一元二次方程及其应用复习
一元二次方程专题复习
一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
数学知识点:一元二次方程及其应用_知识点总结
数学知识点:一元二次方程及其应用_知识点总结
数学知识点:一元二次方程及其应用一元二次方程的定义:
含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:
一元二次方程的应用:
建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。
一元二次方程的根与系数的关系:
如果方程的两个实数根是,那么。
命题的概念:
1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。
注意:
1、并不是所有的语句都是命题,高考物理,只有能够判断真假的语句才是命题。
2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。
一元二次方程复习知识点梳理
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x+4)中,不能随便约去x +4。
一元二次方程的应用总复习
2500 2500 ( 1 x) 2500 ( 1 x) 9100
开启
智慧
10.一次会议上,每两个参加会议的人都互相握了一 次手,有人统计一共握了66次手.这次会议到会的人数 是多少?
解 : 设这次到会的人数为 x, 根据题意 ,得
整理得 :
x 2 x 132 0.
习题探究
• 7.某化肥厂去年五月份生产化肥450t, 从六月份开始,产量因市场关系,逐 月上升,到七月份达到了648t,求六、 七月份平均增长率.
变式训练
• 8.某公司前年缴税40万元,今年缴税 48.4万元.该公司这两年缴税的年平均 增长率为多少?
解:设该公司这两年缴税的年平均增 长率为x,根据题意得,
一、面积问题
• 1.长方形面积= • 2.正方形面积=
长×宽 边长×边长 (上底+下底)×高÷2 边长×边长×边长
• 3.梯形面积=
• 4.正方体体积=
• 5.长方体体积=
长×宽×高
一、面积问题
几何与方程
1. 如图,在一块长92m,宽60m的 矩形耕地上挖三条水渠,水渠的宽 度都相等.水渠把耕地分成面积均 为885m2的6个矩形小块,水渠应挖 多宽.
一元二次方程的应用总复习
复习回顾
• 列一元二次方程解应用题的一般步骤: • 1.审:审清题意;已知什么,求什么,已知未知之间有什 么关系
2.设:设未知数,语句要完整,有单位的要注明单位.
3.列:列代数式,列方程. 4.解:解所列方程 5.验:检验是否是所列方程的根;是否符合题意. 6.答:答也必须是完整语句,注明单位.
解:设如果产量增加15.2%,那么应多种x棵桃树, 根据题意得, (1000-2x)(100+x)=1000×100+1000×100×15.2%
中考数学总复习考点知识讲解课件30---一元二次方程及其应用
C.x2-x+1=0
D.x2=1
百变四:已知方程系数关系,判断方程根的情况 4.(2016·河北)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2 +bx+c=0的根的情况( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.无实数根 D.有一根为0
【解析】 ∵(a-c)2=a2+c2-2ac>a2+c2,∴ac<0.∴在方程ax2+bx+ c=0中,b2-4ac≥-4ac>0,∴方程ax2+bx+c=0有两个不相等的实数 根.故选B.
【自主解答】 解:(1)四 x= (2)x2-2x-24=0, 移项,得x2-2x=24, 配方,得x2-2x+1=24+1, 即(x-1)2=25, 两边开平方,得x-1=±5, ∴x1=6,x2=-4.
解一元二次方程的注意点
(1)在运用公式法解一元二次方程时,要先把方程化为一般形式,再确定 a,b,c的值,否则易出现符号错误; (2)用因式分解法确定一元二次方程的解时,一定要保证等号的右边化为 0,否则易出现错误; (3)如果一元二次方程的常数项为0,不能在方程两边同时除以含有未知数 的相同因式; (4)对于含有不确定量的方程,需要把求出的解代入原方程检验,避免增 根.
知识点二 一元二次方程的解法
x=b b2 4ac 2a
知识点三 一元二次方程根的判别式
b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.判别式 的符号决定了方程根的情况,即
(1)b2-4ac>0⇔方程有两个 _不__相__等__的实数根;
(2)b2-4ac_=__0⇔方程有两个相等的实数根; (3)b2-4ac<0⇔方程__没__有___实数根.
【分析】由每个月的平均增长率相同,可分别表示二月份和三月份的工业 产值,再结合第一季度总产值为175亿元列方程即可. 【自主解答】由平均每月增长的百分率为x,则二月的工业产值为50(1+x) 亿元,三月的工业产值为50(1+x)2 亿元,则根据题意可得方程:50+ 50(1+x)+50(1+x)2=175,故选D.
中考总复习数学第3节 一元二次方程及其应用
边的长是方程 x2-8x+12=0 的解,则这个三角形的周
长是 17 .
3. (2020·无锡)解方程:x2+x-1=0.
解:x1=-1+2
5,x2=-1-2
5 .
4. (2020·荆州)阅读下列“问题”与“提示”后,将 解方程的过程补充完整,求出 x 的值.
【问题】解方程:x2+2x+4 x2+2x-5=0. 【提示】可以用“换元法”解方程. 解:设 x2+2x=t(t≥0),则有 x2+2x=t2, 原方程可化为:t2+4t-5=0. 【续解】
-4ac > 0.即可得到关于 a 的不等式,从而求得 a 的 范围.(2)将 x=1 代入方程 x2+2x+a-2=0 得到 a
的值,再根据根与系数的关系求出另一根.
【自主作答】(1)b2-4ac=22-4×1×(a-2)=12- 4a>0,解得 a<3.
(2)设方程的另一根为 x1,由解的定义及根与系数的 1+2+a-2=0, a=-1,
关系,得 1×x1=a-2, 解得 x1=-3,则 a 的值是 -1,该方程的另一根为-3.
类型3:一元二次方程的应用 ►例3沅江市近年来大力发展芦笋产业,某芦笋生产 企业在两年内的销售额从 20 万元增加到 80 万元.设这 两年的销售额的年平均增长率为 x,根据题意可列方程为 () A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=80
数学 中考总复习
第3节 一元二次方程及其应用
类型1:一元二次方程的解法 ►例1分别用两种不同的方法解下列一元二次方程: (1)x2+6x=1; (2)(x-3)2+4x(x-3)=0.
