二元一次(答案)
二元一次方程计算题含答案
二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.,得到一组新的方程,然后在用加减消元法消,,x=(1)(2)(3)(4).故原方程组的解为故原方程组的解为)原方程组可化为,.所以原方程组的解为,,代入×﹣.所以原方程组的解为3.解方程组:解:原方程组可化为所以方程组的解为4.解方程组:)原方程组化为,.所以原方程组的解为5.解方程组:,.所以方程组的解为6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.的二元一次方程组)依题意得:k=b=x+y=x+(1);(2).)原方程组可化为,;)原方程可化为.8.解方程组:解:原方程组可化为则原方程组的解为9.解方程组:解:原方程变形为:..10.解下列方程组:(1)(2))﹣=所以原方程组的解为)原方程组整理为,所以原方程组的解为(1)(2))原方程组可化简为∴原方程组可化为,∴原方程组的解为(1);(2).;)此方程组通过化简可得:,.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?)把代入方程组.代入方程组.∴方程组为则原方程组的解是14.(,∴原方程组的解为(1);(2).)化简整理为故原方程组的解为)化简整理为故原方程组的解为16.解下列方程组:(1)(2)∴原方程组的解为)原方程组可化为,∴原方程组的解为。
二元一次方程计算题含答案
二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.,得到一组新的方程,然后在用加减消元法消,,x=2.解下列方程组(1)(2)(3)(4).故原方程组的解为故原方程组的解为)原方程组可化为,.所以原方程组的解为,,代入×﹣.所以原方程组的解为3.解方程组:解:原方程组可化为所以方程组的解为4.解方程组:)原方程组化为,.所以原方程组的解为5.解方程组:,.所以方程组的解为6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?的二元一次方程组)依题意得:k=b=x+y=x+7.解方程组:(1);(2).)原方程组可化为,;)原方程可化为.8.解方程组:解:原方程组可化为则原方程组的解为9.解方程组:解:原方程变形为:..10.解下列方程组:(1)(2))﹣=所以原方程组的解为)原方程组整理为,所以原方程组的解为11.解方程组:(1)(2))原方程组可化简为∴原方程组可化为,∴原方程组的解为12.解二元一次方程组:(1);(2).;)此方程组通过化简可得:,.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.)把代入方程组.代入方程组.∴方程组为则原方程组的解是14.(,∴原方程组的解为15.解下列方程组:(1);(2).)化简整理为故原方程组的解为)化简整理为故原方程组的解为16.解下列方程组:(1)(2)∴原方程组的解为)原方程组可化为,∴原方程组的解为。
二元一次方程组习题及答案二元一次方程及过程答案(收藏)
初一数学下8二元一次方程组--试题及答案§8.1二元一次方程组一填空题1二元一次方程4x3y=12,当x=0,1,2,3时,y= 2在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3已知方程(k 21)x 2+(k+1)x+(k7)y=k+2,当k=时,方程为一元一次方程;当k=时,方程为二元一次方程。
4对二元一次方程2(5x)3(y2)=10,当x=0时,则y=;当y=0时,则x=。
5方程2x+y=5的正整数解是。
6若(4x3)2+|2y+1|=0,则x+2= 。
7方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
8若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。
二选择题1方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A1 B2 C3 D42方程2x+y=9在正整数范围内的解有( ) A1个 B2个 C3个D4个3与已知二元一次方程5xy=2组成的方程组有无数多个解的方程是( )A10x+2y=4 B4xy=7 C20x4y=3 D15x3y=6 4若是my x25与2214-++n m n y x同类项,则nm-2的值为 ( )A1 B -1 C -3 D 以上答案都不对5在方程(k 24)x 2+(23k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A2 B-2 C2或 2D 以上答案都不对. 6若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A ⎩⎨⎧=+=-5253y x y x B⎩⎨⎧=--=523x y x y C⎩⎨⎧=+=-152y x y xD⎩⎨⎧+==132y x yx 7在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A35-=x y B3--=x y C 35+=x yD 35--=x y 8已知x=3-k,y=k+2,则y与x的关系是( )Ax+y=5 Bx+y=1 Cx-y=1 Dy=x-19下列说法正确的是( )A二元一次方程只有一个解 B二元一次方程组有无数个解C二元一次方程组的解必是它所含的二元一次方程的解D三元一次方程组一定由三个三元一次方程组成10若方程组⎩⎨⎧=+=+16156653y x y x的解也是方程3x+ky=10的解,则k的值是( =)Ak=6 = Bk=10 Ck=9 Dk=101三解答题1解关于x 的方程)1(2)4)(1(+-=--x a x a a§8.2消元——二元一次方程组的解法一用代入法解下列方程组(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x (5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-qp q p 451332 二用加减法解下列方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x (3)⎩⎨⎧=--=-7441156y x y x(4)⎩⎨⎧-=+-=-53412911y x y x (5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+ay x ay x 343525(a为常数)三:用适当的方法解方程: 1⎩⎨⎧=-=+-6430524m n n m 2⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x3⎩⎨⎧=-=+110117.03.04.0y x y x 4⎪⎩⎪⎨⎧=+=+-722013152y x y x 5⎩⎨⎧-=+=--cy x cy x 72963112(c 为常数)1代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。
二元一次方程应用题及答案
二元一次方程应用题及答案1.一位学生问老师年龄,老师回答说:“当我和你一样大时,你还没出生;当你和我一样大时,我已经37岁了。
” 问:老师和学生现在多少岁?2.设长方形的长为x,宽为y,则2(x+y)=44.y=3x+6.解得x=10,y=36.所以该长方形的长是10cm,宽是36cm。
3.设梯形上底长为x,下底长为y,则(x+y)×7/2=56,x=y/3+4.解得x=16,y=40.所以该梯形的上底长为16cm,下底长为40cm。
4.(1) 设一班有x人,二班有y人,则x+y=104,0<x<50,50<y<104,13x+11y=1240.解得x=24,y=80.所以一班有24人,二班有80人。
2) 分班购票共花费13×24+11×80=1240元,合并购票共花费9×104=936元,节省了304元。
3) 由于合并购票更便宜,所以集体购票更合算。
5.(1) 设初一年级人数为x,则45y+15=60(x+1),45×220=y×300,解得x=90,y=6.所以初一年级有90人,原计划租用45座汽车6辆。
2) 租用9辆60座汽车,每辆车坐5人,每人租金为40元,共花费1800元,更合算。
6.设三人间租了x间,两人间租了y间,则3×25x+2×35y=1510,x+y=50.解得x=20,y=30.所以租了20间三人间,30间两人间。
7.(1) 设正门每分钟可通过x名学生,侧门每分钟可通过y 名学生,则同时开启正门和侧门时,每分钟可通过560/2=280名学生,2x+2y=280.同时开启正门和一道侧门时,每分钟可通过800/4=200名学生,x+y=200/2=100.解得x=40,y=120.所以平均每分钟一道正门和一道侧门各可通过40名和120名学生。
2) 全校学生人数不超过4×8×45=1440人,所以在5分钟内通过560名学生的门不符合安全规定。
二元一次方程组(含答案)
8.1 二元一次方程组一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解 B.有无数解 C.无解 D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?答案:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x 与y 的数量关系组建方程,如2x+y=17,2x -y=3等, 此题答案不唯一.16.1 4 解析:将2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解. 三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x -2ax=a+2有相同的解,∴3×(-3)-2a ×4=a+2,∴a=-119. 18.解:∵(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,∴a -2≠0,b+1≠0,•∴a ≠2,b ≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0. (•若系数为0,则该项就是0)19.解:由题意可知x=y ,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k -1)y=3中得k+k -1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x │-1)2+(2y+1)2=0,可得│x │-1=0且2y+1=0,∴x=±1,y=-12. 当x=1,y=-12时,x -y=1+12=32; 当x=-1,y=-12时,x -y=-1+12=-12. 解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x │-1)2与(2y+1)2都等于0,从而得到│x │-1=0,2y+1=0.21.解:经验算41x y =⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x -y=3. 22.(1)解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩. (2)解:设有x 只鸡,y 个笼,根据题意得415(1)y x y x +=⎧⎨-=⎩. 23.解:满足,不一定.解析:∵2528x y x y +=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x -y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x -y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。
