速,故滑草车通过上段滑道末端时速度最大,根据动能定理有mgh -μmg cos 45°·h sin 45°=12m v m 2,解得:v m =2gh 7,选项B 正确;全过程有W G -W 克f =0,则载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度为a =mg sin 37°-μmg cos 37°m=-335g ,故加速度大小为335g ,选项D 错误.10.如图所示,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的小球(可看成质点)从P 点上方高为R 处由静止开始下落,恰好从P 点进入轨道.小球滑到轨道最低点N 时,对轨道的压力大小为4mg ,g 为重力加速度.用W 表示小球从P 点运动到N 点的过程中克服摩擦力所做的功,则()A .W =12mgR ,小球恰好可以到达Q 点B .W >12mgR ,小球不能到达Q 点C .W =12mgR ,小球到达Q 点后,继续上升一段距离D .W <12mgR ,小球到达Q 点后,继续上升一段距离答案C 解析在N 点,根据牛顿第二定律有F N -mg =m v N 2R ,由牛顿第三定律知F N =F N ′=4mg ,解得v N =3gR ,对小球从开始下落至到达N 点的过程,由动能定理得mg ·2R -W =12m v N 2-0,解得W =12mgR .由于小球在PN 段某点处的速度大于此点关于ON 在NQ 段对称点处的速度,所以小球在PN 段某点处受到的支持力大于此点关于ON 在NQ 段对称点处受到的支持力,则小球在NQ 段克服摩擦力做的功小于在PN 段克服摩擦力做的功,小球在NQ 段运动时,由动能定理得-mgR -W ′=12m v Q 2-12m v N 2,因为W ′<12mgR ,故v Q >0,所以小球到达Q 点后,继续上升一段距离,选项C 正确.11.(2023·云南昆明市第一中学模拟)如图甲所示,两个不同材料制成的滑块A 、B 静置于水平桌面上,滑块A 的右端与滑块B 的左端接触.某时刻开始,给滑块A 一个水平向右的力F ,使滑块A 、B 开始滑动,当滑块A 、B 滑动1.0m 时撤去力F .整个运动过程中,滑块A 、B 的动能E k 随位移s 的变化规律如图乙所示.不计空气阻力,求:(1)滑块A 对B 做的功;(2)力F 的大小.答案(1)12J (2)39N 解析(1)B 在撤去F 后继续滑行s B =1.0m ,撤去F 时B 的动能E k B =6J ,由动能定理有-f B s B =0-E k B在撤去F 前,对B 由动能定律得W AB -f B s =E k B联立并代入数据解得W AB =12J(2)撤去力F 后,滑块A 继续滑行的距离为s A =0.5m ,撤去F 时A 的动能E k A =9J ,由动能定理有-f A s A =0-E k A力F 作用的过程中,分析滑块A 、B 整体,由动能定理有(F -f A -f B )s =E k A +E k B代入数据解得F =39N.12.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切,BC为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达B 点时对圆弧轨道的压力大小.答案(1)34mg 5gR 2(2)152mg 解析(1)设水平恒力的大小为F 0,小球所受重力和水平恒力的合力的大小为F ,小球到达C 点时速度的大小为v C ,则F 0mg =tan α,F =mg cos α,由牛顿第二定律得F =m v C 2R,联立并代入数据解得F 0=34mg ,v C =5gR 2(2)设小球到达B 点时速度的大小为v B ,小球由B 到C 的过程中由动能定理可得-2FR =12m v C 2-12m v B 2,代入数据解得v B =52gR 小球在B 点时有F N -F =m v B 2R,解得F N =152mg 由牛顿第三定律可知,小球在B 点时对圆弧轨道的压力大小为F N ′=152mg .。
高一物理《运动和动能定理》知识点总结
高一物理《运动和动能定理》知识点总结
一、动能的表达式
1.表达式:E k =12
m v 2. 2.单位:与功的单位相同,国际单位为焦耳,符号为J.
3.标矢性:动能是标量,只有大小,没有方向.
二、动能定理
1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.
