专题三 数形结合思想及答案
中考数学专题复习 专题48 中考数学数形结合思想(教师版含解析)
中考专题48 中考专题数学数形结合思想数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。
“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
1.数形结合思想的含义数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
2.数形结合思想应用常见的四种类型(1)实数与数轴。
实数与数轴上的点具有一一对应关系,借助数轴观察数的特点,直观明了。
(2)在解方程(组)或不等式(组)中的应用。
利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。
(3)在函数中的应用。
借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
(4)在几何中的应用。
对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。
3.数形结合思想解题方法“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观.【经典例题1】(2020年•遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°=AC CD =12+√3=2−√3(2+√3)(2−√3)=2−√3.类比这种方法,计算tan22.5°的值为( )A .√2+1B .√2−1C .√2D .12 【标准答案】B【分析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,根据tan22.5°=AC CD 计算即可. 【答案剖析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,∴tan22.5°=AC CD =11+√2=√2−1 【知识点练习】(2019•湖北省仙桃市)不等式组的解集在数轴上表示正确的是( )A. B.C.D.【标准答案】C【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2【经典例题2】(2020年•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,方程x+5=ax+b的解是( )A.x=20 B.x=5 C.x=25 D.x=15【标准答案】A【分析】两直线的交点坐标为两直线答案剖析式所组成的方程组的解.【答案剖析】∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴直线y=x+5和直线y=ax+b相交于点P为x=20.【知识点练习】(2020年株洲模拟)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.【标准答案】4【答案剖析】本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.【经典例题3】(2020年通化模拟)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE 与△BHD面积之和的最大值,并简要说明理由.【标准答案】见答案剖析。
二轮专题复习(03):数形结合思想
)中考第二轮专题复习三:数形结合思想数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:Ⅰ、借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;Ⅱ、借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质一、借助数轴解数与式的问题[例1](山西·2006中考)实数b a ,在数轴上的位置如图所示,化简:2)(a b b a -++=__________.二、借助平面直角坐标系解函数问题 [例2]如图(1),某抛物线y=ax2+bx+c 交x 轴交于A 、B 两点,A (1,0),B (5,0),当x____________时,y=0.当x_____________时y>0,当x____________时,y<0.(2)如图(2)直线y=kx+b 交x 轴于A 点,交y 轴于B 点,且A (-3,0)、B (0,2),则直线解析式为___________________,根据图象直接写出当x__________时;y>0,当x_____时,y<0;当x_____时,y=0.(3)如图(3)某抛物线y1=ax2+bx+c 与某直线y2=kx+b 交于A 、B 两点,且A (-4,3)、B (2,1)。
当___________时y1>y2;当______________时y1=y2;当_____________时y1<y2.(填x 的取值范围)三、利用图形理解代数恒等式【例3】[2007年辽宁十二市] 图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( ) A 、22()()4m n m n mn +--= B 、222()()2m n m n mn +-+= C 、222()2m n mn m n -+=+ D 、22()()m n m n m n +-=-四、借助直角三角形解三角比问题[例4](南京·2007中考)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A —C —B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC=10km,∠A=30°,∠B=45°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果精确到0.1km)(参考数据:41.12≈,73.13≈)五、借助勾股定理等几何图形的知识解实际问题[例5](上海·2006中考)本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图1所示.请你帮他们求出滴水湖的半径.· ··0 a b· · · AB C例4图2· OD ABC3045例3【巩固练习】1、一次函数32--=x y 的图象不经过第 象限2、如果正比例函数kx y -=的图象经过第一、三象限,那么直线3+=kx y 经过第_______象限。
2023中考数学一轮复习专题3
专题3.2 平面直角坐标系与一次函数、反比例函数(基础篇)(真题专练)一、单选题1.(2021·黑龙江牡丹江·中考真题)如图,在平面直角坐标系中A (﹣1,1)B (﹣1,﹣2),C (3,﹣2),D (3,1),一只瓢虫从点A 出发以2个单位长度/秒的速度沿A →B →C →D →A 循环爬行,问第2021秒瓢虫在( )处.A .(3,1)B .(﹣1,﹣2)C .(1,﹣2)D .(3,﹣2)2.(2021·山东济南·中考真题)反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限,则一次函数y kx k =-的图象大致是( )A .B .C .D .3.(2021·四川德阳·中考真题)下列函数中,y 随x 增大而增大的是( ) A .y =﹣2x B .y =﹣2x +3C .y 2x=(x <0) D .y =﹣x 2+4x +3(x <2)4.(2021·内蒙古呼和浩特·中考真题)在平面直角坐标系中,点()3,0A ,()0,4B .以AB 为一边在第一象限作正方形ABCD ,则对角线BD 所在直线的解析式为( ) A .147y x =-+B .144y x =-+C .142y x =-+D .4y =5.(2021·湖南娄底·中考真题)如图,直线y x b =+和4y kx =+与x 轴分别相交于点(4,0)A -,点(2,0)B ,则040x b kx +>⎧⎨+>⎩解集为( )A .42x -<<B .4x <-C .2x >D .4x <-或2x >6.(2021·黑龙江大庆·中考真题)已知反比例函数ky x=,当0x <时,y 随x 的增大而减小,那么一次的数y kx k =-+的图像经过第( ) A .一,二,三象限 B .一,二,四象限 C .一,三,四象限D .二,三,四象限7.(2021·福建·中考真题)如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()10k x b -+>的解集是( )A .2x >-B .1x >-C .0x >D .1x >8.(2021·辽宁朝阳·中考真题)如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =kx(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣309.(2021·湖南湘西·中考真题)如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为21y x 的函数图象.根据这个函数的图象,下列说法正确的是( )A .图象与x 轴没有交点B .当0x >时0y >C .图象与y 轴的交点是1(0,)2- D .y 随x 的增大而减小10.(2021·四川达州·中考真题)在反比例函数21k y x+=(k 为常数)上有三点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<11.(2021·浙江杭州·中考真题)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x =-和21y x =--D .11y x=-和21y x =-+二、填空题12.(2021·青海西宁·中考真题)在平面直角坐标系xOy 中,点A 的坐标是(–2)1-,,若//AB y轴,且9AB =,则点B 的坐标是________.13.(2021·广西河池·中考真题)从﹣2,4,5这3个数中,任取两个数作为点P 的坐标,则点P 在第四象限的概率是__________.14.(2021·辽宁丹东·中考真题)在函数y =中,自变量x 的取值范围_________. 15.(2021·湖北黄石·中考真题)将直线1y x =-+向左平移m (0m >)个单位后,经过点(1,−3),则m 的值为______.16.(2021·内蒙古呼和浩特·中考真题)正比例函数1y k x =与反比例函数2k y x=的图象交于A ,B 两点,若A 点坐标为-,则12k k +=__________.17.(2021·四川眉山·中考真题)一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.18.(2021·江苏苏州·中考真题)若21x y +=,且01y <<,则x 的取值范围为______. 19.(2021·山东青岛·中考真题)列车从甲地驶往乙地.行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到__________km/h .20.