分析:公式法是解一元二次方程通用的方法,在运
《一元二次方程》全章复习与巩固—知识讲解
《一元二次方程》全章复习与巩固—知识讲解一元二次方程是高中数学中的重要内容,它是一种形如ax^2 + bx + c = 0的方程,其中a、b、c为实数,且a ≠ 0。
解一元二次方程的方法有因式分解、配方法和求根公式法。
下面将对这些解法进行讲解。
一、因式分解法如果一元二次方程能够因式分解为两个一次因式的乘积,即 (px + q) (rx + s) = 0,那么方程的解就可以直接得到。
具体步骤如下:1. 将二次方程化简成标准形式:ax^2 + bx + c = 0;2. 因式分解方程:(px + q) (rx + s) = 0;3. 解方程:px + q = 0 或 rx + s = 0;4.求解方程得到x的值。
例如,对方程x^2-5x+6=0应用因式分解法:1.方程已经是标准形式;2.可以将方程改写为(x-2)(x-3)=0;3.解方程得到x-2=0或x-3=0;4.求解方程可得x=2或x=3,这就是原方程的解。
二、配方法对于一元二次方程ax^2 + bx + c = 0,有时候可以通过配方法将方程转化为一个平方差或一个完全平方式。
具体步骤如下:1.当a≠0时,将方程两边同时除以a,化简为x^2+(b/a)x+c/a=0;2. 计算出一个值k,使得(b/a)^2 + 2(b/a)k + k^2 = k^2、其中,2(b/a)k为bx的一半,k^2为(c/a)的相反数的一半;3.将方程变形为(x+k)^2+m=0,即(x+k)^2=-m;4.解方程得到x+k=±√(-m);5.求解方程得到x的值。
例如,对方程x^2-6x+8=0应用配方法:1.将方程化简为(x-3)^2-1=0;2.得到k=3,使得(-6/2)^2+2(-6/2)k+k^2=1;3.方程变形为(x-3)^2=1;4.解方程得到x-3=±1;5.求解方程可得x=2或x=4,这就是原方程的解。
三、求根公式法一元二次方程的求根公式是美国数学家Vieta发现的,它的公式形式为:x = (-b ± √(b^2 - 4ac)) / 2a。
第二章 一元二次方程复习 讲义
龙文教育学科教师辅导讲义学员姓名: 辅导课目:数学 年级:八年级 学科教师:汪老师 授课日期及时段课 题第二章 一元二次方程复习重点、难点、考点1、一元二次方程的基本概念2、一元二次方程的解法及应用学习目标1、理解一元二次方程的基本概念及其相应的应用2、一元二次方程的解法及其应用教学内容一、知识回顾:1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数。
2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法. (注意:用直接开平方的方法时要记得取正、负.)(2)配方法:关键化原方程为2()x m n +=的形式 (警告: 用配方法时二次项系数要化1.)(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是221,24(40)2b b ac x b ac a-±-=-≥.(注意:方程要先化成一般形式.)(4)因式分解法(主要有提取公因式、运用平方差公式、运用完全平方公式、十字相乘法):因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积; ③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.(注意:方程要先化成一般形式.)3.一元二次方程根的判别式: 24b ac ∆=-(1)一元二次方程20(0)ax bx c a ++=≠根的情况:①当0∆>时,方程有两个不相等的实数根;②当0∆=时,方程有两个相等的实数根; ③当0∆<时,方程无实数根. (2)判定一元二次方程根的情况; (3)确定字母的值或取值范围。
知识点练习知识一:一元二次方程的概念1、一元二次方程(1-3x)(x+3)=2x 2+1的一般形式是 它的二次项系数是 ; 一次项系数是 ;常数项是 。
第22章 一元二次方程复习
第22章一元二次方程复习(1)一元二次方程及其解法樊城区太平店中学刘玉萍一、内容与内容解析1、内容复习一元二次方程及其有关的概念,一元二次方程的基本解————配方法、公式法、因式分解法,一元二次方程根与系数的关系等知识,建立知识体系,综合运用一元二次方程的知识解决有关的问题。
2、内容解析本章学习了一元二次方程。
在学习中通过具体实例认识了一元二次方程,探索了一元二次方程的解法,研究了实际问题与一元二次方程,分别讨论了传播问题、增长率问题和几何图形面积问题。
本章的重点是一元二次方程的解法及应用一元二次方程解决实际问题。
这些知识都是方程领域的基础知识,在以后学习“二次函数”中“用函数的观点看一元二次方程”也要用到,这部分内容掌握不好,将会影响后续内容的学习。
学好这部分内容的关键是要使学生理解一元二次方程的一般形式;一元二次方程根的情况;一元二次方程根与系数的关系等知识。
并将一元二次方程与一元一次方程作类比,因为一元二次方程是一元一次方程的拓展和延伸,一元一次方程是学习一元二次方程的基础。
在本章的学习过程中需要学生通过观察、对比、归纳、类比等来发现一元二次方程的解法,同时还要注意引导学生分析方程的特点,引导学生进行转化,是学生学会把未知化为已知,把复杂问题化为简单问题的思考方法。
作为本章复习课的第一节课,本节主要复习一元二次方程的有关概念;一元二次方程的解法;一元二次方程的根与系数的关系。
本节内容是对本章重点知识的巩固和提高,通过复习使学生能够熟练地选用适当的方法解一元二次方程,进一步体会一元二次方程化归降次的思想。
由以上的分析,确定本节课的教学重点是:灵活应用一元二次方程的解法解决有关的问题。
二、教材解析本节课主要内容是复习巩固一元二次方程有关概念和一元二次方程的解法及根与系数的关系等知识,重点是一元二次方程的解法。
在知识回顾的过程中,结合问题让学生通过独立思考,回顾所学的内容,建立相应的知识结构图。
中考数学一轮复习专题突破练习—一元二次方程及其应用
中考数学一轮复习专题突破练习—一元二次方程及其应用一、单选题1.(2022·全国九年级课时练习)下列方程是一元二次方程的是( ) A .20ax bx c ++=B .()223232x x x -=-C .213x x-=D .242x x x -= 【答案】D 【分析】根据一元二次方程的概念判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程. 【详解】解:A 、20ax bx c ++=,a ≠0时,是一元二次方程,故此选项错误;B 、()223232x x x -=-,整理得:-2x +6=0,是一元一次方程,故此选项错误;C 、213x x-=,是分式方程,故此选项错误; D 、242x x x -=,是一元二次方程,故此选项正确; 故选:D .2.(2022·全国九年级课时练习)下列各数是方程212x x -=的根的是( ) A .3x = B .4x =C .5x =D .10x =【答案】B 【分析】分别将3x =,4x =,5x =,10x =代入方程中,如果方程左右两边相等,那么此时的值即为方程的解. 【详解】解:将3x =,4x =,5x =,10x =代入方程中, 可得当4x =时,左边=右边, 故4x =是方程212x x -=的根, 故选B .3.(2022·全国九年级课时练习)已知方程2(3)210k x x -++=有两个实数根,则k 的取值范围是( ) A .4k < B .4k ≤C .4k <且3k ≠D .4k ≤且3k ≠【答案】D 【分析】若一元二次方程有两个实数根,则根的判别式△=b 2-4ac ≥0,建立关于k 的不等式,求出k 的取值范围.还要注意二次项系数不为0. 【详解】解:∵方程有两个实数根,∴30k -≠且22Δ4241(3)0b ac k =-=-⨯⨯-≥, 解得4k ≤且3k ≠, 故选D .4.(2022·全国九年级课时练习)一元二次方程24410x x -+=的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根D .有两个不相等的实数根【分析】根据一元二次方程根的判别式可直接进行求解. 【详解】解:∵2Δ(4)4410=--⨯⨯=,∴一元二次方程24410x x -+=有两个相等的实数根. 故选C .5.(2022·全国九年级课时练习)用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 【答案】B 【分析】根据配方的步骤计算即可解题. 【详解】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确, 故选:B6.