2.表达式:W =12m v 22-12
m v 12.如果物体受到几个力的共同作用,W 即为合力做的功,它等于各个力做功的代数和.
3.动能定理既适用于恒力做功的情况,也适用于变力做功的情况;既适用于直线运动,也适用于曲线运动.
三.对动能定理的理解
(1)在一个过程中合外力对物体做的功或者外力对物体做的总功等于物体在这个过程中动能的变化.
(2)W 与ΔE k 的关系:合外力做功是物体动能变化的原因.
①合外力对物体做正功,即W >0,ΔE k >0,表明物体的动能增大;
②合外力对物体做负功,即W <0,ΔE k <0,表明物体的动能减小;
如果合外力对物体做功,物体动能发生变化,速度一定发生变化;而速度变化动能不一定变化,比如做匀速圆周运动的物体所受合外力不做功.
③如果合外力对物体不做功,则动能不变.
(3)物体动能的改变可由合外力做功来度量.。
高中物理中的动能定理解析
高中物理中的动能定理解析动能定理是物理学中的一个重要定律,它描述了物体的动能与力学工作的关系。
在高中物理学中,学生们通常会学习到这个定理,并通过实验和计算来验证它。
本文将对动能定理进行解析,探讨它的含义、应用以及相关的概念。
一、动能定理的含义动能定理是指物体的动能与作用在物体上的力之间的关系。
简单来说,它表明了物体的动能的增加量等于作用在物体上的力所做的功。
具体而言,动能定理可以用以下公式表示:动能的增加量 = 力所做的功其中,动能的增加量可以用物体的动能的变化量来表示,即动能的最终值减去动能的初始值。
力所做的功可以通过力的大小、物体的位移和力与位移之间的夹角来计算。
二、动能定理的应用动能定理在物理学中有着广泛的应用。
首先,它可以用来解释和计算物体的加速度。
根据牛顿第二定律,物体的加速度与作用在物体上的力成正比,而根据动能定理,物体的动能的增加量等于作用在物体上的力所做的功。
因此,我们可以通过测量物体的动能的变化量和力所做的功来计算物体的加速度。
其次,动能定理还可以用来解释和计算物体的速度。
根据动能定理,物体的动能的增加量等于作用在物体上的力所做的功。
当物体的质量不变时,动能的增加量与速度的增加量成正比。
因此,我们可以通过测量物体的动能的变化量和力所做的功来计算物体的速度。
此外,动能定理还可以用来解释和计算物体的位移。
根据动能定理,物体的动能的增加量等于作用在物体上的力所做的功。
当物体的质量不变时,动能的增加量与位移的平方成正比。
因此,我们可以通过测量物体的动能的变化量和力所做的功来计算物体的位移。
三、相关概念的解析在理解和应用动能定理时,还需要了解一些相关的概念。
首先是动能,它是物体由于运动而具有的能量。
动能可以用以下公式表示:动能 = 1/2 ×质量 ×速度的平方其中,质量是物体的质量,速度是物体的速度。
动能与物体的质量和速度的平方成正比,当物体的质量或速度增加时,动能也会增加。
高考物理课程复习:动能定理及其应用
【对点演练】
4.(2021湖南卷)“复兴号”动车组用多节车厢提供动力,从而达到提速的目的。
总质量为m的动车组在平直的轨道上行驶。该动车组有四节动力车厢,每节
车厢发动机的额定功率均为P,若动车组所受的阻力与其速率成正比(F阻=kv,k
为常量),动车组能达到的最大速度为vm。下列说法正确的是(
答案 C
解析 本题考查机车启动问题,考查分析综合能力。动车组匀加速启动过程
中,根据牛顿第二定律,有F-kv=ma,因为加速度a不变,速度v改变,所以牵引
力F改变,选项A错误。由四节动力车厢输出功率均为额定值,可得
4
4P=Fv,F-kv=ma',联立解得 a'=
− ,因为 v 改变,所以 a'改变,选项 B 错误。
量损失,sin 37°=0.6,cos 37°=0.8,重力加速度大小为g)。则(
6
A.动摩擦因数 μ=7
2ℎ
B.载人滑沙板最大速度为 7
C.载人滑沙板克服摩擦力做功为 mgh
3
D.载人滑沙板在下段滑道上的加速度大小为5g
)
答案 AB
解析 对整个过程,由动能定理得 2mgh-μmgcos
ℎ
45°·