(2021·江苏徐州·中考真题)如图,点,A D 分别在函数36,y y x x-==的图像上,点,B C 在x 轴上.若四边形ABCD 为正方形,点D 在第一象限,则D 的坐标是_____________.21.(2021·北京·中考真题)在平面直角坐标系xOy 中,若反比例函数(0)ky k x =≠的图象经过点()1,2A 和点()1,B m -,则m 的值为______________.22.(2021·湖南邵阳·中考真题)已知点()11,A y ,()22,B y 为反比例函数3y x=图象上的两点,则1y 与2y 的大小关系是1y ______2y .(填“>”“=”或“<”)23.(2021·广西河池·中考真题)在平面直角坐标系中,一次函数2y x =与反比例函数()0ky k x=≠的图象交于()11,A x y ,()22,B x y 两点,则12y y +的值是____________.24.(2021·江苏淮安·中考真题)如图(1),△ABC 和△A ′B ′C ′是两个边长不相等的等边三角形,点B ′、C ′、B 、C 都在直线l 上,△ABC 固定不动,将△A ′B ′C ′在直线l 上自左向右平移.开始时,点C ′与点B 重合,当点B ′移动到与点C 重合时停止.设△A ′B ′C ′移动的距离为x ,两个三角形重叠部分的面积为y ,y 与x 之间的函数关系如图(2)所示,则△ABC 的边长是___.三、解答题25.(2021·甘肃兰州·中考真题)小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,1l ,2l 分别表示小军与观光车所行的路程()m y 与时间()min x 之间的关系. 根据图象解决下列问题:(1)观光车出发______分钟追上小军; (2)求2l 所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.26.(2021·河南·中考真题)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A ,B 两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:(1)第一次小李用1100元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个; (2)第二次小李进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少? (3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算? (注:利润率100%=⨯利润成本)27.(2021·山东淄博·中考真题)如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点. (1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP △的面积; (3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.参考答案1.A【分析】根据点的坐标求出四边形ABCD 的周长,然后求出第2021秒是爬了第几圈后的第几个单位长度,从而确定答案.解: A (﹣1,1)B (﹣1,﹣2),C (3,﹣2),D (3,1)∴ 四边形ABCD 是矩形()1--2=1+2=3AB ∴=()=3--1=4BC343414AB BC CD AD ∴+++=+++=∴瓢虫转一周,需要的时间是14=72秒 2021=2887+5⨯ ,∴ 按A →B →C →D →A 顺序循环爬行,第2021秒相当于从A 点出发爬了5秒,路程是:52=10⨯个单位,10=3+4+3,所以在D 点()3,1 .故答案为:A【点拨】本题考查了点的变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2021秒瓢虫爬完了多少个整圈的矩形,不成一圈的路程在第几圈第几个单位长度的位置是解题的关键. 2.D【分析】根据题意可得0k >,进而根据一次函数图像的性质可得y kx k =-的图象的大致情况.解:反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限, 0k ∴>△一次函数y kx k =-的图象与y 轴交于负半轴,且经过第一、三、四象限. 观察选项只有D 选项符合. 故选D【点拨】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得0k >是解题的关键. 3.D【分析】一次函数当a >0时,函数值y 总是随自变量x 增大而增大,反比例函数当k >0时,在每一个象限内,y 随自变量x 增大而增大,二次函数根据对称轴及开口方向判断增减性.解:A .一次函数y =-2x 中的a =-2<0,y 随x 的增大而减小,故不符合题意. B .一次函数y =-2x +3中的a =-2<0,y 随自变量x 增大而减小,故不符合题意.C .反比例函数y =2x (x <0)中的k =2>0,在第三象限,y 随x 的增大而减小,故不符合题意.D .二次函数y =-x 2+4x +3(x <2),对称轴x =2ba-=2,开口向下,当x <2时,y 随x 的增大而增大,故符合题意. 故选:D .【点拨】本题考查了一次函数、反比例函数、二次函数的增减性;熟练掌握一次函数、二次函数、反比例函数的性质是关键. 4.A【分析】过点D 作DE x ⊥轴于点E ,先证明()ABO DAE AAS ≅,再由全等三角形对应边相等的性质解得(7,3)D ,最后由待定系数法求解即可. 解:正方形ABCD 中,过点D 作DE x ⊥轴于点E , 90ABO BAO BAO DAE ∠+∠=∠+∠=︒ABO DAE ∴∠=∠90,BOA AED AB AD ∠=∠=︒= ()ABO DAE AAS ∴≅ 3,4AO DE OB AE ∴==== (7,3)D ∴设直线BD 所在的直线解析式为(0)y kx b k =+≠, 代入()0,4B ,(7,3)D 得473b k b =⎧⎨+=⎩ 174k b ⎧=-⎪∴⎨⎪=⎩ 147y x ∴=-+,故选:A .【点拨】本题考查待定系数法求一次函数的解析式,涉及正方形性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键. 5.A【分析】根据图像以及两交点(4,0)A -,点(2,0)B 的坐标得出即可. 解:△直线y x b =+和4y kx =+与x 轴分别相交于点(4,0)A -,点(2,0)B ,△观察图像可知040x b kx +>⎧⎨+>⎩解集为42x -<<,故选:A .【点拨】本题考查了一次函数与一元一次不等式组,能根据图像和交点坐标得出答案是解此题的关键. 6.B【分析】根据反比例函数的增减性得到0k >,再利用一次函数的图象与性质即可求解. 解:△反比例函数ky x=,当0x <时,y 随x 的增大而减小, △0k >,△y kx k =-+的图像经过第一,二,四象限, 故选:B .【点拨】本题考查反比例函数和一次函数的图象与性质,掌握反比例函数和一次函数的图象与性质是解题的关键. 7.C【分析】先平移该一次函数图像,得到一次函数()()10y k x b k =-+>的图像,再由图像即可以判断出 ()10k x b -+>的解集.解:如图所示,将直线()0y kx b k =+>向右平移1个单位得到 ()()10y k x b k =-+>,该图像经过原点,由图像可知,在y 轴右侧,直线位于x 轴上方,即y >0, 因此,当x >0时,()10k x b -+>, 故选:C .【点拨】本题综合考查了函数图像的平移和利用一次函数图像求对应一元一次不等式的解集等,解决本题的关键是牢记一次函数的图像与一元一次不等式之间的关系,能从图像中得到对应部分的解集,本题蕴含了数形结合的思想方法等. 8.A【分析】过A 点作AC △OB ,利用等腰三角形的性质求出点A 的坐标即可解决问题. 解:过A 点作AC △OB ,△AO =AB ,AC △OB ,OB =6, △OC =BC =3,在Rt △AOC 中,OA =5,△AC 4==,△A (﹣3,4),把A (﹣3,4)代入y =k x,可得k =﹣12 故选:A .【点拨】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.A【分析】根据函数图象可直接进行排除选项.解:由图象可得:10x -≠,即1x ≠,A 、图象与x 轴没有交点,正确,故符合题意;B 、当01x <<时,0y <,错误,故不符合题意;C 、图象与y 轴的交点是()0,2-,错误,故不符合题意;D 、当1x <时,y 随x 的增大而减小,且y 的值永远小于0,当1x >时,y 随x 的增大而减小,且y 的值永远大于0,错误,故不符合题意;故选A .【点拨】本题主要考查反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.10.C【分析】根据k >0判断出反比例函数的增减性,再根据其坐标特点解答即可.解:△210k +>,△反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小, △B (x 2,y 2),C (x 3,y 3)是双曲线k y x=上的两点,且320x x >>, △点B 、C 在第一象限,0<y 3<y 2,△A (x 1,y 1)在第三象限,△y 1<0,△132y y y <<.故选:C .【点拨】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,理解基本性质是解题关键.11.A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于D 选项则有110m m--+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A .【点拨】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.12.(2,8)-或(2,10)--【分析】由题意,设点B 的坐标为(-2,y ),则由AB =9可得(1)9y --=,解方程即可求得y 的值,从而可得点B 的坐标.解:△//AB y 轴△设点B 的坐标为(-2,y )△AB =9 △(1)9y --=解得:y =8或y =-10△点B 的坐标为(2,8)-或(2,10)--故答案为:(2,8)-或(2,10)--【点拨】本题考查了平面直角坐标系求点的坐标,解含绝对值方程,关键是抓住平行于坐标轴的线段长度只与两点的横坐标或纵坐标有关,易错点则是考虑不周,忽略其中一种情况.13.13【分析】先画树状图展示所有6种等可能的结果,利用第四象限点的坐标特征确定点P 在第四象限的结果数,然后根据概率公式计算,即可求解.解:画出树状图为:共有6种等可能的结果,它们是:(-2,4),(-2,5),(4,-2),(4,5),(5,4),(5,-2), 其中点P 在第四象限的结果数为2,即(4,-2),(5,-2),所以点P 在第四象限的概率为:2163= . 