高三数学-必修讲义-直线与圆的位置关系(2017届)
高中数学人教A版 选择性必修第一册 直线与圆的位置关系 课件
5、已知过点 M (3, 3) 的直线 l 被圆 x2 y2 4 y 21 0
所截得的弦长为 8,求直线 l 的方程;
【解析】圆心 C(0, 2) ,半径 r 5 .所以弦心距 d 52 42 3 ,
(2)SPACB 2S PAC PA r 2PA
2 PC2 4 4 7.
12.(1)已知实数 x,y 满足方程(x-3)2+(y-3)2=6,则
x2+y2 的最大值为__________.
【解析】x2+y2=[ (x-0)2+(y-0)2]2, 它表示(0,0)和(x,y)两点间距离的平方, 最大距离为 3 2+ 6, 则 x2+y2 的最大值为(3 2+ 6)2=24+12 3.
7、已知圆 C:x2+(y-2)2=5,直线 l:mx-y+1-m=0. (1)求证:对 m∈R,直线 l 与圆 C 总有两个不同的交点; (2)若直线 l 与圆 C 交于 A、B 两点,
①当弦长|AB|最大时,求 m 的值; ②当弦长|AB|最小时,求 m 的值. 【分析】(1)直线 l:m(x-1)-y+1=0,过定点 P(1,1), P 在圆 C 内,所以直线 l 与圆 C 总有两个不同的交点.
设直线 l 的方程为 y 3 k(x 3) ,即 kx y 3k 3 0 ,
根据点到直线的距离公式, d | 3k 1| , 1 k2
因此, | 3k 1| 3 ,即 | 3k 1| 3 1 k2 ,解得 k 4 ,
1 k2
3
直线方程为: 4x 3y 21 0 ,
经检验, x 3 0 适合题意, 所以,所求直线方程为: 4x 3y 21 0 或 x 3 0 .
(1) 2 b 2 2 (2) 2 b 2或b 2 2
直线与圆的位置关系(第二课时)-高中数学获奖教案
2.5.1直线与圆的位置关系(第二课时)(人教A 版普通高中教科书数学选择性必修第一册)一、教学目标1.掌握利用直线与圆位置关系解决实际问题的一般方法;2. 掌握用坐标法研究几何问题的基本思想及其解题过程;3.激发学生学习数学的兴趣,并体会数学的应用价值。
二、教学重难点1.利用直线与圆的位置关系解决实际问题的一般方法和思想;2.学生的数学抽象、数学转化能力与数学建模能力的培养。
三、教学过程(一)复习回顾1.直线与圆的位置关系的判断方法:直线Ax+By+C=0(A ,B 不同时为0)与圆(x-a )2+(y-b )2=r 2(r>0)的位置关系及判断:2. 直线与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB|,则有:(|AB|2)2+d 2=r 2,即|AB|=2r2-d2. 3.过某点的圆的切线方程问题: (1)若点P(x0,y 0)在圆上,利用切线和圆心与点P 的连线垂直求解切线方程;(2)求过圆外一点P(x0,y0)的圆的切线,常利用几何方法求解,即:圆心到切线的距离等于半径,设切线方程,利用待定系数法求解。
易错提示:直线方程的点斜式无法表示斜率不存在的直线【设计意图】以提问的方式,帮助学生复习前面所学知识,同时ppt 动态演示复习内容,给学生以直观的感受和提醒,为本节课内容做好铺垫。
(二)问题引入新课台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 地正东40 km 处,则城市B 处于危险区的时间为多少?【设计意图】通过现实生活中的实例,让学生体会到数学源于生活并可以指导生活,感受数学的魅力(三)讲授新课例3.如图是某圆拱形桥一孔圆拱的示意图.圆拱跨度AB =20m,拱高OP =4m,建造时每间隔4m 需要用一根支柱支撑,求支柱A 2P 2的高度(精确到0.01m).问题1.如何建立适当的平面直角坐标系?(大家分组讨论,给出方案)(教师展示学生方案,引导学生回忆建立平面直角坐标系应该遵循的原则,选择最合适的坐标系。
《直线与圆的位置关系》教学设计
《直线与圆的位置关系》教学设计一、教学内容解析《直线与圆的位置关系》是圆与方程这一章的重要内容,它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用坐标法进一步研究直线与圆的位置关系,体会数形结合思想,初步形成代数法解决几何问题的能力,并逐渐内化为学生的习惯和基本素质,为以后学习直线与圆锥曲线的知识打下基础.本节课内容共一个课时.教学过程中,让学生利用已有的知识,自主探索用坐标法去研究直线与圆的位置关系的方法,体验有关的数学思想,培养学生“用数学”以及合作学习的意识.二、教学目标设置由于本节课在初中已有涉及,教师准备“学案”先让学生提前思考,归纳出直线与圆的三种位置关系以及代数与几何的两种判定方法.通过学生的观察、分析、概括,促使学生把解析几何中用方程研究曲线的思想与初中已掌握的圆的几何性质相结合,从而把传授知识和培养能力融为一体,完成本节课的教学目标.三、学生学情分析在经历直线、圆的方程学习后,学生已经具备了一定的用方程研究几何对象的能力,因此,我在教学中通过提供的丰富的数学学习环境,创设便于观察和思考的情境,给他们提供自主探究的空间,使学生经历完整的数学学习过程,引导学生在已有数学认知结构的基础上,通过积极主动的思维而将新知识内化到自己的认知结构中去.同时为他们施展创造才华搭建一个合理的平台,使他们感知学习数学的快乐.高中数学教学的重要目标之一是提高学生的数学思维能力,通过不同形式的探究活动,让学生亲身经历知识的发生和发展过程,从中领悟解决问题的思想方法,不断提高分析和解决问题的能力,使数学学习变成一种愉快的探究活动,从中体验成功的喜悦,不断增强探究知识的欲望和热情,养成一种良好的思维品质和习惯.根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:知识与技能目标:(1)理解直线与圆三种位置关系.(2)掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法.过程与方法目标:(1)通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式.(2)强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.情感、态度与价值观目标:通过对本节课知识的探究活动,加深学生对坐标法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质,培养学生的创新意识和科学精神.四、教学策略分析本节课以问题为载体,学生活动为主线,让学生利用已有的知识,自主探究,培养学生主动学习的习惯.通过建立数学模型、数形结合,提高学生分析问题和解决问题的能力,进一步培养学生的数学素质;通过对直线与圆的位置关系判断方法的探究,进一步提高学生的思维能力和归纳能力.在教学方法的选择上,采用教师组织引导,学生自主探究、动手实践、小组合作交流的学习方式,力求体现教师的设计者、组织者、引导者、合作者的作用,突出学生的主体地位.五、课前准备:直线与圆的位置关系学案(附后)例如图,已知直线直线与圆已知过点,求直线的方程.(课件)六、教学评价设计新课程强调学习过程的评价,因此,在对学生学习结果评价的同时,更应高度重视学生学习过程中的参与度、自信心、合作意识、独立思考的能力及学习的兴趣等.根据本节课的特点,我从以下几个方面进行教学评价:通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学.。
