专题:解二元一次方程组(含答案)
二元一次方程专题(内含答案详解)
![二元一次方程专题(内含答案详解)](https://img.taocdn.com/s3/m/03dc63076bd97f192279e9f7.png)
二元一次方程专题一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣22.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.43.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=14.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+155.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣37.将方程x+y=1中的x的系数化为整数,则下列结果正确的是()A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=28.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.19.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.210.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A.B.C.D.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有千克苹果,个苹果箱.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?24.一个被滴上墨水的方程组如下,小明回忆到:这个方程组的解为,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中的x的系数所致,请你根据小明的回忆,把原方程还原出来.二元一次方程专题参考答案与试题解析一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【分析】把代入方程4kx﹣3y=﹣1,即可得出一个关于k的方程,求出方程的解即可.【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选:A.【点评】本题考查了二元一次方程的解和解一元一次方程,能根据题意得出关于k的方程是解此题的关键.2.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.4【分析】代入后得出关于m、n的方程组,两方程相加即可求出答案.【解答】解:∵与是二元一次方程mx+ny=5的两组解,∴代入得:①+②得:5m+5n=10,m+n=2,故选:B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能根据题意得出关于m、n的方程组是解此题的关键.3.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=1【分析】根据二元一次方程的定义求解即可.【解答】解:A、是一元二次方程,故A不符合题意;B、是二元一次方程,故B符合题意;C、是分式方程,故C不符合题意;D、是二元二次方程,故D不符合题意;故选:B.【点评】本题考查了二元一次方程,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.4.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+15【分析】把x看做已知数表示出y即可.【解答】解:方程﹣=5,整理得:y==x﹣15,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元【分析】设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据“若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据题意得:,解得:.故选:D.【点评】本题考查了解二元一次方程组,根据数量关系列出二元一次方程组是解题的关键.6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣3【分析】(方法一)根据二元一次方程的定义,即可得出关于m、n的二元一次方程组,解之即可得出m、n的值,将其相加即可得出结论;(方法二)根据二元一次方程的定义,即可得出m+2=1、n﹣1=1,将其相加即可得出m+n的值.【解答】解:(方法一)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴,解得:,∴m+n=1.故选A.(方法二)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴m+2=1,n﹣1=1,∴m+2+n﹣1=2,∴m+n=1.故选:A.【点评】本题考查了二元一次方程的定义以及解二元一次方程组,熟练掌握二元一次方程的定义是解题的关键.7.将方程x+y=1中的x的系数化为整数,则下列结果正确的是()A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=2【分析】方程两边乘以2变形即可得到结果.【解答】解:方程左右两边乘以2得:﹣x+2y=2,即x﹣2y=﹣2.故选:B.【点评】此题考查了解二元一次方程,熟练掌握等式的性质是解本题的关键.8.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.1【分析】根据题意先把x=4代入2x+3y=5求出y的值,然后把x、y的值代入代数式3x2+12xy+y2即可求得.【解答】解:把x=4代入2x+3y=5得:y=﹣1,把x=4,y=1代入3x2+12xy+y2得:3×16+12×4×(﹣1)+1=1,故选:D.【点评】本题考查了二元一次方程的解法,主要运用了代入法,难度适中.9.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.2【分析】方程组的两个方程相减,即可求出答案.【解答】解:,②﹣①得:x﹣y=﹣2,故选:C.【点评】本题考查了解二元一次方程组,能选择适当的方法求解是解此题的关键.10.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定【分析】根据等式的性质,可得答案.【解答】解:①+②,得3(x+y)=3﹣3k,由x+y=0,得3﹣3k=0,解得k=1,故选:B.【点评】本题考查了二元一次方程组的解,利用等式的性质是解题关键.11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A.B.C.D.【分析】由题意,得长的2倍比宽的5倍还多1cm可得方程2x﹣5y=1;宽的3倍又比长多1cm可得方程3y﹣x=1,即可得方程组.【解答】解:根据题意,得方程组.故选:C.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.【分析】根据:①5角钱的枚数+1元钱的枚数=100、②5角的总钱数+1元的总钱数=68元,据此可得方程组.【解答】解:设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为,故选:C.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到题目蕴含的相等关系.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是95.【分析】设原来十位上数字为x,个位上的数字为y,分别表示出调换前后的两位数,根据题意列方程组求解.【解答】解:设原来十位上数字为x,个位上的数字为y,由题意得,,解得:,故这个两位数为95.故答案为;95.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有3240千克苹果,128个苹果箱.【分析】设共有x千克苹果,y个苹果箱.等量关系:①每箱装25千克,则剩余40千克无处装;②每箱装30千克则余20只空箱.【解答】解:设共有x千克苹果,y个苹果箱.根据题意,得,解,得.则共有3240千克苹果,128个苹果箱.【点评】正确找到等量关系是列方程(组)解应用题的关键.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.【点评】此题主要考查了二元一次方程组的应用,根据题意利用所得分数以及有20题选择题分别得出等式是解题关键.16.把面值20元的纸币换成1元和5元的两种纸币,则共有3种换法.【分析】设1元和5元的纸币各x张、y张,根据题意列出方程,求出方程的正整数解即可.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:3【点评】此题考查了二元一次方程的应用,弄清题意是解本题的关键.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.【分析】由题意可知:顺风速度=无风时速度+风速,逆风速度=无风时速度﹣风速,根据家与学校之间的距离=顺风速度×顺风时间=逆风速度×逆风时间,列出方程组解答即可.【解答】解:30分钟=小时40分钟=小时设该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则该同学在顺风时骑自行车的速度为(x+y)千米/小时,逆风时骑自行车的速度为(x﹣y)千米/小时,由题意得.故答案为:.【点评】此题考查由实际问题抽象出二元一次方程组,掌握顺风速度、逆风速度、无风时速度、风速之间的关系是解决问题的关键.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.【分析】根据题意可得等量关系:①一班得分×3=二班的得分×4;②一班得分=五班得分×2﹣40,根据等量关系列出方程组即可.【解答】解:设一班得x分,二班得y分,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=,(2),整理得:,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:.【点评】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?【分析】设A型号的空调购买价为x元,B型号的空调购买价为y元,根据“购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设A型号的空调购买价为x元,B型号的空调购买价为y元,依题意得:,解得:.答:A型号的空调购买价为2120元,B型号的空调购买价为2320元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?【分析】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,可列成方程组求解.【解答】解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?【分析】根据题目中的关键句子:“同向而行,乙10小时可追上甲;若相向而行,2小时两人相遇”找到两个等量关系后列出方程组即可.【解答】解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.【点评】本题考查了二元一次方程组的应用的知识,解题的关键是根据题意找到两个等量关系,难度不大.23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?【分析】设起步价允许行驶的最远路程是xkm,超过部分每千米车费是y元,关键描述语:出租车的起步价为10元,两位乘客分别乘这种出租车走了10km和14km,车费分别为21.2元和27.6元.【解答】解:设起步价允许行驶的最远路程是xkm,超过部分每千米车费是y元,则,解得:,答:起步价允许行驶的最远路程是3km,超过部分每千米车费是1.6元.【点评】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.24.一个被滴上墨水的方程组如下,小明回忆到:这个方程组的解为,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中的x的系数所致,请你根据小明的回忆,把原方程还原出来.【分析】由题意可知是方程组的解,是方程△x+口y=2的解,然后代入求解即可.【解答】解:∵是方程组的解,∴3○+14=8,3△﹣2□=2①,∴○=﹣2.∵是方程△x+口y=2的解,∴﹣2△+2口=2②.将①和②联立得:,解得:△=4,□=5(3分),∴原方程组为.【点评】本题主要考查的是二元一次方程组的解,依据方程组的解得概念列出方程或方程组是解题的关键.。
十道二元一次方程组及答案
![十道二元一次方程组及答案](https://img.taocdn.com/s3/m/0d135d1c0812a21614791711cc7931b765ce7bc8.png)
十道二元一次方程组及答案1:学校为同学们安排宿舍。
若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。
求该年级同学人数和宿舍间数。
(解:设年级人数是人,宿舍是y人)解:设年级人数是人,宿舍是y人)5y-=-46(y-2)-=2解这个方程组得:y=18=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48。
6元,求A、B两种原料每千克的价格分别是多少元。
(解:设A种原料每千克元,B种原料每千克y元)5÷9+4÷9y=503÷5+2÷5y=48。
6化简方程组得:5+4y=4503+2y=243解这个方程组得:y=67。
53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。
有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。
(解:设直达快车每小时千米,公共汽车每小时y千米)7÷60+7÷60y=2413÷60y+5÷60=244、要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水千克,含药75%的药水y千克)+y=1830%有效成分=30%75%有效成分=y75%50%有效成分=1850%所以30%+75%=1850%0。
3+0。
75y=9+y=180。
3+0。
3y=5、4所以0。
75y-0。
3y=9-5、40。
45=3、6y=10所以30%取8千克,75%取10千克5、一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。
(解:设快车每小时行千米,慢车每小时行y千米)6。
完整版)二元一次方程组应用题经典题及答案
![完整版)二元一次方程组应用题经典题及答案](https://img.taocdn.com/s3/m/1f4be7bb690203d8ce2f0066f5335a8102d2668f.png)
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
解二元一次方程50道练习题(带答案)
![解二元一次方程50道练习题(带答案)](https://img.taocdn.com/s3/m/ddc938b6f80f76c66137ee06eff9aef8941e4830.png)
解二元一次方程50道练习题(带答案)
1. 解方程组:
{2x - y = 3
{3x + 2y = 8
解答:
首先,可以通过消元法来解决这个问题。
将第一个方程乘以2,并将第二个方程乘以3,得到:
{4x - 2y = 6
{9x + 6y = 24
接下来,将第一个方程的两倍加到第二个方程上,得到:
{4x - 2y = 6
{13x + 4y = 30
然后,将第一个方程的2倍加到第二个方程上,得到:
{4x - 2y = 6
{8x - 8y = 12
接下来,将第二个方程的两倍加到第一个方程上,得到:
{36x = 18
{8x - 8y = 12
最后,解方程得到:
{x = 0.5
{y = 2
2. 解方程组:
{3x + 2y = 7
{5x + 3y = 11
解答:
可以使用消元法来解决这个方程组。
将第一个方程乘以3,并将第二个方程乘以2,得到:
{9x + 6y = 21
{10x + 6y = 22
接下来,将第二个方程的两倍减去第一个方程,得到:
{9x + 6y = 21
{2x = 1
最后,解方程得到:
{x = 0.5
{y = 2
3. ...
...
50. ...
...