故答案为:13 . 【点拨】本题考查了列表法与树状图法求概率和点的坐标特征,通过列表法或树状图法列举出所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率是解题的关键.14.3x ≥【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:根据题意得:3020x x -≥⎧⎨-≠⎩,解得3x ≥ △自变量x 的取值范围是3x ≥.故答案为:3x ≥.【点拨】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.3【分析】根据平移的规律得到平移后的解析式为()1y x m =-++,然后把点(1,−3)的坐标代入求值即可.解:将一次函数y =-x +1的图象沿x 轴向左平移m (m ≥0)个单位后得到()1y x m =-++, 把(1,−3)代入,得到:()311m -=-++,解得m =3.故答案为:3.【点拨】本题主要考查了一次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式是解题的关键.16.8-【分析】将A 点坐标为-分别代入正比例函数1y k x =与反比例函数2k y x =的解析式中即可求解.解:1y k x =和2k y x=过点A -12k ==-2(6k -=-12(2)(6)8k k +=-+-=-故答案为8-.【点拨】本题考查了待定系数法求正比例函数和反比例函数的解析式,有理数的加法运算,正确的实用待定系数法求解析式是解题的关键.17.32a <- 【分析】由题意,先根据一次函数的性质得出关于a 的不等式230a +<,再解不等式即可.解:一次函数()232y a x =++的值随x 值的增大而减少,230a ∴+<, 解得:32a <-, 故答案是:32a <-. 【点拨】本题考查了一次函数的图象与系数的关系,解题的关键是:熟知一次函数的增减性.18.102x << 【分析】根据21x y +=可得y =﹣2x+1,k =﹣2<0进而得出,当y =0时,x 取得最大值,当y =1时,x 取得最小值,将y =0和y =1代入解析式,可得答案.解:根据21x y +=可得y =﹣2x+1,△k =﹣2<0△01y <<,△当y =0时,x 取得最大值,且最大值为12, 当y =1时,x 取得最小值,且最小值为0, △102x << 故答案为:102x <<. 【点拨】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键. 19.240 【分析】由设,k t v=再利用待定系数法求解反比例函数解析式,把 2.5t =h 代入函数解析式求解v 的值,结合图象上点的坐标含义可得答案. 解:由题意设,k t v= 把()200,3代入得:2003600,k tv ==⨯=600,t v∴= 当 2.5t =h 时,6002402.5v ==km/h , 所以列车要在2.5h 内到达,则速度至少需要提高到240km/h ,故答案为:240km/h .【点拨】本题考查的是反比例函数的应用,掌握利用待定系数法求解反比例函数的解析式是解题的关键.20.(2,3)【分析】根据正方形和反比例函数图像上点的坐标特征,设D 点坐标为(m ,6m),则A 点坐标为(2m - ,6m ),进而列出方程求解. 解:△四边形ABCD 为正方形,△设D 点坐标为(m ,6m ),则A 点坐标为(2m - ,6m ), △m -(2m -)=6m ,解得:m =±2(负值舍去), 经检验,m =2是方程的解,△D 点坐标为(2,3),故答案是:(2,3).【点拨】本题主要考查反比例函数与平面几何的综合,掌握反比例函数图像上点的坐标特征,是解题的关键.21.2-【分析】由题意易得2k =,然后再利用反比例函数的意义可进行求解问题.解:把点()1,2A 代入反比例函数()0k y k x=≠得:2k =, △12m -⨯=,解得:2m =-,故答案为-2.【点拨】本题主要考查反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.22.>【分析】根据反比例函数的性质,当反比例系数k >0,在每一象限内y 随x 的增大而减小可得答案. 解:△ 反比例函数的解析式为3y x =,k >0,△ 在每个象限内y 随x 的增大而减小,△ 1<2,△1y >2y .故答案为:>.【点拨】本题主要考查了反比例函数的性质,掌握反比例函数的性质是解题的关键. 23.0【分析】根据正比例函数和反比例函数的图像关于原点对称,则交点也关于原点对称,即可求得12y y +解:一次函数2y x =与反比例函数()0k y k x =≠的图象交于()11,A x y ,()22,B x y 两点, 一次函数2y x =与反比例函数()0k y k x=≠的图象关于原点对称, ∴12y y +0= 故答案为:0【点拨】本题考查了正比例函数和反比例函数图像的性质,掌握以上性质是解题的关键. 24.5【分析】在点B '到达B 之前,重叠部分的面积在增大,当点B '到达B 点以后,且点C '到达C 以前,重叠部分的面积不变,之后在B '到达C 之前,重叠部分的面积开始变小,由此可得出B 'C '的长度为a ,BC 的长度为a +3,再根据△ABC 的面积即可列出关于a 的方程,求出a 即可.解:当点B '移动到点B 时,重叠部分的面积不再变化,根据图象可知B 'C '=a ,A B C S '''∆=过点A '作A 'H △B 'C ',则A 'H 为△A 'B 'C '的高,△△A 'B 'C '是等边三角形,△△A 'B 'H =60°,△sin60°=A H A B '''=△A 'H ,△12A B C S a '''∆=⋅2= 解得a =﹣2(舍)或a =2,当点C '移动到点C 时,重叠部分的面积开始变小,根据图像可知BC =a +3=2+3=5,△△ABC 的边长是5,故答案为5.【点拨】本题主要考查动点问题的函数图象和三角函数,关键是要分析清楚移动过程可分为哪几个阶段,每个阶段都是如何变化的,先是点B '到达B 之前是一个阶段,然后点C '到达C 是一个阶段,最后B '到达C 又是一个阶段,分清楚阶段,根据图象信息列出方程即可. 25.(1)6;(2)300-4500y x =;(3)观光车比小军早8分钟到达观景点,理由见解析.【分析】(1)由图像可知,1l ,2l 的交点,即为两者到达同一位置,所以在21分钟时观光车追上小军,而观光车是在15分钟时出发的,所以观光车出发6分钟后追上小军;(2)设2l 所在直线对应的函数表达式为y kx b =+,将经过两点(15,0)和(21,1800)带入表达式y kx b =+,得300-4500y x =;(3)由图像可知,到达观景点需要3000m 的路程,小军到达观景点的时间为33min ,通过2l 所在直线对应的函数表达式300-4500y x =,可知,观光车到达观景点的时间为25min x =,因此观光车比小军早33min 25min 8min -=到达观景点.解:(1)由图像可知,在21min 时,1l ,2l 相交于一点,表示在21min 时,小军和观光车到达了同一高度,此时观光车追上了小军, 观光车是在15min 时出发,△21min-15min=6min ,△观光车出发6分钟后追上小军;(2)设2l 所在直线对应的函数表达式为y kx b =+,由图像可知,直线2l 分别经过(15,0)和(21,1800)两点,将两点带入2l 函数表达式y kx b =+得:150211800k b k b +=⎧⎨+=⎩ 解得:3004500k b =⎧⎨=-⎩△2l 函数表达式为300-4500y x =;(3)由图像可知,到达观景点需要3000m 的路程,小军到达观景点的时间为33min ,△观光车2l 函数表达式为300-4500y x =,△将=3000y 带入300-4500y x =,可知观光车到达观景点所需时间为=25min x , △33min-25min=8min ,△观光车比小军早8分钟到达观景点.答:(1)观光车出发6分钟追上小军;(2)2l 所在直线对应的函数表达式为300-4500y x =;(3)观光车比小军早8分钟到达观景点,理由见解析.【点拨】本题考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键.26.(1)A 款20个,B 款10个;(2)A 款10个,B 款20个,最大利润是460元;(3)第二次更合算.理由见解析【分析】(1)根据题意列二元一次方程组,解方程组即可;(2)根据条件求得利润的解析式,再判断最大利润即可;(3)分别求出第一次和第二次的利润率,比较之后即可知道哪一次更合算.解:(1)设A ,B 两款玩偶分别为,x y 个,根据题意得:30{4030=1100x y x y +=+ 解得:2010x y =⎧⎨=⎩ 答:两款玩偶,A 款购进20个,B 款购进10个.(2)设购进A 款玩偶a 个,则购进B 款(30)a -个,设利润为y 元则(5640)(4530)(30)y a a =-+--=1615(30)a a +-=450+a (元) A 款玩偶进货数量不得超过B 款玩偶进货数量的一半1(30)2a a ∴≤- 10a ∴≤,又0,a ≥010,a ∴≤≤ 且a 为整数,10-<∴当10a =时,y 有最大值max 460.y ∴=(元)∴A 款10个,B 款20个,最大利润是460元.(3)第一次利润20(5640)10(4530)=470⨯-+⨯-(元)∴第一次利润率为:470100%=42.7%1100⨯ 第二次利润率为:460100%=46%1040+2030⨯⨯⨯ 42.7%46%<∴第二次的利润率大,即第二次更划算.【点拨】本题考查了二元一次方程组的应用,最大利润方案问题,利润率求解等问题,一次函数最值问题,理解题意,根据题意列出方程组是解题的关键.27.(1)11y x =-+,26y x =-;(2)152ABP S =;(3)20x -<<或3x > 【分析】(1)由题意先求出2y ,然后得到点B 的坐标,进而问题可求解;(2)由(1)可得ABP △以PB 为底,点A 到PB 的距离为高,即为点A 、B 之间的纵坐标之差的绝对值,进而问题可求解;(3)根据函数图象可直接进行求解.解:(1)把点()2,3A -代入反比例函数解析式得:6k =-, △26y x=-, △点B 在反比例函数图象上,△26m -=-,解得:3m =,△()3,2B -,把点A 、B 作代入直线解析式得:112332k b k b -+=⎧⎨+=-⎩,解得:111k b =-⎧⎨=⎩, △11y x =-+;(2)由(1)可得:()2,3A -,()3,2B -,△//BP x 轴,△3BP =,△点A 到PB 的距离为()325--=, △1153522ABP S =⨯⨯=; (3)由(1)及图象可得:当21k k x b x +<时,x 的取值范围为20x -<<或3x >. 【点拨】本题主要考查反比例函数与一次函数的综合,熟练掌握反比例函数与一次函数的图象与性质是解题的关键.。
2023年高考数学填选压轴题专题03 函数的奇偶性、对称性、周期性