直线与圆的位置关系 完整教案
4.2.1 直线与圆的位置关系一、教学目标:1、知识与技能:(1)理解直线与圆的位置关系的种类;(2)会利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系.2、过程与方法:通过学习直线与圆的位置关系,掌握解决问题的方法――几何法、代数法。
3、情感态度与价值观:让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.二、教学重、难点:重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判断直线与圆的位置关系.三、教学方法与手段:1、教学方法:讲解法、讨论法、探究法、演示法2、教学手段:多媒体、几何画板四、教学过程:1、提出问题,情境导入教师利用多媒体展示如下问题:问题1:一个小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心,半径为30km的圆形区域,已知小岛中心位于轮船正西70km处,港口位于小岛中心正北40km处。
如果轮船沿直线返港,那么它是否会触礁危险?设计意图:让学生感受暗礁这个实际问题中所蕴含的直线与圆的位置关系,思考解决问题的方案。
通过实际问题引入,让学生体会生活中的数学,突出研究直线与圆的位置关系的重要意义。
师生活动:让学生进行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.师:你怎么判断轮船会不会触礁?利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。
生:暗礁所在的圆与轮船航线所在直线是否相交。
师:(板书标题)这个问题,其实可以归结为直线与圆的位置关系。
2、回顾旧知、揭示课题——直线与圆的位置关系问题2:在初中,我们学习过直线与圆的位置关系,即直线与圆相交,有两个公共点,直线与圆相切,有一个公共点;直线与圆相离,没有公共点。
设计意图:从已有的知识经验出发,建立新旧知识之间的联系,构建学生学习的最近发展区,不断加深对问题的理解。
师生活动:引导学生回忆义务教育阶段判断直线与圆的位置关系的思想过程,可以展示下面的表格,使问题直观形象。
4.2.1《直线与圆的位置关系》PPT课件
巩固练习:
①判断直线4x-3y=50与圆 x 2 y 2 100的位置关系.如
果相交,求出交点坐标.
解:因为圆心O(0,0)到直线4x-3y=50
| 0 0 50 |
的距离d=
5
= 10
而圆的半径长是10,所以直线与圆相切。 圆心与切点连线所得直线的方程为3x+4y=0
解方程组
4x 3x
3 4
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
A2 B2
直线与圆的位置关系
在2009年08月08日台凤莫拉克袭击宝岛台湾时,
一艘轮船在沿直线返回泉州港口的途中,接到气象台
的台风预报:台风中心位于轮船正西70km处,受影响
的范围是半径长为30km的圆形区域.已知泉州港口位
于台风中心正北40km处,如果这艘轮船不改变航线,
那么它是否会受到台风莫拉克的影响? y
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
为解决这个问题,我们以台
港口
风中心为原点 O,东西方向为
x 轴,建立如图所示的直角坐 标系,其中取 10km 为单位长
O
轮船 x
度.
直线与圆的位置关系
这样,受台风影响的圆区域所对应的圆心为O的圆
第一部分 第二章 §2 2.3 第一课时 直线和圆的位置关系
的描写,我们领略到海上日出的壮丽景象.实
际上,日出是一个不断变化的动态过程,如果
把太阳(透视图)看作一个圆,把海平面(透视图)看作一条直
线,太阳升起的过程中与海平面的位置关系就是直线与圆的
位置关系的最好例证.
问题1:在初中,我们怎样判断直线与圆的位置关 系? 提示:利用圆心到直线的距离d与半径r的大小关系, 来判断,即直线与圆相交⇔d<r; 直线与圆相切⇔d=r
|a-2+3| |a+1| 解析:圆心到直线的距离d= = 2 , 2 a +1 a +1 由 3= 4-d2,得a=0.
答案:0
8.过点P(4,-4)的直线l被圆C:x2+y2-2x-4y-20 =
解:圆的方程可化为(x-1)2+(y-2)2=52, 0截得的弦AB的长度为8,求直线l的方程. ∴圆心C(1,2),半径r=5. 由圆的性质可知圆的半弦长、半径、弦心距构成直角三 角形, ∴圆心到直线的距离d= |AB| 2 r - 2 = 52-42=3.
(2)几何法: l 2 设弦长为l,弦心距为d,半径为r,则有( 2 ) +d2=r2, 故l=2 r2-d2 ,即半弦长、弦心距、半径构成直角三角
形,数形结合利用勾股定理得到.
6.(2012· 福建三明市高一检测)直线 2x-y-1=0 被圆 (x-1)2+y2=2 所截得的弦长为 30 A. 5 2 30 C. 5
根据直线与圆的方程能判断直线和圆的位置关 系,那么根据两个圆的方程能否判断它们的位置关系?
问题1:从两圆的交点个数上看,两圆有几种位
置关系? 提示:三种.即相交、相切和相离.
问题2:从两圆具体位置来看,两圆的位置关系 应有几种?相交时两圆圆心距与两圆半径有什么关系? 提示:五种,相交时,|r1-r2|<d<r1+r2. 问题3:用两圆的方程组成的方程组有一解或无 解时能否准确判定两圆的位置关系? 提示:不能.当两圆方程组成的方程组有一解 时,两圆有外切、内切两种可能情况,当方程组无解时, 两圆有相离、内含两种可能情况.