二元一次方程组精选(内附答案)
二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)参考答案一、1,B ;2,B ;3,C ;4,D ;5,B ;6,C ;7,B ;8,C ;9,C ;10,D 。
二、11,ax 2+bx +c 、≠0、常数;12,x =1;13,y =2x 2+1;14,答案不唯一。
如:y =x 2+2x ; 15,C >4的任何整数数;16,112;17,二;18,x =3、1<x <5。
三、19,43;20,(1)设这个抛物线的解析式为c bx ax y ++=2由已知,抛物线过)0,2(-A ,B(1,0),C (2,8)三点,得⎪⎩⎪⎨⎧=++=++=+-8240024c b a c b a c b a 解这个方程组,得4,2,2-===c b a ∴ 所求抛物线的解析式为y =2x 2+2x -4.(2)y =2x 2+2x -4=2(x 2+x -2)=2(x +12)2-92;∴ 该抛物线的顶点坐标为)29,21(--. 21,(1)y =-x 2+4x =-(x 2-4x +4-4)=-(x -2)2+4,所以对称轴为:x =2,顶点坐标:(2,4).(2)y =0,-x 2+4x =0,即x (x -4)=0,所以x 1=0,x 2=4,所以图象与x 轴的交点坐标为:(0,0)与(4,0).22,(1)因为AD =EF =BC =x m ,所以AB =18-3x .所以水池的总容积为 1.5x (18-3x )=36,即x 2-6x +8=0,解得x 1=2,x 2=4,所以x 应为2或4.(2)由(1)可知V 与x 的函数关系式为V =1.5x (18-3x )=-4.5x 2+27x ,且x 的取值范围是:0<x <6.(3)V =-4。
二元一次方程专题(内含答案详解)
二元一次方程专题一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣22.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.43.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=14.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+155.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣37.将方程x+y=1中的x的系数化为整数,则下列结果正确的是()A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=28.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.19.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.210.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A.B.C.D.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有千克苹果,个苹果箱.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?24.一个被滴上墨水的方程组如下,小明回忆到:这个方程组的解为,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中的x的系数所致,请你根据小明的回忆,把原方程还原出来.二元一次方程专题参考答案与试题解析一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【分析】把代入方程4kx﹣3y=﹣1,即可得出一个关于k的方程,求出方程的解即可.【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选:A.【点评】本题考查了二元一次方程的解和解一元一次方程,能根据题意得出关于k的方程是解此题的关键.2.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.4【分析】代入后得出关于m、n的方程组,两方程相加即可求出答案.【解答】解:∵与是二元一次方程mx+ny=5的两组解,∴代入得:①+②得:5m+5n=10,m+n=2,故选:B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能根据题意得出关于m、n的方程组是解此题的关键.3.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=1【分析】根据二元一次方程的定义求解即可.【解答】解:A、是一元二次方程,故A不符合题意;B、是二元一次方程,故B符合题意;C、是分式方程,故C不符合题意;D、是二元二次方程,故D不符合题意;故选:B.【点评】本题考查了二元一次方程,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.4.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+15【分析】把x看做已知数表示出y即可.【解答】解:方程﹣=5,整理得:y==x﹣15,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元【分析】设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据“若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据题意得:,解得:.故选:D.【点评】本题考查了解二元一次方程组,根据数量关系列出二元一次方程组是解题的关键.6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣3【分析】(方法一)根据二元一次方程的定义,即可得出关于m、n的二元一次方程组,解之即可得出m、n的值,将其相加即可得出结论;(方法二)根据二元一次方程的定义,即可得出m+2=1、n﹣1=1,将其相加即可得出m+n的值.【解答】解:(方法一)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴,解得:,∴m+n=1.故选A.(方法二)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴m+2=1,n﹣1=1,∴m+2+n﹣1=2,∴m+n=1.故选:A.【点评】本题考查了二元一次方程的定义以及解二元一次方程组,熟练掌握二元一次方程的定义是解题的关键.7.将方程x+y=1中的x的系数化为整数,则下列结果正确的是()A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=2【分析】方程两边乘以2变形即可得到结果.【解答】解:方程左右两边乘以2得:﹣x+2y=2,即x﹣2y=﹣2.故选:B.【点评】此题考查了解二元一次方程,熟练掌握等式的性质是解本题的关键.8.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.1【分析】根据题意先把x=4代入2x+3y=5求出y的值,然后把x、y的值代入代数式3x2+12xy+y2即可求得.【解答】解:把x=4代入2x+3y=5得:y=﹣1,把x=4,y=1代入3x2+12xy+y2得:3×16+12×4×(﹣1)+1=1,故选:D.【点评】本题考查了二元一次方程的解法,主要运用了代入法,难度适中.9.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.2【分析】方程组的两个方程相减,即可求出答案.【解答】解:,②﹣①得:x﹣y=﹣2,故选:C.【点评】本题考查了解二元一次方程组,能选择适当的方法求解是解此题的关键.10.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定【分析】根据等式的性质,可得答案.【解答】解:①+②,得3(x+y)=3﹣3k,由x+y=0,得3﹣3k=0,解得k=1,故选:B.【点评】本题考查了二元一次方程组的解,利用等式的性质是解题关键.11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A.B.C.D.【分析】由题意,得长的2倍比宽的5倍还多1cm可得方程2x﹣5y=1;宽的3倍又比长多1cm可得方程3y﹣x=1,即可得方程组.【解答】解:根据题意,得方程组.故选:C.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.【分析】根据:①5角钱的枚数+1元钱的枚数=100、②5角的总钱数+1元的总钱数=68元,据此可得方程组.【解答】解:设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为,故选:C.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到题目蕴含的相等关系.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是95.【分析】设原来十位上数字为x,个位上的数字为y,分别表示出调换前后的两位数,根据题意列方程组求解.【解答】解:设原来十位上数字为x,个位上的数字为y,由题意得,,解得:,故这个两位数为95.故答案为;95.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有3240千克苹果,128个苹果箱.【分析】设共有x千克苹果,y个苹果箱.等量关系:①每箱装25千克,则剩余40千克无处装;②每箱装30千克则余20只空箱.【解答】解:设共有x千克苹果,y个苹果箱.根据题意,得,解,得.则共有3240千克苹果,128个苹果箱.【点评】正确找到等量关系是列方程(组)解应用题的关键.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.【点评】此题主要考查了二元一次方程组的应用,根据题意利用所得分数以及有20题选择题分别得出等式是解题关键.16.把面值20元的纸币换成1元和5元的两种纸币,则共有3种换法.【分析】设1元和5元的纸币各x张、y张,根据题意列出方程,求出方程的正整数解即可.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:3【点评】此题考查了二元一次方程的应用,弄清题意是解本题的关键.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.【分析】由题意可知:顺风速度=无风时速度+风速,逆风速度=无风时速度﹣风速,根据家与学校之间的距离=顺风速度×顺风时间=逆风速度×逆风时间,列出方程组解答即可.【解答】解:30分钟=小时40分钟=小时设该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则该同学在顺风时骑自行车的速度为(x+y)千米/小时,逆风时骑自行车的速度为(x﹣y)千米/小时,由题意得.故答案为:.【点评】此题考查由实际问题抽象出二元一次方程组,掌握顺风速度、逆风速度、无风时速度、风速之间的关系是解决问题的关键.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.【分析】根据题意可得等量关系:①一班得分×3=二班的得分×4;②一班得分=五班得分×2﹣40,根据等量关系列出方程组即可.【解答】解:设一班得x分,二班得y分,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=,(2),整理得:,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:.