专题03 函数的奇偶性、对称性、周期性【方法点拨】1.常见的与周期函数有关的结论如下:(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . 2.函数奇偶性、对称性间关系:(1)若函数y =f (x +a )是偶函数,即f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称;一般的,若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称.(2)若函数y =f (x +a )是奇函数,即f (-x +a )+f (x +a )=0恒成立,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (a +x )+f (a -x )=2b 恒成立,则y =f (x )的图象关于点(a ,b )对称. 3. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍,为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍.(注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)4. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化.【典型题示例】例1 (2022·全国乙·理·T12) 已知函数(),()f x g x 的定义域均为R ,且()(2)5f x g x +-=,()(4)7g x f x --=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A. 21-B. 22-C. 23-D.24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=-,()()()462210f f f +++=-,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【解析】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()2211235(1)2k f f f f f f k =⎡⎤++++++⎣⎦=∑()()()4622f f f ⎡⎤+++⎣⎦13101024=----=-.故选:D例2 (2022·新高考Ⅱ卷·T8) 若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【答案】A【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【解析】因为()()()()f x y f x y f x f y ++-=, 令1,0x y ==可得,()()()2110f f f =,所以()02f =, 令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-, 所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--, 故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .例3 (2021·新高考全国Ⅱ卷·8)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A. 102f ⎛⎫-= ⎪⎝⎭B. ()10f -=C. ()20f =D.()40f =【答案】B【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【解析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.例4 (2021·全国甲卷·理·12)设函数()f x 的定义域为R ,()1fx +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫=⎪⎝⎭( ) A. 94-B. 32-C.74 D.52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .例5 已知函数f (x )对任意的x ∈R ,都有f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________. 【答案】4【分析】由f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12==,由函数 f (x +1)是奇函数,f (x )关于点(1,0)中心==,根据函数对称性、周期性间关系,知函数f (x )====2,====f (x )===即可.【解析】====f (x =1)=======f (=x =1)==f (x =1)====f ⎝⎛⎭⎫12=x = f ⎝⎛⎭⎫12=x ===f (1=x )=f (x )===f (x =1)==f (x )==f (x =2)==f (x =1)=f (x )= == ==f (x )====2========x =12=======f (x )========由图象可得 f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4. 例6 已知函数()y f x =是R 上的奇函数,对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则下列结论正确的有( )A .f (1)f +(2)f +(3)(2019)0f +⋯+=B .直线5x =-是函数()y f x =图象的一条对称轴C .函数()y f x =在[7-,7]上有5个零点D .函数()y f x =在[7-,5]-上为减函数【分析】根据题意,利用特殊值法求出f (2)的值,进而分析可得1x =是函数()f x 的一条对称轴,函数()f x 是周期为4的周期函数和()f x 在区间[1-,1]上为增函数,据此分析选项即可得答案.【解答】解:根据题意,函数()y f x =是R 上的奇函数,则(0)0f =;对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当2x =时,有(0)2f f =(2)0=,则有f (2)0=,则有(2)()f x f x -=,即1x =是函数()f x 的一条对称轴;又由()f x 为奇函数,则(2)()f x f x -=--,变形可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,故函数()f x 是周期为4的周期函数, 当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则函数()f x 在区间[0,1]上为增函数,又由()y f x =是R 上的奇函数,则()f x 在区间[1-,1]上为增函数; 据此分析选项:对于A ,(2)()f x f x +=-,则f (1)f +(2)f +(3)f +(4)[f =(1)f +(3)][f + (2)f +(4)]0=,f (1)f +(2)f +(3)(2019)504[f f +⋯+=⨯(1)f +(2)f +(3)f +(4)]f +(1)f +(2)+(3)f =(2)0=,A 正确;对于B ,1x =是函数()f x 的一条对称轴,且函数()f x 是周期为4的周期函数,则5x = 是函数()f x 的一条对称轴,又由函数为奇函数,则直线5x =-是函数()y f x =图象的一条对称轴,B 正确; 对于C ,函数()y f x =在[7-,7]上有7个零点:分别为6-,4-,2-,0,2,4,6;C 错误;对于D ,()f x 在区间[1-,1]上为增函数且其周期为4,函数()y f x =在[5-,3]-上为增函数,又由5x =-为函数()f x 图象的一条对称轴,则函数()y f x =在[7-,5]-上为减函数,D正确; 故选:ABD . 例7 已知函数()111123f x x x x =++---,()2g x x =-,则关于x 的方程()()f x g x =的实数根之和为______;定义区间(),a b ,[),a b ,(],a b ,[],a b 长度均为b a -,则()1111123f x x x x =++≥---解集全部区间长度之和为______. 【答案】①8 ②3【分析】根据题意得以函数()f x 关于点()2,0对称,进而利用导数研究函数()f x 性质,作出简图,树形结合求解即可得关于x 的方程()()f x g x =的实数根之和;令()1111123f x x x x =++=---整理得方程的实数根123,,x x x 满足1239x x x ++=,再数形结合得()1f x ≥解集为(](](]1231,2,3,x x x ,最后根据定义求解区间长度的和即可.【解析】因为()()1114321f x f x x x x-=++=----, 所以函数()f x 关于点()2,0对称, 由于()()()()222111'0123f x x x x =---<---,所以函数()f x 在()()()(),1,1,2,2,3,3,-∞+∞上单调递减,由于1x <时,()0f x <,(),0x f x →-∞→,()1,x f x -→→-∞,()1,x f x +→→+∞,()2,x f x -→→-∞,()2,x f x +→→+∞,()3,x f x -→→-∞,()3,x f x +→→+∞,(),0x f x →+∞→,且3x >时,()0f x >.故作出函数简图如图: 根据图像可知,函数()111123f x x x x =++---与函数()2g x x =-图像共有4个交点,且关于点()2,0对称,所以()()f x g x =的实数根之和为8;令()1111123f x x x x =++=---,整理得32923170x x x -+-=, 由图像知方程有三个实数解,不妨设为123,,x x x , 所以由三次方程的韦达定理得1239x x x ++=, 由函数图像得()1f x ≥解集为(](](]1231,2,3,x x x所以全部区间长度之和为12312312363x x x x x x -+-+-=++-=. 故答案为:8;3.【巩固训练】1.已知函数()1()2x af x -=关于1x =对称,则()()220f x f -≥的解集为_____.2.已知定义在R 上的函数()f x 满足(1)(3)f x f x +=--,且()f x 的图象与()lg4xg x x=-的图象有四个交点,则这四个交点的横纵坐标之和等于___________. 3.已知函数()()f x x R ∈满足(1)(1),(4)(4)f x f x f x f x +=-+=-,且33x -<≤时,()ln(f x x =,则(2018)f =( )A .0B .1 C.2) D.2)4. 已知f (x )是定义域为R 的函数,满足f (x +1)=f (x -3),f (1+x )=f (3-x ),当0≤x ≤2时,f (x )=x 2-x ,则下列说法正确的是( ) A.