这是前面五道解二元一次方程的练习题,你可以根据相同的方法解答剩下的题目。
希望这些练习题对你有帮助!。
二元一次方程专题(内含答案详解)
![二元一次方程专题(内含答案详解)](https://img.taocdn.com/s3/m/03dc63076bd97f192279e9f7.png)
二元一次方程专题一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣22.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.43.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=14.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+155.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣37.将方程x+y=1中的x的系数化为整数,则下列结果正确的是()A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=28.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.19.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.210.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A.B.C.D.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有千克苹果,个苹果箱.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?24.一个被滴上墨水的方程组如下,小明回忆到:这个方程组的解为,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中的x的系数所致,请你根据小明的回忆,把原方程还原出来.二元一次方程专题参考答案与试题解析一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【分析】把代入方程4kx﹣3y=﹣1,即可得出一个关于k的方程,求出方程的解即可.【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选:A.【点评】本题考查了二元一次方程的解和解一元一次方程,能根据题意得出关于k的方程是解此题的关键.2.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.4【分析】代入后得出关于m、n的方程组,两方程相加即可求出答案.【解答】解:∵与是二元一次方程mx+ny=5的两组解,∴代入得:①+②得:5m+5n=10,m+n=2,故选:B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能根据题意得出关于m、n的方程组是解此题的关键.3.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=1【分析】根据二元一次方程的定义求解即可.【解答】解:A、是一元二次方程,故A不符合题意;B、是二元一次方程,故B符合题意;C、是分式方程,故C不符合题意;D、是二元二次方程,故D不符合题意;故选:B.【点评】本题考查了二元一次方程,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.4.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+15【分析】把x看做已知数表示出y即可.【解答】解:方程﹣=5,整理得:y==x﹣15,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元【分析】设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据“若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据题意得:,解得:.故选:D.【点评】本题考查了解二元一次方程组,根据数量关系列出二元一次方程组是解题的关键.6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣3【分析】(方法一)根据二元一次方程的定义,即可得出关于m、n的二元一次方程组,解之即可得出m、n的值,将其相加即可得出结论;(方法二)根据二元一次方程的定义,即可得出m+2=1、n﹣1=1,将其相加即可得出m+n的值.【解答】解:(方法一)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴,解得:,∴m+n=1.故选A.(方法二)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴m+2=1,n﹣1=1,∴m+2+n﹣1=2,∴m+n=1.故选:A.【点评】本题考查了二元一次方程的定义以及解二元一次方程组,熟练掌握二元一次方程的定义是解题的关键.7.将方程x+y=1中的x的系数化为整数,则下列结果正确的是()A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=2【分析】方程两边乘以2变形即可得到结果.【解答】解:方程左右两边乘以2得:﹣x+2y=2,即x﹣2y=﹣2.故选:B.【点评】此题考查了解二元一次方程,熟练掌握等式的性质是解本题的关键.8.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.1【分析】根据题意先把x=4代入2x+3y=5求出y的值,然后把x、y的值代入代数式3x2+12xy+y2即可求得.【解答】解:把x=4代入2x+3y=5得:y=﹣1,把x=4,y=1代入3x2+12xy+y2得:3×16+12×4×(﹣1)+1=1,故选:D.【点评】本题考查了二元一次方程的解法,主要运用了代入法,难度适中.9.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.2【分析】方程组的两个方程相减,即可求出答案.【解答】解:,②﹣①得:x﹣y=﹣2,故选:C.【点评】本题考查了解二元一次方程组,能选择适当的方法求解是解此题的关键.10.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定【分析】根据等式的性质,可得答案.【解答】解:①+②,得3(x+y)=3﹣3k,由x+y=0,得3﹣3k=0,解得k=1,故选:B.【点评】本题考查了二元一次方程组的解,利用等式的性质是解题关键.11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A.B.C.D.【分析】由题意,得长的2倍比宽的5倍还多1cm可得方程2x﹣5y=1;宽的3倍又比长多1cm可得方程3y﹣x=1,即可得方程组.【解答】解:根据题意,得方程组.故选:C.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.【分析】根据:①5角钱的枚数+1元钱的枚数=100、②5角的总钱数+1元的总钱数=68元,据此可得方程组.【解答】解:设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为,故选:C.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到题目蕴含的相等关系.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是95.【分析】设原来十位上数字为x,个位上的数字为y,分别表示出调换前后的两位数,根据题意列方程组求解.【解答】解:设原来十位上数字为x,个位上的数字为y,由题意得,,解得:,故这个两位数为95.故答案为;95.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有3240千克苹果,128个苹果箱.【分析】设共有x千克苹果,y个苹果箱.等量关系:①每箱装25千克,则剩余40千克无处装;②每箱装30千克则余20只空箱.【解答】解:设共有x千克苹果,y个苹果箱.根据题意,得,解,得.则共有3240千克苹果,128个苹果箱.【点评】正确找到等量关系是列方程(组)解应用题的关键.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.【点评】此题主要考查了二元一次方程组的应用,根据题意利用所得分数以及有20题选择题分别得出等式是解题关键.16.把面值20元的纸币换成1元和5元的两种纸币,则共有3种换法.【分析】设1元和5元的纸币各x张、y张,根据题意列出方程,求出方程的正整数解即可.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:3【点评】此题考查了二元一次方程的应用,弄清题意是解本题的关键.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.【分析】由题意可知:顺风速度=无风时速度+风速,逆风速度=无风时速度﹣风速,根据家与学校之间的距离=顺风速度×顺风时间=逆风速度×逆风时间,列出方程组解答即可.【解答】解:30分钟=小时40分钟=小时设该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则该同学在顺风时骑自行车的速度为(x+y)千米/小时,逆风时骑自行车的速度为(x﹣y)千米/小时,由题意得.故答案为:.【点评】此题考查由实际问题抽象出二元一次方程组,掌握顺风速度、逆风速度、无风时速度、风速之间的关系是解决问题的关键.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.【分析】根据题意可得等量关系:①一班得分×3=二班的得分×4;②一班得分=五班得分×2﹣40,根据等量关系列出方程组即可.【解答】解:设一班得x分,二班得y分,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=,(2),整理得:,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:.【点评】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?【分析】设A型号的空调购买价为x元,B型号的空调购买价为y元,根据“购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设A型号的空调购买价为x元,B型号的空调购买价为y元,依题意得:,解得:.答:A型号的空调购买价为2120元,B型号的空调购买价为2320元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?【分析】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,可列成方程组求解.【解答】解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?【分析】根据题目中的关键句子:“同向而行,乙10小时可追上甲;若相向而行,2小时两人相遇”找到两个等量关系后列出方程组即可.【解答】解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.【点评】本题考查了二元一次方程组的应用的知识,解题的关键是根据题意找到两个等量关系,难度不大.23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?【分析】设起步价允许行驶的最远路程是xkm,超过部分每千米车费是y元,关键描述语:出租车的起步价为10元,两位乘客分别乘这种出租车走了10km和14km,车费分别为21.2元和27.6元.【解答】解:设起步价允许行驶的最远路程是xkm,超过部分每千米车费是y元,则,解得:,答:起步价允许行驶的最远路程是3km,超过部分每千米车费是1.6元.【点评】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.24.一个被滴上墨水的方程组如下,小明回忆到:这个方程组的解为,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中的x的系数所致,请你根据小明的回忆,把原方程还原出来.【分析】由题意可知是方程组的解,是方程△x+口y=2的解,然后代入求解即可.【解答】解:∵是方程组的解,∴3○+14=8,3△﹣2□=2①,∴○=﹣2.∵是方程△x+口y=2的解,∴﹣2△+2口=2②.将①和②联立得:,解得:△=4,□=5(3分),∴原方程组为.【点评】本题主要考查的是二元一次方程组的解,依据方程组的解得概念列出方程或方程组是解题的关键.。
二元一次方程(组)解应用题(含答案)
![二元一次方程(组)解应用题(含答案)](https://img.taocdn.com/s3/m/22ca229382d049649b6648d7c1c708a1284a0aa3.png)
第八章二元一次方程(组)解应用题(含答案)1.缉私艇与走私艇相距120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?时才能追上.问走私艇与缉私艇的速度分别是多少?1.解:设走私艇的速度是x海里/时,缉私艇的速度是y海里/时,由题意得:时,由题意得:,解得,答:走私艇的速度是25海里/时,缉私艇的速度是35海里/时2.甲、乙两人从A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1地.小时乙到达A地.)问甲、乙行驶的速度分别是多少?(1)问甲、乙行驶的速度分别是多少?千米?(2)甲、乙行驶多少小时,两车相距30千米?2.解:(1)设甲、乙行驶的速度分别是每小时x千米、y千米,千米,根据题意,得,解得.所以甲、乙行驶的速度分别是每小时15千米、45千米;千米;(2)由第(1)小题,可得A,B两地相距45×(3+1)=180(千米).千米,设甲、乙行驶x小时,两车相距30千米,)千米,根据题意,得两车行驶的总路程是(180﹣30)千米或(180+30)千米,则:(45+15)x=180﹣30或(45+15)x=180+30.解得:或.千米所以甲、乙行驶或小时,两车相距30千米3.小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32平均速度为3千米/时,时,而在下坡路上的平均速度为分钟.求小明上坡、下坡各用了多长时间?分钟.求小明上坡、下坡各用了多长时间?3.解:32分钟=小时,小时,)小时,由题意,得设小明上坡用了x小时,下坡用了(﹣x)小时,由题意,得3x+5(﹣x)=1.8,解得:x=,则下坡所用时间为:﹣==.答:小明上坡用了小时,下坡用了小时小时4.A 、B 两地相距20千米.甲乙两人同时从A 、B 两地相向而行,经过2小时后两人相遇,相遇时甲比乙多行4千米.根据题意,列出两元一次方程组,求出甲乙两人的速度.千米.根据题意,列出两元一次方程组,求出甲乙两人的速度. 4.解:(1)设甲的速度为x 千米/时,乙的速度为y 千米/小时,由题意得,小时,由题意得,,解得:.答:甲的速度为6千米/时,乙的速度为4千米/小时小时5.长春至吉林现有铁路长为128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米.开通后,城际列车的平均速度将为现有列车平均速度的2.25倍,运行时间将比现有列车运行时间缩短小时.求城际列车的平均速度.列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.小时.,解得.64×2.25=144千米/小时.小时.城际列车的平均速度144千米/小时小时6.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留汽车在相遇处停留1小时后原速返回,小时后原速返回,在汽车再次出发在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米? 6.解:设汽车的速度是x 千米每小时,拖拉机速度y 千米每小时,根据题意得:千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:(+)×90=165(千米),拖拉机行驶的路程是:(+)×30=85(千米).千米答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两,问两车每秒各行驶多少米?车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?7.解:设客车的速度是每秒x米,货车的速度是每秒x米.米.由题意得(x+x)×16=200+280,解得x=18.