直线与圆及圆与圆的位置关系
直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。
三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。
法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。
法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。
法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。
分析:作出图形后进⾏观察,以找到解决问题的思路。
分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。
例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。
解:因P点在圆上,故可求切线L的⽅程为x+2y=5。
《直线和圆的位置关系》教学设计
《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。
教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。
《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。
⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。
㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。
⒉在7.1节我们曾学习了“点和圆”的位置关系。
⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。
㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。
二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。
⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。
⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。
三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。
2017版高考数学课件:8.3 直线与圆、圆与圆的位置关系
3.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为 ( )
A.内切 B.相交 C.外切 D.外离
答案 B 两圆的圆心距为 17,两圆的半径之差为1,半径之和为5,而1<
17<5,所以两圆相交.
c
第六页,编辑于星期六:二十点 二十四分。
4.已知圆C1:x2+y2-6x-7=0与圆C2:x2+y2-6y-27=0相交于A、B两点,则线段AB
c
(2m)2 (1 m2 )2
| y0m2 (2x0 4)m y0 4 | 为定值r,比较系数可得 =2.故选B. m2 1
2xy00
4 解0,得x0=y0=r
y0 4,
第十二页,编辑于星期六:二十点 二十四分。
直线与圆位置关系的综合应用
典例2 (2015金丽衢一联,13,4分)设直线ax+2y+6=0与圆x2+y2-2x+4y=0相
x12 x22
y12 y22
1两0, 式相减得
10,
-+ x12 x22 y12 y22
=0,则直线BC的斜率为 y1 y=2- x1 x=21,方程为y+ =x-1 ,即1y=x-1.
x1 x2 y1 y2
22
第十七页,编辑于星期六:二十点 二十四分。
圆与圆的位置关系
典例3 (2013重庆,7,5分)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M, N分别是圆C1,C2上的动点,P为x轴上的动点,则|PBiblioteka |+|PN|的最小值为 (
解析 设B(x1,y1),C(x2,y2),则由重心坐标公式得
高三理数一轮讲义:9.4-直线与圆、圆与圆的位置关系(解析版)
第4节 直线与圆、圆与圆的位置关系最新考纲 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.知 识 梳 理1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.方法位置关系几何法 代数法 相交 d <r Δ>0 相切 d =r Δ=0 相离d >rΔ<02.圆与圆的位置关系设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:位置关系 相离 外切 相交 内切 内含 几何特征 d >R +rd =R +rR -r <d <R +r d =R -rd <R -r代数特征 无实数解 一组实数解两组实数解一组实数解 无实数解公切线条数4321[微点提醒]圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. (3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )(4)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( )解析 (1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含. 答案 (1)× (2)× (3)× (4)√2.(必修2P132A5改编)直线l :3x -y -6=0与圆x 2+y 2-2x -4y =0相交于A ,B 两点,则|AB |=________.解析 由x 2+y 2-2x -4y =0得(x -1)2+(y -2)2=5,所以该圆的圆心坐标为(1,2),半径r = 5.又圆心(1,2)到直线3x -y -6=0的距离为d =|3-2-6|9+1=102,由⎝ ⎛⎭⎪⎫|AB |22=r 2-d 2,得|AB |2=10,即|AB |=10. 答案103.(必修2P133A9改编)圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线方程x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以,所求弦长为2 2. 答案 2 24.(2019·大连双基测试)已知直线y =mx 与圆x 2+y 2-4x +2=0相切,则m 值为( )A.±3B.±33 C.±32 D.±1解析由x2+y2-4x+2=0得圆的标准方程为(x-2)2+y2=2,所以该圆的圆心坐标为(2,0),半径r=2,又直线y=mx与圆x2+y2-4x+2=0相切,则圆心到直线的距离d=|2m|m2+1=2,解得m=±1.答案 D5.(2019·西安八校联考)若过点A(3,0)的直线l与曲线(x-1)2+y2=1有公共点,则直线l斜率的取值范围为()A.(-3,3)B.[-3,3]C.(-33,33) D.⎣⎢⎡⎦⎥⎤-33,33解析数形结合可知,直线l的斜率存在,设直线l的方程为y=k(x-3),则圆心(1,0)与直线y=k(x-3)的距离应小于等于半径1,即|2k|1+k2≤1,解得-33≤k≤33.答案 D6.(2019·太原模拟)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11解析圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=25-m(m<25).从而|C1C2|=32+42=5.由两圆外切得|C1C2|=r1+r2,即1+25-m=5,解得m=9.答案 C考点一直线与圆的位置关系【例1】(1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是() A.相切 B.相交C.