【点评】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?【分析】设A型号的空调购买价为x元,B型号的空调购买价为y元,根据“购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设A型号的空调购买价为x元,B型号的空调购买价为y元,依题意得:,解得:.答:A型号的空调购买价为2120元,B型号的空调购买价为2320元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?【分析】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,可列成方程组求解.【解答】解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?【分析】根据题目中的关键句子:“同向而行,乙10小时可追上甲;若相向而行,2小时两人相遇”找到两个等量关系后列出方程组即可.【解答】解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.【点评】本题考查了二元一次方程组的应用的知识,解题的关键是根据题意找到两个等量关系,难度不大.23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?【分析】设起步价允许行驶的最远路程是xkm,超过部分每千米车费是y元,关键描述语:出租车的起步价为10元,两位乘客分别乘这种出租车走了10km和14km,车费分别为21.2元和27.6元.【解答】解:设起步价允许行驶的最远路程是xkm,超过部分每千米车费是y元,则,解得:,答:起步价允许行驶的最远路程是3km,超过部分每千米车费是1.6元.【点评】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.24.一个被滴上墨水的方程组如下,小明回忆到:这个方程组的解为,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中的x的系数所致,请你根据小明的回忆,把原方程还原出来.【分析】由题意可知是方程组的解,是方程△x+口y=2的解,然后代入求解即可.【解答】解:∵是方程组的解,∴3○+14=8,3△﹣2□=2①,∴○=﹣2.∵是方程△x+口y=2的解,∴﹣2△+2口=2②.将①和②联立得:,解得:△=4,□=5(3分),∴原方程组为.【点评】本题主要考查的是二元一次方程组的解,依据方程组的解得概念列出方程或方程组是解题的关键.。
二元一次方程组的应用习题(带答案)
1.【1】【题文】班主任王老师为奖励表现出色的同学,用20元钱买来铅笔与中性笔共30•支作为奖品.已知铅笔的单价为0.50元,中性笔的单价为1元,问铅笔与中性笔各买了几支?设铅笔买了x支,中性笔买了y支,则可得方程组为_________.【答案】【解析】试题分析:根据等量关系:总价为20元,总数量为共30•支,即可列出方程组。
根据等量关系:总价为20元,可得方程,根据等量关系:总数量为共30•支,可得方程,则可得方程组为.考点:本题考查的是根据实际问题列二元一次方程组点评:解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.2.【题文】两袋水果共6千克,一袋苹果的价格是每千克4元,•一袋芒果的价格是每千克12元,共花费40元,则一袋苹果的质量为_______千克,一袋芒果的质量为_____千克.【答案】4,2【解析】试题分析:设一袋苹果的质量为x千克,一袋芒果的质量为y千克,根据等量关系:总质量为6千克,总价为40元,即可列出方程组,解出即可。
设苹果每千克x元,芒果每千克y元,由题意得,解得,答:一袋苹果的质量为4千克,一袋芒果的质量为2千克.考点:本题考查了二元一次方程组的应用点评:解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.3.【题文】现有56枚1角和5角的硬币,共有14•元,•问1•角、•5•角的硬币分别是______,_____枚.【答案】35,21【解析】试题分析:设1•角的硬币是x枚,5•角的硬币是y枚,根据等量关系:总数量为56枚,总价为14•元,即可列出方程组,解出即可.设1•角的硬币是x枚,5•角的硬币是y枚,由题意得,解得,答:1•角的硬币是35枚,5•角的硬币是21枚.考点:本题考查了二元一次方程组的应用点评:解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.同时要注意统一单位。
二元一次方程专题(内含答案详解)
二元一次方程专题一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣22.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.43.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=14.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+155.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣37.将方程x+y=1中的x的系数化为整数,则下列结果正确的是()A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=28.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.19.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.210.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A.B.C.D.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有千克苹果,个苹果箱.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?24.一个被滴上墨水的方程组如下,小明回忆到:这个方程组的解为,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中的x的系数所致,请你根据小明的回忆,把原方程还原出来.二元一次方程专题参考答案与试题解析一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【分析】把代入方程4kx﹣3y=﹣1,即可得出一个关于k的方程,求出方程的解即可.【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选:A.【点评】本题考查了二元一次方程的解和解一元一次方程,能根据题意得出关于k的方程是解此题的关键.2.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.4【分析】代入后得出关于m、n的方程组,两方程相加即可求出答案.【解答】解:∵与是二元一次方程mx+ny=5的两组解,∴代入得:①+②得:5m+5n=10,m+n=2,故选:B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能根据题意得出关于m、n的方程组是解此题的关键.3.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=1【分析】根据二元一次方程的定义求解即可.【解答】解:A、是一元二次方程,故A不符合题意;B、是二元一次方程,故B符合题意;C、是分式方程,故C不符合题意;D、是二元二次方程,故D不符合题意;故选:B.【点评】本题考查了二元一次方程,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.4.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+15【分析】把x看做已知数表示出y即可.【解答】解:方程﹣=5,整理得:y==x﹣15,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元【分析】设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据“若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据题意得:,解得:.故选:D.【点评】本题考查了解二元一次方程组,根据数量关系列出二元一次方程组是解题的关键.6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣3【分析】(方法一)根据二元一次方程的定义,即可得出关于m、n的二元一次方程组,解之即可得出m、n的值,将其相加即可得出结论;(方法二)根据二元一次方程的定义,即可得出m+2=1、n﹣1=1,将其相加即可得出m+n的值.【解答】解:(方法一)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴,解得:,∴m+n=1.故选A.(方法二)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴m+2=1,n﹣1=1,∴m+2+n﹣1=2,∴m+n=1.故选:A.【点评】本题考查了二元一次方程的定义以及解二元一次方程组,熟练掌握二元一次方程的定义是解题的关键.7.将方程x+y=1中的x的系数化为整数,则下列结果正确的是()A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=2【分析】方程两边乘以2变形即可得到结果.【解答】解:方程左右两边乘以2得:﹣x+2y=2,即x﹣2y=﹣2.故选:B.【点评】此题考查了解二元一次方程,熟练掌握等式的性质是解本题的关键.8.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.1【分析】根据题意先把x=4代入2x+3y=5求出y的值,然后把x、y的值代入代数式3x2+12xy+y2即可求得.【解答】解:把x=4代入2x+3y=5得:y=﹣1,把x=4,y=1代入3x2+12xy+y2得:3×16+12×4×(﹣1)+1=1,故选:D.【点评】本题考查了二元一次方程的解法,主要运用了代入法,难度适中.9.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.2【分析】方程组的两个方程相减,即可求出答案.【解答】解:,②﹣①得:x﹣y=﹣2,故选:C.【点评】本题考查了解二元一次方程组,能选择适当的方法求解是解此题的关键.10.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定【分析】根据等式的性质,可得答案.【解答】解:①+②,得3(x+y)=3﹣3k,由x+y=0,得3﹣3k=0,解得k=1,故选:B.【点评】本题考查了二元一次方程组的解,利用等式的性质是解题关键.11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A.B.C.D.【分析】由题意,得长的2倍比宽的5倍还多1cm可得方程2x﹣5y=1;宽的3倍又比长多1cm可得方程3y﹣x=1,即可得方程组.【解答】解:根据题意,得方程组.故选:C.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.【分析】根据:①5角钱的枚数+1元钱的枚数=100、②5角的总钱数+1元的总钱数=68元,据此可得方程组.【解答】解:设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为,故选:C.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到题目蕴含的相等关系.