答:两车的速度是客车18m/s,货车12m/s8.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人倍.求两人的速度. 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度.8.解:设甲的速度是x千米/时,乙的速度是y千米/时.时.由题意得:解得:答:甲的速度是4千米/时,乙的速度是5千米/时9.从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少?乙地的全程是多少?9.解:设从甲地到乙地的上坡路为xkm,平路为ykm,依题意得,解之得,∴x+y=3.1km,答:甲地到乙地的全程是3.1km10.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻.解:设甲的速度为x千米/时,乙的速度为由题意可得:.由题意得,,解得:,则解得答:甲,乙二人的速度是1414、在某条高速公路上依次排列着、在某条高速公路上依次排列着A 、B 、C 三个加油站,三个加油站,A A 到B 的距离为120千米,千米,B B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?1414、解:设巡逻车、犯罪团伙的车的速度分别为、解:设巡逻车、犯罪团伙的车的速度分别为x 、y 千米千米//时,则()3120120x y x y -=ìïí+=ïî,整理,得40120x y x y -=ìí+=î,解得8040x y =ìí=î, 答:巡逻车的速度是80千米千米//时,犯罪团伙的车的速度是40千米千米//时.1515、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟. .归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄? ?1515、解:设悟空飞行速度是每分钟、解:设悟空飞行速度是每分钟x 里,风速是每分钟y 里,依题意得依题意得依题意得 4(x+y)=1000 4(x+y)=10004(x-y)=600 x=200 y=5016.16.某列火车通过某列火车通过450米的铁桥,从车头上桥到车尾下桥,从车头上桥到车尾下桥,共共33秒,同一列火车以同样的速度穿过760米长的隧道时,整列火车都在隧道里的时间是22秒,问这列火车的长度和速度分别是多少分别是多少? ?16. 16. 解解:设火车长为x 米,火车的速度为y 米/秒,33y=x 33y=x++45022y=760 22y=760--xX=276解方程组得:解方程组得:解方程组得: y=22 y=22答:火车长答:火车长276米,速度为22米/秒.。
完整版初中数学专项练习《二元一次方程组》100道解答题包含答案
![完整版初中数学专项练习《二元一次方程组》100道解答题包含答案](https://img.taocdn.com/s3/m/bf0248aaed3a87c24028915f804d2b160b4e866f.png)
初中数学专项练习《二元一次方程组》100道解答题包含答案一、解答题(共100题)1、南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A、B两个园区,已知A园区为矩形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:C D投入(元/平方米)13 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2、某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价/(元2.4 2)零售价/(元3.6 2.8)他当天卖完这些黄瓜和茄子可赚多少元钱?3、已知方程组的解满足x+y=-1,求k的值。
4、解方程组:5、甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.6、已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.7、为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?8、敦煌莫高窟是世界上现存最完好的石窟艺术宝库,是重要的爱国主义教育基地,某校组织八年级540名学生去莫高窟研学参观,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知这两种车的限载人数分别为40人和60人,求这两种客车各租用多少辆?9、请阅读求绝对值不等式和的解集过程.对于绝对值不等式,从图1的数轴上看:大于-3而小于3的绝对值是是小于3的,所以的解集为;对于绝对值不等式,从图2的数轴上看:小于-3而大于3的绝对值是是大于3的,所以的解集为或.已知关于x、y的二元一次方程组的解满足,其中m是负整数,求m的值.10、已知2a-1的算术平方根是3,3a+b-1的立方根是2,求a-2b的平方根。
专题12 二元一次方程组(简答题专练)【含答案】
![专题12 二元一次方程组(简答题专练)【含答案】](https://img.taocdn.com/s3/m/7542ff117dd184254b35eefdc8d376eeaeaa1725.png)
专题11:二元一次方程组(简答题专练)一、解答题1.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元;(2)41.6元/千克.解:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,根据题意可得:,200200800020x y y x +=⎧⎨-=⎩解得:,1030x y =⎧⎨=⎩小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a 元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.考点:1、一元一次不等式的应用;2、二元一次方程组的应用2.某人用2400元买进甲、乙两只股票在当甲股票升值15%,乙股票下跌10%时全部卖出,共获利润1350元(不含手续费、税费),试问此人买的甲、乙两只股票各是多少元?买了甲股票15000元,乙股票9000元.解:设买了甲股票x 元,乙股票y 元.依题意,得,2400015%10%1350x y x y +=⎧⎨-=⎩整理得.240003227000x y x y +=⎧⎨-=⎩解得.150009000x y =⎧⎨=⎩答:买了甲股票15000元,乙股票9000元.3.A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时出发相向而行,2小时后在途中相遇,然后甲返回A 地,乙继续前进,当甲返回到A 地时,乙离A 地还有2千米.甲、乙两人的速度各是多少?甲的速度为5.5千米/时,乙的速度为4.5千米/时.解:设甲的速度为x 千米/时,乙的速度为y 千米/时根据题意,得,解得.2()20222x y x y +=⎧⎨-=⎩ 5.54.5x y =⎧⎨=⎩答:甲的速度为5.5千米/时,乙的速度为4.5千米/时.4.已知关于x ,y 的方程组的解满足,求k 的值.21254x y k x y k +=-⎧⎨+=+⎩5x y +=2解:21,254,x y k x y k +=-⎧⎨+=+⎩①②,得,2⨯-②①399x k =+解得.把代入①,33x k =+33x k =+得,3321k k γ++=-解得 2.y k =--5,x y += ,3325k k ∴+--=解得.2k =5.某种电器产品,每件若以原定价的8折销售,可获利120元;若以原定价的6折销售,则亏损20元,该种商品每件的进价为多少元?该商品每件的进价为440元解:设该种商品的进价为x 元/件,原定价为y 元/件.依题意,得.解得.0.81200.620y x y x -=⎧⎨-=-⎩440700x y =⎧⎨=⎩答:该商品的进价为440元6.李师傅加工1个甲种零件和1个乙种零件的时间是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟求李师傅加工2个甲种零件和4个乙种零件共需多少分钟.李师傅加工2个甲种零件和4个乙种零件共需40分钟解:设李师傅加工1个甲种零件需要x 分钟,加工1个乙种零件需要y 分钟.依题意,得,35554985x y x y +=⎧⎨+=⎩①②由,得.+①②714140x y +=所以,则.220x y +=2440x y +=答:李师傅加工2个甲种零件和4个乙种零件共需40分钟7.在解方程组时,甲正确地解,乙把c 写错得到.若两人的运算过程均1014bx ay x cy +=⎧⎨-=⎩①②42x y =⎧⎨=-⎩24x y =⎧⎨=⎩无错误,求a ,b ,c 的值..1,a =3,b =5c =解:因为甲得到的解正确,所以把甲得到的代入原方程组,得42x y =⎧⎨=-⎩,42104214b a c -=⎧⎨+=⎩③④由④,解得.5c =已知乙将c 写错得到,因为a ,b 没有写错,24x y =⎧⎨=⎩所以将这个解代入方程①,得.⑤2410b a +=解由③⑤组成的方程组,得1,a =3b =所以.1,a =3,b =5c =8.判断方程组的解法是否正确,如果不正确,请写出正确的解法.27,617.x y x y +=⎧⎨-=⎩①②解法①:由①,得.③,把③代入①,得.可以为任意实数,从而y 也为任72y x =-2(72)7x x +-=x \意实数,原方程组有无数组解.∴解法②:由①,得.③,把③代入②,得.解得.把代入③,得72y x =-67217x x --=6x =6x =. 原方程组的解为.5y =-∴65x y =⎧⎨=-⎩见解析解:解:解法都不正确,其正确的解法如下:由①,得.③72y x =-把③代入②,得.67217x x --=()解得.把代入③,得.3x =3x =1y =原方程组的解为.∴31x y =⎧⎨=⎩9.解下列方程组:(1);(2).8962717x y x y -=⎧⎨+=-⎩①②1353()2(3)15x y x y x y ⎧+=⎪⎨⎪++-=⎩(1);(2)322x y ⎧=-⎪⎨⎪=-⎩3x y =⎧⎨=⎩解:(1),得.解得,4⨯-②①3774y =-2y =-把代入①,得.解得,2y =-89(2)6x -⨯-=32x =-原方程组的解为;∴322x y ⎧=-⎪⎨⎪=-⎩(2),1353()2(3)15x y x y x y ⎧+=⎪⎨⎪++-=⎩ 53155315x y x y +=⎧∴⎨-=⎩①②,得.解得③+①②1030x =3x =把③代入①得.解得,15315y +=0y =原方程组的解是.∴30x y =⎧⎨=⎩10.阅读下列解方程组的方法,然后解答问题:解方程组时,直接消元是很繁琐的,采用下面的解法则会简单许多.141516171819x y x y +=⎧⎨+=⎩①②解:得,所以.③-②①333x y +=1x y +=,得.④14⨯③141414x y +=,得,从而得.-①④2y =1x =-所以原方程组的解是.12x y =-⎧⎨=⎩(1)请你运用上述方法解方程组,201520162017201820192020x y x y +=⎧⎨+=⎩(2)猜测关于x ,y 的方程组,的解是什么?并用方程组的解加以验证.(1)2(1)2mx m y m nx n y n ++=+⎧⎨++=+⎩()m n ≠(1)(2),验证见解析.12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩解:(1),201520162017201820192020x y x y +=⎧⎨+=⎩①②,得-②①333,x y +=③1x y ∴+=,得④2015⨯③201520152015x y +=,得.把代入③,得,-①④2y =2y =21x +=解得,1x =-原方程组的解是;∴12x y =-⎧⎨=⎩(2)关于x ,y 的方程组,的解是,(1)2(1)2mx m y m nx n y n ++=+⎧⎨++=+⎩()m n ≠12x y =-⎧⎨=⎩(1)2(1)2mx m y m nx n y n ++=+⎧⎨++=+⎩①②当时,方程①左边右边,1,x =-2y =(1)2m m =-++⨯22m m =-++2m =+=方程②左边右边,(1)2n n =-++⨯222n n n =-++=+=是原方程组的解.12x y =-⎧∴⎨=⎩11.某服装点用6000购进A,B 两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价−进价),这两种服装的进价,标价如表所示.类型价格A 型B型进价(元/件)60100标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A 种服装按标价的8折出售,B 种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?(1)A 种服装购进50件,B 种服装购进30件;(2)2440元解:解:(1)设A 种服装购进x 件,B 种服装购进y 件,由题意,得,60100600040603800x y x y +=⎧⎨+=⎩解得:,5030x y =⎧⎨=⎩答:A 种服装购进50件,B 种服装购进30件;(2)由题意,得:3800-50(100×0.8-60)-30(160×0.7-100)=3800-1000-360=2440(元).答:服装店比按标价售出少收入2440元.12.若关于x 、y 的方程组和有相同的解,求a 、b 的值.451x y ax by -=⎧⎨+=-⎩393418x y ax by +=⎧⎨-=⎩11a b =⎧⎨=-⎩解:先解方程组 4539x y x y -⎧⎨+⎩==解得:23x y ⎧⎨⎩==将x=2、y=3代入另两个方程,得方程组:23161218a b a b +-⎧⎨-⎩==解得.11a b =⎧⎨=-⎩13.已知关于的方程组的解满足,则的取值.,x y 3=1331x y a x y a ++⎧⎨+=-⎩0x y +>a a>−1解:,31331x y a x y a +=+⎧⎨+=-⎩①②①+②得:4(x+y)=2+2a ,即x+y=,12a+代入x+y>0得:>0,12a+解得:a>−1.14.某足球协会举办了一次足球联赛,记分规则是:胜一场得3分,平一场得1分,负一场得0分.当比赛进行到12轮结束(每队均需比赛12场)时,甲队得分是19分,请你通过计算分析甲队胜几场、平几场、负几场?有三种可能性,即或或4,{7,1.x y z ===5,{4,3.x y z ===6,{1,5.x y z ===解:试题分析:设甲队胜x 场、平y 场、负z 场,则有这是一个不定方程,若把x 当成已12,{319.x y z x y ++=+=知数,可以得到由题意x ≥0、平y ≥0、负z ≥0,即解得3≤x ≤6,于是x 取193,{27.y x z x =-=-0,{1930,270.x x x ≥-≥-≥12134、5、6,由此可以得到三组解.有三种可能性,即或或4,{7,1.x y z ===5,{4,3.x y z ===6,{1,5.x y z ===考点:三元一次方程组15.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表所示:第一次第二次甲种货车辆数(单位:辆)25乙种货车辆数(单位:辆)36最大运货物吨数(单位:吨)15.535现租用该公司3辆甲种货车及4辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?660元.解:设甲种货车每辆运货x 吨,乙种货车每辆运货y 吨,由题意得:,2315.55635x y x y +=⎧⎨+=⎩解得,42.5x y =⎧⎨=⎩则货主应付运费为(元),()344 2.530660⨯+⨯⨯=答:货主应付运费660元.16.是否存在整数k ,使方程组的解中,x 大于1,y 不大于1,若存在,求出k 的值,若不存2+y=k 1x x y ⎧⎨-=⎩在,说明理由.存在;k 只能取3,4,5解:解:解方程组得 2+y=k 1x x y ⎧⎨-=⎩1323k x k y +⎧=⎪⎪⎨-⎪=⎪⎩∵x 大于1,y 不大于1从而得不等式组113223k k +⎧>⎪⎪⎨-⎪≤⎪⎩解之得2<k≤5又∵k 为整数∴k 只能取3,4,5答:当k 为3,4,5时,方程组的解中,x 大于1,y 不大于1.2+y=k 1x x y ⎧⎨-=⎩17.已知是二元一次方程组的解,求2m-n 的算术平方根.21x y =⎧⎨=⎩8 -1mx ny nx my +=⎧⎨=⎩2解:∵是二元一次方程组的解,21x y =⎧⎨=⎩8 -1mx ny nx my +=⎧⎨=⎩∴,解得,2821m n n m +=⎧⎨-=⎩32m n =⎧⎨=⎩,2===即2m-n 的算术平方根为2.故2.18.温州苍南马站四季柚,声名远播,今年又是一个丰收年,某经销商为了打开销路,对1 000个四季柚进行打包优惠出售.打包方式及售价如图所示.假设用这两种打包方式恰好装完全部柚子.