载人滑沙板在下段滑道上的加速度大小为
错误。
cos37 °- sin37 °
3
a=
= 35 g,故
D
考点三
应用动能定理求解多过程问题[名师破题]
应用动能定理求解多过程问题的解题步骤
(1)首先需要建立运动模型,选择合适的研究过程能使问题得以简化。当物体
的运动过程包含几个运动性质不同的子过程时,可以选择一个、几个或全部
高考物理动能定理及其应用考点总结
如图5-2-3所示,一质量为m=1 kg的物块静止 在粗糙水平面上的A点,从t=0时刻开始,物块受到按如 图5-2-4所示规律变化的水平力F作用并向右运动,第3 s 末物块运动到B点时速度刚好为0,第5 s末物块刚好回到A 点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,求 (g取10 m/s2):
在牵引力不变的条件下行驶45 m
的坡路到达B点时,司机立即关
图5-2-9
掉油门,以后汽车又向前滑行15 m停在C点,汽车的
质量为5×103 kg,行驶中受到的摩擦阻力是车重的
0.25倍,取g=10 m/s2,求汽车的牵引力做的功和它
经过B点时的速率.
解析:汽车从A到C的过程中,汽车的发动机牵引力做正 功,重力做负功,摩擦力做负功,动能的变化量为零, 由动能定理可得WF-WG-W阻=0,由于G、F阻已知, 汽车的位移也知道,所以有 WF=WG+W阻=mgh+0.25mgl=2.25×106 J.
2.如图5-2-1所示,ABCD是一个盆式容器,盆内 侧
壁与盆底BC的连接处都是一段与BC相切的圆弧, BC是水平的,其长度d=0.50 m.盆边缘的高度为 h=0.30 m.在A处放一个质量为m的小物块并让其 从静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆 内来回滑动,最后停下来,则停的地点到B的距离 为( )
1.质量为m的物体在水平力F的作用下由静止开始在光滑
地面上运动,前进一段距离之后速度大小为v,再前进一
段距离使物体的速度增大为2v,则
()
A.第二过程的速度增量等于第一过程的速度增量
B.第二过程的动能增量是第一过程的动能增量的3倍
C.第二过程合外力做的功等于第一过程合外力做的功
大学物理2-3功 动能 动能定理
一、功的概念
1.恒力的功
等于恒力在位移上的投影与位移的乘积。 F
F
A Fr cos F r
明确几点
r
f静
(1)功是标量,有正负之分
(2)作功与参照系有关
2.变力的功
物体在变力的作 用下从a运动到b。
a
怎样计算这个力 的功呢? 采用微元分割法
当物体前端在s处停止时,摩擦力做的功为 L m s A F d x f r d x gx d x mg d x 0 L L L L mg ( s L) mg ( s )
2 2
再由动能定理得
即得
L 1 2 mg ( s ) 0 mv0 2 2 L v0 2 g ( s ) 2
2
l G x
所得结果相同,而现在 的解法无疑大为简便。
x
B
例题2-11 传送机通过滑道将长为L,质量为m的柔软 匀质物体以初速v0向右送上水平台面,物体前端在台 面上滑动 S距离后停下来(如图)。已知滑道上的磨 擦可不计,物与台面间的摩擦系数为 μ ,而且 S>L , 试计算物体的初速度v0。
动能定理:合外力对质点所做的功等于质点动 能的增量。
Aab Ekb Eka Ek
几点注意: a. 合力做正功时,质点动能增大;反之,质 点动能减小。 b.动能的量值与参考系有关。
c.动能定理只适用于惯性系。
d. 功是一个过程量,而动能是一个状态量, 它们之间仅仅是一个等量关系。
例题2-9 装有货物的木箱,重G=980N,要把它运 上汽车。现将长 l = 3m 的木板搁在汽车后部,构成一斜 面,然后把木箱沿斜面拉上汽车。斜面与地面成30o角, 木 箱 与 斜 面 间 的 滑 动 摩 擦 系 数 =0.20 , 绳 的 拉 力 与斜面成10o角,大小为700N,如图所示。
【高中物理】动能定理的应用知识点总结,考前必过一遍!