相离D.不确定(2)(2019·湖南六校联考)已知⊙O:x2+y2=1,点A(0,-2),B(a,2),从点A观察点B,要使视线不被⊙O 挡住,则实数a 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(-∞,-433)∪(433,+∞)C.(-∞,-233)∪(233,+∞)D.(-433,433)解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b2=1a 2+b2<1,故直线与圆O 相交.(2)易知点B 在直线y =2上,过点A (0,-2)作圆的切线. 设切线的斜率为k ,则切线方程为y =kx -2, 即kx -y -2=0. 由d =|0-0-2|1+k2=1,得k =±3.∴切线方程为y =±3x -2,和直线y =2的交点坐标分别为(-433,2),(433,2).故要使视线不被⊙O 挡住,则实数a 的取值范围是(-∞,-433)∪(433,+∞). 答案 (1)B (2)B规律方法 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.【训练1】 (1)“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件(2)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( ) A.相离 B.相切C.相交D.以上都有可能解析(1)若直线y=x+4与圆(x-a)2+(y-3)2=8相切,则有|a-3+4|2=22,即|a+1|=4,所以a=3或-5.但当a=3时,直线y=x+4与圆(x-a)2+(y-3)2=8一定相切,故“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的充分不必要条件.(2)直线2tx-y-2-2t=0恒过点(1,-2),∵12+(-2)2-2×1+4×(-2)=-5<0,∴点(1,-2)在圆x2+y2-2x+4y=0内,直线2tx-y-2-2t=0与圆x2+y2-2x+4y=0相交.答案(1)A(2)C考点二圆的切线、弦长问题多维探究角度1圆的弦长问题【例2-1】(2018·全国Ⅰ卷)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.解析由题意知圆的方程为x2+(y+1)2=4,所以圆心坐标为(0,-1),半径为2,则圆心到直线y=x+1的距离d=|1+1|2=2,所以|AB|=222-(2)2=2 2.答案2 2角度2圆的切线问题【例2-2】过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为()A.y=-34 B.y=-12C.y=-32 D.y=-14解析圆(x-1)2+y2=1的圆心为C(1,0),半径为1,以|PC|=(1-1)2+(-2-0)2=2为直径的圆的方程为(x-1)2+(y+1)2=1,将两圆的方程相减得AB所在直线的方程为2y+1=0,即y=-12.答案 B角度3与弦长有关的最值和范围问题【例2-3】(2018·全国Ⅲ卷)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[2,32]D.[22,32]解析圆心(2,0)到直线的距离d=|2+0+2|2=22,所以点P到直线的距离d1∈[2,32].根据直线的方程可知A,B两点的坐标分别为(-2,0),(0,-2),所以|AB|=22,所以△ABP的面积S=12|AB|d1=2d1.因为d1∈[2,32],所以S∈[2,6],即△ABP面积的取值范围是[2,6].答案 A规律方法 1.弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2r2-d2.2.过圆外一点(x0,y0)的圆的切线方程的求法:当斜率存在时,设为k,则切线方程为y-y0=k(x -x0),即kx-y+y0-kx0=0,由圆心到直线的距离等于半径,即可得出切线方程;当斜率不存在时,要加以验证.【训练2】(1)已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线x-ay+1=0平行,则a=________.(2)(2019·合肥测试)过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为________.解析(1)因为点P在圆(x-1)2+y2=5上,所以过点P(2,2)与圆(x-1)2+y2=5相切的切线方程为(2-1)(x-1)+2y=5,即x+2y-6=0,由直线x+2y-6=0与直线x-ay+1=0平行,得-a =2,a=-2.(2)设P(3,1),圆心C(2,2),则|PC|=2,半径r=2.由题意知最短的弦过P(3,1)且与PC垂直,所以最短弦长为222-(2)2=2 2.答案 (1)-2 (2)2 2 考点三 圆与圆的位置关系【例3】 (2019·郑州调研)已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)当m =45时,求两圆的公共弦所在直线的方程和公共弦的长. 解 因为两圆的标准方程分别为(x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m ,(1)当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011.(2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5,所以61-m -11=5,解得m =25-1011.(3)由(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,得两圆的公共弦所在直线的方程为4x +3y -23=0.故两圆的公共弦的长为2(11)2-(|4+3×3-23|42+32)2=27.规律方法 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.【训练3】 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离(2)(2019·安阳模拟)已知圆C 1:x 2+y 2-kx +2y =0与圆C 2:x 2+y 2+ky -4=0的公共弦所在直线恒过点P (a ,b ),且点P 在直线mx -ny -2=0上,则mn 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,14 B.⎝ ⎛⎦⎥⎤0,14 C.⎝ ⎛⎭⎪⎫-∞,14D.⎝ ⎛⎦⎥⎤-∞,14 解析 (1)由题意得圆M 的标准方程为x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2,圆M ,圆N 的圆心距|MN |=2小于两圆半径之和1+2,两圆半径之差1,故两圆相交.(2)将圆C 1与圆C 2的方程相减得公共弦所在直线的方程为kx +(k -2)y -4=0,即k (x +y )-(2y +4)=0,由⎩⎪⎨⎪⎧2y +4=0,x +y =0得⎩⎪⎨⎪⎧x =2,y =-2,即P (2,-2),因此2m +2n -2=0,∴m +n =1,则mn ≤⎝⎛⎭⎪⎫m +n 22=14,当且仅当m =n =12时取等号,∴mn 的取值范围是⎝ ⎛⎦⎥⎤-∞,14.答案 (1)B (2)D[思维升华]1.解决直线与圆的位置关系的问题,要熟练运用数形结合的思想,既要充分运用平面几何中有关圆的性质,又要结合待定系数法运用直线方程中的基本度量关系,养成勤画图的良好习惯.2.求两圆的公共弦所在的直线方程,只需把两个圆的方程相减即可.而在求两圆的公共弦长时,则应注意数形结合思想方法的灵活运用. [易错防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求直线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时注意斜率不存在的切线.