函数f (x )的周期为4B.函数f (x )图象关于直线x =2对称C.当0≤x ≤4时,函数f (x )的最大值为2D.当6≤x ≤8时,函数f (x )的最小值为-125.已知定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间上有四个不同的根,则6.(多选题)函数f (x )的定义域为R ,且f (x +1)与f (x +2)都为奇函数,则( ) A.f (x )为奇函数B.f (x )为周期函数C.f (x +3)为奇函数D.f (x +4)为偶函数7.若定义在R 上的函数()f x 满足()()2f x f x +=-,()1f x +是奇函数,现给出下列4个论断:①()f x 是周期为4的周期函数;②()f x 的图象关于点()1,0对称; ③()f x 是偶函数; ④()f x 的图象经过点()2,0-; 其中正确论断的个数是______________.8. (多选题)已知定义在R 上的函数f (x )满足f (x )=2-f (2-x ),且f (x )是偶函数,下列说法正确的是( )A.f (x )的图象关于点(1,1)对称B.f (x )是周期为4的函数C.若f (x )满足对任意的x ∈[0,1],都有f (x 2)-f (x 1)x 1-x 2<0,则f (x )在[-3,-2]上单调递增D.若f (x )在[1,2]上的解析式为f (x )=ln x +1,则f (x )在[2,3]上的解析式为f (x )=1-ln(x -2) 9. (2022·江苏常州·模拟)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )等于( ) A.0B.mC.2mD.4m)(x f (4)()f x f x -=-[]8,8-1234,,,x x x x 1234_________.x x x x +++=10.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5011.已知函数y kx b =+与函数11x x y e e --=-的图象交于A ,B ,C ,且|AB |=|BC |=2211e e+-,则实数k = .【答案与提示】1.【答案】[]1,2【解析】∵函数()1()2x a f x -=关于1x =对称,∴()111,2x a f x -⎛⎫== ⎪⎝⎭,则由()()12202f x f -≥=,结合图象可得0222x ≤-≤,求得12x ≤≤.2.【答案】8【解析】()lg 4x g x x =-,故(4)()g x g x -=-,即()y g x =的图象关于点(2,0)对称,又函数()f x 满足(1)(3)f x f x +=--,则函数()y f x =的图象关于点(2,0)对称,所以四个交点的横纵坐标之和为8.3. 【答案】D【解析】因为()()()()11,44f x f x f x f x +=-+=-,所以()(2),()(8)(2)(8)826,f x f x f x f x f x f x T =-=-∴-=-∴=-=(2018)(2)ln(25)f f ∴==+ .4. 【答案】ABC【解析】 由f (x +1)=f (x -3),得f (x )=f [(x -1)+1]=f [(x -1)-3]=f (x -4),所以函数f (x )的周期为4,A 正确.由f (1+x )=f (3-x ),得f (2+x )=f (2-x ),所以函数f (x )的图象关于直线x =2对称,B 正确.当0≤x ≤2时,函数f (x )在⎣⎡⎭⎫0,12上单调递减,在⎝⎛⎦⎤12,2上单调递增.所以当x =12时,函数f (x )在[0,2]上取得极小值-14,且f (0)=0,f (2)=2.作出函数f (x )在[0,8]上的大致图象,如图.由图可知,当0≤x ≤4时,函数f (x )的最大值为f (2)=2,C 正确;当6≤x ≤8时,函数f (x )的最小值为f ⎝⎛⎭⎫152=f ⎝⎛⎭⎫12=-14,D 错误.故选ABC.5. 【答案】-8【提示】四个根分别关于直线2x =,6x =-对称.【命题立意】本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.6.【答案】ABC【解析】法一 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (-x )+f (2+x )=0,f (-x )+f (4+x )=0,所以f (2+x )=f (4+x ),即f (x )=f (2+x ),-8 -6 -4 -2 0 2 4 6 8 yx f(x)=m (m>0)所以f (x )是以2为周期的周期函数.又f (x +1)与f (x +2)都为奇函数,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.法二 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (x )的周期为2|2-1|=2,所以f (x )与f (x +2),f (x +4)的奇偶性相同,f (x +1)与f (x +3)的奇偶性相同,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.7.【答案】3【解析】命题①:由()()2f x f x +=-,得:()()()42f x f x f x +=-+=, 所以函数()f x 的周期为4,故①正确;命题②:由()1f x +是奇函数,知()1f x +的图象关于原点对称,所以函数()f x 的图象关于点()1,0对称,故②正确;命题③:由()1f x +是奇函数,得:()()11f x f x +=--,又()()2f x f x +=-,所以()()()()()()21111f x f x f x f x f x -=--+=-+-=--=,所以函数()f x 是偶函数,故③正确;命题④:()()()2220f f f -=--+=-,无法判断其值,故④错误.综上,正确论断的序号是:①②③.8. 【答案】ABC【解析】根据题意,f (x )的图象关于点(1,1)对称,A 正确;又f (x )的图象关于y 轴对称,所以f (x )=f (-x ),则2-f (2-x )=f (-x ),f (x )=2-f (x +2),从而f (x +2)=2-f (x +4),所以f (x )=f (x +4),B 正确;由f (x 2)-f (x 1)x 1-x 2<0可知f (x )在[0,1]上单调递增,又f (x )的图象关于点(1,1)对称,所以f (x )在[1,2]上单调递增,因为f (x )的周期为4,所以f (x )在[-3,-2]上单调递增,C 正确;因为f (x )=f (-x ),x ∈[-2,-1]时,-x ∈[1,2],所以f (x )=f (-x )=ln(-x )+1,x ∈[-2,-1],因为f (x )的周期为4,f (x )=f (x -4),x ∈[2,3]时,x -4∈[-2,-1],所以f (x )=f (x -4)=ln(4-x )+1,x ∈[2,3],D 错误.综上,正确的是ABC.9.【答案】 B【解析】 ∵f (x )+f (-x )=2,y =x +1x =1+1x. ∴函数y =f (x )与y =x +1x的图象都关于点(0,1)对称, ∴∑m i =1x i =0,∑mi =1y i =m 2×2=m . 10.【答案】C【分析】同例1得f (x )的的的的4,故f (1) +f (2) +f (3) +f (4)=f (5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48),而f (1)=2,f (2)=f (0)=0(f (1-x )=f (1+x )中,取x =1)、f (3)=f (-1) =-f (1)=-2、f (4)=f (0)=0,故f (1) +f (2) +f (3) +f (4)=f(5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48) =0,所以f (1) +f (2) +f (3) +···+f (50) =f (47) +f (48) =f (1) +f (2) =2.11.【答案】1e e- 【解析】设()x x f x e e -=-,则()f x 为定义在R 上的单增的奇函数而11(1)x x y e e f x --=-=-,故其图象关于点(1,0)中心对称又因为|AB |=|BC |,所以B 的坐标为(1,0)为使运算更简单,问题可转化为过坐标原点的直线y kx =与()x x f x e e -=-交于一点D ,且k 的值 不妨设()000,x x D x e e --(00x >),== 解之得01x =,()11,D e e --,所以1k e e -=-.。
人教版七年级下册:数学思想方法专题练习
七年级下册数学思想方法专题练习目录一、转化思想...................................... 错误!未定义书签。
1.“新知识”向“旧知识”转化.................... 错误!未定义书签。
a.将三元一次方程组转化为二元一次方程组. .......... 错误!未定义书签。
b.将新定义转化为所学知识解题............................. 错误!未定义书签。
c.多项式乘多项式转化为单项式乘多项式............... 错误!未定义书签。
2.“未知”向“已知”转化........................ 错误!未定义书签。
a.将判断线段相等或角相等问题转化为判定三角形全等问题错误!未定义书签。
b.添加辅助线应用平行线的性质解题............ 错误!未定义书签。
3.“复杂”向“简单”转化........................ 错误!未定义书签。
a.利用平移的性质进行平移转化................ 错误!未定义书签。
b.将不规则图形面积转化为规则图形的面积...... 错误!未定义书签。
二、分类讨论思想.................................. 错误!未定义书签。
1.对字母、未知数的取值范围分不同情况讨论........ 错误!未定义书签。
2.对图形的位置、类型的分类讨论.................. 错误!未定义书签。
3.对问题的题设条件需分类讨论.................... 错误!未定义书签。
4.从图象中获取信息进行分类讨论 (9)5.对求解过程中不便统一表述的问题进行分类讨论.... 错误!未定义书签。
三、数形结合思想................................. 错误!未定义书签。
1.数转化为形.................................... 错误!未定义书签。
专题复习数形结合(含答案)
专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。
2。
」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。