【⾼中物理】动能定理的应⽤知识点总结,考前必过⼀遍!⼀、动能1、定义:物体由于运动⽽具有的能量叫做动能,⽤符号来表⽰。
⽐如运动的汽车、飞机,流动的河⽔、空⽓等,都具有动能。
2、公式:3、动能是⼀个标量,只有⼤⼩没有⽅向,其单位为焦⽿(J)。
4、动能是状态量,对应物体运动的某⼀个时刻。
5、动能具有相对性,对于不同的参考系⽽⾔,物体的运动速度具有不同的瞬时值,也就有不同的动能。
在研究物体的动能时,⼀般都是以地⾯为参考系。
⼆、动能定理动能定理的推导过程:设物体质量为m,初速度为,在与运动⽅向相同的恒⼒作⽤下发⽣⼀段位移s,速度增加到。
在这⼀过程中,⼒F所做的功。
根据⽜顿第⼆定律有,根据匀加速运动的公式,有,由此可得1、动能定理的内容:合外⼒对物体做的总功等于物体动能的改变量。
2、动能定理的物理意义:该定理提出了做功与物体动能改变量之间的定量关系。
3、动能定理的表达式:4、动能定理的理解:(1)是所有外⼒做功的代数和。
可以包含恒⼒功,也可以包含变⼒功;做功的各⼒可以是同时作⽤的,也可以是各⼒在不同阶段做功的和。
应注意分析各⼒做功的正、负。
(2)求各外⼒功时,必须确定各⼒做功所对应的位移段落,逐段累计,并注意重⼒、电场⼒做功与路径⽆关的特点。
(3)下述关系式提供了⼀种判断动能(速度)变化的⽅法。
(4)代⼊公式时,要注意书写格式和各功的正负号,所求的功⼀般都按正号代⼊,如,式中动能增量为物体的末动能减去初动能,不必考虑中间过程。
(5)利⽤动能定理解题时也有其局限性,有时不能利⽤其直接求出速度的⽅向,且只适⽤于单个质点或能看成质点的物体。
5、应⽤动能定理的解题步骤(1)选择过程(哪⼀个物体,由哪⼀位置到哪⼀位置)过程的选取要灵活,既可以选取物体运动的某⼀阶段为研究过程,也可以选取物体运动的全过程为研究过程。
(2)分析过程。
分析各⼒做功情况,求解合⼒所做的功。
如果在选取的研究过程中物体受⼒情况有变化,则⼀定要分段进⾏受⼒分析,求解各个⼒的做功情况。
高一物理动能定理经典题型总结(全)
1、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及E K2④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。
高考物理知识体系总论:动能定理的应用
动能定理的应用
大致框架
考点一ꢀ动能定 理的理解及应用
考点
考点二ꢀ动能定理 在多过程中的应用
考点三ꢀ与图象相 关的动能问题
1.应用动能定理解题应抓好“两状态,一过程” “两状态”即明确研究对象的始、末状态的速度或 动能情况;“一过程”即明确研究过程,确定这一 过程研究对象的受力情况和位置变化或位移信息。
动能定理的应用
大致框架
动能定理及应用
知识点一、动能 知识点二、动能定理
考点
动能定理的应用
大致框架
知识点一、动能
1.定义:物体由于运动而具有的能叫动能。 2.公式:Ek=mv2/2。 3.单位:焦耳,1J=1N·m=1 kg·m2/s2。 4.矢标性:动能是标量,只有正值。 5.状态量:动能是状态量,因为v是瞬时速度。
经典例题2
一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞
到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,
则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量
ΔEk为(ꢀꢀ)
A.Δv=0
B.Δv=12 m/s
C.ΔEk=1.8 J
D.ΔEk=10.8 J
答案解析2
答案解析:取初速度方向为正方向,则Δv=(-6-6)m/s=-12 m/s, 由于速度大小没变,动能不变,故动能变化量为0,故只有选项B正确。
经典例题3
如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力 为2mg,重力加速度大小为g。质点自P滑到Q的过程中,克服摩擦力所做 的功为(ꢀꢀ)
动能定理从力和位移的关系推导出的能量守恒定律