(1)若销售a 箱纸盒装和a 袋编织袋装四季柚的收入共950元,求a 的值;(2)当销售总收入为7 280元时:①若这批四季柚全部售完,请问纸盒装共包装了多少箱,编织袋装共包装了多少袋.②若该经销商留下b(b >0)箱纸盒装送人,其余柚子全部售出,求b 的值.(1) a =5;(2)①纸盒装共包装了35箱,编织袋装共包装了40袋;②b 为9.解:(1)由题意得64a +126a =950,得a =5.(2)①设纸盒装共包装了x 箱,编织袋装共包装了y 袋.由题意得解得∴纸盒装共包装了35箱,编织袋装共包装了40袋.②当8x +18y =1 000时,得x ==125-,由题意得64+126y =7 280,得y =40-.∵x ,y ,b 都为整数,且x≥0,y≥0,b >0,∴b =9,x =107,y =8.∴b 为9.19.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱解:解:(1)设去了x 个成人,y 个学生,依题意得,,解得,1240400.5400x y x y +=⎧⎨+⨯=⎩84x y =⎧⎨=⎩答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.20.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.解:(1)设这批学生有x 人,原计划租用45座客车y 辆,根据题意得: ,()=4515=601x y x y +⎧⎨-⎩解得: ,=240=5x y ⎧⎨⎩答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5-1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.21.阅读理解:解方程组时,如果设则原方程组可变形为关于、的方程组215432x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩11,,a b x y ==a b ,解这个方程组得到它的解为由求的原方程组的解为,利25342a b a b -=⎧⎨+=⎩21a b =⎧⎨=-⎩112,1,x y ==-121x y ⎧=⎪⎨⎪=-⎩用上述方法解方程组:52113213x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩1312x y ⎧=⎪⎪⎨⎪=-⎪⎩解:设=m ,=n ,则原方程组可变形为关于m 、n 的方程组,1x 1y 52113213m n m n +=⎧⎨-=⎩①②①+②得:8m =24,解得:m =3,将m =3代入①得:n =−2,则方程组的解为:,32m n =⎧⎨=-⎩由=3,=−2,1x 1y故方程组的解为:.1312x y ⎧=⎪⎪⎨⎪=-⎪⎩22.某商场计划拨款万元从厂家购进台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:950甲种每台元,乙种每台元,丙种每台元.150021002500若商场同时购进其中两种不同型号的电视机台,用去万元,请你研究一下商场的进货方案;()1509若商场销售一台甲、乙、丙电视机分别可获利元,元,元,在以上的方案中,为使获利()2150200250最多,商场应选择哪种进货方案?有种方案.方案一:甲种台,乙种台;方案二:甲种台,丙种台;购买甲种电视机()1225253515()2台,丙种电视机台获利最多.所以应选择方案二.3515解:(1)①设购进甲台,乙台,x ()50x -;()1500x 210050x 90000+-=∴ ;x 25=∴ 购进甲台,乙台.2525②设购进甲台,丙台x ()50x -;()1500x 250050x 90000+-=∴ ;x 35=购进甲台,丙台.3515③设购进乙台,丙台x ()50x -;()2100x 250050x 90000+-=∴ (舍)x 87.5=所以选择有种方案.方案一:甲种台,乙种台;22525方案二:甲种台,丙种台;3515(2)利润应为:方案一:元,25150252008750⨯+⨯=方案二:元,35150152509000⨯+⨯=∵ 元元,∴ 方案二获利多,90008750>购买甲种电视机台,丙种电视机台获利最多.所以应选择方案二.351523.一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费元,问分别需甲、乙两种车型各几辆?8200(2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知他们的总辆数为辆,你能16通过列方程组的方法分别求出几种车型的辆数吗?(3)求出哪种方案的运费最省?最省是多少元?(1)需要甲车8辆,乙车10辆(2)有三种运送方案:①甲车型8辆,丙车型8辆;②甲车型6辆,乙车型5辆,丙车型5辆;③甲车型4辆,乙车型10辆,丙车型2辆;(3)甲车型4辆,乙车型10辆,丙车型2辆时,最少运费是7800元.解:(1)设需要甲车辆,乙车辆x y 由题意可得: 581204005008200x y x y +=⎧⎨+=⎩解得: 810x y =⎧⎨=⎩需要甲车8辆,乙车10辆∴(2)设甲车有辆,乙车有辆,丙车有辆x y z 由题意可得: 165810120x y z x y z ++=⎧⎨++=⎩消去可得:z 5240,x y +=285x y ∴=-由于是非负整数,且不大于16,得:,x y 0,5,10,15y =由是非负整数,解得z 8640,5,10852x x x y y y z z z ===⎧⎧⎧⎪⎪⎪===⎨⎨⎨⎪⎪⎪===⎩⎩⎩ 有三种运送方案:∴①甲车型8辆,丙车型8辆;②甲车型6辆,乙车型5辆,丙车型5辆;③甲车型4辆,乙车型10辆,丙车型2辆;(3)三种方案得运费分别是:①;400860088000⨯+⨯=②;4006500560057900⨯+⨯+⨯=③.40045001060027800⨯+⨯+⨯=甲车型4辆,乙车型10辆,丙车型2辆时,最少运费是7800元.∴24.为了参加2011年国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.自行车路段的长度为3千米,长跑路段的长度2千米.解:设自行车路段和长跑路段的长度分别是x 米、y 米则500015500200x y x y +=⎧⎪⎨+=⎪⎩解得:x=3000, y=2000答:自行车路段和长跑路段的长度分别是3000米、2000米25.在等式y =ax 2+bx +c 中,当x =﹣1时,y =3;当x =0时,y =1,当x =1时,y =1,求这个等式中a 、b 、c 的值.a =1,b =﹣1,c =1.解:由题意得,,311a b c c a b c -+=⎧⎪=⎨⎪++=⎩解得,a =1,b =﹣1,c =1.26.某商贸公司有、两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:A B 体积(立方米/件)质量(吨/件)型商品A 0.80.5型商品B 21(1)已知一批商品有、两种型号,体积一共是20立方米,质量一共是10.5吨,求、两种型A B A B 号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?(1)种型号商品有5件,种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运A B 送1件B 型产品,运费最少为2000元解:(1))设A 、B 两种型号商品各x 件、y 件,,0.82200.510.5x y x y +=⎧⎨+=⎩解得,58x y =⎧⎨=⎩答:种型号商品有5件,种型号商品有8件;A B (2)①按车收费:(辆),10.5 3.53÷=但是车辆的容积=18<20,3辆车不够,需要4辆车,(元);63⨯60042400⨯=②按吨收费:20010.5=2100(元);⨯③先用车辆运送18m 3,剩余1件B 型产品,共付费3600+1200=2000(元),⨯⨯∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.27.阅读以下材料:若x +3y +5z =5,x +4y +7z =7,求x +y +z 的值.解:x +y +z =3(x +3y +5z )﹣2(x +4y +7z )=3×5﹣2×7=1.答:x +y +z 的值的为1.根据以上材料提供的方法解决如下问题:若2x +5y +4z =6,3x +y ﹣7z =﹣4,求x +y ﹣z 的值.x+y-z=0解:4(2x +5y +4z )+6(3x +y ﹣7z )=8x +20y +16z +18x +6y ﹣42z=26x +26y ﹣26z=26(x +y ﹣z )=4×6+6×(﹣4)=24-24=0.解得:x +y ﹣z =0.【点评】本题考查了解三元一次方程组,解答本题的关键是明确题意,求出所求式子的值.28.定义运算“*”,规定,其中a ,b 为常数,且,,求的值.2*x y ax by =+1*25=2*16=2*310解:解:根据题中的新定义化简已知等式,得,解得,则.2546a b a b +=⎧⎨+=⎩12a b =⎧⎨=⎩2*34364610c =+=+=故的值为10.2*329.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以=11∆∆=A BC B CA S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.11∆∆=A BC C AB S S (1)直接写出S 1=(用含字母a 的式子表示).请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值.(1)19a ;(2)315;(3).23解:解:(1)连接A1C ,∵B 1C=2BC ,A 1B=2AB ,∴,,,122BCA ABC S S a == 122BCA ABC S S a == 1112A B C BCA S S = ∴,1144A B C ABC S S a == ∴,1166A B B ABC S S a == 同理可得出:,11116A AC CB C S S a== ∴S 1=6a+6a+6a+a=19a ;故19a ;(2)过点作于点,C CG BE ⊥G 设,,BPF S x ∆=APE S y ∆=;, 1·702BPC S BP CG ∆==1·352PCE S PE CG ∆==.∴1·7022135·2BPC PCE BP CG S S PE CG ∆∆===,即.∴2BP EP =2BP EP =同理,.APB APES BP S PE ∆∆=.2APB APE S S ∆∆∴=.①842x y ∴+=,, 8440APB BPD S AP x S PD∆∆+==3530APC PCD S AP y S PD ∆∆+==.②∴84354030x y ++=由①②,得,5670x y =⎧⎨=⎩.315ABC S ∆∴=(3)设,,如图所示.BPF S m ∆=APE S n ∆=依题意,得,.APF APC S S m ∆∆==BPC BPF S S m ∆∆==.PCE S m n ∆∴=-, BPC APB APEPCE S S BP S S PE ∆∆∆∆==.∴2m m nm n =-,2()m m n mn ∴-=,0m ≠ .22m n n ∴-=.∴23n m =.∴23APE BPF S S ∆∆=30.如图,A 、B 两地有公路和铁路相连,在这条路上有一家食品厂,它到B 地的距离是到A 地的2倍,这家厂从A 地购买原料,制成食品卖到B 地.已知公路运价为1.5元/(公里•吨),铁路运价为1元/(公里•吨),这两次运输(第一次:A 地→食品厂,第二次:食品厂→B 地)共支出公路运费15600元,铁路运费20600元.问:(1)这家食品厂到A 地的距离是多少?(2)这家食品厂此次买进的原料每吨5000元,卖出的食品每吨10000元,此批食品销售完后工厂共获利多少元?(1)这家食品厂到A 地的距离是50公里;(2)这家食品厂此批食品销售完共获利元.解:(1)设这家食品厂到A 地的距离是x 公里,到B 地的距离是y 公里,根据题意,得: ,22030100x y x y =⎧⎨+=++⎩解得: .50100x y =⎧⎨=⎩答:这家食品厂到A 地的距离是50公里.(2)设这家食品厂此次买进的原料m 吨,卖出食品n 吨,根据题意得: ,1.520 1.530156001(5020)1(10030)20600m m m n ⨯+⨯=⎧⎨⨯-+⨯-=⎩解得: ,220200m n =⎧⎨=⎩∴10000n ﹣5000m ﹣15600﹣20600=.答:这家食品厂此批食品销售完共获利元.31.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(1)每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车.(2) ①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.解:(1)设每名熟练工每月可以安装x 辆电动车,新工人每月分别安装y 辆电动汽车,根据题意得:,282314x y x y +=⎧⎨+=⎩解之得.42x y =⎧⎨=⎩答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;(2)设抽调熟练工m 人,招聘新工人n 名,由题意得:12(4m+2n )=240,整理得,n=10-2m ,∵0<n <10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.32.阅读探索知识累计解方程组()()()()12262126a b a b ⎧-++=⎪⎨-++=⎪⎩解:设a﹣1=x ,b+2=y ,原方程组可变为2626x y x y +=⎧⎨+=⎩解方程组得:即所以此种解方程组的方法叫换元法.22x y =⎧⎨=⎩1222a b -=⎧⎨+=⎩30a b =⎧⎨=⎩(1)拓展提高运用上述方法解下列方程组:122435212535a b a b ⎧⎛⎫⎛⎫-++= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪-++= ⎪ ⎪⎪⎝⎭⎝⎭⎩(2)能力运用已知关于x ,y 的方程组的解为,直接写出关于m 、n 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩53x y =⎧⎨=⎩的解为_____________.()()()()11112253325332a m b n c a m b n c ⎧++-=⎪⎨++-=⎪⎩(1) (2)95a b =⎧⎨=-⎩23m n =-⎧⎨=⎩解:(1)拓展提高设−1=x ,+2=y ,3a 5b方程组变形得: ,24{25x y x y +=+=解得: ,即 ,21x y =⎧⎨=⎩123{215a b -=+=解得: ;9{5a b ==-(2)能力运用设 ,53){3(2)m x n y +=-=(可得 ,53)5{3(2)3m n +=-=(解得: ,2{3m n =-=故答案为2{3m n =-=33.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM ∶AN =8∶9,问通道的宽是多少?1解:设通道的宽是xm ,AM =8ym.因为AM ∶AN =8∶9,所以AN =9ym.所以解得22418,1813.x y x y +=⎧⎨+=⎩1,2.3x y =⎧⎪⎨=⎪⎩答:通道的宽是1m.故答案为1.34.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?(1) 分别需甲8辆、乙10辆;(2) 有二种运送方案:①甲车型6辆,乙车型5辆, 丙车型5辆;②甲车型4辆,乙车型10辆, 丙车型2辆详解:(1)设需甲车型x 辆,乙车型y 辆,得:,581204005008200x y x y ⎧⎨⎩+=+=解得.810x y ⎧⎨⎩==答:分别需甲车型8辆,乙车型10辆.(2)设需甲车型x 辆,乙车型y 辆,丙车型z 辆,得:,165810120x y z x y z ⎧⎨⎩++=++=消去z 得5x +2y =40,,285x y -=因x ,y 是正整数,且不大于16,得y =5或10,由z 是正整数,解得6451052x x y y z z ⎧⎧⎪⎪⎨⎨⎪⎪⎩⎩===,=,==有二种运送方案:①甲车型6辆,乙车型5辆,丙车型5辆;②甲车型4辆,乙车型10辆,丙车型2辆35.电脑中有一种游戏——蜘蛛纸牌,开始游戏前有500分的基本分,游戏规则如下:①操作一次减x 分;②每完成一列加y 分.有一次小明在玩这种“蜘蛛纸牌”游戏时,随手用表格记录了两个时段的电脑显示:第一时段第二时段完成列数25分数634898操作次数66102(1)通过列方程组,求x ,y 的值;(2)如果小明最终完成此游戏(即完成10列),分数是1 182,问他一共操作了多少次?(1)(2)3181100x y =⎧⎨=⎩解:(1)依题意得 2666345005102898500y x y x -=-⎧⎨-=-⎩解得 1100x y =⎧⎨=⎩(2)设他一共操作了a 次,则10×100-a×1=1 182-500,解得a =318.答:他一共操作了318次.。