(2022·珠海市九洲中学九年级一模)已知关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,则实数a 的取值范围是( ) A .1a = B .1a >且0a ≠ C .1a <且0a ≠ D .1a ≤或0a ≠【答案】C由关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,即可得判别式△0>以及0a ≠,由此即可求得a 的范围.【详解】解:关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,∴△224(2)41440b ac a a =-=--⨯⨯=->,解得:1a <,方程2210-+=ax x 是一元二次方程,0a ∴≠,a ∴的范围是:1a <且0a ≠.故选:C .7.(2022·全国九年级课时练习)已知一个三角形的一边长为5,其他两边的长是方程(2)(4)0x x --=的根,则这个三角形的周长是( ) A .9 B .11C .11或13D .9或11【答案】C 【分析】首先解一元二次方程,再根据三角形三边关系的性质,分三种情况分析,通过计算即可得到答案. 【详解】∵(2)(4)0x x --=, ∴12x =,24x =当三角形的三边长分别为2,4,5时,其周长为11;当三角形的三边长分别为4,4,5时,其周长为13; 当三角形的三边长分别为2,2,5时,无法构成三角形; ∴这个三角形的周长是11或13. 故选:C .8.(2022·全国九年级课时练习)宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( ) A .180(20)501089010x x -⎛⎫--= ⎪⎝⎭B .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭ C .(18020)501089010x x ⎛⎫+--= ⎪⎝⎭D .(180)5050201089010x x ⎛⎫+--⨯= ⎪⎝⎭【答案】A 【分析】设房价定为x 元,根据利润=房价的净利润×入住的房间数可得. 【详解】解:设房价定为x 元, 根据题意,得()18020501089010x x -⎛⎫--= ⎪⎝⎭故选A .9.(2022·全国九年级课时练习)如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为( )A .1B .1.5C .2D .2.5【答案】A 【分析】剩余部分可合成长为(30-x )m ,宽为(20-x )m 的矩形,利用矩形的面积公式结合草地面积为551m 2,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论. 【详解】解:根据题意,得(30)(20)551x x --=, 整理,得250490x x -+=, 解得121,49x x ==,∵当249x =时,20290x -=-<, ∴249x =舍去, ∴小路宽x 的值为1. 故选A .10.(2022·全国九年级课时练习)某市2012年有人口100万,2013年人口增长率为5%,“单独二胎”政策开放后,2014年人口增长率约为7%,若2013年、2014年人口年平均增长率为x ,则( ) A .6%x = B .6%x >C .6%x <D .不能确定【答案】C【分析】根据题意可得等量关系为:2012年的人口数×(1+增长率)2=2014年的人口数,把相关数值代入即可列出方程.【详解】依题意列方程为2x+=++,100(1)100(15%)(17%)整理得2x+=++=,(1)(15%)(17%) 1.1235++=>,∵(16%)(16%) 1.1236 1.1235∴6%x<.故选:C二、填空题11.(2022·沭阳县怀文中学九年级月考)国家统计局统计数据显示,我国快递业务收入逐年增加.2018年至2020年我国快递业务收入由5000亿元增加到7500亿元.设我国2018年至2020年快递业务收入的年平均增长率为x.则可列方程为________________.【答案】()2+=x500017500【分析】根据题意可得等量关系:2018年的快递业务量×(1+增长率)2=2020年的快递业务量,根据等量关系列出方程即可.【详解】解:设我国2018年至2020年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故答案为:5000(1+x)2=7500.12.(2020·沭阳县怀文中学九年级月考)已知关于x的方程x2﹣14=0有两个不相等的实数根,则k的取值范围是_______.【答案】k≥0【分析】根据一元二次方程根的判别式列出不等式,解不等式即可.【详解】解:∵关于x的方程x2﹣14=0有两个不相等的实数根,∴2﹣4×1×(﹣14)>0且k≥0,k+1>0且k≥0,解得k≥0,故答案为:k≥0.13.(2020·沭阳县怀文中学九年级月考)九年级(1)班部分学生去秋游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去秋游的人数是____人.【答案】9【分析】设同去春游的人数是x人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x人,依题意,得:12x (x ﹣1)=36, 解得:x 1=9,x 2=﹣8(舍去). 故答案是:9.14.(2020·沭阳县怀文中学九年级月考)关于x 的一元二次方程(m ﹣2)x 2+3x +m 2﹣4=0有一个解是0,则m 的值为_____. 【答案】﹣2 【分析】把x =0代入方程(m ﹣2)x 2+3x +m 2﹣4=0中,解关于m 的一元二次方程,注意m 的取值不能使原方程对二次项系数为0. 【详解】解:把x =0代入方程(m ﹣2)x 2+3x +m 2﹣4=0中,得 m 2﹣4=0, 解得m =﹣2或2,当m =2时,原方程二次项系数m ﹣2=0,舍去, 故答案是:﹣2.15.(2022·全国九年级课时练习)认真观察下列方程,指出使用何种方法求解比较适当.(1)245x =,应选用________法; (2)2165x x +=,应选用_______法;(3)2(2)(1)(2)(4)x x x x +-=++,应选用__________法; (4)22330x x --=,应选用__________法.【答案】直接开平方 配方 因式分解 公式【分析】(1)将方程的二次项系数化为1得到254x =,用直接开平方法求解;(2)根据配方法在方程两边同时加上一次项系数一半的平方,左边得到完全平方式,右边为常数,选用配方法;(3)先移项,然后提出公因式(2)x +,用因式分解法;(4)二次项系数不为1,不易用配方法和因式分解法,选公式法. 【详解】解:(1)可直接开平方,故选择直接开平方法;(2)2165x x +=的两边都加上64,易配方得2(8)69x +=,故选配方法; (3)方程2(2)(1)(2)(4)x x x x +-=++,移项得2(2)(1)(2)(4)0x x x x +--++=,直接提公因式(2)x +求解即可,故选因式分解法;(4)22330x x --=,二次项系数不为1,不易用配方法和因式分解法,故应选用公式法求解.故答案为:直接开平方;配方;因式分解;公式 三、解答题16.(2022·福建省福州杨桥中学九年级开学考试)解方程:230x x +-=.【答案】12x x ==【分析】根据公式法解一元二次方程即可. 【详解】解:1,1,3a b c ===-2411213b ac ∴∆=-=+=x ∴==12x x ∴=. 17.(2020·沭阳县怀文中学九年级月考)解方程:(1)3x 2﹣4x =1;(2)(3y ﹣2)2=(2y ﹣3)2.【答案】(1)x 1x 2(2)y 1=1,y 2=﹣1 【分析】(1)由题意先把方程化为一般式,然后利用求根公式解方程;(2)根据题意先移项得到(3y ﹣2)2﹣(2y ﹣3)2=0,然后利用因式分解法解方程.【详解】解:(1)3x 2﹣4x ﹣1=0,∵Δ=(﹣4)2﹣4×3×(﹣1)=28>0,∴x 273,∴x 1x 2 (2)(3y ﹣2)2﹣(2y ﹣3)2=0,(3y ﹣2+2y ﹣3)(3y ﹣2﹣2y +3)=0,3y ﹣2+2y ﹣3=0或3y ﹣2﹣2y +3=0,解得y 1=1,y 2=﹣1.18.(2022·贵阳市第十九中学九年级月考)随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,某省2018年公共充电桩的数量为2万个,2020年公共充电桩的数量为2.88万个.(1)求2018年至2020年该省公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计2022年该省将新增多少万个公共充电桩?【答案】(1)2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)预计2022年该省将新增0.576万个公共充电桩.