基础巩固题组 (建议用时:40分钟)一、选择题1.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0解析∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x-1)2+y2=r2上,∵圆心与切点连线的斜率k=1-03-1=12,∴切线的斜率为-2,则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.答案 B2.(2019·佛山调研)已知圆O1的方程为x2+y2=1,圆O2的方程为(x+a)2+y2=4,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是()A.{1,-1,3,-3}B.{5,-5,3,-3}C.{1,-1}D.{3,-3}解析由题意得两圆的圆心距d=|a|=2+1=3或d=|a|=2-1=1,解得a=3或a=-3或a=1或a=-1,所以a的所有取值构成的集合是{1,-1,3,-3}.答案 A3.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有()A.1个B.2个C.3个D.4个解析圆的方程化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线距离d=|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.答案 C4.(2019·湖南十四校二联)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB为等腰直角三角形,则实数a的值为()A.6或- 6B.5或- 5C. 6D. 5解析因为直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB为等腰直角三角形,所以O到直线AB的距离为1,由点到直线的距离公式可得|a|=12+(-2)2 1,所以a=±5.答案 B5.(2019·武汉二模)直线l:kx-y+k+1=0与圆x2+y2=8交于A,B两点,且|AB|=42,过点A,B分别作l的垂线与y轴交于点M,N,是|MN|等于()A.2 2B.4C.4 2D.8解析|AB|=42为圆的直径,所以直线AB过圆心(0,0),所以k=-1,则直线l的方程为y=-x,所以两条垂线的斜率均为1,倾斜角45°,结合图象易知|MN|=2×2×22=8.答案 D二、填空题6.若A为圆C1:x2+y2=1上的动点,B为圆C2:(x-3)2+(y+4)2=4上的动点,则线段AB长度的最大值是________.解析圆C1:x2+y2=1的圆心为C1(0,0),半径r1=1,圆C2:(x-3)2+(y+4)2=4的圆心为C2(3,-4),半径r2=2,∴|C1C2|=5.又A为圆C1上的动点,B为圆C2上的动点,∴线段AB长度的最大值是|C1C2|+r1+r2=5+1+2=8.答案87.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与圆(x-2)2+(y-3)2=8相外切,则圆C的方程为________________.解析由题意知圆心C(-1,0),其到已知圆圆心(2,3)的距离d=32,由两圆相外切可得R+22=d=32,即圆C的半径R=2,故圆C的标准方程为(x+1)2+y2=2.答案(x+1)2+y2=28.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=________.解析由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,则圆心C(2,1)满足直线方程x+ay-1=0,所以2+a-1=0,解得a=-1,所以A点坐标为(-4,-1).从而|AC|2=36+4=40.又r=2,所以|AB|2=40-4=36.即|AB|=6.答案 6三、解答题9.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.(1)求圆C的方程;(2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.解(1)设圆心的坐标为C(a,-2a),则(a-2)2+(-2a+1)2=|a-2a-1|2.化简,得a2-2a+1=0,解得a=1.所以C点坐标为(1,-2),半径r=|AC|=(1-2)2+(-2+1)2= 2.故圆C的方程为(x-1)2+(y+2)2=2.(2)①当直线l的斜率不存在时,直线l的方程为x=0,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为y=kx,由题意得|k+2|1+k2=1,解得k=-34,则直线l的方程为y=-3 4x.综上所述,直线l的方程为x=0或3x+4y=0.10.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k 的取值范围;(2)若OM →·ON→=12,其中O 为坐标原点,求|MN |. 解 (1)易知圆心坐标为(2,3),半径r =1,由题设,可知直线l 的方程为y =kx +1,因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12, 解得k =1,所以l 的方程为y =x +1.故圆心C 在l 上,所以|MN |=2.能力提升题组(建议用时:20分钟)11.(2019·湖北四地七校联考)若圆O 1:x 2+y 2=5与圆O 2:(x +m )2+y 2=20相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是( )A.3B.4C.2 3D.8解析 连接O 1A ,O 2A ,由于⊙O 1与⊙O 2在点A 处的切线互相垂直,因此O 1A ⊥O 2A ,所以|O 1O 2|2=|O 1A |2+|O 2A |2,即m 2=5+20=25,设AB 交x 轴于点C .在Rt △O 1AO 2中,sin ∠AO 2O 1=55,∴在Rt △ACO 2中,|AC |=|AO 2|·sin ∠AO 2O 1=25×55=2,∴|AB |=2|AC |=4.答案 B12.(2018·合肥模拟)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A.3x +4y -12=0或4x -3y +9=0B.3x +4y -12=0或x =0C.4x -3y +9=0或x =0D.3x -4y +12=0或4x +3y +9=0解析 当直线l 的斜率不存在时,直线l 的方程为x =0,联立得方程组⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0,解得⎩⎪⎨⎪⎧x =0,y =1-3或⎩⎪⎨⎪⎧x =0,y =1+3,∴|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,∵圆x 2+y 2-2x -2y -2=0即(x -1)2+(y -1)2=4,∴圆心为C (1,1),圆的半径r=2,易知圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,∵d 2+⎝ ⎛⎭⎪⎫|AB |22=r 2, ∴(k +2)2k 2+1+3=4,解得k =-34,∴直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.答案 B13.(2019·福州模拟)直线ax +by +c =0与圆C :x 2-2x +y 2+4y =0相交于A ,B 两点,且|AB →|=15,则CA →·CB→=________. 解析 圆C :x 2-2x +y 2+4y =0可化为(x -1)2+(y +2)2=5,如图,过C 作CD ⊥AB 于D ,AB =2AD =2AC ·cos ∠CAD ,∴15=2×5×cos ∠CAD ,∴∠CAD =30°,∴∠ACB =120°,则CA →·CB →=5×5×cos 120°=-52.