二元一次方程组专题练习(含答案)
![二元一次方程组专题练习(含答案)](https://img.taocdn.com/s3/m/8ee015ffc281e53a5902ff91.png)
二元一次方程组专题练习(含答案在卷尾)一、选择题(本大题共37小题,共111.0分)1. 对于非零的两个实数m ,n ,定义一种新运算,规定m ∗n =am −bn ,若2∗(−3)=8,5∗3=−1,则(−3)∗(−2)的值为( )A. 1B. −1C. −6D. 62. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( )A. {x15−15=y x12+12=yB. {x15+15=y x12−12=yC. {x15−2460=y x 12−1560=y D. {x15+2460=y x 12−1560=y 3. 爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下时刻9:009:4512:00碑上的数是一个两位数,数字之和是9十位与个位数字与9:00时所看到的正好相反比9:00时看到的两位数中间多了个09:00时看到的两位数是( )A. 54B. 45C. 36D. 274. 小明在解关于x 、y 的二元一次方程组{x +⊗y =3,3x −⊗y =1时得到了正确结果{x =⊕,y =1. 后来发现“⊗”“⊕”处被墨水污损了,请你帮他找出⊗、⊕处的值分别是( )A. ⊗= 1,⊕= 1B. ⊗= 2,⊕ = 1C. ⊗= 1,⊕ = 2D. ⊗= 2,⊕= 25. 如图,其中直线上每个点的坐标都是二元一次方程2x −y =2的解的是( )A. B.C. D.6. 《九章算术》中记载:“今有善田一亩,价三百,恶田七亩,价五百.今并买一頃,价钱一万.问善、恶田各几何?”其大意是:今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田共1顷(1顷=100亩),价线10000钱.问好、坏田各买了多少亩?设好田买了x 亩,坏田买了y 亩,根据题意可列方程组为( )A. {x +y =300100x +5007y =10000B. {x +y =100300x +5007y =10000C. {x +y =1005007x +300y =10000 D. {x +y =100500x +3007y =100007. 足球比赛中,每场比赛都要分出胜负,每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x ,负的场数为y ,则可列方程组为( )A. {x +y =83x −y =12B. {x −y =83x −y =12C. {x +y =183x +y =12D. {x −y =83x +y =128. 夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A. {x +y =5300200x +150y =30 B. {x +y =5300150x +200y =30 C. {x +y =30200x +150y =5300D. {x +y =30150x +200y =53009. 一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x 米,宽为y 米,根据题意,得( )A. {x =3y,x +3=y −4.B. {x =3y,x −3=y +4.C. {3x =y,x −3=y +4.D. {3x =y,x +3=y −4.10. 已知{x =2y =m 是二元一次方程5x +3y =1的一组解,则m 的值是( )A. 3B. −3C. 113D. −11311. 小明和小莉出生于2000年12月份,他们的生日不是同一天,但都是星期一,且小明比小莉出生早,两人出生日期和是22,那么小莉的生日是( )A. 15号B. 16号C. 17号D. 18号12. 在下列方程中:①3x +13=8;②x−23+2y =4;③3x +3y =1;④x 2=5y +1;⑤y =x ;⑥2(x −y )−3(x +y2)=x +y ,是二元一次方程的有( )A. 2个B. 3个C. 4个D. 5个13. 下列说法中正确的是( )A. 二元一次方程只有一个解B. 二元一次方程组有无数个解C. 二元一次方程组的解必是它所含的二元一次方程的公共解D. 判断一组解是否为二元一次方程组的解,只需代入其中一个二元一次方程即可14. 若方程组{x −y =02ax +by =4与方程组{2x +y =3ax +by =3有相同的解,则a 、b 的值分别为( ) A. 1,2B. 1,0C. 13,−23D. −13,2315. 用加减法解方程组{3x −4y =10 ①5x +6y =42 ②,先消去y ,需要用( )A. ①×3+②×2B. ①×3−②×2C. ①×4+②×6D. ①+② 16. 已知方程组{3x −17y =12.37x −13y =18.7,则x +y 的值为( )A. 6.4B. −6.4C. 1.6D. −1.617. 用加减法解方程组{2x −3y =53x +2y =−4时,下列变形正确的是( )A. {6x −9y =56x +4y =−4 B. {4x −6y =109x +6y =−12 C. {6x −3y =156x +2y =−12D. {2x −6y =103x +6y =−1218. 已知方程组{2x +y =3x −2y =5,则2x +6y 的值是( )A. −2B. 2C. −4D. 419. 某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有( )种.A. 3B. 4C. 5D. 620. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A. {y =x +4.50.5y =x −1B. {y =x +4.5y =2x −1C. {y =x −4.50.5y =x +1D. {y =x −4.5y =2x −121. 某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A. {x +7y =16x +13y =28 B. {x +(7−2)y =16x +13y =28C. {x +7y =16x +(13−2)y =28 D. {x +(7−2)y =16x +(13−2)y =2822. 用加减法解方程组{2a +2b =3, ①3a +b =4, ②,最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×223. 已知关于x 、y 的二元一次方程组{2x +y =ax −y =3的解为{x =5y =b ,则a +b 的值为( )A. 14B. 10C. 9D. 824. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A. {7x +7=y9(x −1)=yB. {7x +7=y9(x +1)=yC. {7x −7=y9(x −1)=yD. {7x −7=y9(x +1)=y25. 已知方程组{a −b =62a +b =m中,a ,b 互为相反数,则m 的值是( )A. 0B. −3C. 3D. 926. 一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x 只,兔有y 只,则可列二元一次方程组( )A. {x +y =102x +4y =34 B. {x +y =102x +2y =34 C. {x +y =104x +4y =34D. {x +y =104x +2y =3427. 某校在配备现代化教学设备时,计划购买多媒体教学一体机和学生电脑共120台.已知多媒体教学一体机每8000元,学生电脑每台2500元,若购买这两种设备共花费52万元,求学校购买多媒体教学一体机和学生电脑各多少台?设购买多媒体教学一体机x 台、学生电脑y 台,根据题意列出的方程组正确的是( )A. {x +y =1208000x +2500y =52 B. {x +y =1200.8x +0.25y =52 C. {x +y =520.8x +0.25y =120D. {x +y =1208000x +2500y =5200028. 根据如图提供的信息,小红去商店买一只水瓶和一只杯子应付( )A. 30元B. 32元C. 31元D. 34元29. 如图,由七个完全一样的小长方形组成的大长方形ABCD ,CD =7,长方形ABCD 的周长为( )A. 32B. 33C. 34D. 3530. 如图,直线a//b ,∠1的度数比∠2的度数大56°,若设∠1=x°,∠2=y°,则可得到的方程组为( )A. {x =y −56x +y =180 B. {x =y +56x +y =180C. {x =y −56x +y =90 D. {x =y +56x +y =9031. 若二元一次方程3x −y −7=0,2x +3y −1=0和2x +y −m =0有公共解,则m 的取值为( )A. −2B. −1C. 3D. 432. 已知{x =−2y =n 是二元一次方程mx +4y =2的一个解,则代数式m −2n 的值为( )A. −2B. 2C. −1D. 133. 《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x 两,y 两,列方程组为( )A. {x +y =164x +y =x +5y B. {5x +6y =165x +y =x +6y C. {5x +6y =164x +y =x +5yD. {6x +5y =165x +y =x +6y34. 若二元一次方程组{ax +2y =13x +y =3有唯一解,则a 的值为( )A. a ≠0B. a ≠6C. a =0D. a 为任意数35. 方程组{2x +y =◼x +y =3的解为{x =2y =◼,则被遮盖的前后两个数分别为( )A. 1、2B. 1、5C. 5、1D. 2、436. 某快递公司每天上午9:00−10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为( )A. 9:15B. 9:20C. 9:25D. 9:3037. 已知关于x ,y 的二元一次方程组{x +3y =4−ax −y =3a,给出下列结论中正确的是( )①当这个方程组的解x ,y 的值互为相反数时,a =−2; ②当a =1时,方程组的解也是方程x +y =4+2a 的解; ③无论a 取什么实数,x +2y 的值始终不变; ④若用x 表示y ,则y =−x2+32;A. ①②B. ②③C. ②③④D. ①③④二、填空题(本大题共16小题,共48.0分)38. 我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组______.39. 如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是______.40. 对于x ,y 定义一种新运算“◼”,x ◼y =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3◼5=15,4◼7=28,则1◼1的值为______.41. 已知a 、b 满足方程组{a +2b =82a +b =7,则a +b 的值为______.42. 小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.从小华家到学校的下坡路长______ 米.43.如图,已知直线y=−12x+n和直线y=mx−2(m≠−12)交于点A(−2,2),则关于x、y的方程组{y=−12x+ny=mx−2的解是______.44.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好了拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为______.45.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是______次.46.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是______cm2.47.已知关于x,y的方程3x−2y=2k+1和y−2x=4的公共解满足x−y=3,则k=______.48.若x2b−1+5y3a−2b=7是二元一次方程,则a=______,b=______.49.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=⋯=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数y=12x的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是______.50. 由2x +y =3可以得到用x 表示y 的式子为______. 51. 方程x +2y =5的正整数解有______个.52. 将方程x +4y =2改写成用含y 的式子表示x 的形式______.53. 《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为______. 三、计算题(本大题共6小题,共36.0分)54. 解方程组(1){x =y +12x +y =8 (2){x 2−y +13=13x +2y =1055. 解下列方程组:(1){x +y =222x +y =40(2){x 2+y3=25(x −y −1)=4(1−y)−256. 已知:用3辆A 型车和2辆B 型车载满货物一次可运货共19吨;用2辆A 型车和3辆B 型车载满货物一次可运货共21吨.(1)1辆A 型车和1辆B 型车都载满货物一次分别可以运货多少吨?(2)某物流公司现有49吨货物,计划同时租用A 型车m 辆,B 型车n 辆,一次运完,且恰好每辆车都载满货物. ①求m 、n 的值;②若A 型车每辆需租金130元/次,B 型车每辆需租金200元/次.请求出租车费用最少是多少元?57. 已知√x +2y −3与(x −2y −5)2互为相反数,求x +4y 的算术平方根.58. 关于x ,y 的方程组{x +y =5kx −y =9k 的解满足2x +3y =6,试求k 的值.59. 甲、乙两人共同解方程组{ax +5y =15 ①4x −by =−2 ②由于甲看错了方程①中的a ,得到方程组的解为{x =−3y =−1乙看错了方程②中的b ,得到方程组的解为{x =5y =4.试计算a 2011+(−110b)2011的值.四、解答题(本大题共19小题,共152.0分)60. 方程组{x +y =−13x −2y =7的解满足2x −ky =10(k 是常数).(1)求k 的值;(2)求出关于x ,y 的方程(k −1)x +2y =13的正整数解.61. 列方程组解应用题:某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如表:假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?62.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?63.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.64. 解方程组:{x −3y =3x +6y =665. 时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?66. 林华在2017年共两次到某商场按照标价购买了A ,B 两种商品,其购买情况如下表:(1)分别求出A ,B 两种商品的标价;(2)最近商场实行“迎2018新春”的促销活动,A ,B 两种商品都打折且折扣数相同,于是林华前往商场花1062元又购买了9个A 商品和8个B 商品,试问本次促销活动中A ,B 商品的折扣数都为多少?在本次购买中,林华共节省了多少钱?67. 某面粉加工厂要加工一批小麦,2台大面粉机和5台小面粉机同时工作2小时共加工小麦1.1万斤;3台大面粉机和2台小面粉机同时工作5小时共加工小麦3.3万斤. (I)1台大面粉机和1台小面粉机每小时各加工小麦多少万斤?(Ⅱ)该厂现有9.45万斤小麦需要加工,计划使用8台大面粉机和10台小面粉机同时工作5小时,能否全部加工完?请你帮忙计算一下.68. 解方程组{2(x +y)−(x −y)=3(x +y)−2(x −y)=1x的图象相69.已知一次函数y=kx+b的图象经过点(−1,−5),且与正比例函数y=12交于点(2,a),求(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.70.体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?71.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.72.