【分析】(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x,根据该省2018年及2020年公共充电桩,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据该省2022年公共充电桩数量=该省2020年公共充电桩数量×增长率,即可求出结论.【详解】解:(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x,依题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).答:2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)2.88×20%=0.576(万个).答:预计2022年该省将新增0.576万个公共充电桩.19.(2022·重庆市育才中学九年级开学考试)中秋来临之际,重百超市看准商机,连续两周进行节日大促销活动,该超市从厂家购进A,B两种月饼进行销售,每周都用25000元购进250盒A种月饼和150盒B种月饼.重百超市在第一周销售时,每盒A 种月饼的售价比每盒B 种月饼的售价的2倍少10元,且两种月饼在一周之内全部售完,总盈利为5000元.(1)求重百超市在第一周销售B 种月饼每盒多少元?(2)重百超市在第二周销售时,受到各种因素的影响,每盒A 种月饼的售价比第一周A 种月饼的售价每盒增加了53%m ,但A 种月饼的销售盒数比第一周A 种月饼的销售盒数下降了%m ;每盒B 种月饼的售价比第一周B 种月饼的售价每盒下降了%m ,但B 种月饼的销售盒数与第一周B 种月饼的销售盒数相同,结果第二周的总销售额为30000元,求m 的值.【答案】(1)重百超市在第一周销售B 种月饼每盒50元,则销售A 种月饼每盒为90元;(2)m =20【分析】(1)设重百超市在第一周销售B 种月饼每盒x 元,则销售A 种月饼每盒为(2x -10)元,然后根据题意可列方程求解;(2)由(1)及题意可知第二周A 种月饼销售价为%59013m ⎛⎫+ ⎪⎝⎭元,销量为()2501m -%盒,而B 种月饼销售额为()150501m ⨯-%元,进而根据题意可列方程求解.【详解】解:(1)设重百超市在第一周销售B 种月饼每盒x 元,则销售A 种月饼每盒为(2x -10)元,由题意得:()250210150250005000x x -+-=,解得:50x =,∴销售A 种月饼每盒为2×50-10=90(元);答:重百超市在第一周销售B 种月饼每盒50元,则销售A 种月饼每盒为90元;(2)由(1)及题意得:()()5901250115050130000%3m m m ⎛⎫+⨯-+⨯-= ⎪⎝⎭%%, 化简得:2200m m -=,解得:1220,0m m ==(不符合题意,舍去),∴m =20.20.(2022·西安高新一中实验中学九年级开学考试)解方程:(1)24142x x x x +=-+ (2)22530x x +-=(3)2(2)36x x +=+【答案】(1)原方程无解;(2)112x =,23x =-;(3)12x =-,21x =.【分析】(1) 方程两边都乘以公分母得()2424x x x x +-=-,解方程得2x =-检验分母为零即可;(2)因式分解得()()2310x x +-=分别解每一个一元一次方程即可;(3)先因式分解()()210x x +-=在分别解每一个一元一次方程即可.【详解】解:(1)24142x x x x +=-+ , 方程两边都乘以()()22x x +-得()2424x x x x +-=-,整理得24x =-,解得2x =-,当2x =-时,()()()()2222220x x +-=-+--=,∴2x =-时原方程的增根,∴原方程无解;(2)22530x x +-=,因式分解得()()2130x x -+=,当210x -=,解得112x =,当30x +=,解得23x =-;∴方程的解为112x =,23x =-;(3)2(2)36x x +=+,()2(2)320x x -++=, ()()2230x x ++-=,()()210x x +-=,当20x +=,解得12x =-,当10x -=,解得21x =.∴方程的解为12x =-,21x =.21.(2022·广州市黄埔华南师范大学附属初级中学)已知:关于x 的方程()228440--+=x m x m 有两个不相等的实数根1x ,2x .(1)求实数m 的取值范围.(2)若方程的两个实数根1x ,2x 满足1212x x x x +=,求出符合条件的m 的值.【答案】(1)1m <;(2)2m =-【分析】(1)根据根的判别式大于零求解即可;(2)根据根与系数的关系及根的定义得出关于m 的方程求解即可;【详解】解:(1)由题意知,22(84)440m m ∆=--⨯>即64640m ->∴1m <;(2)由根与系数关系得:1284x x m +=-,2124x x m =,∵1212x x x x +=∴2844m m -=,∴220m m +-=,解得,12m =- ,21m =∵1m <,∴2m =-.22.(2022·陕西九年级月考)用一块长8dm ,宽6dm 的矩形薄钢片制作成一个无盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).(1)若要做成的盒子的底面积为15dm 2时,求截去的小正方形的边长;(2)当这个无盖的长方体盒子的侧面积与底面积之比为5:6时,求截去的小正方形的边长.【答案】(1)32dm;(2)1dm.【分析】(1)设截去的小正方形的边长为x dm,则做成的盒子的底面为长(8﹣2x)dm,宽(6﹣2x)dm的长方形,根据做成的盒子的底面积为215dm,即可得出关于x 的一元二次方程,解之取其符合题意的值,即可得出截去的小正方形的边长;(2)设截去的小正方形的边长为y dm,则做成的盒子的底面为长(8﹣2y)dm,宽(6﹣2y)dm的长方形,根据这个无盖的长方体盒子的侧面积与底面积之比为5:6,即可得出关于y的一元二次方程,解之取其符合题意的值,即可得出截去的小正方形的边长.【详解】解:(1)设截去的小正方形的边长为x dm,则做成的盒子的底面为长(8﹣2x)dm,宽(6﹣2x)dm的长方形,依题意得:(8﹣2x)(6﹣2x)=15,整理得:4x2﹣28x+33=0,解得:x1=32,x2=112,当x=32时,6﹣2x=6﹣2×32=3,符合题意,当x=112时,6﹣2x=6﹣2×112=﹣5,不合题意,舍去,答:截去的小正方形的边长为32 dm.(2)设截去的小正方形的边长为y dm,则做成的盒子的底面为长(8﹣2y)dm,宽(6﹣2y)dm的长方形,依题意得:2×[(8﹣2y)y+(6﹣2y)y]:(8﹣2y)(6﹣2y)=5:6,整理得:17y2﹣77y+60=0,解得:y1=6017,y2=1,当y=6017时,6﹣2y=6﹣2×6017=﹣1817,不合题意,舍去,当y=1时,6﹣2y=6﹣2×1=4,符合题意,答:截去的小正方形的边长为1dm.23.(2022·宁波市海曙外国语学校九年级开学考试)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量与销售单价基本满足一次函数关系,并且当销售单价为26元时,每天销售量28台;当销售单价为32元时,每天销售量16台,设台灯的销售单价为x(元),每天的销售量为y(台).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)若该商场每天想获得150元的利润,在保证销售量尽可能大的前提下,应将销售单价定为多少元?【答案】(1)y=-2x+80;(2)单价定为30元时,每天的利润最大,最大利润是200元;(3)25元【分析】(1)设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;(2)根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案;(3)根据题意结合销量×每本的利润=150,进而求出答案.【详解】解:(1)设y=kx+b,由题意2628 3216k bk b+=⎧⎨+=⎩,解得:280kb=-⎧⎨=⎩,∴y=-2x+80.(2)设每天的利润为W,W=(x-20)(-2x+80)=-2x2+120x-1600=-2(x-30)2+200,此时当x=30时,w最大=200,答:当销售单价定为30元时,每天的利润最大,最大利润是200元.(3)根据题意得(x-20)(-2x+80)=150,整理得:x2-60x+875=0,(x-25)(x-35)=0,解得:x1=25,x2=35,∵销售量尽可能大,∴x=25答:每本纪念册的销售单价是25元.。
专题08一元二次方程及其应用(知识点总结例题讲解)-2021届中考数学一轮复习