动能定理从力和位移的关系推导出的能量守恒定律动能定理是物理学中的一个重要定理,它描述了力对物体产生的位移所做的功与物体的动能之间的关系。
这个定理基于牛顿第二定律和功的定义,通过推导可以得出它是能量守恒定律的一个特例。
动能定理的基本表达式为:动能定理:物体的动能的变化等于物体所受的净外力对物体的作用点所做的功。
数学表达式为:ΔK = W其中,ΔK表示物体动能的变化量,W表示净外力对物体的作用点所做的功。
根据牛顿第二定律,物体的加速度与净外力之间存在着线性关系,即F = ma,其中F为净外力,m为物体的质量,a为物体的加速度。
将这个关系带入动能定理的表达式中,可以得到:ΔK = maΔx其中Δx表示物体在相应方向上的位移。
接下来,我们通过对动能定理的推导,来得到能量守恒定律。
考虑一个物体在作用力F下沿着直线方向上做匀加速运动的情况。
物体处于初始速度v₀,在力F的作用下,位移为Δx,最终速度为v。
根据牛顿第二定律,可以得到物体的加速度a为:a = (v² - v₀²) / (2Δx)将找到的加速度a带入动能定理的表达式中,可以得到物体动能变化量ΔK为:ΔK = m(v² - v₀²) / 2根据能量守恒定律,系统的总能量在运动中保持不变。
对于孤立系统,没有外力做功,因此动能定理可以简化为:ΔK = 0将动能定理中的ΔK代入上述等式,可以得到:m(v² - v₀²) / 2 = 0进一步化简,得到:v² - v₀² = 0根据这个等式,可以推导出:v = v₀即物体的最终速度等于初始速度。
这就是能量守恒定律的一个特例,也就是动能定理所推导出的结论。
总结起来,通过力和位移的关系推导出来的动能定理,包含了能量守恒定律的一部分内容。
动能定理描述了净外力对物体的作用所产生的位移,与物体动能的变化之间的关系。
而当净外力为零时,动能定理推导出物体最终速度等于初始速度的结论,这就是能量守恒定律在动能定理中的体现。
考点23 动能定理及其应用 (核心考点精讲精练)(学生版) 备战25年高考物理一轮复习(新高考通用)
考点23 动能定理及其应用1. 高考真题考点分布题型考点考查考题统计选择题动能和动能定理2024年福建卷选择题多过程的动能定理应用2024年广东卷计算题动能定理2024年全国新课标卷、辽宁卷2. 命题规律及备考策略【命题规律】高考对动能定理的考查非常频繁,题目出现的形式有选择题也有计算题,如果以计算题出现,大多涉及到多过程问题的分析与应用,难度上也比较大。
【备考策略】1.理解动能动能定理,并会用动能定理处理物理问题。
2.掌握有关动能定理的图像问题。
【命题预测】重点关注动能定理在多过程问题中的应用。
一、动能1.公式:E k=12mv2,式中v为瞬时速度,动能是状态量。
2.标矢性:动能是标量,只有正值,动能与速度的方向无关。
3.动能的变化量:ΔE k=12mv22-12mv12。
4.动能的相对性:由于速度具有相对性,则动能也具有相对性,一般以地面为参考系。
二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
2.表达式W=ΔE k=12mv22-12mv12。
3.功与动能的关系(1)W>0,物体的动能增加。
(2)W<0,物体的动能减少。
(3)W=0,物体的动能不变。
4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动。
(2)既适用于恒力做功,也适用于变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用。
考点一 对动能、动能定理的理解考向1 应用动能定理求变力做功1.在变力作用下的直线运动问题中,如果物体所受恒力的功可以求出,并且知道物体的初末速度,那么可以应用动能定理求解变力的功,可以将这种方法作为首选试试。
2.在变力作用下的直线运动问题中,且变力功已知,不涉及时间的问题中,可优先考虑应用动能定理求解位移大小的问题。
3.动能定理中的位移和速度均是相对于同一参考系的,一般以地面为参考系。
1.如图所示,将质量为m 的小球从高为h 处以初速度水平抛出,落地时速度大小为v ,方向与水平面成q 角,空气阻力不能忽略,重力加速度为g 。