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是95.【分析】设原来十位上数字为x,个位上的数字为y,分别表示出调换前后的两位数,根据题意列方程组求解.【解答】解:设原来十位上数字为x,个位上的数字为y,由题意得,,解得:,故这个两位数为95.故答案为;95.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有3240千克苹果,128个苹果箱.【分析】设共有x千克苹果,y个苹果箱.等量关系:①每箱装25千克,则剩余40千克无处装;②每箱装30千克则余20只空箱.【解答】解:设共有x千克苹果,y个苹果箱.根据题意,得,解,得.则共有3240千克苹果,128个苹果箱.【点评】正确找到等量关系是列方程(组)解应用题的关键.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.【点评】此题主要考查了二元一次方程组的应用,根据题意利用所得分数以及有20题选择题分别得出等式是解题关键.16.把面值20元的纸币换成1元和5元的两种纸币,则共有3种换法.【分析】设1元和5元的纸币各x张、y张,根据题意列出方程,求出方程的正整数解即可.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:3【点评】此题考查了二元一次方程的应用,弄清题意是解本题的关键.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.【分析】由题意可知:顺风速度=无风时速度+风速,逆风速度=无风时速度﹣风速,根据家与学校之间的距离=顺风速度×顺风时间=逆风速度×逆风时间,列出方程组解答即可.【解答】解:30分钟=小时40分钟=小时设该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则该同学在顺风时骑自行车的速度为(x+y)千米/小时,逆风时骑自行车的速度为(x﹣y)千米/小时,由题意得.故答案为:.【点评】此题考查由实际问题抽象出二元一次方程组,掌握顺风速度、逆风速度、无风时速度、风速之间的关系是解决问题的关键.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.【分析】根据题意可得等量关系:①一班得分×3=二班的得分×4;②一班得分=五班得分×2﹣40,根据等量关系列出方程组即可.【解答】解:设一班得x分,二班得y分,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=,(2),整理得:,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:.【点评】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?【分析】设A型号的空调购买价为x元,B型号的空调购买价为y元,根据“购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设A型号的空调购买价为x元,B型号的空调购买价为y元,依题意得:,解得:.答:A型号的空调购买价为2120元,B型号的空调购买价为2320元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?【分析】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,可列成方程组求解.【解答】解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?【分析】根据题目中的关键句子:“同向而行,乙10小时可追上甲;若相向而行,2小时两人相遇”找到两个等量关系后列出方程组即可.【解答】解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.【点评】本题考查了二元一次方程组的应用的知识,解题的关键是根据题意找到两个等量关系,难度不大.23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?【分析】设起步价允许行驶的最远路程是xkm,超过部分每千米车费是y元,关键描述语:出租车的起步价为10元,两位乘客分别乘这种出租车走了10km和14km,车费分别为21.2元和27.6元.【解答】解:设起步价允许行驶的最远路程是xkm,超过部分每千米车费是y元,则,解得:,答:起步价允许行驶的最远路程是3km,超过部分每千米车费是1.6元.【点评】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.24.一个被滴上墨水的方程组如下,小明回忆到:这个方程组的解为,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中的x的系数所致,请你根据小明的回忆,把原方程还原出来.【分析】由题意可知是方程组的解,是方程△x+口y=2的解,然后代入求解即可.【解答】解:∵是方程组的解,∴3○+14=8,3△﹣2□=2①,∴○=﹣2.∵是方程△x+口y=2的解,∴﹣2△+2口=2②.将①和②联立得:,解得:△=4,□=5(3分),∴原方程组为.【点评】本题主要考查的是二元一次方程组的解,依据方程组的解得概念列出方程或方程组是解题的关键.。
二元一次方程组练习题(含答案)
二元一次方程组练习题(含答案)1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a;2) 4x + 3y - 1 = 0,2x + y - 2 = 0;3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2;4) x - y/2 = 1,x + y/2 = 3.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1;2) x + 2y = 5,2x + y = 7;3) 3x + 2y = 8,4x - 3y = -11.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
1) 求k,b的值;2) 当x = 2时,y的值;3) 当y = 3/5时,x的值。
4.在解方程组2x + y = 5,x - y = 1时,甲看错了方程组中的a,而得到解x = 2,y = 1.乙看错了方程组中的b,而得到解x = 3,y = -1.1) 甲把a看成了什么,乙把b看成了什么?2) 求出原方程组的正确解。
参考答案与解析:1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a。
将第二个方程式化简为y = -3/2a,代入第一个方程式中得到5x + 2(-3/2a) = 11a,化简得到x = (23/10)a,y = (-9/5)a。
2) 4x + 3y - 1 = 0,2x + y - 2 = 0.将第二个方程式中的y用第一个方程式中的x表示,得到y = 2 - 2x,代入第一个方程式中得到4x + 3(2 - 2x) - 1 = 0,化简得到x = 1/2,y = 1.3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2.将第二个方程式中的x用第一个方程式中的y表示,得到x = 6 - 2y,代入第一个方程式中得到6 - 4y/3 = 2,化简得到y = 3/2,x = 0.4) x - y/2 = 1,x + y/2 = 3.将两个方程式相加得到2x = 4,化简得到x = 2,代入第一个方程式中得到y = 2.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1.将第二个方程式中的x用第一个方程式中的y表示,得到x = y + 1,代入第一个方程式中得到2(y + 1) + 3y = 7,化简得到y = 1,x = 2.2) x + 2y = 5,2x + y = 7.将第一个方程式中的x用第二个方程式中的y表示,得到x = (7 - y)/2,代入第一个方程式中得到(7 - y)/2 + 2y = 5,化简得到y = 1,x = 2.3) 3x + 2y = 8,4x - 3y = -11.将第一个方程式中的x用第二个方程式中的y表示,得到x = (3y - 11)/4,代入第一个方程式中得到3(3y - 11)/4 + 2y = 8,化简得到y = 1,x = 1.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
二元一次方程组计算题50道(答案)
中 考 真 题 50 道中考真题之《二元一次方程组计算题》-----专项练习50题(有答案)1.(2012•德州)已知,则a+b 等于( )A. 3 BC. 2D. 12.(2012菏泽)已知⎩⎨⎧==12y x 是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则n m -2的算术平方根为()A .±2B . 2C .2D . 43.(2012临沂)关于x 、y 的方程组3,x y m x my n -=⎧⎨+=⎩的解是1,1,x y =⎧⎨=⎩ 则m n -的值是( )A .5B .3C .2D .14.(2012•杭州)已知关于x ,y 的方程组,其中﹣3≤a ≤1,给出下列结论: ①是方程组的解;②当a=﹣2时,x ,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a 的解;④若x ≤1,则1≤y ≤4.其中正确的是( )A .①②B .②③C .②③④D .①③④5. (2012广东湛江) 请写出一个二元一次方程组 ,使它的解是.6.(2012广东)若x ,y 为实数,且满足|x ﹣3|+=0,则()2012的值是 1 .7.(2012安顺)以方程组的解为坐标的点(x ,y )在第 象限.8.(2012•连云港)方程组的解为 .9.(2012•广州)解方程组.10.(2012广东)解方程组:.11.(2012•黔东南州)解方程组.12、(2012湖南常德)解方程组:⎩⎨⎧==+1-25y x y x13. (2011湖南益阳,2,4分)二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩ 14. (2011四川凉山州,3,4分)下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x-=⎧⎪⎨+=⎪⎩ C . 20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩15. (2011广东肇庆,4,3分)方程组⎩⎨⎧=+=-422y x y x 的解是 A .⎩⎨⎧==21y x B .⎩⎨⎧==13y x C .⎩⎨⎧-==20y x D .⎩⎨⎧==02y x 16. (2011山东东营,4,3分)方程组31x y x y +=⎧⎨-=-⎩,的解是 A .12.x y =⎧⎨=⎩, B .12.x y =⎧⎨=-⎩, C .21.x y =⎧⎨=⎩, D .01.x y =⎧⎨=-⎩, 17. (2011山东枣庄,6,3分)已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ) ① ②A .-1B .1C .2D .318. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 . 19. (2011江西,12,3分)方程组257x y x y 的解是 . 20. (2011福建泉州,12,4分)已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为 .21. (2011山东潍坊,15,3分)方程组524050x y x y --=⎧⎨+-=⎩的解是___________________. 22. (2011江西南昌,12,3分)方程组257x y x y 的解是 . 23. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 . 24. (2011湖北鄂州,7,3分)若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.25. (2011湖南怀化,18,6分)解方程组:38.53 4.x y x y +=⎧⎨-=⎩26. (2011上海,20,10分)解方程组:222,230.x y x xy y -=⎧⎨--=⎩27.(2011湖北黄石,20,8分)解方程:0)10553(4222=--+--y x y x 。