答案 -5214.已知⊙H 被直线x -y -1=0,x +y -3=0分成面积相等的四部分,且截x 轴所得线段的长为2.(1)求⊙H 的方程;(2)若存在过点P (a ,0)的直线与⊙H 相交于M ,N 两点,且|PM |=|MN |,求实数a 的取值范围. 解 (1)设⊙H 的方程为(x -m )2+(y -n )2=r 2(r >0),因为⊙H 被直线x -y -1=0,x +y -3=0分成面积相等的四部分,所以圆心H (m ,n )一定是两互相垂直的直线x -y -1=0,x +y -3=0的交点,易得交点坐标为(2,1),所以m =2,n =1.又⊙H 截x 轴所得线段的长为2,所以r 2=12+n 2=2.所以⊙H 的方程为(x -2)2+(y -1)2=2.(2)设N (x 0,y 0),由题意易知点M 是PN 的中点,所以M ⎝ ⎛⎭⎪⎫x 0+a 2,y 02. 因为M ,N 两点均在⊙H 上,所以(x 0-2)2+(y 0-1)2=2,①⎝ ⎛⎭⎪⎫x 0+a 2-22+⎝ ⎛⎭⎪⎫y 02-12=2, 即(x 0+a -4)2+(y 0-2)2=8,②设⊙I :(x +a -4)2+(y -2)2=8,由①②知⊙H 与⊙I :(x +a -4)2+(y -2)2=8有公共点,从而22-2≤|HI |≤22+2, 即2≤(a -2)2+(1-2)2≤32,整理可得2≤a 2-4a +5≤18,解得2-17≤a≤1或3≤a≤2+17,所以实数a的取值范围是[2-17,1]∪[3,2+17].。
高三数学知识点总结35之29:圆的方程和直线与圆的位置关系
圆的方程、直线与圆、圆与圆的位置关系一.圆的三种方程(1)方程)0()()(222>=-+-r r b y a x 以(,)a b 为圆心,r 为半径的圆的标准方程. (2)方程022=++++F Ey Dx y x .①当0422>-+F E D 时,表示圆,圆心为)2,2(E D --,半径为2422FE D -+,称为一般方程.②当0422=-+F E D 时,表示点).2,2(E D --③当0422<-+F E D 时,方程不表示任何图形.(3)圆)0()()(222>=-+-r r b y a x 的参数方程是).2,0[,sin cos πααα∈⎩⎨⎧+=+=r b y r a x 其中α是以圆心C 为顶点且与x 轴同向的射线按逆时针方向旋转到圆上一点P 所在半径成的角.参数方程可用来解决与圆有关的最值问题.例:若实数y x ,满足,014222=+-++y x y x 求y x 43-的范围.答:].1,21[-- 注1:求圆的方程的主要方法:1.代数法:利用待定系数法求圆的方程关键是建立关于r b a ,,或F E D ,,的方程组.2. 几何法:利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.求圆的方程时,要注意应用圆的几何性质简化运算.(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.(3)圆心和圆上任一点的距离等于半径.(4)两圆相切时,切点与两圆心三点共线. 注2:半圆问题.例:若直线b x y +=与曲线21y x -=恰有一个交点,则实数b 的取值范围是_________.答:11|{≤<-b b 或}2-=b 注3:阿波罗尼斯圆:平面内到两个定点B A ,的距离之比)1,0(≠>=λλλMBMA的点M 的轨迹是一个圆.二.点),(00y x P 与圆222)()(:r b y a x C =-+-位置关系的判断方法 ①点在圆内⇔<⇔r PC 22020)()(r b y a x <-+- ②点在圆上⇔=⇔r PC 22020)()(r b y a x =-+-③点在圆外⇔>⇔r PC 22020)()(r b y a x >-+-三.直线与圆的位置关系的判断方法 (1)几何法(主要方法):比较圆心到直线的距离d 与圆半径r 的大小 ①⇔>r d 相离;②⇔=r d 相切;③⇔<r d 相交. (2)代数法:联立直线和圆的方程,计算ac b 42-=∆的大小 ①⇔<∆0相离;②⇔=∆0相切;③⇔>∆0相交.四. 圆与圆的位置关系的判断方法 位置关系 外离 外切 相交 内切内含 圆心距与 半径的关系 21r r d +> 21r r d += 2121||r r d r r +<<- ||21r r d -=||21r r d -<图示公切线的条数 4 321 0五.计算直线与圆相交的弦长问题主要核心方法:围绕“弦心距,弦长的一半和半径构成的直角三角形”来处理问题.(几何法)注:代数法:运用韦达定理及弦长公式2221||(1)[()4]A B A B A B AB k x x k x x x x =+-=++-.(正设直线00()y y k x x -=-) 2221||(1)[()4]A B A B A B AB m y y m y y y y =+-=++-.(反设直线00()x x m y y -=-)六.处理直线与圆相切的问题主要核心方法:围绕“圆心与直线上的点这两点的距离,切线长和半径构成的直角三角形”来处理问题.(几何法) (1)求切线方程的方法: ①几何法(主要方法):设出切线的方程,利用圆心到直线的距离等于半径,求出未知数的值.②代数法:设出切线的方程,利用0=∆,求出未知数的值. 注意:1.设直线方程时要注意直线方程的局限性.如设成点斜式),(00x x k y y -=-要注意讨论斜率不存在的情况;设成斜截式1=+bya x ,要注意讨论直线过原点的情况. 2.点在圆外,有两条切线;点在圆上,只有一条切线;点在圆内,无切线. (2)求切线长的最小值.切线长的最小值=22(r -圆心到直线的距离)七.直线与圆相离的最值问题(1)若直线和圆相离,则圆上的点到直线距离的最小值为:;r d -最大值为:.r d + (其中d 为圆心到直线的距离,r 为半径)(2)若点在圆外,则圆上的点到已知点距离的最小值为:;r d -最大值为:.r d + (其中d 为圆心到已知点的距离,r 为半径)八.计算两圆相交的弦长问题 (1)公共弦所在的直线方程若圆0:111221=++++F y E x D y x C 与圆0:222222=++++F y E x D y x C 相交,则两圆公共弦所在直线的方程为.0)()(212121=-+-+-F F y E E x D D (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.九.处理两圆相切的问题(1)定性,即必须准确把握是内切还是外切,若只是告诉相切,则必须考虑分两圆内切还是外切两种情况讨论.(2)转化思想,即将两圆相切的问题转化为两圆的圆心距等于两圆半径之差的绝对值(内切时)或两圆半径之和(外切时).十.用几何意义处理与圆有关的最值问题(1)形如ax by --的最值问题,可转化为动直线斜率的最值问题; (2)形如by ax z +=的最值问题,可转化为动直线截距的最值问题;也可以考虑用圆的参数方程,借助三角函数来求最值.(3)形如22)()(b y a x -+-的最值问题,可转化为动点到定点的距离的平方的最值问题;十一.有用的结论(需要记住)(1)若圆)0()()(222>=-+-r r b y a x 与x 轴相切,则|;|b r =与y 轴相切,则|;|a r = 与两坐标轴相切,则.||||b a r ==(2)当点),(00y x 在圆222r y x =+上时,过点),(00y x 的圆的切线方程为.200r y y x x =+ 推广:当点),(00y x 在圆222)()(r b y a x =-+-上时,过点),(00y x 的圆的切线方程为.))(())((200r b y b y a x a x =--+--(3)设点),(00y x P 是圆222r y x =+外一点,过点P 作圆的切线,两切点分别为,,B A 则直线AB 的方程为.200r y y x x =+推广:设点),(00y x P 是圆222)()(r b y a x =-+-外一点,过点P 作圆的切线,两切点分别为,,B A 则直线AB 的方程为.))