专题33 动能定理的理解和应用(解析版)
高考物理备考微专题精准突破专题3.3 动能定理的理解和应用【专题诠释】1.应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.2.应用动能定理解题的基本思路(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)动能定理的表达式是标量式,不能在其中一个方向上应用动能定理.(3)动能定理本质上反映了动力学过程中的能量转化与守恒,普遍适用于一切运动过程.【高考领航】【2019·新课标全国Ⅲ卷】从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。
距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化2A.2 kg B.1.5 kg C.1 kg D.0.5 kg【答案】C【解析】对上升过程,由动能定理,-(F +mg)h =E k -E k 0 ,得E k =E k 0 - (F +mg )h ,即F+mg=12 N;下落过程,(mg -F )(6 -h) =E k ,即mg -F =k'= 8N,联立两公式,得到m=1 kg、F=2 N。
【2018·江苏卷】从地面竖直向上抛出一只小球,小球运动一段时间后落回地面。
忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是A.B.C.D.【答案】A【解析】本题考查动能的概念和E k–t 图象,意在考查考生的推理能力和分析能力。
小球做竖直上抛运动时,速度v=v –gt,根据动能E =1mv2 得E =1m (v-gt)2,故图象A正确。
k 2 k 2 0【2018·高考全国卷Ⅰ】如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g.小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A.2mgR B.4mgRC.5mgR D.6mgR【思路点拨】解答本题应注意以下三点:(1)小球由a 到c 的过程,由动能定理求出小球在c 点的速度大小.(2)小球离开 c 点后水平方向和竖直方向的加速度大小均为 g .(3)小球轨迹最高点的竖直方向速度为零.【答案】C【解析】小球从 a 运动到 c ,根据动能定理,得F ·3R -mgR =1 2,又 F =mg ,故 v =2 gR ,mv 1 1 2 小球离开 c 点在竖直方向做竖直上抛运动,水平方向做初速度为零的匀加速直线运动,且水平方向与竖直方向的加速度大小相等,都为 g ,故小球从 c 点到最高点所用的时间 t =v 1=2R ,水平位移 x =1gt 2=2R ,根据功能关系,小球从 a 点到轨迹最高点机械能的增 gg 2量为力 F 做的功,即ΔE =F ·(2R +R +x )=5mgR .【方法技巧】(1)动能定理解决的是合力做功与动能变化量之间的关系,所以在分析时一定要对物体受到的各个力做的功都作分析.(2)动能定理往往应用于单个物体的运动过程,由于不涉及时间,比用运动学规律更加方便. (3)找到物体运动的初、末状态的动能和此过程中合力做的功,是应用动能定理解题的关键. 解决物理图象问题的基本步骤(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. (2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下方的面积所对应的物理意义,根据对应关系列式解答问题.B四类图象所围“面积”的含义【最新考向解码】【例 1】(2019·黑龙江齐齐哈尔五校联谊高三上学期期末联考)如图所示,固定在竖直平面内的 1圆弧轨道与4 水平轨道相切于最低点 B ,质量为 m 的小物块从圆弧轨道的顶端 A 由静止滑下,经过 B 点后沿水平轨道运动,并停在到 B 点距离等于圆弧轨道半径的 C 点。
动能定理的应用速度与位移的关系