二元一次方程组试题(含答案)
二元一次方程组测试题一、选择题1.方程2x -1y=0,3x+y=0,2x+xy=1,3x+y -2x=0,x 2-x+1=0中,二元一次方程的个数是( )A .1个B .2个C .3个D .4个2.二元一次方程组32325x y x y -=⎧⎨+=⎩的解是( ) A .3217 (230122)x x x x B C D y y y y =⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩ 3.关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k 的值是(• )A .k=-34B .k=34C .k=43D .k=-434.如果方程组1x y ax by c +=⎧⎨+=⎩有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠15.方程3x+y=7的正整数解的个数是( )A .1个B .2个C .3个D .4个6.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .x+y=1B .x+y=-1C .x+y=9D .x+y=97.如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .1122...2211x x x xBCD y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax by y bx by =-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b )·(a -b )的值为( )A .-353B .353C .-16D .16 二、填空题9.若2x 2a -5b +y a -3b =0是二元一次方程,则a=______,b=______.11.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________. 12.a -b=2,a -c=12,则(b -c )3-3(b -c )+94=________. 13.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______. 14.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________.15.方程mx -2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t +-==4的解为________. 三、解答题17.解方程组(每小题4分,共8分)(1)257320x y x y -=⎧⎨-=⎩ 33(2)255(2)4x y x y +⎧=⎪⎨⎪-=-⎩18.已知y=3xy+x ,求代数式2322x xy y x xy y+---的值.(本小题5分)19.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b )2004的值.(本小题5分)20.已知x=1是关于x 的一元一次方程ax -1=2(x -b )的解,y=1是关于y •的一元一次方程b (y -3)=2(1-a )的解.在y=ax 2+bx -3中,求当x=-3时y 值.(本小题5分)215152y by +==- 时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,200620075()410x b a y =⎧+-⎨=⎩试求的值.(本小题5分)22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题6分)23.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50•个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题6分)24.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.(•本小题6分)25.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45•座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?(本小题6分)答案:一、选择题1.B 解析:②④是2.C 解析:用加减法,直接相加即可消去y,求得x的值.3.B 解析:解方程组可得x=7k,y=-2k,然后把x,y代入二元一次方程2x+3y=6,即2×7k+3×(-2k)=6,解得k=34,故选B.4.B 5.B 解析:正整数解为:1241x xy y==⎧⎧⎨⎨==⎩⎩6.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0,所以有122 2301 x y xx y y+-==⎧⎧⎨⎨+-==-⎩⎩解得8.C 解析:把x=-2,y=1代入原方程组得213 275a b ab a b-+==-⎧⎧⎨⎨-+==-⎩⎩解得,∴(a+b)(a-b)=-16.二、填空题9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,•2512a b a-==-⎧⎧10.24 解析:把a=1,b=-2代入原方程可得x+y 的值,把a=1,b=-2代入ax+ay -b=•7得x+y=5,因为x 2+2xy+y 2-1=(x+y )2-1,所以原式=24.11.2024x y x y +=⎧⎨-=-⎩(答案不唯一).12.278 解析:由a -b=2,a -c=12可得b -c=-32, 再代入(b -c )3-3(b -c )+94=278. 13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程, 可得37221171a b a a b b +==⎧⎧⎨⎨-+==⎩⎩解这个方程组得. 14.-2 解析:本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,•由此可得5a=1-2b ;b+4=2a ,将两式联立组成方程组,解出a ,b 的值,分别为a=1,b=-2,•故b a =-2.15.≠116. 24434342s t s t s t +⎧=⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩解析:解方程组即可. 三、解答题17.解:(1)257320x y x y -=⎧⎨-=⎩ 3得,6x -3y=15 ③ ②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为55x y =⎧⎨=⎩. (2)原方程组变为51565104x y x y +=⎧⎨-=-⎩ ①-②,得y=25.将y=25代入①,得5x+15×5=6,x=0, 所以原方程组的解为025x y =⎧⎪⎨=⎪⎩. 18.解:因为y=3xy+x ,所以x -y=-3xy .当x -y=-3xy 时,2322()32(3)332()2325x xy y x y xy xy xy x xy y x y xy xy xy +--+-+===------. 解析:首先根据已知条件得到x -y=-3xy ,再把要求的代数式化简成含有x -y 的式子,然后整体代入,使代数式中只含有xy ,约分后得解.19.解:因为两个方程组的解相同,所以解方程组25623562x y x x y y +=-=⎧⎧⎨⎨-==-⎩⎩解得 代入另两个方程得2143a b a a b b +=-=⎧⎧⎨⎨-+=-=-⎩⎩解得,∴原式=(2×1-3)2004=1. 20.解:将x=1,y=1分别代入方程得512(1)3(13)2(1)23a a b b a b ⎧=⎪-=-⎧⎪⎨⎨-=-⎩⎪=⎪⎩解方程组得 所以原式=53x 2+23x -3.当x=-3时,• 5221.解:把31x y =-⎧⎨=-⎩代入方程②,得4×(-3)=b ·(-1)-2, 解得b=10.把54x y =⎧⎨=⎩ 代入方程①,得5a+5×4=15,解得a=-1,所以a 2006+20072006200710()(1)()1010b -=-+-=1+(-1)=0. 22.解:设该电器每台的进价为x 元,定价为y 元.由题意得48,162,6(0.9)9(30)210.y x x y x y x y -==⎧⎧⎨⎨-=--=⎩⎩解得. 答:•该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.23.解:设用xm 3木料做桌面,ym 3木料做桌腿.由题意,得106,450300 4.x y x x y y +==⎧⎧⎨⎨⨯==⎩⎩解得 (2)6×50=300(张).答:用6m 3木料做桌面,4m 3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.24.解:设A 、B 两地相距xkm ,乙每小时走ykm ,则甲每小时走(y+2)km .根据题意,•得2(2)361084(2)3617y y x x y y x y ++=-=⎧⎧⎨⎨++=+=⎩⎩解这个方程组得.答:略. 25.解:(1)设参加春游的学生共x 人,原计划租用45座客车y 辆.根据题意,得451524060(1)5y x x y x y +==⎧⎧⎨⎨-==⎩⎩解这个方程组,得 . 答:春游学生共240人,原计划租45座客车5辆.(2)租45座客车:240÷45≈5.3,所以需租6辆,租金为220×6=1320(元);租60•座客车:240÷60=4,所以需租4辆,租金为300×4=1200(元).所以租用4辆60座客车更合算.解析:租车时最后一辆不管几个人都要用一辆,所以在计算车的辆数时用“收尾法”,而不是“四舍五入”.。
二元一次方程培优50题含答案