中考数学专题 08 一元二次方程及其应用(知识点总结+例题讲解)一、一元二次方程有关概念:1.一元二次方程定义:只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的整式方程,叫做一元二次方程;2.一般形式:ax2+bx+c=0;(其中 a、b、c 为常数,a≠0)(1)其中 ax2、bx、c 分别叫做二次项、一次项和常数项;(2)a、b 分别称为二次项系数和一次项系数;(3)二次项系数:a≠0;(当 a=0 时,不含有二次项,即不是一元二次方程)3.一元二次方程必须具备三个条件:(1)必须是整式方程(等号两边都是整式);(2)必须只含有 1 个未知数;(3)所含未知数的最高次数是 2;4.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解;一元二次方程的解也叫做一元二次方程的根。
【例题1】(2020 秋•奉贤区期末)下列各方程中,一定是一元二次方程的是()A.1 + 1 −2 = 0 B.ax2+bx+c=0x2 xC.(x﹣2)2=2(x﹣2)D.x2+2y=3【答案】C【解析】利用一元二次方程定义进行解答即可.解:A、含有分式,不是一元二次方程,故此选项不符合题意;B、当 a=0 时,不是一元二次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;= D 、含有两个未知数,不是一元二次方程,故此选项不符合题意;故选:C .【变式练习 1】(2020 秋•丹阳市期末)关于 x 的方程(m+1)x 2+2mx ﹣3=0 是一元二次方程,则( )A .m≠±1B .m =1C .m≠1D .m≠﹣1【答案】D【解析】根据一元二次方程定义可得 m+1≠0,再解可得答案. 解:由题意得:m+1≠0,解得:m≠﹣1;故选:D .【例题 2】(2020 秋•郫都区期末)若 x =m 是方程 x 2+x ﹣1=0 的根,则 m 2+m+2020 的值为()A .2022B .2021C .2019D .2018【答案】B【解析】把 x =m 代入已知方程,可以求得 m 2+m =1,然后整体代入所求的代数式求值即可.解:∵x=m 是方程 x 2+x ﹣1=0 的根,∴m 2+m ﹣1=0,∴m 2+m =1,∴m 2+m+2020=1+2020=2021.故选:B .【变式练习 2】设 m 是方程 x 2﹣3x+1=0 的一个实数根,则m 4+m 2+18 . m 2【答案】8【解析】利用一元二次方程的解的意义得到 m 2﹣3m+1=0,两边除以 m 得到 m + 1=3,m再把原式变形得到原式=m 2+1+ 1m 2=(m + 1 )2﹣2+1,然后利用整体代入的方法计算. m解:∵m 是方程 x 2﹣3x+1=0 的一个实数根,∴m 2﹣3m+1=0,∴m + 1 =3,∴原式=m 2+1+ 1 =(m + 1)2﹣2+1=9﹣2+1=8.mm 2mq b 4ac ≥0 二、一元二次方程的解法:1.解一元二次方程的基本思想:转化思想,即把一元二次方程转化为一元一次方程来求解;2.常用方法:(1)直接开平方法:适用形式:x 2=p(p≥0),(x+n)2=p 或(mx+n)2=p(p≥0)的方程;(2)配方法:套用公式 a 2+2ab+b 2=(a+b)2;a 2-2ab+b 2=(a-b)2将一元二次方程ax 2+bx+c=0(a≠0)配方为(x+m)2=n 的形式,再用直接开平方法求解; 配方法解一元二次方程的一般步骤是: ①将已知方程化为一般形式;②化二次项系数为 1;③常数项移到右边;④方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; 变形为(x+p)2=q 的形式:如果 q≥0,方程的根是 x=-p± ;如果 q <0,方程无实根;(3)公式法:利用求根公式 x = -b ±∆ = 2 -)解一元二次方程 ax 2+bx+c=0(a≠0); 2a(4)因式分解法:将一元二次方程通过分解因式变为(x-a)(x-b)=0 的形式;进而得到 x-a=0 或 x-b=0 来求解; 3.方法选择技巧:(1)若一元二次方程缺少常数项,且方程的右边为 0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为 1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解;(4)若用以上三种方法都不容易求解时,可考虑用公式法求解。
《一元二次方程》全章复习
《一元二次方程》全章复习1. 一元二次方程的有关概念2. 配方法的应用3. 根判别式,根与系数的关系4. 一元二次方程的解法:1)直接开平方法 2)因式分解法 3)配方法 4)公式法5. 实际问题:1)传播与数字问题 2)增长率与销售问题 3)有关面积的问题【巩固练习】1.下列方程是一元二次方程的是( ) A.211x x x-=+ B.224x xy y -+= C.20ax bx c +=+ D.(x 1)1x x -=- 2.在一元二次方程2410x x --=中,二次项系数和一次项系数分别为( )A.1,4B.1,-4C.-1,-4D.2,4x x -3.在一元二次方程260x kx --=中,已知一个根为3x =,则实数k 的值为( )A.1B.-1C.2D.-24.关于x 的一元二次方程22(a 1)10x x a -++-=的一个根是0,则a 的值为( )A.1B.-1C.1或-1D.12 5.若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值范围是( )A.m <1B.m > -1C.m < -1D.m > 16. 若关于x 的方程2(m 1)02x m mx +-+=有两个不等的实数根,则m 的取值范围是7. 已知2410x x a +=-可变为2(2)x b -的形式,则ab=8. 若关于x 的方程2(2)10x x m m +++=-有两个相等的实数根,则m=9.已知一个矩形长比宽多2cm ,其面积为82cm ,则此长方形的周长是10. 若方程2310x x b +=+无解,则b 应满足的条件是11. 若关于x 的方程22(21)20k x x k -+-+=+有实数根,则k 的取值范围是 12. 若分式2817x x x -+-的值为0,则x= 13. 关于x 的方程22202x x a b a +-=+的根是14. 若关于x 的方程260x x k +=+的两根之差为2,则k=15. 已知关于x 的方程22(31)0x x m m --+=有两根为12,x x ,且121134x x +=-,则m= 16.用恰当的方法解下列方程: (1)21(3)13x += (2)2(21)2(2x 1)x +=+(3)(x 8)16x += (4)2280x x +-=(5)22(32)(2x 1)x +=- (5)2(21)4(21)40y y +-++=17.已知,αβ是方程2250x x +-=的两个实数根,求22ααβα++的值18.已知12,x x 是方程2214160x x +-=的两个实数根,求下列代数式的值,(1)212()x x - (2)2112x x x x + (3)12(2)(2)x x -- (4)12x x -19.已知关于x 的方程222(a 1)740x x a a +-+--=的两根为12,x x ,且满足12123340x x x x --+=,求a 的值20.实数k 在什么范围取值时,方程22(k 1)0kx kx -+-=有两个正的实数根21.若关于x 的方程2430x x k -+-=的两根为12,x x ,且满足123x x =,试求出方程的两个实数根及k 的值23.若n > 0,关于x 的方程21(m 2n)04x x mn --+=有两个相等的正的实数根,求m n24.如果2246130x x y y -++=,求(xy)z25.水果店花500元进了一批水果,按40%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利67元.若两次打折相同,每次打了几折?26.如图,在△ABC中,AB=10m,BC= 40m,∠C=90°,点P从点A开始沿AC边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着CB匀速移动,几秒时,△PCQ的面积等于450m2?25.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为_________ 万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)。
《一元二次方程及应用》复习(面向中考)
明
考点1
确
考
点
一元二次方程的概念
1.概念:能够整理成右端为0,左边是只含一个未 知数,并且未知数的最高次幂是2的二次多项式, 这样的方程称为一元二次方程.