2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)
专题3 函数及其应用1.关于函数图象的考查: (1)函数图象的辨识与变换;(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力; 2.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;3.常见题型,除将函数与导数相结合考查外,对函数独立考查的题目,不少于两道,近几年趋向于稳定在选择题、填空题,易、中、难的题目均有可能出现.,预测2020年将保持对数形结合思想的考查,主要体现在对函数图象、函数性质及其应用的考查,客观题应特别关注分段函数相关问题,以及与数列、平面解析几何、平面向量、立体几何的结合问题.主观题依然注意与导数的结合.一、单选题1.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,2【答案】C 【解析】311(1)(1)()302f --=--=-<,301(0)0(102f =-=-<,@13211112()()()02228f =-=-<,31111(1)1()10222f =-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C2.(2020届山东省泰安市高三上期末)函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】:()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A3.(2020·河南高三月考(理))已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( )A .2()(2)3-∞+∞,,B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 【答案】D 【解析】》因为(2)f x +是偶函数,所以()f x 关于直线2x =对称; 因此,由(0)0f =得(4)0f =;又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增;所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->, 解得23x <-; 当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<, 解得23x >; 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 》4.(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞ B .(],4-∞C .()2,4-D .(]2,4-【答案】A 【解析】令()2g x x m =-+,画出()f x 与()g x 的图象,平移直线,当直线经过()1,2时只有一个交点,此时4m =,向右平移,不再符合条件,故4m < 故选:A$5.(2020届山东省烟台市高三上期末)设0.5log 3a =,30.5b =,0.513c -⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】由题,因为0.5log y x =单调递减,则0.50.5log 3log 10a =<=;因为0.5xy =单调递减,则3000.50.51b <=<=;因为3xy =单调递增,则0.50.5013313c -⎛⎫==>= ⎪⎝⎭,所以01a b c <<<<,—故选:A6.(2020届山东省潍坊市高三上期中)函数ln ()xf x x x=-的大致图象为( )A .B .C .D .【答案】A 【解析】函数的定义域为(,0)(0,)-∞+∞,||||()()()ln x ln x f x x x f x x x--=--=--=--,则函数()f x 是奇函数,图象关于原点对称,排除B ,D ,"当0x >且0x →,()f x →+∞,排除C . 故选:A.7.(2020届山东省潍坊市高三上期中)已知3log 2a =,143b =,2ln 3c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c b a >>D .c a b >>【答案】B 【解析】因为3log 2(0,1)a =∈,1431b =>,203c ln =<,则a ,b ,c 的大小关系:b a c >>.|故选:B.8.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .163【答案】C 【解析】∵()3log 21a b +=+∴()33log 21log a b ab +=+()3log 3ab =, ∴23a b ab +=,且0a >,0b >,《∴123a b+=, ∴()112223a b a b a b ⎛⎫+=++ ⎪⎝⎭122143b a a b ⎛⎫=+++ ⎪⎝⎭5233b a a b ⎛⎫=++ ⎪⎝⎭5233≥+⋅3=, 当且仅当b aa b =且123a b+=即1a b ==时,等号成立; 故选:C .9.(2020届山东省日照市高三上期末联考)三个数0.87,70.8,0.8log 7的大小顺序是( )A .70.80.8log 70.87<< B .0.870.8log 770.8<<C .70.80.80.87log 7<<D .0.870.870.8log 7<<,【答案】A 【解析】0.871>,700.81<<,0.8log 70<,故70.80.8log 70.87<<.故选A.10.(2020届山东省济宁市高三上期末)若0.1212,ln 2,log 5a b c ===,则( ) A .b c a >> B .b a c >> C .c a b >> D .a b c >>【答案】D 【解析】,0.10221a =>=;0ln1ln 2ln 1b e =<=<=;221log log 105c =<=,即a b c >> 故选:D11.(2020·山东省淄博实验中学高三上期末)“0x <”是“ln(1)0x +<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】由题意得,ln(1)001110x x x +<⇔<+<⇔-<<,故是必要不充分条件,故选B .)12.(2020届山东省滨州市三校高三上学期联考)若a ,b ,c ,满足2log 3a =,25b =,3log 2c =,则( )A .b c a <<B .c a b <<C .a b c <<D .c b a <<【答案】B 【解析】2221log log 3log 242=<<=,故12a <<;又22542b =>=,故2b >; 33log 2log 31c =<=,c a b ∴<<,)故选:B.13.(2020届山东省九校高三上学期联考)若函数()y f x =的大致图像如图所示,则()f x 的解析式可以为( )A .()22x xxf x -=+B .()22x xxf x -=-C .()22x xf x x-+=D .()22x xf x x--=【答案】C 【解析】对四个选项解析式分析发现B ,D 两个均为偶函数,图象关于y 轴对称,与题不符,故排除;(极限思想分析,0,222,022xxx x xx +--→+→→+,A 错误;220,222,x xx xx x-+-+→+→→+∞,C 符合题意.故选:C14.(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x -- D .2x【答案】C 【解析】`0x <时,()2xf x =.当0x >时,0x -<,()2xf x --=,由于函数()y f x =是奇函数,()()2xf x f x -∴=--=-,因此,当0x >时,()2xf x -=-,故选C.15.(2020届山东省德州市高三上期末)已知1232a b -=⋅,()212log 23c b x x -=++,则实数a ,b ,c 的大小关系是( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>【答案】A 【解析】…1232a b -=⋅,1232a b -+∴=>,11a b ∴-+>,则a b >.()2223122x x x ++=++≥,()21122log 23log 21c b x x ∴-=++≤=-,b c ∴>.因此,a b c >>. 故选:A.16.(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15【答案】A 【解析】?因为奇函数的定义域关于原点中心对称 则5120m m -+-=,解得4m =-因为奇函数()f x 当0x >时,()21xf x =-则()()()4442115f f -=-=--=-故选:A17.(2020届山东省临沂市高三上期末)函数()22xf x =-(0x <)的值域是( )A .1,2B .(),2-∞C .()0,2D .1,【答案】A$【解析】0x <,021x ∴<<, 120x ∴-<-<1222x ∴<-<. 即()()2221,xf x =-∈故选:A18.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( ))A .22a b >B .1b a<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】a 、b 是任意实数,且a b >,如果0a =,2b =-,显然A 不正确;如果0a =,2b =-,显然B 无意义,不正确; 如果0a =,12b =-,显然C ,102lg <,不正确;因为指数函数12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,且a b >,1122ab⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭满足条件,正确.故选:D .~19.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由121x⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“0x <”,反之,不能推出; 因此“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的必要不充分条件. 故选:B.~20.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .18【答案】A 【解析】奇函数()f x 在R 上单调,()()490f a f b +-=,则()()()499f a f b f b =--=- 故49a b =-即49a b +=()()11111141452451999b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当4b a a b =即3,32a b ==时等号成立 ~故选:A21.