(())((200r b y b y a x a x =--+--(4)以),(),,(2211y x B y x A 为直径的圆的方程为.0))(())((2121=--+--y y y y x x x x (5)圆系方程:①若直线0=++C By Ax 与圆022=++++F Ey Dx y x 有两个交点,则过直线与圆的交点的圆可设为:.0)(22=+++++++C By Ax F Ey Dx y xλ②若两圆0:111221=++++F y E x D y x C 与圆0:222222=++++F y E x D y x C 有两个交点,则过圆与圆的交点的圆可设为:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ()1-≠λ.注:①1-=λ时,表示两圆的公共弦所在直线的方程.②方程不能表示,2C 留心检验.(6)圆和圆的重要性质①两圆相切时,两圆圆心与切点在同一条线上.②两圆相交时,两圆的公共弦所在直线的中垂线即为两圆心的连线. (7)圆上有几个点到直线的距离为几的问题假设圆的半径为,r 圆心到直线的距离为,D 圆上的点到直线的距离为d ,则①||d D r -< 0个;②||d D r -= 1个;③d D r d D +<<-|| 2个;④d D r += 3个; ⑤d D r +> 4个(8)过圆内一点的所有弦中,最长的是过该点的直径,最短的是垂直于过这点的直径的那条弦.1:集合与常用逻辑用语与不等式的性质;2:一元二次不等式;3:基本不等式;4:函数的概念和求函数解析式;5:函数的定义域和值域;6:函数的单调性;7:奇偶性;8:函数的图像和周期性;9:二次函数和幂函数;10:指数函数与对数函数;11:函数与方程;12:导数;13:平面向量;14:平面向量的数量积;15:复数;16:任意角的三角函数和同角关系;17:诱导公式,两角和与差的三角函数,几个三角恒等式;18:三角求值问题归类;19:三角函数的图像和性质;20:三角函数的图像和性质2+题目;21:解三角形;22:数列的概念和等差数列;23:等比数列;24:数列通项;25:数列求和;26:立体几何;27:空间向量;28:直线方程和两条直线的位置关系;29:圆的方程和直线与圆的位置关系;30:椭圆;31:双曲线;32:抛物线;33:统计;34:概率;35:排列组合和二项式定理。
高三数学直线和圆的位置关系
C D E B
•O
;
算命
hnq913dgk
轻松愉快起来,爽啊!爽!似乎每个细胞都打开了气孔,真的太爽了!马启明微闭着眼睛,完全沉浸在美妙的、如痴如醉的感觉中了。 马启明还是第一次喝到如此清爽甘冽的啤酒,瞬间的沉醉让他心中更加充满了期待,他在美滋滋地想:今生今世从事这么美好的职业---酿造美酒的同时,也在酿造自己的美好人生,心头有一种美滋滋、甜蜜蜜的感觉。他觉得嘴长在自己的身上确实太享受了,没有白来这 个世上。马启明忽然觉得,他就是为啤酒而生的!“走吧!”张钢铁的一句话,把马启明从梦境中轻轻地拽回到现实当中。从发酵工段 出来后,张钢铁眯着两只眼睛,目不转睛地注视着马启明,发问道:“传统发酵你还想去看吗?那可是我们最早的发酵车间,传统发酵 的酒比露天发酵的酒可要好喝多了。我在这儿干了二十年多年,可惜因操作繁琐、能耗大、产量低,马上也要象老糖化一样停产了,真 舍不得呀!”说完长长叹了口气。马启明看着张钢铁惋惜的神情,为了弥补刚才的口误,怕拂逆了张钢铁的好意,赶紧说:“那是必须 的。张主任,我从没见过传统发酵,还真想去看一看。”张钢铁一扫刚才的不愉快,立刻笑着答应道:“好!不过,传统发酵里面很冷, 有4℃以下呢,必须要穿棉衣棉裤,还要换上长统雨靴。走!” 说着便将马启明带到更衣间。马启明觉得,欣赏别人,是对别人最好的 尊重。穿好公用的棉袄棉裤和长统雨靴,马启明感觉马上变成了爱斯基摩人,臃肿得像个橄榄球一样。他跟着张钢铁来到传统发酵门口, 张钢铁刚拉开那扇厚重的大木门,一股阴冷潮湿的冷气便扑面而来,里面黑幽幽的,一时什么都看不见,从里面传来马达呜呜呜的响声, 就像《西游记》里面的黑风洞一样,又像到了阎王爷的阴曹地府一样,怪吓人的。张钢铁立刻关上木门熟悉地朝前走去,马启明却站在 消毒池中,几乎什么都看不见,心怦怦乱跳,一动也不敢动,感觉就像黑夜爬华山长空栈道一样,稍有不慎,就会掉入万丈深渊。片刻, 只听到张钢铁的声音从前面传过来:“小马,消毒池上面没有灯,前面就有灯了,你尽管往前走就行了。”马启明从亮处一下走到暗处, 眼睛一时半会儿还没适应过来,而且他从来没到过传统发酵,对里面的情况一无所知,心里感到即害怕又刺激,汗毛一根根都竖起来了, 身体唯有站在那里一动不动,声音颤抖地问道:“张„„主任,我什么„„都看不见,怎么„„走呀?”“那你等一会儿。” 张钢铁走 到马启明身边,拉起他的手小心翼翼地走过消毒池。前方昏黄的灯光还是让马启明眼前一片模糊,只得颤颤巍巍、深一脚浅一脚地往前 慢慢移。过了好一会儿,马启明眼睛才逐渐地适应过来了。他看见左右两边,上下两层横卧着许多十八吨左右、被漆成黄色的大铁罐, 像是走到了一个秘密底
高考数学考点归纳之 直线与圆、圆与圆的位置关系
高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。
高中新教材数学人课件选择性必修时直线与圆的位置关系
汇报人:XX 20XX-01-23
contents
目录
• 直线与圆的基本概念和性质 • 直线与圆相切的条件及判定 • 直线与圆相交的条件及判定 • 直线与圆相离的条件及判定 • 直线与圆位置关系的综合应用 • 总结回顾与拓展延伸
01 直线与圆的基本 概念和性质
02
解析
由题意可知,圆心$C(0,0)$到 直线$l$的距离$d = frac{|b|}{sqrt{k^2 + 1}} = 1$ ,且弦长$AB = 2sqrt{r^2 d^2} = 2sqrt{3}$,解得$r = 2$。将$r,d$代入距离公式可得 $k,b$的方程组,解得$k = pm sqrt{3}, b = pm 2$。
圆关于经过圆心的任意直 线对称。
直线与圆的位置关系分类
相离
直线与圆没有公共点,即 圆心到直线的距离大于半 径。
相切
直线与圆有且仅有一个公 共点,即圆心到直线的距 离等于半径。
相交
直线与圆有两个不同的公 共点,即圆心到直线的距 离小于半径。
02 直线与圆相切的 条件及判定
直线与圆相切的条件
直线斜率存在且不为0
03 直线与圆相交的 条件及判定
直线与圆相交的条件
01
直线斜率存在且不为0,且直线不 经过圆心。
02
圆心到直线的距离小于圆的半径 。
判定方法:判别式法和交点坐标法
判别式法
联立直线与圆的方程,消去一个未知数,得到一个关于另一个未知数的二次方程 。根据判别式的正负判断直线与圆的位置关系。若判别式大于0,则直线与圆相 交;若判别式等于0,则直线与圆相切;若判别式小于0,则直线与圆相离。
高中数学人教版必修课件:直线圆的位置关系
求圆的切线方程
的切线方程
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
题型3
例4
直线与圆相交的问题
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
作业
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
第三、四课时
4.2.2圆与圆的位置关系
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT) 高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT) 高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT) 高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
问题1 高中数学人教版必修2课件:4.2直线.圆的位置关系(共30张PPT)
圆与圆有哪几种位置关系?