某种商品A的零售价为每件900元,为了适应市场竞争,商店按零售价的九折优惠后,再让利40元销售,仍可获利10%,①这种商品A的进价为多少元?②现有另一种商品B进价为600元,每件商品B也可获利10%.对商品A和B共进货100件,要使这100件商品共获纯利6670元,则需对商品A、B分别进货多少件?73.邮购每册6元的某种杂志,邮寄费和优惠率如表:两次邮购这种杂志共200册,总计金额1140元,两次邮购杂志各多少册?74. 某商店分别以标价的8折和9折卖了两件不同品牌的衬衫,共收款364元.已知这两件衬衫标价的和是420元,这两件衬衫的标价各多少元?75. 某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?76. 解方程组:(1){x −4y =−12x +y =16;(2)若方程组{3x +5y =k +22x +3y =k 的解x 和y 的和为0,求k 的值.77. 小红和小丽共同解关于x 、y 的方程组{ax +5y =154x −by =−2,由于小红看错了a 的值,求得的解是{x =−3y =−1,小丽看错了b的值,求得的解是{x =5y =4.(1)你能求出a ,b 的正确的值吗? (2)方程组的正确的解为多少?78. 如图,长青化工厂与A 、B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B 地,已知公路运价为2元/(吨⋅千米),铁路运价为1.5元/(吨⋅千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨? (2)这批产品的销售款比原料费与运输费的和多多少元?答案和解析1.【答案】A【解析】 【分析】本题考查了实数的运算,二元一次方程组的应用,根据题意可得{2a −(−3)b =85a −3b =−1,解得a ,b 值,再利用新运算规定,代入即可求得答案. 【解答】 解:根据题意可得{2a −(−3)b =85a −3b =−1, 解得:{a =1b =2, 即m ∗n =am −bn =m −2n ,则(−3)∗(−2)=(−3)−2×(−2)=−3+4=1. 故选A .2.【答案】D【解析】 【分析】设通讯员到达某地的路程是x 千米,原定的时间为y 小时,根据通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟列出方程组.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组. 【解答】解:设通讯员到达某地的路程是x 千米,原定的时间为y 小时,由题意得: {x15+2460=y x 12−1560=y ,故选:D .3.【答案】D【分析】本题考查了二元一次方程组的运用,及二元一次方程组的解法.正确理解题意并列出方程组是解题的关键.设小明9:00时看到的两位数,十位数为x ,个位数为y ,根据两位数之和为9可列一个方程,再根据匀速行驶,9:00~9:45时行驶的里程数除以时间等于9:45~12:00时行驶的里程数除以时间列出第二个方程,解方程组即可. 【解答】解:设小明9时看到的两位数,十位数为x ,个位数为y ,即为10x +y ;则9:45时看到的两位数为x +10y ,9:00~9:45时行驶的里程数为:(10y +x)−(10x +y);则12:00时看到的数为100x +y ,9:45~12:00时行驶的里程数为:(100x +y)−(10y +x);由题意列方程组得:{x +y =910y+x−(10x+y)34=100x+y−(10y+x)94,解得:{x =2y =7,所以9:00时看到的两位数是27, 故选:D .4.【答案】B【解析】 【分析】本题考查的是二元一次方程组的解法有关知识,把x ,y 的值代入原方程组,可得关于“⊗”、“⊕”的二元一次方程组,解方程组即可. 【解答】解:将{x =⊕y =1代入方程组,得到{⊕+⊗=3①3⊕−⊗=1②, ①+②,得4⊕=4, 即⊕=1;将⊕=1代入②,得3−⊗=1, 即⊗=2.5.【答案】C【解析】【分析】本题主要考查了一次函数与二元一次方程的关系,将方程转化为函数关系进而得出与坐标轴交点坐标是解题关键.根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵2x−y=2,∴y=2x−2,∴当x=0,y=−2,当y=0,x=1,∴一次函数y=2x−y与y轴交于点(0,−2),与x轴交于点(1,0),即可得出C符合要求.故选C.6.【答案】B【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组.设好田买了x亩,坏田买了y亩,根据等量关系:好田1亩,价值300钱;坏田7亩,价值500钱,共买好、坏田共1顷(1顷=100亩),价值10000钱,列出方程组.【解答】解:1顷=100亩,设好田买了x亩,坏田买了y亩,依题意有:{x+y=100300x+5007y=10000.故选:B.7.【答案】A【分析】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.设这个队胜x 场,负y 场,根据在8场比赛中得到12分,列方程组即可.【解答】解:设这个队胜x 场,负y 场,根据题意,得{x +y =83x −y =12. 故选:A .8.【答案】C【解析】【分析】本题直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.【解答】解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:{x +y =30200x +150y =5300故选:C .9.【答案】B【解析】【分析】本题考查二元一次方程组的应用,设未知数找等量关系是解决问题的关键,学会把问题转化为方程,属于中考常考题型.这个长方形的长为x 米,宽为y 米,根据等量关系:长是宽的3倍;长减少3m ,宽增加4m ,这个长方形就变成一个正方形,列出方程组即可.【解答】解:设这个长方形菜园的长为x 米,宽为y 米,根据题意,得:{x =3y x −3=y +4. 故选B .10.【答案】B【解析】解:把{x =2y =m代入二元一次方程5x +3y =1得: 10+3m =1,解得:m =−3,故选:B .知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m 的一元一次方程,从而可以求出m 的值.此题考查的知识点是二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数m 为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.11.【答案】D【解析】【分析】本题考查了二元一次方程组的应用,注意了解生活常识:出生日不是同一天,但都是星期一,则他们相隔的天数应是7的倍数.设小明的生日是12月份的x 号,小莉的生日是12月份的y 号,则根据“都是星期一,小明比小莉出生早”、“两人出生日期和是22”列出方程组并解答.【解答】解:设小明的生日是12月份的x 号,小莉的生日是12月份的y 号,则{y −x =7,y +x =22或{y −x =14,y +x =22或{y −x =21,y +x =22或{y −x =28,y +x =22,解得{x =7.5,y =14.5(不是整数,舍去)或{x =4,y =18或{x =0.5,y =21.5(不是整数,舍去)或{x =−3,y =25(不合题意,舍去).综上所述,小莉的生日是18号.故选D .12.【答案】B【解析】【分析】本题考查二元一次方程的定义,解题的关键是正确理解二元一次方程的定义,本题属于基础题型.利用二元一次方程的定义:含有两个未知数,且未知数的最高次数为1次,这样的整式方程为二元一次方程,找出符合题意的选项即可.【解答】解:②x−23+2y=4;⑤y=x;⑥2(x−y)−3(x+y2)=x+y是二元一次方程,一共3个.故选B.13.【答案】C【解析】【解答】解:A选项,二元一次方程有无数组解,故A选项说法错误;B选项,二元一次方程组可能只有一组解,故B选项说法错误;C选项,二元一次方程组的解必是它所含的二元一次方程的公共解,故C选项说法正确;D选项,判断一组解是否为二元一次方程组的解,需分别代入两个二元一次方程,故D 选项说法错误.故选:C.【分析】根据二元一次方程的解及二元一次方程组的解的定义,直接判断即可.本题主要考查二元一次方程的解,二元一次方程组的解,解决此题的关键是熟练掌握相关的定义.14.【答案】A【解析】【分析】本题考查二元一次方程组的解,能够抓住两个方程组的解相同的条件,重新组合方程,再分别求解是解题的关键.由两个方程组的解相同这个条件,可以重新组合两个方程组为{2x +y =3x −y =0,{ax +by =32ax +by =4,即可求解. 【解答】解:解{2x +y =3x −y =0得:{x =1y =1, 把{x =1y =1代入方程组{ax +by =32ax +by =4, 得:{a +b =32a +b =4, 解得:{a =1b =2, 故选A .15.【答案】A【解析】解:用加减法解方程组{3x −4y =10 ①5x +6y =42 ②,先消去y ,需要用①×3+②×2. 故选:A .用加减消元法消去y 即可.本题考查的是用加减消元法解二元一次方程组. 16.【答案】C【解析】【分析】此题考查了解二元一次方程组的基本方法,同时注意此题中的整体思想.首先根据方程组解的定义正确求出方程组的解,然后计算出x +y 或直接让两方程相减求解.【解答】解:{3x −17y =12.3①7x −13y =18.7②, ②−①得:4x +4y =6.4,∴x +y =1.6.故选C .17.【答案】B【解析】解:用加减法解方程组{2x −3y =53x +2y =−4时,变形为:{4x −6y =109x +6y =−12, 故选:B .观察两方程中y 的系数特征,即可得到结果.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】C【解析】【分析】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.两式相减,得x +3y =−2,所以2(x +3y)=−4,即2x +6y =−4.【解答】解:两式相减,得x +3y =−2,∴2(x +3y)=−4,即2x +6y =−4,故选:C .19.【答案】B【解析】解:设宾馆有客房:单人间x 间、二人间y 间、三人间z 间,根据题意可得, {x +2y +3z =18x +y +z =9, 解得:y +2z =9,y =9−2z ,∵x ,y ,z 都是小于9的正整数,当z =1时,y =7,x =1;当z =2时,y =5,x =2;当z =3时,y =3,x =3当z =4时,y =1,x =4当z =5时,y =−1(不合题意,舍去)∴租房方案有4种.故选:B .首先设宾馆有客房:单人间x 间、二人间y 间、三人间z 间,根据题意可得方程组:{x +2y +3z =18x +y +z =9,解此方程组可得y +2z =9,又由x ,y ,z 是非负整数,即可求得答案此题考查了三元一次不定方程组的应用.此题难度较大,解题的关键是理解题意,根据题意列方程组,然后根据x ,y ,z 是整数求解,注意分类讨论思想的应用.20.【答案】A【解析】解:设木条长x 尺,绳子长y 尺,那么可列方程组为:{y =x +4.50.5y =x −1. 故选:A .直接利用“绳长=木条长+4.5;12绳长=木条长−1”分别得出等式求出答案.此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键. 21.【答案】D【解析】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为{x +(7−2)y =16x +(13−2)y =28, 故选:D .根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组.本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.22.【答案】D【解析】根据二元一次方程组的解法即可得到结论.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.解:用加减法解方程组{2a +2b =3, ①3a +b =4, ②,最简单的方法是①−②×2, 故选:D . 23.【答案】A【解析】把{x =5y =b代入方程组,求出a 、b 的值,再求出a +b 即可. 本题考查了二元一次方程组的解和解二元一次方程组,能得到关于a 、b 的方程组是解此题的关键.解:∵关于x 、y 的二元一次方程组{2x +y =a x −y =3的解为{x =5y =b, ∴代入得:{2×5+b =a 5−b =3, 解得:a =12,b =2,∴a +b =12+2=14,故选:A .24.【答案】A【解析】【试题解析】【分析】本题考查了由实际问题抽象出二元一次方程组;根据题意得出方程组是解决问题的关键. 设该店有客房x 间,房客y 人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【解答】解:设该店有客房x 间,房客y 人;根据题意得:{7x +7=y 9(x −1)=y, 故选:A .25.【答案】C【解析】解:{a −b =6①2a +b =m②①+②,可得3a =m +6,解得a =m 3+2, 把a =m 3+2代入①,解得b =m 3−4,∵a ,b 互为相反数,∴a +b =0,∴(m 3+2)+(m 3−4)=0,解得m =3.故选:C .首先根据{a −b =62a +b =m,应用加减消元法,用m 表示出a 、b ;然后根据a ,b 互为相反数,可得:a +b =0,据此求出m 的值是多少即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.26.【答案】A【解析】解:设鸡有x 只,兔有y 只,依题意得{x +y =102x +4y =34. 故选:A .设鸡有x 只,兔有y 只,等量关系:鸡+兔=10,鸡脚+兔脚=34.本题考查了由实际问题抽象出二元一次方程.解题的关键是弄清题意,找准等量关系,列出方程组.27.【答案】B【解析】解:设购买多媒体教学一体机x 台,学生电脑y 台,依题意,得:{x +y =1200.8x +0.25y =52. 故选:B .设购买多媒体教学一体机x 台,学生电脑y 台,根据总价=单价×数量结合花费52万元购买一体机及学生电脑共120台,即可得出关于x ,y 的二元一次方程组,此题得解. 本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.28.【答案】C【解析】解:设购买一只水瓶需要x 元,购买一只杯子需要y 元,根据题意得:{x +2y =37 ①2x +y =56 ②, (①+②)÷3,得:x +y =31.故选:C .设购买一只水瓶需要x 元,购买一只杯子需要y 元,根据给定的两种购买方案可得出关于x 、y 的二元一次方程组,将方程①②相加,再除以3即可求出结论.。
二元一次方程组(例题、解方程组、练习及答案)
![二元一次方程组(例题、解方程组、练习及答案)](https://img.taocdn.com/s3/m/dbe90206814d2b160b4e767f5acfa1c7ab00824a.png)