动能定理的应用速度与位移的关系动能定理的应用:速度与位移的关系动能定理是物理学中的一个重要定理,描述了物体的运动速度与其动能之间的关系。
在本文中,将探讨动能定理在速度与位移之间的关系应用。
一、动能定理的定义与表达动能定理是指在作用于物体的净力下,物体的动能的变化量等于作用在物体上的力的功。
其表达式可以表示为:K2 - K1 = W其中,K1为系统在时刻1的动能,K2为系统在时刻2的动能,W 为外力对系统所做的功。
二、动能定理与速度的关系根据动能定理的定义,物体的动能的变化量与作用在物体上的力的功成正比。
而速度则是描述物体运动快慢的物理量,与动能有着密切的关系。
当物体的质量不变时,其动能与速度的平方成正比。
即动能定理可以改写为:(1/2)mv22 - (1/2)mv12 = W其中,m为物体的质量,v1为系统在时刻1的速度,v2为系统在时刻2的速度。
三、速度与位移之间的关系在讨论速度与位移之间的关系时,我们需要引入加速度这一概念。
加速度是指物体单位时间内速度的变化率。
假设物体在时间t内沿直线方向上做匀加速运动,初速度为v0,末速度为v,加速度为a,位移为s。
根据物理学中的运动学公式,可得到以下关系:v = v0 + ats = v0t + (1/2)at^2根据动能定理与加速度的关系,我们可以推导出速度与位移之间的关系。
首先,根据动能定理的定义,将动能表达式代入公式中,得到:(1/2)mv2 - (1/2)mv0^2 = W根据功的定义,将力的功表达式代入公式中,得到:(1/2)mv2 - (1/2)mv0^2 = Fs整理后得到:(1/2)mv^2 - (1/2)mv0^2 = mas其中,F为物体所受的力,由于加速度与力成正比,可将F替换为ma。
接下来,我们将代入位移的表达式,得到:(1/2)mv^2 - (1/2)mv0^2 = ma(v0t + (1/2)at^2)化简后可得:v^2 - v0^2 = 2as进一步整理,得到:v^2 = v0^2 + 2as综上所述,速度与位移之间的关系可以表示为:v^2 = v0^2 + 2as四、应用举例通过以上推导,我们可以应用速度与位移之间的关系来解决实际问题。
动能和动能定理(知识梳理)
动能和动能定理【学习目标】1.通过设计实验探究功与物体速度的变化关系.2.明确动能的表达式及含义.3.能理解和推导动能定理.4.掌握动能定理及其应用.【要点梳理】要点一、探究功与速度变化的关系要点诠释:1.探究思路让小车在橡皮绳的弹力下弹出,沿木板滑行。
由于橡皮绳对小车做功,小车可以获得速度,小车的速度可以通过打点计时器测出。
这样进行若干次测量就可以得到多组数据,通过画图的方法得出功与速度的关系。
2.操作技巧(1)功的变化我们可以通过由一根橡皮绳逐渐增加到若干根的方法得到。
(2)要将木板倾斜一定角度,使小车在木板上沿斜面向下的重力的分力与其受的摩擦力相等,目的是让小车在木板上可以做匀速直线运动。
3.数据的处理以单根橡皮绳做的功为横坐标,以速度的平方为纵坐标描点连线,画出图象。
4.实验结论画出2W v -图象,图象为直线,即2W v ∝。
要点二、动能、动能的改变要点诠释:1.动能:(1)概念:物体由于运动而具有的能叫动能.物体的动能等于物体的质量与物体速度的二次方的乘积的一半.(2)定义式:212k E mv =,v 是瞬时速度. (3)单位:焦(J).(4)动能概念的理解.①动能是标量,且只有正值.②动能具有瞬时性,在某一时刻,物体具有一定的速度,也就具有一定的动能.③动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动.2.动能的变化:动能只有正值,没有负值,但动能的变化却有正有负.“变化”是指末状态的物理量减去初状态的物理量.动能的变化量为正值,表示物体的动能增加了,对应于合力对物体做正功;动能的变化量为负值,表示物体的动能减小了,对应于合力对物体做负功,或者说物体克服合力做功.要点三、动能定理要点诠释:(1)内容表述:外力对物体所做的总功等于物体功能的变化.(2)表达式:21k k W E E =-,W 是外力所做的总功,1k E 、2k E 分别为初、末状态的动能.