二元一次方程培优50题含答案一.选择题(共20小题)1.若关于x,y的二元一次方程组的解为,则a+4b的值为()A.B.C.1D.32.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.323.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15B.﹣15C.16D.﹣164.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.345.已知是二元一次方程y=﹣x+5的解,又是下列哪个方程的解?()A.y=x+1B.y=x﹣1C.y=﹣x+1D.y=﹣x﹣16.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.28.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()第1页(共40页)A .16cm 2B .21cm 2C .24cm 2D .32 cm 2 9.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有( )A .6种B .7种C .8种D .9种10.某商店将巧克力包装成方形、圆形礼盒出售,.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?( )A .360B .480C .600D .72011.二元一次方程x +3y =10的非负整数解共有( )对.A .1B .2C .3D .412.若2x +5y +4z =0,3x +y ﹣7z =0,则x +y ﹣z 的值等于( )A .0B .1C .2D .不能求出13.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是( )A .8张和16张B .8张和15张C .9张和16张D .9张和15张14.若2x +5y +4z =0,4x +y +2z =0,则x +y +z 的值等于( )A .0B .1C .2D .不能求出15.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是( )A .150米B .200米C .300米D .400米16.已知m 为正整数,且关于x ,y 的二元一次方程组有整数解,则m 2的值为( )A .4B .1,4C .1,4,49D .无法确定17.已知甲校原有1016人,乙校原有1028人,人,寒假期间甲、乙两校人数变动的原因只有转寒假期间甲、乙两校人数变动的原因只有转出与转入两种,出与转入两种,且转出的人数比为且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?( )A .6B .9C .12D .1818.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种19.若(a ﹣2)x|a |﹣1+3y =1是关于x ,y 的二元一次方程,则a =( ) A .2 B .﹣2 C .2或﹣2 D .020.若关于x ,y 的方程组有非负整数解,则正整数m 为( ) A .0,1 B .1,3,7C .0,1,3D .1,3 二.填空题(共21小题)21.“驴友”小明分三次从M 地出发沿着不同的线路(A 线,B 线,C 线)去N 地.在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走4小时的路程与攀登6小时的路程相等.B 线、C 线路程相等,都比A 线路程多32%,A 线总时间等于C 线总时间的,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A 线,在B 线中穿越丛林、涉水行走和攀登所用时间分别比A 线上升了20%,50%,50%,若他用了x 小时穿越丛林、y 小时涉水行走和z 小时攀登走完C 线,且x ,y ,z 都为正整数,则= .22.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x 名(其中x >5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,名机器人,且将机器人每天工作时间延长至且将机器人每天工作时间延长至12小时,小时,并对每名机器人并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x 个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工 个包裹.23.定义一种新的运算“※”,规定:x ※y =mx +ny 2,其中m 、n 为常数,已知2※3=﹣1,328m n24.已知方程组,当m时,x+y>0.25.方程组:的解是.26.已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.27.解方程组时,甲同学正确解得,乙同学因把c写错而得到,则a=,b=,c=.28.对任意两个正整数x、y,定义一个运算“★”为x★y=(x+2xy+y),若正整数a、b满足a★b=1154,则有序正整数对(a,b)共有对.29.有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管段,39mm的小铜管段.30.三轮摩托车的轮胎安装在前轮上行驶12000公里后报废,安装在左后轮和右后轮则分别只能行驶7500公里和5000公里.为使该车行驶尽可能多的路程,采用行驶一定路程后将2个轮胎对换的方法,但最多可对换2次,那么安装在三轮摩托车上的3条轮胎最多可行驶公里.31.五羊公园门票规定为:每人20元;30人以上的团体购票,每人18元,每30人优惠1人免票(不足30人的余数不优惠).今有花城旅行社、穗城旅行社、羊城旅行社的三支旅游团前来参观:如果花城团、穗城团合起来作为一个团体购票,应购门票3834元;如果穗城团、羊城团合起来购票,应购门票4770元;如果羊城团、花城团合起来购票,应购门票5220元,那么三个团共有人.32.在一条街AB 上,甲由A 向B 步行,乙骑车由B 向A 行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A 开出向B 行进,且每隔x 分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,分有一辆公共汽车追上他,而乙感到每隔而乙感到每隔5分就碰到一辆公共汽车,分就碰到一辆公共汽车,那么在那么在始发站公共汽车发车的间隔时间x = 分钟.33.某校运动会在400米环形跑道上进行10000米比赛,米比赛,甲、甲、甲、乙两运动员同时起跑后,乙两运动员同时起跑后,乙两运动员同时起跑后,乙速乙速超过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时间是 分钟.34.某旅游团一行50人到某旅社住宿,该旅社有三人间、双人间和单人间三种客房,其中三人间每人每晚20元,双人间每人每晚30元,单人间每晚50元.已知该旅行团住满了20间客房,且使总的住宿费用最省.那么这笔最省的住宿费用是 元,所住的三人间、双人间、单人间的间数依次是 .35.“雪龙”号科学考察船到南极锦绣科学考察活动,从上海出发以最快速度19节(1节=1海里/小时)航行抵达南极需要30多天时间.该船以16节的速度从上海出发,若干天后,顺利抵达目的地.在极地工作了若干天,以12节的速度返回,从上海出发后第83天由于天气原因航行速度为2节,2天后以14节的速度继续航行4天返回上海.那么,“雪龙”号在南极工作了 天.36.怡荣号渡轮时速40千米,单数日由A 地顺流航行到B 地,双数日由B 地逆流航行到A地.(水速为每小时24千米)有一单数日渡轮航行到途中的C 地时,失去动力,只能任船漂流到B 地,船长计得该日所用的时间为原单数日的倍.另一双数日渡轮航行到途中的C 地时,又失去动力,船在漂流过程中,维修人员全力抢修了1小时后船以2倍时速前进到A 地,地,结果船长发现该日所用的时间与原双数日所用时间一秒不差.请问结果船长发现该日所用的时间与原双数日所用时间一秒不差.请问A 、B 两地的距离为多少千米?37.一个工厂得到任务,需要加工A 零件6000个和B 零件2000个,该厂共有工人214名,每个人加工A 零件5个的时间可以加工B 零件3个.现将工人分成两组,分别加工一种零件,同时开始,应怎样分组才能使任务最快完成 .38.若是方程组的解,则a +b = .39.设甲数为x ,乙数为y ,则甲数增加10%与乙数增加到原来的3倍后的和比甲、乙两数的和多8,则方程为 .40.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔分钟从起点开出一辆.41.某车间每天能生产甲种零件300个,或者乙种零件500个,或者丙种零件600个,甲、乙、丙三种零件各一个配一套.现在要用63天使产品成套,那么生产甲种零件应当用天,生产乙种零件应当用天,生产丙种零件应当用天.三.解答题(共9小题)42.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.43.若方程组和方程组有相同的解,求a,b的值.44.已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.45.阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.46.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.47.某水果店购进苹果与橙子共50kg,这两种水果的进价、标价如下表所示,店主将这些水果按8折全部售出后,其获利258元,那么该水果点购进苹果和橙子分别多少kg?进价(元/kg)标价(元/kg)苹果615橙子51248.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?49.某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?50.对有理数x、y规定运算⊕:x⊕y=ax﹣by.已知1⊕7=9,3⊕8=14,求2a+5b的值.二元一次方程培优50题含答案参考答案与试题解析一.选择题(共20小题)1.若关于x,y的二元一次方程组的解为,则a+4b的值为()A.B.C.1D.3【分析】方程组利用代入消元法求出解,然后把a、b的值代入即可求解.【解答】解:,由①得,y=1﹣2x③,把③代入②得,﹣x+3(1﹣2x)=2,解得,把代入③得,,∴,∴a+4b=.故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.32【分析】根据题意可以设出二元一次方程组,然后变形即可解答本题.【解答】解:设方形巧克力每块x元,圆形巧克力每块y元,小明带了a元钱,,①+②,得8x+8y=2a,∴x+y=a,∵5x+3y=a﹣8,∴2x+(3x+3y)=a﹣8,∴2x+3×a=a﹣8,∴2x=,∴8x=a﹣32,即他只购买8块方形巧克力,则他会剩下32元,故选:D.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,利用方程的知识解答.3.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15B.﹣15C.16D.﹣16【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a﹣b)的值.【解答】解:∵是关于x、y的方程组的解,∴,解得,∴(a+b)(a﹣b)=(﹣1+4)×(﹣1﹣4)=﹣15.故选:B.【点评】本题主要考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题的关键.4.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.34【分析】首先假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本8本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【解答】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+2y=6 ④由②+①得17x+12y+2z=46 ⑤由⑤﹣④×2﹣③得0=46﹣12﹣a∴a=34故选:D.【点评】此题主要考查了方程组的应用,解答此题的关键是列出方程组,用加减消元法求出方程组的解.5.已知是二元一次方程y=﹣x+5的解,又是下列哪个方程的解?()A.y=x+1B.y=x﹣1C.y=﹣x+1D.y=﹣x﹣1【分析】把x、y的值代入方程,看看方程两边是否相等即可.【解答】解:A、把代入方程y=x+1,左边≠右边,所以不是方程y=x+1的解,故本选项不符合题意;B、把代入方程y=x﹣1,左边=右边,所以是方程y=x﹣1的解,故本选项符合题意;C、把代入方程y=﹣x+1,左边≠右边,所以不是方程y=﹣x+1的解,故本选项不符合题意;D、把代入方程y=﹣x﹣1,左边=右边,所以不是方程y=﹣x﹣1的解,故本选项不符合题意.故选:B.