相离 外切 相交 内切 内含
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
高中数学人教版必修2课件:4.2直线. 圆的位 置关系 (共30 张PPT)
高中数学讲义微专题66 直线与圆位置关系
微专题66 直线与圆位置关系一、基础知识:1、定义:在平面上到定点的距离等于定长的点的轨迹是圆2、圆的标准方程:设圆心的坐标(),C a b ,半径为r ,则圆的标准方程为:()()222x a y b r -+-=3、圆的一般方程:圆方程为220x y Dx Ey F ++++= (1)22,x y 的系数相同 (2)方程中无xy 项(3)对于,,D E F 的取值要求:2240D E F +->4、直线与圆位置关系的判定:相切,相交,相离,位置关系的判定有两种方式:(1)几何性质:通过判断圆心到直线距离与半径的大小得到直线与圆位置关系,设圆的半径为r ,圆心到直线的距离为d ,则: ① 当r d >时,直线与圆相交 ② 当r d =时,直线与圆相切 ③ 当r d <时,直线与圆相离(2)代数性质:可通过判断直线与圆的交点个数得到直线与圆位置关系,即联立直线与圆的方程,再判断解的个数。
设直线:0Ax By C ++=,圆:220x y Dx Ey F ++++=,则:22Ax By C x y Dx Ey F ++=⎧⎨++++=⎩消去y 可得关于x 的一元二次方程,考虑其判别式的符号① 0∆>,方程组有两组解,所以直线与圆相交 ② 0∆=,方程组有一组解,所以直线与圆相切 ③ 0∆<,方程组无解,所以直线与圆相离 5、直线与圆相交:弦长计算公式:2AB AM ==6、直线与圆相切:(1)如何求得切线方程:主要依据两条性质:一是切点与圆心的连线与切线垂直;二是圆心到切线的距离等于半径例:已知圆的方程为:224x y +=及圆上一点(P ,求过P 的圆的切线方法一:利用第一条性质:OP k =3k =-∴切线方程为:)1y x =-,整理后可得:4x += 方法二:利用第二条性质:设切线方程l为:()1y k x =-即kx y k -+2O l d r -∴===整理可得:)2231010k ++=⇒+=解得:k =):143l y x y ∴-=--⇒+= (2)圆上点的切线结论:① 圆222x y r +=上点()00,P x y 处的切线方程为200x x y y r +=② 圆()()222x a y b r -+-=上点()00,P x y 处的切线方程为()()()()200x a x a y b y b r --+--=(3)过圆外一点的切线方程(两条切线):可采取上例方法二的做法,先设出直线方程,再利用圆心到切线距离等于半径求得斜率,从而得到方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相切 d=r
d r
相交 d<r
d r
r
交点个数
0个
1个
2个
画板
1.直线x+y-2=0与圆x2+y2=2的位置关 相切 系为________
2.直线x-y-2=0与圆(x-1)2+(y-1)2=1 相离 的位置关系为________
3.直线x+2y-1=0和圆x2-2x+y2-y+1=0 相交 的位置是________
r d ( 7 ) b 1
故所求圆的方程是(x-3)2+(y-1)2=9
或(x+3)2+(y+1)2=9。
画板
算法
1.输入直线方程的系数A、B、C;
2.输入圆的圆心坐标a、b与半径R;
3.计算圆心到直线的距离d;
A2 B 2 4.比较d与R的大小,判断直线的与的位置关系
如果d>R,则直线与圆相离;
如果d=R,则直线与圆相切;
d
| Aa Bb C |
ቤተ መጻሕፍቲ ባይዱ
如果d<R,则直线与圆相交.
实例
1.求过圆x2+y2 =R2上定点P0(x0,y0)的圆的 切线方程;把你的结论推广到圆心不 在原点的圆的情况,并写成小论文。 2.求过圆x2+y2 =R2外定点P0(x0,y0)的圆的 切线方程和切线长;把你的结论推广 到圆心不在原点的圆的情况,并写成 小论文。
复习
2+(y-b)2=r2 (x-a) 1.圆的标准方程为______________
a,b) 半径为______ r 圆心为( ________
2.圆的一般方程: 2+y2+Dx+Ey+F=0(其中D2+E2-4F>0) x __________________________________
1 D E 圆心为 ( , ) 半径为 2 2 2 D 2 E 2 4F
已知直线l:kx-y+3=0和圆C:
x2+y2=1,试问:k为何值时,
直线l与圆C相交?
问题7:你还能用什么方法求解呢?
判断直线与圆的位置关系的方法2
(代数法): 将直线方程与圆的方程联立成方程组, 利用消元法消去一个元后,得到关于另一 个元的一元二次方程,求出其Δ的值,然 后比较判别式Δ与0的大小关系, 若Δ<0 则直线与圆相离 若Δ=0 则直线与圆相切
比较Δ与0的大小:
当Δ<0时,直线与圆相离;当Δ=0时, 直线与圆相 切 ;当Δ>0时,直线与圆相交。
画板
一只小老鼠在圆(x-5)2+(y-3)2=9上环 行,它走到哪个位置时与直线l : 3x+4y-2=0的距离最短,请你帮小老鼠找 到这个点并计算这个点到直线l的距离。
画板
1.直线l过点(2,2)且与圆x2+y2-2x=0 相切,求直线l的方程.
问题1:你知道直 线和圆的位置关系 有几种?
画板
画板 直线与圆的位置关系的判断方法: 一般地,已知直线Ax+By+C=0(A,B不同时为零)
和圆(x-a)2+(y-b)2=r2,则圆心(a,b)到此直线 的距离为 d
| Aa Ba C | A B
2 2
则
位置 d与 r
图形
相离
d>r
若Δ>0 则直线与圆相交
反之成立
直线与圆的位置关系判断方法:
一、几何方法。主要步骤: 把直线方程化为一般式,利用圆的方程求出圆 心和半径 利用点到直线的距离公式求圆心到直线的距离 作判断: 当d>r时,直线与圆相离;当d=r时, 直线与圆相切;当d<r时,直线与圆相交
二、代数方法。主要步骤:
把直线方程与圆的方程联立成方程组 利用消元法,得到关于另一个元的一元二次方程 求出其Δ的值
3 y 2 ( x 2)或x 2 4
2.一圆与y轴相切,圆心在直线
x-3y=0 上,在 y=x 上截得弦长为2 7 , 求此圆的方程。
解:设该圆的方程是(x-3b)2+(y-b)2=9b2,
圆心(3b,b)到直线x-y=0的距离是
d
2
| 3b b | 2
2
2 |b|
2
r=|3b|