若初、末速度分别为v 1、v 2,则12112k E mv =,22212k E mv =. (3)物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化.变化的大小由做功的多少来量度.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.等号的意义是一种因果关系的数值上相等的符号,并不意味着“功就是动能增量”,也不是“功转变成动能”,而是“功引起物体动能的变化”.(4)动能定理的理解及应用要点.动能定理虽然可根据牛顿定律和运动学方程推出,但定理本身的意义及应用却具有广泛性和普遍性. ①动能定理既适用于恒力作用过程,也适用于变力作用过程.②动能定理既适用于物体做直线运动情况,也适用于物体做曲线运动情况.③动能定理的研究对象既可以是单个物体,也可以是几个物体所组成的一个系统.④动能定理的研究过程既可以是针对运动过程中的某个具体过程,也可以是针对运动的全过程. ⑤动能定理的计算式为标量式,v 为相对同一参考系的速度.⑥在21k k W E E =-中,W 为物体所受所有外力对物体所做功的代数和,正功取正值计算,负功取负值计算;21k k E E -为动能的增量,即为末状态的动能与初状态的动能之差,而与物体运动过程无关.要点四、应用动能定理解题的基本思路和应用技巧要点诠释:1.应用动能定理解题的基本思路(1)选取研究对象及运动过程;(2)分析研究对象的受力情况及各力对物体的做功情况:受哪些力?哪些力做了功?正功还是负功?然后写出各力做功的表达式并求其代数和;(3)明确研究对象所历经运动过程的初、末状态,并写出初、末状态的动能1K E 、2K E 的表达式;(4)列出动能定理的方程:21K K W E E =-合,且求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点三:动能定理求位移\力\速度
动能定理的一般思路
(1)应用动能定理解题时必须明确所研究的运动过程。
(2)当既可用分段法也可用全程法时,一般说来全程法简捷。
(3)当物体做往复运动时,一般选用全程法。
1. 两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一平面上滑动,最后都静止,则它们滑行的距离(A )
A .乙大
B .甲大
C .一样大
D .无法确定
2. [2014·大纲全国卷]一物块沿倾角为θ的斜坡向上滑动。
当物块的
初速度为v 时,上升的最大高度为H ,如图所示;当物块的初速度为v 2
时,上升的最大高度记为h 。
重力加速度大小为g 。
物块与斜坡间的动摩擦
因数和h 分别为( D ) A .tan θ和H 2 B .(v 22gH -1)tan θ和H 2 C .tan θ和H 4 D .(v 22gH -1)tan θ和H 4 3.物体从高出地面H 处由静止自由落下,不考虑空气阻力,落至沙坑表面后又进入沙坑h 深度停止(如图
所示)。
求物体在沙坑中受到的平均阻力是其重力的多少倍?[答案]
H +h h
4. 冰壶在水平冰面上的一次滑行可简化为如下过程:如图所示,运动员将静止于O 点的冰壶(视为质点)沿直线OO ′推到A 点放手,此后冰壶沿AO ′滑行,最后停于C 点。
已知冰面和冰壶间的动摩擦因数为μ,冰壶质量为m, AC =L, CO ′=r ,重力加速度为g 。
(1)求冰壶在A 点的速率;
(2)若将BO ′段冰面与冰壶间的动摩擦因数减小为0.8μ, 原本只能滑到C 点的冰壶能停于O ′点,求A 点与B 点之间的距离。
答案:(1)2μgL (2)L -4r
5.如图所示,物体在离斜面底端5 m 处由静止开始下滑,然后滑上由小圆弧连接的水平面上,若物体与斜面及水平面的动摩擦因数均为0.4,斜面倾角为37°。
求物体能在水平面上滑行多远。
6. 质量为m 的物体静止在水平桌面上,它与桌面之间 的动摩擦因数为μ,物体在水平力F 作用下开始运动,发生位移x 1时撤去力F ,问物体还能运动多远?
x 2=
F -μmg x 1μmg。