【点评】本题考查了二元一次方程的解,能理解二元一次方程的解的意义是解此题的关键.6.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种【分析】设甲种笔记本购买了x本,乙种笔记本y本,就可以得出15x+5y=90,根据解不定方程的方法求出其解即可.【解答】解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得15x+5y=90整理,得3x+y=18因为y是x的整数倍,所以当x=1时,y=15.当x=2时,y=12.当x=3时,y=9.综上所述,共有3种购买方案.故选:B.【点评】本题考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立不等式是关键,合理运用分类是难点.7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.2【分析】先解关于x,y二元一次方程组,求出x,y的值后,再代入x﹣y=m﹣1,建立关于m的方程,解方程求出m的值即可.【解答】解:方法1:,解得,∵满足x﹣y=m﹣1,∴﹣﹣=m﹣1,解得m=﹣1;方法2:方程两边分别相减就可以得到36x﹣36y=﹣72则x﹣y=﹣2所以m﹣1=﹣2所以m=﹣1.故选:A.【点评】考查了解二元一次方程组,解关于x,y二元一次方程组,求出x,y的值后,再求解关于m的方程,解方程组关键是消元.8.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()A.16cm2B.21cm2C.24cm2D.32 cm2【分析】设长方形的长和宽为未数,根据图示可得两个量关系:①小长方形的1个长+3个宽=16cm,②小长方形的1个长﹣1个宽=4cm,进而可得到关于x、y的两个方程,可求得解,从而可得到小长方形的面积.【解答】解:设小长方形的长为x,宽为y,如图可知,,解得:.所以小长方形的面积=3×7=21(cm 2).故选:B.【点评】本题考查了二元一次方程的应用,以及学生对图表的阅读理解能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()A.6种B.7种C.8种D.9种【分析】本题可设大绳买了x条,小绳买了y条,毽子买了z个.根据这三种体育用品的总价为30元,列出关于x、y、z的三元一次方程,根据x≤2,且x、y、z都是正整数,可求出x、y、z的取值,根据自变量的取值,可求出买法有多少种.【解答】解:设大绳买了x条,小绳买了y条,毽子买了z个.则有:10x+3y+z=30,根据已知,得x=1或2,当x=1时,有z=20﹣3y,此时有:y值可取1,2,3,4,5,6;共六种;当x=2时,有z=10﹣3y,此时有:y值可取1,2,3;共三种.所以共有9种买法.故选:D.【点评】此题主要考查了二元一次方程的应用,解决本题的关键能够根据题意列出三元一次方程,根据未知数应是正整数和x小于等于2这些条件,进行分析求解.10.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360B.480C.600D.720【分析】设每盒方形礼盒x元,每盒圆形礼盒y元,根据阿郁身上的钱数不变得出方程3x+7y﹣240=7x+3y+240,化简整理得y﹣x=120.那么阿郁最后购买10盒方形礼盒后他身上的钱会剩下(7x+3y+240)﹣10x,化简得3(y﹣x)+240,将y﹣x=120计算即可.【解答】解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的钱有(3x+7y﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).C【点评】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每盒方形礼盒与每盒圆形礼盒的钱数之间的关系是解决问题的关键.11.二元一次方程x+3y=10的非负整数解共有()对.A.1B.2C.3D.4【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是非负整数,那么把最小的非负整数y=0代入,算出对应的x的值,再把y=1代入,再算出对应的x的值,依此可以求出结果.【解答】解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.【点评】由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的非负整数解,即此方程中两个未知数的值都是非负整数,这是解答本题的关键.注意:最小的非负整数是0.12.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0B.1C.2D.不能求出【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选:A.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.13.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是()A.8张和16张B.8张和15张C.9张和16张D.9张和15张【分析】仔细读题,发现题中有一个等量关系:2×2元人民币的张数+5×5元人民币的张数=33,如果设2元和5元的人民币分别有x张和y张,则根据等量关系可得一个二元一次方程,此方程有无穷多组解,再根据x,y是正整数,则可以得出符合条件的有限几组解.【解答】解:设2元和5元的人民币分别有x张和y张,根据题意,得2x+5y=33,则x=,即x=16﹣2y+,又x,y是正整数,则有或或三种.因为14+1=15,9+3=12,4+5=9,15>12>9,所以最少和张数之和最多的方式分别是9和15.故选:D.【点评】考查了二元一次方程的应用,注意:根据未知数应是正整数进行讨论.14.若2x+5y+4z=0,4x+y+2z=0,则x+y+z的值等于()A.0B.1C.2D.不能求出【分析】由2x+5y+4z=0 ①,4x+y+2z=0 ②,利用整体的思想①+②即可解决问题.【解答】解:2x+5y+4z=0 ①,4x+y+2z=0 ②,①+②得到:6x+6y+6z=0,∴x+y+z=0,故选:A.【点评】本题考查三元一次方程组,解题的关键是学会利用整体的思想思考问题,属于中考常考题型.15.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是()A.150米B.200米C.300米D.400米【分析】首先设每一块小矩形牧场的长为x米,宽为y米,根据题意可得等量关系:小矩形的1个长=2个宽,3个长+1个宽=700÷2,根据等量关系列出方程组,再解即可.【解答】解:设每一块小矩形牧场的长为x米,宽为y米,,解得,每一块小矩形牧场的周长是:100+100+50+50=300(米),故选:C.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程组.16.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4B.1,4C.1,4,49D.无法确定【分析】首先解方程组求得方程组的解是:,则3+m是10和15的公约数,且是正整数,据此即可求得m的值,求得代数式的值.【解答】解:两式相加得:(3+m)x=10,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是10和15的公约数.∴3+m=±1或±5.即m=﹣2或﹣4或2或﹣8.又∵m是正整数,∴m =2,则m 2=4.故选:A .【点评】本题考查了方程组的解,正确理解3+m 是10和15的公约数是关键. 17.已知甲校原有1016人,乙校原有1028人,人,寒假期间甲、乙两校人数变动的原因只有转寒假期间甲、乙两校人数变动的原因只有转出与转入两种,出与转入两种,且转出的人数比为且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?( )A .6B .9C .12D .18 【分析】分别设设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,根据寒假结束开学时甲、根据寒假结束开学时甲、乙两校人数相同,乙两校人数相同,可得方程1016﹣x +y =1028﹣3x +3y ,整理得:x ﹣y =6,所以开学时乙校的人数为:1028﹣3x +3y =1028﹣3(x ﹣y )=1028﹣18=1010(人),即可解答.【解答】解:设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,∵寒假结束开学时甲、乙两校人数相同,∴1016﹣x +y =1028﹣3x +3y ,整理得:x ﹣y =6,开学时乙校的人数为:1028﹣3x +3y =1028﹣3(x ﹣y )=1028﹣18=1010(人), ∴乙校开学时的人数与原有的人数相差;1028﹣1010=18(人),故选:D .【点评】本题考查了二元一次方程的应用,解决本题的关键是关键题意列出方程. 18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【解答】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得。
二元一次方程组习题及答案100道
精心整理 57x+y=2850 答案: x=50y=57 (15)83x-49y=82 59x+y=2183 答案: x=37y=61 (16)91x+70y=5845 95x-y=4275 答案: x=45y=25 (17)29x+44y=5281 88x-y=3608 答案: x=41y=93 (18)25x-95y=-4355 40x-y=2000 答案: x=50y=59 (19)54x+68y=3284 78x+y=1404 答案: x=18y=34 精心整理精心整理精心整理
精心整理 7x+7y=203 9.8x+4y=56 x+4y=21 10.5x+7y=41 5x+8y=44 11.7x+5y=54 3x+4y=38 12.x+8y=15 4x+y=29 13.3x+6y=24 9x+5y=46 14.9x+2y=62 4x+3y=36 15.9x+4y=46 7x+4y=42 16.9x+7y=135 4x+y=41 精心整理
精心整理 4x+6y=16 26.6x+6y=48 6x+3y=42 27.8x+2y=16 7x+y=11 28.4x+9y=77 8x+6y=94 29.6x+8y=68 7x+6y=66 30.2x+2y=22 7x+2y=47 1)66x+17y=3967 25x+y=1200 答案: x=48y=47 (2)18x+23y=2303 74x-y=1998 答案: x=27y=79 精心整理
二元一次方程组-习题及答案100道