2.一元二次方程的一般形式是:
y=ax² +bx+c(其中a,b,c为常数,且a≠0)
.
准确理解概念须知: ①必须通过整理后判断是否为一元二次方程.
x1 x2 =
-b , x x = 1 2
c
.
考点5
一元二次方程的应用
常见数量关系: 1.增长率问题:设基础量为a,平均增长率(或下 降率)为x,n次增长(或下降)后的量为b, n a (1 ± x ) 则 =b. 2.利率问题:利息= 本金×利率×期数 .
3.利润问题: ①利润=进价×利润率 ②总利润=一件利润×数量 ③总利润=销售总价-全部成本 ④总利润=(售价-进价)×数量
解析:先根据四边形APCQ的面积=△ABC的面积-△ABC
的面积,列出方程,再根据解的情况作出判断.
解 ∵∠B=90°,AC=10,BC=6,∴AB=8.
∴BQ=x,PB=8-2x;
假设存在x的值,使得四边形APCQ的面积等于16m² ,则
1 1 68 x 8 2 x 16. 2 2 整理得:x² -4x+8=0
2x y 3
互为相反数,
( A ) D.9
6.(2017•滨州)根据要求,解答下列问题 :
(1)解下列方程(直接写出方程的解即可) ①方程x² -2x+1=0的解为 x1=x2=1 ; ②方程x² -3x+2=0的解为 x1=1,x2=2 ; ③方程x² -4x+3=0的解为 x1=1,x2=3 ; …… …… (2)根据以上方程特征及其解的特征,请猜想: ①方程x² -9x+8=0的解为 x1=1,x2=8 ; -(n+1)9x+n=0 的解为x1=1,x2=n. ②方程 x² (3)请用配方法解方程x² -9x+8=0,以验证猜想的结果.
一元二次方程(知识点+考点+题型总结)
一元二次方程专题复习考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2":①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+xx C 02=++c bx ax D 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 .★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A 。
m=n=2 B 。
m=2,n=1 C 。
n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 .针对练习:★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 .★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
完整版一元二次方程知识点总结和例题复习
知识框架 知识点总结:一兀二次方程4. 一元二次方程的解法(1) 直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如 (X 可知,X a 是b 的平方根,当 b<0时,方程没有实数根。
(2) 配方法 配方法是一种重要的数学方法,2a) b 的一元二次方程。
根据平方根的定义b 0 时,X a4b , X a J b ,当它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式2 2 2a 2ab b (a b),把公式中的a 看做未知数x ,并用x X 2 2bx b 2(x b)2。
配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;代替,则有 化二次项系知识点、概念总结 1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知 数的最高次数是 2 (二次)的方程,叫做一元二次方程。
2. 一元二次方程有四个特点:(1) 含有一个未知数; (2) 且未知数次数最高次数是 2; (3) 是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整 式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a 丰0)的形 式,则这个方程就为一元二次方程。
(4 )将方程化为一般形式: 3. 一元二次方程的一般形式 过整理,?都能化成如下形式 一个一元二次方程经过整理化成 是二次项系数;bx 是一次项, 2ax +bx+c=0时,应满足( :一般地,任何一个关于 X 2ax +bx+c=0 (aM 0)。
2ax +bx+c=0 (a 丰 0)后,b 是一次项系数;a 丰0) 的一元二次方程,经其中ax 2是二次项,c 是常数项。
数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p ±V q ;如果qv 0,方程无实根.(3) 公式法 公式法是用求根公式解一元二次方程的解的方法, 方法。
《一元二次方程》(应用题)复习
x 1.5 1.6 x1 0.1 x2 3.1(不合题意,舍去)
答:该增长率为10%.
3、有关封面设计及面积类应用题:
例3:如图,利用一面墙(墙的长度不超过45m),用 80m长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为750m2? ⑵能否使所围矩形场地的面积为810m2,为什么?
t(28 3t) 32 2
Q
t B 28-3t P
3t A
如图,已知在△ABC中,∠B=90°,AB=28cm, BC=28cm,点P从点A开始沿AB边向点B以3cm/s的 速度移动,点Q从点B开始沿BC边向点C以1cm/s的 速度移动,P,Q分别从A,B同时出发, (2)几秒后,PQ的长度等于14 cm?
解:法一:设每台降价x元 (10解00得-:x)x(1=02+0100x或0×x2=)=31000000(1+12%)
销售价为5000-300=4700或5000-200=4800 不确定 。
解:法二:设每天多销售了x台。
(10+x)(1000-50x)=10000(1+12%)
解得:x1=6 x2=4 每台的利润×售出的台数=总利润
课 后 作业
1、完成第48——49页习题22.3 4——9题。
2、完成第53——54页复习题22 5——12题;
1、要组织一场篮球联赛,赛制为单循 环形式,即每两队之间都赛一场,计划安排 15场比赛,应邀请多少个球队参加比赛?