(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞ B .[1,)+∞C .(,1)-∞D .(,1]-∞【答案】B 【解析】1x ≥时,()ln 1f x x ==,x e =,所以函数()1y f x =-在1x ≥时有一个零点,从而在1x <时无零点,即()1f x =无解.而当1x <时,21x ->,()(2)f x f x k =-+ln(2)x k =-+,它是减函数,值域为(,)k +∞, 要使()1f x =无解.则1k.|故选:B.22.(2020届山东省潍坊市高三上期末)函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是( )A .B .C .D .【答案】A 【解析】由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,$()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D.满足条件的只有A. 故选:A23.(2020届山东省滨州市高三上期末)已知31log 3aa ⎛⎫= ⎪⎝⎭,133log bb =,131log 3cc ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c << C .b c a << D .b a c <<【答案】C 【解析】/在同一直角坐标系内,作出函数13x y⎛⎫= ⎪⎝⎭,3logy x=,3xy=,13logy x=的图像如下:因为31log3aa⎛⎫=⎪⎝⎭,133logb b=,131log3cc⎛⎫=⎪⎝⎭,所以a是13xy⎛⎫= ⎪⎝⎭与3logy x=交点的横坐标;b是3xy=与13logy x=交点的横坐标;c是13xy⎛⎫= ⎪⎝⎭与13logy x=交点的横坐标;由图像可得:b c a<<.故选:C.24.(2020届山东师范大学附中高三月考)函数()312xf x x⎛⎫=- ⎪⎝⎭的零点所在区间为()A.()1,0-B.10,2⎛⎫⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.()1,2(【答案】C【解析】311(1)(1)()302f--=--=-<,301(0)0()102f=-=-<,13211112()()()022282f=-=-<,31111(1)1()10222f=-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C25.(2020届山东省德州市高三上期末)已知()f x 为定义在R 上的奇函数,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+,下列命题正确的是( )A .()()201920200f f +-=B .函数()f x 在定义域上是周期为2的函数{C .直线y x =与函数()f x 的图象有2个交点D .函数()f x 的值域为[]1,1-【答案】A 【解析】函数()y f x =是R 上的奇函数,()00f ∴=,由题意可得()()100f f =-=, 当0x ≥时,()()()21f x f x f x +=-+=,()()()()()()2019202020192020100f f f f f f ∴+-=-=-=,A 选项正确;当0x ≥时,()()1f x f x +=-,则2616log 555f f ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,2449log 555f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,4462555f f f ⎛⎫⎛⎫⎛⎫∴-≠-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则函数()y f x =不是R 上周期为2的函数,B 选项错误; 若x 为奇数时,()()10f x f ==,%若x 为偶数,则()()00f x f ==,即当x ∈Z 时,()0f x =,当0x ≥时,()()2f x f x +=,若n N ∈,且当()2,21x n n ∈+时,()20,1x n -∈,()()()20,1f x f x n =-∈,当()1,2x ∈时,则()10,1x -∈,()()()11,0f x f x ∴=--∈-,当()21,22x n n ∈++时,()21,2x n -∈,则()()()21,0f x f x n =-∈-, 所以,函数()y f x =在[)0,+∞上的值域为()1,1-,由奇函数的性质可知,函数()y f x =在(),0-∞上的值域为()1,1-, 由此可知,函数()y f x =在R 上的值域为()1,1-,D 选项错误;|如下图所示:由图象可知,当11x -<<时,函数y x =与函数()y f x =的图象只有一个交点, 当1x ≤-或1x ≥时,()()1,1f x ∈-,此时,函数y x =与函数()y f x =没有交点, 则函数y x =与函数()y f x =有且只有一个交点,C 选项错误. 故选:A.26.(2020届山东实验中学高三上期中)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解12341234,,,,x x x x x x x x <<<且,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1-B .[]1,1-C .[)1,1- D .()1,1-'【答案】A 【解析】先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数,从而()(] 31223411,1x x xx x⋅++∈-⋅,选A.二、多选题27.(2020届山东省临沂市高三上期末)若104a=,1025b=,则()…A.2a b+=B.1b a-=C.281g2ab>D.lg6b a->【答案】ACD【解析】由104a=,1025b=,得lg4a=,lg25b=,则lg4lg25lg1002a b∴+=+==,25lg25lg4lg4b a∴-=-=,25lg101lg lg64=>>lg6b a∴->)24lg2lg54lg2lg48lg2ab∴=>=,故正确的有:ACD故选:ACD.28.(2020届山东省日照市高三上期末联考)已知定义在R上的函数()y f x=满足条件()()2f x f x+=-,且函数()1y f x=-为奇函数,则()A.函数()y f x=是周期函数B.函数()y f x=的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数【答案】ABC 【解析】、因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即4T=,故A 正确;因为函数()1y f x =-为奇函数,所以函数()1y f x =-图像关于原点成中心对称,所以B 正确; 又函数()1y f x =-为奇函数,所以()()11f x f x --=--,根据()()2f x f x +=-,令1x -代x 有()()11f x f x +=--,所以()()11f x f x +=--,令1x -代x 有()()f x f x -=,即函数()f x 为R 上的偶函数,C 正确;因为函数()1y f x =-为奇函数,所以()10f -=,又函数()f x 为R 上的偶函数,()10f =,所以函数不单调,D 不正确. 故选:ABC.29.(2020届山东省潍坊市高三上期中)已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .(3)(2019)3f f -+=-B .()f x 在区间[]4,5上是增函数》C .若方程() 1f x k x =+恰有3个实根,则11,24k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则()61iii x f x =∑的取值范围是()0,6【答案】BCD 【解析】函数()f x 的图象如图所示:对A ,(3)963f -=-+=-,(2019)(1)(1)1f f f ==-=,所以(3)(2019)2f f -+=-,故A 错误; 对B ,由图象可知()f x 在区间[]4,5上是增函数,故B 正确;对C ,由图象可知11,24k ⎛⎫∈-- ⎪⎝⎭,直线() 1f x k x =+与函数图象恰有3个交点,故C 正确; ]对D ,由图象可得,当函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则01b <<,所以当0b →时,()610i i i x f x =→∑;当1b →时,()616i i i x f x =→∑,所以()61i i i x f x =∑的取值范围是()0,6,故D 正确. 故选:BCD.30.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h?【答案】AC 【解析】A.∵,u x =v x =,22u v u vx +-==, 由题意4uv =,4v u=在(0,)+∞上是减函数,A 正确.B.125x t -=+126510u v u v+-=+-,整理得15436t u v =++,B 错误;C.由A 、B 得1615363644t u u =++≥=,16u u =即4u =时取等号,4x =,解得31.52x ==,C 正确;D.4x =时,85t =+,7305t -===>,3t >,D 错. :故选:AC.31.(2020届山东省枣庄市高三上学期统考)下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2xy = B .23y x-=C .1y x x=- D .()2ln 1y x =+【答案】AD 【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. {对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意. 故选:AD.32.(2020届山东省潍坊市高三上期末)把方程1169x x y y+=-表示的曲线作为函数()y f x =的图象,则下列结论正确的有( )A .()y f x =的图象不经过第一象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为3D .