的x. y 的值.s+y=l 2x+y=3⑵2K -3y=-52y —12弩=4Cx-1)-2(2y+l)=43.解方程组:举-4y=24.解方程组: x+1.y~1 ~2'玄-11-L 2-2(x+2y)=3⑵L L1K +4(x+2y)=45解二元一次方程组练习及答案专题一:二元一次方程组解法精练一.解答题(共16小题)2.解下列方程组(s _t)-2(s+t)=10 5.解方程组上(日一t)+2Cs+t)=266.已知关于x,y 的二元一次方程y 二kx+b 的解有 (1)求k,b 的值. ⑵当x=2时,y 的值. ⑶当x 为何值时,y=3?7.解方程组:2y=3“至_y_7⑴[电文-10;=13_X "12,乙看错了方程组中的b.蓋二- £时,由于粗心,甲看错了方程组中的a,而得解为 (沪5而得解为尸°.(1)甲把a 看成了什么,乙把b 看成了什么? (2)求出原方程组的正确解.亠一空二5 14.I X0.315.解下列方程组:8.解方程组:卩(旳)(K -3y)=159.解方程组:10.解下列方程组: fs-y=4 ⑴4贵 11.解方程组: "T⑵[4(葢十7)-5(K-y)=212.解二元一次方程组: f 9s+2y=20(1).办十4尸10;乜(K -1)-4(y-4)=0⑵占〔厂"二3匕+5)鮎曲+5尸1013.在解方程组(1) 匹站3y=15 “x+1_y+4 ⑵f2x+y=4 16.解下列方程组:(1)时戈产5 p+y=l(2)■20^1+30^25^X2专题二:方程组解法强化训练 ■>二1+尸j3^-2/=6 2(右十为*175x+y+z=145 15 3.x+y —2z-5 仝%+4®二1124.5. 17 r0.25x+3ty+3)=156.匚(工十1)—1.5(^十刀二35 r 3(x-y 十E 二0'mJ4耳+2了+£=3i4 l 税25t+5v+z=6O 盲8.9.—2 4 J2 3 XH -/=60 J y +z =40 x+i=50 10. H 十JJ-H-Z=11<3A +J 二25z=4^11.L》+z -了工二号 5-3^+4-7y=1121」心+5我彳z +z-3j=5 13.乐十》)-4&p )二4土+二=118.21. fi-2j=7y x+1—二36y-1=3fx+|)16.y—1x二y-I2_y+2.2x=+13T" 33(x-0=4(卩一4)17.+500,[60%^+80%-7=500x72%.19.宝”一1)=3(兀+5)20.卜223A-3J-9=^±13r2(z+^+3(x-y)=1322.j-2z+3y=1123.尸(*)亠4决2刃=8724. 25. 弘+»=198jc-3y=6727. =-1=4IZ尹-1=128.30. SI兰工_气2十3-5巧P=〔23-_答案专题一1.x=6"X=1 「K=3、「K=3「⑵•卄8•解万程组:9•解方程组:1歼-1(y=0\y=0工二3114V——3⑷•y=-3•解方程组fl4•解方程组:鳥I尸4,尸亍6••(1)求k,b的值.k二言,b二号•7⑵当x=2时,y的值•把x=2代入,得y=p•(3)当x为何值时,y=3?把y=3代入,得x=1 7•解方程组:10•解下列方程组:17 \=60:'尸-2411•解方程组:⑴12⑵¥二广1712•解二元一次方程组:13.(1)甲把a看成了什么,乙把b看成了什么?fa=-2 [b=6(2)求出原方程组的正确解.P=152•解下列方程组专题二:=50rz=4rz=5K=5[75rz=-70rA=61.2.3.4.5.6.g1715•解下列方程组:⑴16•解下列方程组:⑴rx=-2cm =49.严=35L=2510.厂=30 12.J=_10 严=-17/4K=_19/413r=_5厂=17/15 厂1=714."11⑴15.J=-316.=1厂=20017.J=300 18. J -A =-1/4丫尹=3/819.29/6 -7/422. 23.CI ;rz =2324.f A =-11/2 25.f A =826.5=-127.rz=428.J -A =4.5 29.rz=6.530.。
二元一次方程组(含答案)
![二元一次方程组(含答案)](https://img.taocdn.com/s3/m/a9b661fd910ef12d2af9e732.png)
1) 66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=2303 74x-y=1998答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48 (7) 47x-40y=853 34x-y=2006答案:x=59 y=48 (8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=8259x+y=2183 答案:x=37 y=61(16) 91x+70y=584595x-y=4275答案:x=45 y=25(17) 29x+44y=528188x-y=3608答案:x=41 y=93(18) 25x-95y=-435540x-y=2000答案:x=50 y=59(19) 54x+68y=328478x+y=1404答案:x=18 y=34(20) 70x+13y=352052x+y=2132答案:x=41 y=50(21) 48x-54y=-318624x+y=1080答案:x=45 y=99(22) 36x+77y=761947x-y=799答案:x=17 y=91(23) 13x-42y=-271731x-y=1333答案:x=43 y=78(24) 28x+28y=333252x-y=4628答案:x=89 y=30(25) 62x-98y=-256446x-y=2024答案:x=44 y=54(26) 79x-76y=-438826x-y=832答案:x=32 y=91(27) 63x-40y=-82142x-y=546答案:x=13 y=41(28) 69x-96y=-120942x+y=3822答案:x=91 y=78(29) 85x+67y=733811x+y=308答案:x=28 y=74(30) 78x+74y=1292814x+y=1218答案:x=87 y=83(31) 39x+42y=533159x-y=5841答案:x=99 y=35(32) 29x+18y=191658x+y=2320答案:x=40 y=42(33) 40x+31y=604345x-y=3555答案:x=79 y=93(34) 47x+50y=859845x+y=3780答案:x=84 y=93(35) 45x-30y=-145529x-y=725答案:x=25 y=86(36) 11x-43y=-136147x+y=799答案:x=17 y=36(37) 33x+59y=325494x+y=1034答案:x=11 y=49(38) 89x-74y=-273568x+y=1020答案:x=15 y=55(39) 94x+71y=751778x+y=3822答案:x=49 y=41(40) 28x-62y=-493446x+y=552答案:x=12 y=85(41) 75x+43y=847217x-y=1394答案:x=82 y=54(42) 41x-38y=-118029x+y=1450答案:x=50 y=85(43) 22x-59y=82463x+y=4725答案:x=75 y=14(44) 95x-56y=-40190x+y=1530答案:x=17 y=36(45) 93x-52y=-85229x+y=464答案:x=16 y=45(46) 93x+12y=882354x+y=4914答案:x=91 y=30(47) 21x-63y=8420x+y=1880答案:x=94 y=30(48) 48x+93y=975638x-y=950答案:x=25 y=92(49) 99x-67y=401175x-y=5475答案:x=73 y=48(50) 83x+64y=929190x-y=3690答案:x=41 y=92(51) 17x+62y=321675x-y=7350答案:x=98 y=25(52) 77x+67y=273914x-y=364答案:x=26 y=11(53) 20x-68y=-459614x-y=924答案:x=66 y=87(54) 23x+87y=411083x-y=5727答案:x=69 y=29(55) 22x-38y=80486x+y=6708答案:x=78 y=24(56) 20x-45y=-352056x+y=728答案:x=13 y=84(57) 46x+37y=708561x-y=4636答案:x=76 y=97(58) 17x+61y=408871x+y=5609答案:x=79 y=45(59) 51x-61y=-190789x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60(75) 60x-44y=-35233x-y=1452答案:x=44 y=68(76) 79x-45y=51014x-y=840答案:x=60 y=94(77) 29x-35y=-21859x-y=4897答案:x=83 y=75(78) 33x-24y=190530x+y=2670答案:x=89 y=43(79) 61x+94y=1180093x+y=5952答案:x=64 y=84(80) 61x+90y=500148x+y=2448答案:x=51 y=21(81) 93x-19y=286x-y=1548答案:x=18 y=88(82) 19x-96y=-591030x-y=2340答案:x=78 y=77(83) 80x+74y=808896x-y=8640答案:x=90 y=12(84) 53x-94y=194645x+y=2610答案:x=58 y=12(85) 93x+12y=911728x-y=2492答案:x=89 y=70(86) 66x-71y=-167399x-y=7821答案:x=79 y=97(87) 43x-52y=-174276x+y=1976答案:x=26 y=55(88) 70x+35y=829540x+y=2920答案:x=73 y=91(89) 43x+82y=475711x+y=231答案:x=21 y=47(90) 12x-19y=23695x-y=7885答案:x=83 y=40(91) 51x+99y=803171x-y=2911答案:x=41 y=60(92) 37x+74y=440369x-y=6003答案:x=87 y=16(93) 46x+34y=482071x-y=5183答案:x=73 y=43(94) 47x+98y=586155x-y=4565答案:x=83 y=20(95) 30x-17y=23928x+y=1064答案:x=38 y=53(96) 55x-12y=411279x-y=7268答案:x=92 y=79(97) 27x-24y=-45067x-y=3886答案:x=58 y=84(98) 97x+23y=811914x+y=966答案:x=69 y=62(99) 84x+53y=1127570x+y=6790答案:x=97 y=59(100) 51x-97y=29719x-y=1520答案:x=80 y=39。
中考专题复习第七讲二元一次方程(组)(含详细参考答案)
![中考专题复习第七讲二元一次方程(组)(含详细参考答案)](https://img.taocdn.com/s3/m/65ccc0f1866fb84ae55c8d9a.png)
2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c=,若a=b(c≠o)那么ac =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、二元一次方程组中两个方程的 叫做二元一次方程组的解;4、解二元一次方程组的基本思路是: ;5、二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程=× ②工作效率=】【重点考点例析】考点一:二元一次方程组的解法 例1(2018•嘉兴)用消元法解方程组35432x y x y --⎧⎨⎩=,①=.②时,两位同学的解法如下:解法一:由①-②,得3x=3.解法二:由②得,3x+(x-3y )=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.x=a y=b 的形式【思路分析】(1)观察两个解题过程即可求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)解法一中的解题过程有错误,由①-②,得3x=3“×”,应为由①-②,得-3x=3;(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2.故原方程组的解是12xy-⎩-⎧⎨==.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.考点二:一(二)元一次方程的应用例2 (2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【思路分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则5654yx-=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.考点三:二元一次方程组的应用例3 (2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【思路分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300x yx y+++⎧⎨⎩==,解得:19010xy⎧⎨⎩==.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.【聚焦山东中考】1.(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+⎨⎩+⎧==B.530015020030x yx y+⎨⎩+⎧==C.302001505300x yx y⎨⎩++⎧==D.301502005300x yx y⎨⎩++⎧==2.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18C.16 D.153.(2018•枣庄)若二元一次方程组3354x yx y+-⎧⎨⎩==的解为x ay b⎧⎨⎩==,则a-b=.4.(2018•青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.5.(2018•滨州)若关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,则关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==的解是.6.(2018•烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【备考真题过关】一、选择题A .14x y ⎧⎨⎩==B .20x y ⎧⎨⎩== C .02x y ⎧⎨⎩==D .11x y ⎧⎨⎩==2.(2018•北京)方程组33814x y x y ⎨⎩--⎧== 的解为( ) A .12x y ⎩-⎧⎨==B .12x y -⎧⎨⎩== C .21x y ⎩-⎧⎨==D .21x y -⎧⎨⎩== 3.(2018•乐山)方程组 432x y x y ==+- 的解是( ) A .32x y -⎩-⎧⎨==B .64x y ⎧⎨⎩== C .23x y ⎧⎨⎩==D .32x y ⎧⎨⎩==4.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x-y=20B .x+y=20C .5x-2y=60D .5x+2y=60 5.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y ⎨⎩++⎧== B .7068480x y x y ⎨⎩++⎧== C .4806870x y x y ++⎧⎨⎩== D .4808670x y x y ++⎧⎨⎩== 6.(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种元一次方程组111222a x b y c a x b y c ++⎧⎨⎩==的解可以利用2×2阶行列式表示为:x yD x D D y D ⎧⎪⎪⎨⎪⎪⎩==;其中问题:对于用上面的方法解二元一次方程组213212x y x y +-⎧⎨⎩==时,下面说法错误的是( )A .21732D ==--B .D x =-14C .D y =27D .方程组的解为23x y -⎧⎨⎩== 二、填空题 8.(2018•淮安)若关于x 、y 的二元一次方程3x-ay=1有一个解是32x y ⎧⎨⎩== ,则a=. 9.(2018•无锡)方程组225x y x y -+⎧⎨⎩== 的解是. 10.(2018•包头)若a-3b=2,3a-b=6,则b-a 的值为.11.(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为.12.(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.13.(2018•齐齐哈尔)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.14.(2018•重庆)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(100%-=⨯商品的售价商品的成本价商品的利润率商品的成本价)已知在另一次游戏中,50局比赛后,小光总得分为-6分,则小王总得分为分.三、解答题16.(2018•宿迁)解方程组:20 346x yx y++⎧⎨⎩==.17.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.18.(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A 型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.19.(2018•白银)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.20.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.21.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)参考答案【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.4.【思路分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:200115%110%17 ()()4x yx y+-+⎩-⎧⎨==.