二元一次方程组习题及答案100道+9y=813x+y=34+4y=358x+3y=30+2y=527x+4y=62+6y=549x+2y=87+y=72x+5y=19+2y=213x+5y=56+7y=525x+2y=22+5y=657x+7y=203+4y=56x+4y=21+7y=415x+8y=44+5y=543x+4y=38+8y=154x+y=299x+5y=46 +2y=624x+3y=36 +4y=467x+4y=42 +7y=135 4x+y=41 +8y=51x+6y=27 +3y=994x+7y=95 +2y=383x+6y=18 +5y=457x+9y=69 +2y=287x+8y=62 +6y=143x+3y=27 +4y=672x+8y=26 +4y=527x+6y=74 +y=9+6y=486x+3y=42+2y=167x+y=11+9y=778x+6y=94+8y=687x+6y=66+2y=227x+2y=471) 66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=2303 74x-y=1998答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48 (7) 47x-40y=85334x-y=2006答案:x=59 y=48 (8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12(14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=8259x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=761947x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=8420x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 (51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46(64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=1052484x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91(89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-45067x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。
二元一次方程组习题及答案
《二元一次方程组》§.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0, 1 , 2, 3 时,y= ____2、在x+3y=3中,若用x表示y,贝V y= ______ 用y表示x,贝V x= ______3、已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2,当k= _______ 时,方程为一元一次方程;当k= _____ 时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0 时,贝V y= ___ ;当y=0 时,贝V x= ___ 。
5、方程2x+y=5的正整数解是________ 。
6、若(4x-3)2+|2y+1|=0,贝V x+2= ___________ 。
7、方程组%y a的一个解为x 2,那么这个方程组的另一个解是__________________ 。
xy b y 31 ax 2y 18、若x 时,关于x、y的二元一次方程组' 的解互为倒数,则2 x by 2a 2b___________ o二、选择题3 21、方程2x — 3y = 5,xy= 3, x 3 ,3x — y + 2z = 0, x y 6 中是y二元一次方程的有( )个。
A、1 B>2 C、3 D、42、方程2x+y=9在正整数范围内的解有( )A、1个B、2个C、3个D、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A、10x+2y=4B、4x-y=7C、20x-4y=3D、15x-3y=64、若是5x2y m与4x nm1y2n2同类项,则m2 n的值为( )A、1B、—1C、—3D、以上答案都不对5、在方程(k2-4)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为(x 2是二元一次方程组的解,则这个方程组是y 1三、解答题y 7,试确定a 、c 的值,使方程组: ax 2y c(1)有一个解;(2)有无数解;(3)没有解3、关于x 、y 的方程3kx 2y 6k 3,对于任何k 的值都有相同的解,试求它的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
⑥利息税:利息的税款叫做利息税。
(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。
④税后利息=利息×(1-利息税率) ⑤年利率=月利率×12⑥。
注意:免税利息=利息5.配套问题:解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。
6.增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量.7.和差倍分问题:解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.8.数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。
如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排。
需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。
注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。
知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。
类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.根据题意,列方程组解这个方程组,得:.答:汽车行驶了165千米,拖拉机行驶了85千米.【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36 得: x=6,y=3.6【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
设船速为x(km/h)水速为y(km/h)(x+y)×14=280(x-y)×20=280 得:x=17;y=3【变式3】王平要从甲村走到乙村,如果他每小时走4千米,那么走到预定时间,离乙村还有0. 5 千米;如果他每小时走5千米,那么比预定时间少用半时间就可到达乙村。
求预定时间是多少时间,甲村到乙村的路程是多少千米?设预定时间是x小时,甲村到乙村的距离是y千米4x+0.5=y5(x-0.5)=y 得:x=3;y=12.5【变式4】甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可追上乙.两人的平均速度各是多少? 设甲乙两人的平均速度分别为x千米/小时,y千米/小时:1×(x+y)=63(x-y)=6 得 x=4,y=2类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。
设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.解:(1)设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,依题意得:解得答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元。
(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元,故请乙组单独做费用最少。
答:请乙组单独做费用最少。
总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。
【变式1】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.【变式2】甲,乙两队合做一项工程,12天可以完成,如果甲先做5天后,乙才赶来参加,两人合做9天才能完成,则甲,乙独做各需要多少天完成这项工程。
设甲单独完成要x天,乙要y天1/x+1/y=1/12 5/x+9/12=1【变式3】某中学准备改造面积为1080平方米的旧操场,现在有甲乙两个工程队都想承建这项工程。
协商得知,甲工程队单独改造这操场比乙工程队多用9天;乙工程队每天比甲工程队多改造10平方米;甲工程队每天所需费用160元,乙工程队每天所需费用200元。
(1)求甲乙量个工程队每天各改造操场多少平方米?(2)再改造操场的过程中,学校要派一名管理人员进行质量监督,并由学校负担他每天25元的生活补助费,现有以下三种方案供选择。
第一种方案:由甲单独改造;第二种方案:由乙单独改造;第三种方案:由甲乙一起同时进行改造;你认为哪一种方案既省时又省钱?试比较说明。
假设;甲完每天成X平方米,乙完成Y平方米Y-X=101080/X-1080/Y=9解得X=30;Y=40第一种:(160+25)*(1080/30)=6660第二种:(200+25)*(1080/40)=6075第三种;(200+160+25)*(1080/70)=5390 所以第三种好类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率解:甲商品的进价为x元,乙商品的进价为y元,由题意得:,解得:答:两件商品的进价分别为600元和400元。
【变式1】李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?设甲、乙两种蔬菜各种植了x、y亩,依题意得:x+y=102000x+1500y=18000 解得:x=6,y=4【变式2(注:获利 = 售价—进价)求该商场购进A、B两种商品各多少件;设购进A种商品的数量为x件,购进B种商品的数量为y件.1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000x=200 ;y=120【变式3】某商场计划销售一批运动衣后可获总利润12000元.在进行市场调查后,为了促销降低了定价,使得每套运动衣少获利10元,结果销售比计划增加了400套,总利润比计划多得了4000元.问实际销售运动衣多少套每套运动衣实际利润多少元? 设实际销售运动衣x套,每套运动衣的实际利润为y元.(x-400)(y+10)=12000(xy)=16000x=800;y=20 或x=-800;y=-20 (舍去)【变式4】某商场打折促销,已知A商品每件60元,B商品每件80元,买20件A商品与10件B商品,打折前比打折后多花460元,打折后买10件A商品和10件B商品共用1090元.求A、B商品各打几折?设打折后A的价格是x.打折后B的价格是Y20(60—x)+10(80--y)=46010x+10y=1090 解得:x=45,y=64类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)思路点拨:设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则列方程:,解得:答:存教育储蓄的钱为1500元,存一年定期的钱为500元.总结升华: 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)设2000的利率为X,则1000的为3.24%-X.2000X+1000Y=54.9X+Y=0.0324 X=2.25% ; Y=0.99% 【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?设X第一种方式存款,Y第二种方式存款X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75 解得:X = 1500;Y = 2500类型五:列二元一次方程组解决——生产中的配套问题5.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).解:设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?设X张铁皮做盒身,Y张铁皮做盒底,则有:X+Y=1908X=22Y/2解得X=110;Y=80【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。