解:设应邀请x个球队参加比赛。 依据题意得:
x(x 1) 15 2
等腰三角形。
本节课我们复习了那些知识?
一元二次方程的应用(五种问题)
1、细胞分裂、传染病扩散、握手等类应用题: 2、增长率、下降率类应用题: 3、面积类应用题: 4、商品销售利润类应用题: 5、其它类型应用题:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
田湖一中 九年级 数学学科导学案执笔: 杨晓东 审核:秦志杰 授课人: 授课时间: 学案编号:课题:一元二次方程及其应用 课型:复习课 课时:1课时【复习目标】:1、一元二次方程概念;2、一元二次方程的常用解法【复习重点】:一元二次方程的常用解法学习流程:一、【 知识链接】1.方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 .2.关于x 的一元二次方程1(3)(1)30n n x n x n +++-+=中,则一次项系数是 .3.一元二次方程2230x x --=的根是 .4.某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为 .5. 关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p =( )A .4B .0或2C .1D .1-二、【考点链接】1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是 221,24(40)2b b ac x b ac a-±-=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.三、【 目标导学】例1、 选用合适的方法解下列方程:(1))4(5)4(2+=+x x ; (2)x x 4)1(2=+;(3)22)21()3(x x -=+; (4)31022=-x x .例2 、 已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3 、 用22长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?四、组内合作1、请同桌进行互帮互助;2、请组长负责,组内进行交流和展示,逐道题统一你们的认识,对于大家存在的疑问等到下一个环节,让其他组帮你们解决。
五、班级展示1、请展示“目标导学” 中的 例1、例2 、例3。
2、请大家提出你的疑问。
六、【达标测评】1.方程 (5x -2) (x -7)=9 (x -7)的解是_________.2.已知2是关于x 的方程23x 2-2 a =0的一个解,则2a -1的值是_________. 3.关于y 的方程22320y py p +-=有一个根是2y =,则关于x 的方程23x p -=的解为_____.4.下列方程中是一元二次方程的有( )①9 x 2=7 x ②32y =8 ③ 3y(y-1)=y(3y+1) ④ x 2-2y+6=0 ⑤ 2( x 2+1)=10 ⑥ 24x -x-1=0 A . ①②③ B. ①③⑤ C. ①②⑤ D. ⑥①⑤5. 一元二次方程(4x +1)(2x -3)=5x 2+1化成一般形式ax 2+bx +c =0(a ≠0)后a,b,c 的值为( )A .3,-10,-4 B. 3,-12,-2 C. 8,-10,-2 D. 8,-12,46.一元二次方程2x 2-(m +1)x +1=x (x -1) 化成一般形式后二次项的系数为1,一次项的系数为-1,则m 的值为( )A. -1B. 1C. -2D. 27.解方程(1) x 2-5x -6=0 ; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 222-x+1=0 8.某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个月的月增长率相同,求月增长率.田湖一中 九年级 数学学科导学案执笔: 杨晓东 审核:秦志杰 授课人: 授课时间: 学案编号:课题:一元二次方程根的判别式及根与系数的关系 课型:复习课 课时:1课时【复习目标】:1、一元二次方程根的判别式;2、一元二次方程根与系数的关系。
【复习重点】:一元二次方程根的判别式及根与系数的关系学习流程:一、【 知识链接】1.一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根2. 若方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 .3.设x 1、x 2是方程3x 2+4x -5=0的两根,则=+2111x x ,.x 12+x 22= . 4.关于x 的方程2x 2+(m 2-9)x +m +1=0,当m = 时,两根互为倒数;当m = 时,两根互为相反数.5.若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = ,该方程的另一个根x 2 = .二、【考点链接】1. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.2. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .3.易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:① 根的判别式042≥-ac b ;② 二次项系数0a ≠,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.三、【 目标导学】例1 当k 为何值时,方程2610x x k -+-=,(1)两根相等;(2)有一根为0;(3)两根为倒数.例2 下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④ 若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是( )A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④.例3 菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为 .六、【达标测评】1.设x 1,x 2是方程2x 2+4x -3=0的两个根,则(x 1+1)(x 2+1)= __________,x 12+x 22=_________, 1211x x +=__________,(x 1-x 2)2=_______.2.当c =__________时,关于x 的方程2280x x c ++=有实数根.(填一个符合要求的数即可) 3. 已知关于x 的方程2(2)20x a x a b -++-=的判别式等于0,且12x =是方程的根,则a b +的值为 . 4. 已知a b ,是关于x 的方程2(21)(1)0x k x k k -+++=的两个实数根,则22a b +的最小值是 .5.已知α,β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A.3或1-B.3 C.1 D.3-或1 6.一元二次方程2310x x -+=的两个根分别是12x x ,,则221212x x x x +的值是( )A.3 B.3- C.13 D.13- 7.若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( )A .m<lB .m>-1C .m>lD .m<-18.设关于x 的方程kx 2-(2k +1)x +k =0的两实数根为x 1、x 2,,若,4171221=+x x x x 求k 的值. 9.已知关于x 的一元二次方程()2120x m x m --++=.(1)若方程有两个相等的实数根,求m 值(2)若方程的两实数根之积等于292m m -+,求6m +的值.田湖一中九年级数学学科导学案执笔:杨晓东审核:秦志杰授课人:授课时间:学案编号:课题:一元二次方程根单元测试课型:复习课课时:1课时《一元二次方程》测试一一、选择题1.下面关于x的方程中①ax2+bx+c=0;②3(x-9)2-(x+1)2=1;③x+3= ;④(a2+a+1)x2-a=0;④=x-1.一元二次方程的个数是()A.1 B.2 C.3 D.42.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠1且b≠-1 D.a≠3且b≠-1且c≠03.若(x+y)(1-x-y)+6=0,则x+y的值是()A.2 B.3 C.-2或3 D.2或-34.若关于x的一元二次方程3x2+k=0有实数根,则()A.k>0 B.k<0 C.k≥0 D.k≤05.下面对于二次三项式-x2+4x-5的值的判断正确的是()A.恒大于0 B.恒小于0 C.不小于0 D.可能为06.下面是某同学在九年级期中测试中解答的几道填空题:(1)若x2=a2,则x= a ;(2)方程2x(x-1)=x-1的根是x=0 ;(3)若直角三角形的两边长为3和4,则第三边的长为 5 .•其中答案完全正确的题目个数为()A.0 B.1 C.2 D.37.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,•而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元B.400元C.300元D.200元8.利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是20%,•则第二季度共生产零件()A.100万个B.160万个C.180万个D.182万个二、填空题9.