故答案为:200115%110%17 ()()4 x yx y+-+⎩-⎧⎨==.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.【思路分析】利用关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,∴将解12xy⎧⎨⎩==代入方程组3526x myx ny⎩+⎨-⎧==,可得m=-1,n=2∴关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可整理为:42546a ba⎩+⎧⎨==解得:3212 ab⎧⎪⎪⎨⎪-⎪⎩==方法二:关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,由关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可知12a ba b+-⎧⎨⎩==解得:3212ab⎧⎪⎪⎨⎪-⎪⎩==,故答案为:3212 ab⎧⎪⎪⎨⎪-⎪⎩==.【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.6.【思路分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a 的不等式,解之求得a的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y⎨⎩++⎧==,解得:6040xy⎧⎨⎩==,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车31000003100000⨯=辆、至少享有B型车1002000100000⨯=2辆.7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?2.【思路分析】方程组利用加减消元法求出解即可;【解答】解:33814x yx y⎧⎨⎩--=①=②,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为21xy-⎧⎨⎩==;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.3.【思路分析】先把原方程组化为23142x yx y⎧⎪+⎪⎨⎩==,进而利用代入消元法得到方程组的解为32xy⎧⎨⎩==.【解答】解:由题可得,23142x yx y⎧⎪+⎪⎨⎩==,消去x,可得12432y y-=(),解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为32xy⎧⎨⎩==.故选:D.【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.【思路分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.5.【思路分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:70 86480x yx y⎨⎩++⎧==,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题二、填空题8.【思路分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把32xy⎧⎨⎩==代入方程得:9-2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【思路分析】利用加减消元法求解可得.【解答】解:225x yx y⎧⎩-⎨+=①=②,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31xy⎧⎨⎩==,故答案为:31xy⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.10.【思路分析】将两方程相加可得4a-4b=8,再两边都除以2得出a-b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知3236a ba b--⎧⎨⎩=①=②,①+②,得:4a-4b=8,则a-b=2,∴b-a=-2,故答案为:-2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.11.【思路分析】设每头牛值金x两,每头羊值金y两,根据“牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设每头牛值金x两,每头羊值金y两,根据题意得:5210 258x yx y+⎨⎩+⎧==.故答案为:5210 258x yx y+⎨⎩+⎧==.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.【思路分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:528256x yx y+⎩+⎧⎨=①=②,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.【思路分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:7755x y sx y s⎩-+⎧⎨==,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.【思路分析】先求出1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27元,得出乙种粗粮每袋售价为(6+2×27)×(1+20%)=72元.再设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程45×30%x+60×20%y=24%(45x+60y),求出89xy=.【解答】解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45,乙种粗粮每袋成本价为6+2×27=60.设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,89xy=.故答案为:89.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.15.【思路分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据50局比赛后小光总得分为-6分,即可得出关于x、y 的二元一次方程,由x、y、(25-x-y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得-1分、平不得分,可求出小王的总得分.【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3-1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据题意得:19+3x-y=-6,∴y=3x+25.∵x、y、(25-x-y)均非负,∴x=0,y=25,∴小王的总得分=(-1+3+0)×8-1+25×3=90(分).故答案为:90.【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题16.【思路分析】直接利用加减消元法解方程得出答案.【解答】解:20346x yx y++⎧⎨⎩=①=②,①×2-②得:-x=-6,解得:x=6,故6+2y=0,解得:y=-3,故方程组的解为:63xy-⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.17.【思路分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(-5)的值;(2)依据x⊗(-y)=2,且2y⊗x=-1,可得方程组2241x yy x-+⎩-⎧⎨==,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(-5)=2×2+(-5)=4-5=-1;(2)∵x⊗(-y)=2,且2y⊗x=-1,∴2241x yy x-+⎩-⎧⎨==,解得7949xy⎧⎪⎪⎨⎪-⎪⎩==,∴741993x y+=-=.【点评】本题主要考查解二元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.18.【思路分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【思路解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得220 28242560y xx y-⎩+⎧⎨==,解得4060xy⎧⎨⎩==.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.19.【思路分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:911616y xy x-+⎧⎨⎩==,解得:970xy⎧⎨⎩==.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【思路分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,依题意得:551.55x yx y⎨++⎧⎩==,解得3520xy⎧⎨⎩==,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.【思路分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于30050427=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组为1712 184x yx y⎩-+⎧⎨==,。
二元一次方程组练习题(含答案)
![二元一次方程组练习题(含答案)](https://img.taocdn.com/s3/m/73e0ba4030b765ce0508763231126edb6e1a767b.png)
二元一次方程组练习题(含答案)1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a;2) 4x + 3y - 1 = 0,2x + y - 2 = 0;3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2;4) x - y/2 = 1,x + y/2 = 3.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1;2) x + 2y = 5,2x + y = 7;3) 3x + 2y = 8,4x - 3y = -11.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
1) 求k,b的值;2) 当x = 2时,y的值;3) 当y = 3/5时,x的值。
4.在解方程组2x + y = 5,x - y = 1时,甲看错了方程组中的a,而得到解x = 2,y = 1.乙看错了方程组中的b,而得到解x = 3,y = -1.1) 甲把a看成了什么,乙把b看成了什么?2) 求出原方程组的正确解。
参考答案与解析:1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a。
将第二个方程式化简为y = -3/2a,代入第一个方程式中得到5x + 2(-3/2a) = 11a,化简得到x = (23/10)a,y = (-9/5)a。
2) 4x + 3y - 1 = 0,2x + y - 2 = 0.将第二个方程式中的y用第一个方程式中的x表示,得到y = 2 - 2x,代入第一个方程式中得到4x + 3(2 - 2x) - 1 = 0,化简得到x = 1/2,y = 1.3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2.将第二个方程式中的x用第一个方程式中的y表示,得到x = 6 - 2y,代入第一个方程式中得到6 - 4y/3 = 2,化简得到y = 3/2,x = 0.4) x - y/2 = 1,x + y/2 = 3.将两个方程式相加得到2x = 4,化简得到x = 2,代入第一个方程式中得到y = 2.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1.将第二个方程式中的x用第一个方程式中的y表示,得到x = y + 1,代入第一个方程式中得到2(y + 1) + 3y = 7,化简得到y = 1,x = 2.2) x + 2y = 5,2x + y = 7.将第一个方程式中的x用第二个方程式中的y表示,得到x = (7 - y)/2,代入第一个方程式中得到(7 - y)/2 + 2y = 5,化简得到y = 1,x = 2.3) 3x + 2y = 8,4x - 3y = -11.将第一个方程式中的x用第二个方程式中的y表示,得到x = (3y - 11)/4,代入第一个方程式中得到3(3y - 11)/4 + 2y = 8,化简得到y = 1,x = 1.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:解二元一次方程组
——学会选择最优的解法
◆类型一 解未知数系数含有1或-1的方程组
1.已知a ,b 满足方程组⎩
⎪⎨⎪⎧a -b =2,a +b =6,则3a +b 的值为( ) A.14 B.4 C.-4 D.-14
2.以方程组⎩
⎪⎨⎪⎧y =-x +2①,y =x -1②的解为坐标的点(x ,y )在平面直角坐标系中的位置在( ) A.第一象限 B.第二象限
C.第三象限
D.第四象限
3.若3x m +2n y 与-13
y m -n x 4是同类项,则m = ,n = W. 4.解方程组:
(1)⎩
⎪⎨⎪⎧x -y =0①,2x +y =6②;
(2)(2017·桂林中考)⎩
⎪⎨⎪⎧2x +y =3①,5x +y =9②.
◆类型二 解同一未知数系数互为倍数关系的方程组
5.二元一次方程组⎩
⎪⎨⎪⎧2x +3y =7,2x -3y =1的解为( ) A.⎩⎪⎨⎪⎧x =4,y =3 B.⎩⎪⎨⎪⎧x =2,y =1 C.⎩⎪⎨⎪⎧x =-4,y =3 D.⎩
⎪⎨⎪⎧x =2,y =-1 6.解方程组:
(1)⎩⎪⎨⎪⎧5x +2y =25①,3x +4y =15②; (2)⎩
⎪⎨⎪⎧8x +9y =73①,17x -3y =74②.
◆类型三 解两个方程中未知数系数成对称关系的方程组
7.若x ,y 满足方程组⎩
⎪⎨⎪⎧x +3y =7,3x +y =5,则x -y 的值等于( ) A.-1 B.1 C.2 D.3
8.方程组⎩
⎪⎨⎪⎧2x +3y =3,3x +2y =11的解为 W. 9.已知方程组⎩
⎪⎨⎪⎧3x +y =1+3a ①,x +3y =1-a ②的解满足x +y =0,求a 的值.
◆类型四 含字母系数的方程组的运用
10.(2017·余干县校级期末)已知x ,y 满足方程组⎩
⎪⎨⎪⎧x +m =4,y -5=m ,则无论m 取何值,x ,y 恒有关系式是( )
A.x +y =1
B.x +y =-1
C.x +y =9
D.x +y =-9
11.(2017·枣庄中考)已知⎩⎪⎨⎪⎧x =2,y =-3是方程组⎩⎪⎨⎪⎧ax +by =2,bx +ay =3
的解,则a 2-b 2= W. 12.已知方程组⎩⎪⎨⎪⎧2x +y =-2,ax +by =-4和方程组⎩
⎪⎨⎪⎧3x -y =12,bx +ay =-8的解相同,求(5a +b )2的值.
参考答案与解析
1.A 2.A 3.2 1
4.解:(1)①+②,得3x =6,解得x =2.把x =2代入①得y =2,∴原方程组的解为⎩
⎪⎨⎪⎧x =2,y =2. (2)②-①,得3x =6,解得x =2,把x =2代入①得y =-1,∴原方程组的解为⎩
⎪⎨⎪⎧x =2,y =-1. 5.B
6.解:(1)①×2-②,得10x -3x =50-15,解得x =5.把x =5代入②得y =0.∴原方
程组的解为⎩
⎪⎨⎪⎧x =5,y =0. (2)①+②×3,得8x +51x =73+74×3,解得x =5.把x =5代入②得17×5-3y =74,
解得y =113,∴原方程组的解为⎩⎪⎨⎪⎧x =5,y =113.
7.A 8.⎩
⎨⎧x =275,y =-135 9.解:①+②,得4x +4y =2+2a ,∴x +y =1+a 2.∵x +y =0,∴1+a 2
=0,解得a =-1.
10.C 11.1
12.解:解方程组⎩⎪⎨⎪⎧2x +y =-2,3x -y =12,得⎩⎪⎨⎪⎧x =2,y =-6.将⎩⎪⎨⎪⎧x =2,y =-6代入⎩
⎪⎨⎪⎧ax +by =-4,bx +ay =-8,得
⎩⎪⎨⎪⎧2a -6b =-4,2b -6a =-8.解得⎩⎨⎧a =74
,b =54,∴(5a +b )2=102=100.。