若ax2+bx+c=0是关于x的一元二次方程,则不等式3a+6>0的解集是________.10.已知关于x的方程x2+3x+k2=0的一个根是-1,则k=_______.11.若x=2- ,则x2-4x+8=________.12.若(m+1)+2mx-1=0是关于x的一元二次方程,则m的值是________.13.若a+b+c=0,且a≠0,则一元二次方程ax2+bx+c=0必有一个定根,它是_______.14.若矩形的长是6cm,宽为3cm,一个正方形的面积等于该矩形的面积,则正方形的边长是_______.15.若两个连续偶数的积是224,则这两个数的和是__________.三、计算题(每题9分,共18分)16.按要求解方程:(1)4x2-3x-1=0(用配方法);(2)5x2- x-6=0(精确到0.1)17.用适当的方法解方程:(1)(2x-1)2-7=3(x+1);(2)(2x+1)(x-4)=5;(3)(x2-3)2-3(3-x2)+2=0.《一元二次方程》测试二一、选择题(每小题3分,共30分)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的()A、(x-p)2=5B、(x-p)2=9C、(x-p+2)2=9D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于()A、-1B、0C、1D、23、若α、β是方程x2+2x-2005=0的两个实数根,则α2+3α+β的值为()A、2005B、2003C、-2005D、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是()A、k≤-B、k≥- 且k≠0C、k≥-D、k>- 且k≠05、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A、x2+3x-2=0B、x2-3x+2=0C、x2-2x+3=0D、x2+3x+2=06、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是()A、-2B、-1C、0D、17、某城2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是()A、300(1+x)=363B、300(1+x)2=363C、300(1+2x)=363D、363(1-x)2=3008、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是()A、x2+4x-15=0B、x2-4x+15=0C、x2+4x+15=0D、x2-4x-15=09、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为()A、2B、0C、-1D、10、已知直角三角形x、y两边的长满足|x2-4|+ =0,则第三边长为()A、2 或B、或2C、或2D、、2 或二、填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是.12、一元二次方程x2-3x-2=0的解是.13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是.14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是.15、2005年某市人均GDP约为2003年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为.16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为cm.(精确到0.1cm)17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为m,竹竿长为m.18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为.19、如果方程3x2-ax+a-3=0只有一个正根,则a的值是.20、已知方程x2+3x+1=0的两个根为α、β,则α+β的值为.三、解答题(共60分)21、解方程(每小题3分,共12分)(1)(x-5)2=16 (2)x2-4x+1=0(3)x3-2x2-3x=0 (4)x2+5x+3=022、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0(1)当m取何值时,方程有两个实数根?(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根(1)求k的取值范围(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.25、(8分)已知a、b、c分别是△ABC中∠A、∠B、∠C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?《一元二次方程》测试一答案:一、1.B 点拨:方程①与a的取值有关;方程②经过整理后,二次项系数为2,•是一元二次方程;方程③是分式方程;方程④的二次项系数经过配方后可化为(a+ )2+ .不论a取何值,都不为0,所以方程④是一元二次方程;方程⑤不是整式方程.也可排除,•故一元二次方程仅有2个.2.B 点拨:由a-3≠0,得a≠3.3.C 点拨:用换元法求值,可设x+y=a,原式可化为a(1-a)+6=0,解得a1=3,a2=-2.4.D 点拨:把原方程移项,变形为:x2=- .由于实数的平方均为非负数,故- ≥0,•则k ≤0.5.B 点拨:-x2+4x-5=-(x2-4x+5)=-(x2-4x+4+1)=-(x-2)2=-1.由于不论x取何值,-(x-2)2≤0,所以-x2+4x-5<0.6.A 点拨:第(1)题的正确答案应是x=±a;第(2)题的正确答案应是x1=1,x2= .第(3)题的正确答案是5或.7.C 点拨:设商品的原价是x元.则0.75x+25=0.9x-20.解之得x=300.8.D 点拨:五月份生产零件:50(1+20%)=60(万个)六月份生产零件50(1+20%)2=72(万个)所以第二季度共生产零件50+60+72=182(万个),故选D.二、9.a>-2且a≠0 点拨:不可忘记a≠0.10.±点拨:把-1代入方程:(-1)2+3×(-1)+k2=0,则k2=2,所以k=±.11.14 点拨:由x=2- ,得x-2=- .两边同时平方,得(x-2)2=10,即x2-4x+4=10,•所以x2-4x+8=14.注意整体代入思想的运用.12.-3或1 点拨:由解得m=-3或m=1.13.1 点拨:由a+b+c=0,得b=-(a+c),原方程可化为ax-(a+c)x+c=0,解得x1=1,x2= .14.3 cm 点拨:设正方形的边长为xcm,则x2=6×3,解之得x=±3 ,由于边长不能为负,故x=-3 舍去,故正方形的边长为3 cm.15.30或-30 点拨:设其中的一个偶数为x,则x(x+2)=224.解得x1=14,x2=-16,•则另一个偶数为16,-14.这两数的和是30或-30.《一元二次方程》测试二参考答案一、选择题1~5 BCBCB 6~10 CBDAD提示:3、∵α是方程x2+2x-2005=0的根,∴α2+2α=2005又α+β=-2 ∴α2+3α+β=2005-2=2003二、填空题11~15 ±4 25或16 10%16~20 6.7 , 4 3提示:14、∵AB、AC的长是关于x的方程x2-10x+m=0的两根∴在等腰△ABC中若BC=8,则AB=AC=5,m=25若AB、AC其中之一为8,另一边为2,则m=1620、∵△=32-4×1×1=5>0 ∴α≠β又α+β=-3<0,αβ=1>0,∴α<0,β<0三、解答题21、(1)x=9或1(2)x=2±(3)x=0或3或-1(4)22、解:依题意有:x1+x2=1-2a x1•x2=a2又(x1+2)(x2+2)=11 ∴x1x2+2(x1+x2)+4=11a2+2(1-2a)-7=0 a2-4a-5=0∴a=5或-1又∵△=(2a-1)2-4a2=1-4a≥0∴a≤∴a=5不合题意,舍去,∴a=-123、解:(1)当△≥0时,方程有两个实数根∴[-2(m+1)]2-4m2=8m+4≥0 ∴m≥-(2)取m=0时,原方程可化为x2-2x=0,解之得x1=0,x2=2 24、解:(1)一元二次方程x2-4x+k=0有两个不相等的实数根∴△=16-4k>0 ∴k<4(2)当k=3时,解x2-4x+3=0,得x1=3,x2=1当x=3时,m= - ,当x=1时,m=025、解:由于方程为一元二次方程,所以c-b≠0,即b≠c又原方程有两个相等的实数根,所以应有△=0即4(b-a)2-4(c-b)(a-b)=0,(a-b)(a-c)=0,所以a=b或a=c所以是△ABC等腰三角形26、解:(1)1250(1-20%)=1000(m2)所以,该工程队第一天拆迁的面积为1000m2(2)设该工程队第二天,第三天每天的拆迁面积比前一天增长的百分数是x,则1000(1+x)2=1440,解得x1=0.2=20%,x2=-2.2,(舍去),所以,该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数是20%.27、解:(1)设每千克应涨价x元,则(10+x)(500-20x)=6000解得x=5或x=10,为了使顾客得到实惠,所以x=5(2)设涨价x元时总利润为y,则y=(10+x)(500-20x)=-20x2+300x+5000=-20(x-7.5)2+6125当x=7.5时,取得最大值,最大值为6125答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.。