函数()()43g x f x x =+不存在零点 【答案】ACD;【解析】当0,0x y >>,方程是221169x y +=-不表示任何曲线,故A 正确;当0,0x y ≥≤ ,方程是221169x y -=-,即221916y x -= ,当0,0x y ≤≥ ,方程是221169x y -+=- ,即221169x y -=,当0,0x y ≤≤ ,方程是221169x y --=-,即221169x y+= ,如图画出图象由图判断函数在R 上单调递减,故B 不正确;、由图判断()y f x =图象上的点到原点距离的最小值点应在0,0x y ≤≤的图象上,即满足221169x y += ,设图象上的点(),P x y2222279191616x PO x y x x ⎛⎫=+=+-=+ ⎪⎝⎭当0x =时取得最小值3,故C 正确; 当()430f x x += ,即()34f x x =-, 函数()()43g x f x x =+的零点,就是函数()y f x = 和34y x =-的交点, 而34y x =-是曲线221916y x -=,0,0x y ≥≤和221169x y -=0,0x y ≤≥的渐近线,所以没有交点,由图象可知34y x =-和221169x y +=,0,0x y ≤≤没有交点,所以函数()()43g x f x x =+不存在零点,故D 正确.<故选:ACD33.(2020届山东省滨州市高三上期末)在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(),B x y 的轨迹方程是()y f x =,则对函数()y f x =的判断正确的是( )A .函数()y f x =是奇函数B .对任意的x ∈R ,都有()()44f x f x +=-C .函数()y f x =的值域为0,22⎡⎣D .函数()y f x =在区间[]6,8上单调递增【答案】BCD 【解析】由题意,当42x -≤<-时,顶点(),B x y 的轨迹是以点(2,0)A -为圆心,以2为半径的14圆; ,当22x -≤<时,顶点(),B x y 的轨迹是以点(0,0)D 为圆心,以214圆;当24x ≤<时,顶点(),B x y 的轨迹是以点(2,0)C 为圆心,以2为半径的14圆; 当46x ≤<,顶点(),B x y 的轨迹是以点(4,0)A 为圆心,以2为半径的14圆,与42x -≤<-的形状相同,因此函数()y f x =在[]4,4-恰好为一个周期的图像; 所以函数()y f x =的周期是8; 其图像如下:A 选项,由图像及题意可得,该函数为偶函数,故A 错;B 选项,因为函数的周期为8,所以(8)()f x f x +=,因此(4)(4)f x f x +=-;故B 正确;·C 选项,由图像可得,该函数的值域为0,22⎡⎣;故C 正确;D 选项,因为该函数是以8为周期的函数,因此函数()y f x =在区间[]6,8的图像与在区间[]2,0-图像形状相同,因此,单调递增;故D 正确; 故选:BCD.34.(2020届山东师范大学附中高三月考)下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .3y x = B .2yxC .xy e =D .2lg y x =【答案】CD 【解析】本题主要考查函数的单调性和函数的奇偶性.|A 项,对于函数3y x =,因为()33()()f x x x f x -=-=-≠,所以函数3y x =不是偶函数.故A 项不符合题意.B 项,对于函数2yx ,因为当1x =时,1y =,当2x =,14y =,所以函数2y x 在区间(0,)+∞上不是单调递增的.故B 项不符合题意.C 项,对于函数x y e =,因为定义域为R ,()()x x g x g x e e --===,所以函数xy e =为偶函数,因为函数xy e =,当0x >时,xx y e e ==,而1e >,函数x y e =在R 上单调递增,所以函数xy e =在区间(0,)+∞上为增函数.故C 项符合题意.D 项,对于函数2lg y x =,因为函数()22lg )(l ()g h x x x h x -=-==,所以函数2lg y x =是偶函数.而2yx 在(0,)+∞上单调递增,lg y x =在(0,)+∞上单调递增,所以函数2lg y x =在(0,)+∞上单调递增.故D 项符合题意. 故选:CD.35.(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( )A .12B .2C .2e D【答案】BCD—【解析】令函数21()()2T x f x x =-,因为2()()f x f x x -+=,22211()()()()()()()022T x T x f x x f x x f x f x x ∴+-=-+---=+--=,()T x ∴为奇函数,当0x 时,()()0T x f x x '='-<, ()T x ∴在(],0-∞上单调递减, ()T x ∴在R 上单调递减.存在0{|()(1)}x x T x T x ∈-,/∴得00()(1)T x T x -,001x x -,即012x ,()x g x e a =-;1()2x, 0x 为函数()y g x =的一个零点;当12x时,()0x g x e '=-, ∴函数()g x 在12x 时单调递减,由选项知0a >,取12x =<,又0g ee ⎛-=> ⎝,∴要使()g x 在12x时有一个零点,.只需使102g a ⎛⎫= ⎪⎝⎭, 解得e a, a ∴的取值范围为⎡⎫+∞⎪⎢⎪⎣⎭, 故选:BCD . 三、填空题36.(2020届山东省枣庄市高三上学期统考)若()3,0{1,0x x f x x x≤=>,则()()2f f -=__________. 【答案】9 【解析】《因为21(2)309f --==>,所以1((2))()99f f f -==,应填答案9. 37.(2020届山东省潍坊市高三上期中)已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上是减函数,10,3f ⎛⎫-= ⎪⎝⎭则不等式18log 0f x ⎛⎫> ⎪⎝⎭的解集为__________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】()f x 是定义在R 上的偶函数,且在[0,)+∞上是减函数,1()03f -=,11()()033f f ∴=-=,则不等式18(log )0f x >等价为不等式181(|log |)()3f x f >,即181|log |3x <⇒1811log 33x -<<⇒122x <<,{即不等式的解集为1(,2)2, 故答案为:1(,2)2.38.(2020届山东省九校高三上学期联考)已知[]x 表示不超过x 的最大整数,如[]33=,[]1.51=,[]1.72-=-.令()2x f x x =⋅,[]()()g x f x x =-,则下列说法正确的是__________.①()g x 是偶函数 ②()g x 是周期函数③方程()0g x -=有4个根④()g x 的值域为[]0,2 【答案】②③|【解析】1111()([])()33333g f f =-==,1112()([])()33333g f f -=---== 显然11()()33g g -≠,所以()g x 不是偶函数,所以①错误;[][](1)(11)()()g x f x x f x x g x +=+-+=-=,所以()g x 是周期为1的周期函数,所以②正确; 作出函数y x =的图象和()g x 的图象:根据已推导()g x 是周期为1的周期函数,只需作出()g x 在[0,1)x ∈的图象即可,当[0,1)x ∈时[]()()()2x g x f x x f x x =-==⋅,根据周期性即可得到其余区间函数图象,如图所示:》可得()g x 值域为[0,2),函数y x =()g x 的图象一共4个交点,即方程()0g x x =有4个根, 所以③正确,④错误; 故答案为:②③39.(2020届山东省滨州市三校高三上学期联考)已知定义在R 上的函数满足(3)(3)f x f x -=-+,且()f x 图像关于1x =对称,当(1,2]x ∈时,2()log (21)f x x =+,则8252f ⎛⎫= ⎪⎝⎭________. 【答案】-2 【解析】因为()f x 图像关于1x =对称,则()(2)f x f x =-,()(2)(31)(31)(4)(8)f x f x f x f x f x f x =-=--=-++=-+=+,)故()f x 是以8为周期的周期函数,82511113851443131222222f f f f ff⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=⨯++=+=++=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭23log (21)22=-⨯+=-故答案为:2-.40.(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.【答案】(,1)-∞- 【解析】根据已知条件:当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,得函数()f x 是定义在R 上的减函数,…又因为函数()f x 是定义在R 上的奇函数,所以(2)(2)f f -=-,故(31)(2)0f x f ++>等价于(31)(2)(2)f x f f +>-=-,所以312x +<-,即1x <-. 故答案为:(),1-∞-.41.(2020届山东省济宁市高三上期末)2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足573002tN N -=⋅(0N 表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳14的质量是原来的12至35,据此推测良渚古城存在的时期距今约在________年到5730年之间.(参考数据:22log 3 1.6,log 5 2.3≈≈) 【答案】124011 【解析】当5730t =时,100122N N N -=⋅=∴经过5730年后,碳14的质量变为原来的12令035N N =,则5730325t-= 2223log log 3log 50.757305t ∴-==-≈- 。
专题三 一次函数与一元一不等式问题 2020年中考数学冲刺难点突破 一次函数问题(解析版)
2020年中考数学冲刺难点突破一次函数问题专题三一次函数与一元一不等式问题1、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在△EOF的内部时(不包括三角形的边),k的值可能是()A.2B.3C.4D.5【解答】解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,∵菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行,∴CQ=AQ=1,CM=2,即AC=2AQ=2,∴C(2,2),当C与M重合时,k=CM=2;当C与N重合时,把y=2代入y=x+4中得:x=﹣2,即k=CN=CM+MN =4,∴当点C落在△EOF的内部时(不包括三角形的边),k的范围为2<k<4,则k的值可能是3,故选:B.2、如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD是长方形,且AB :AD =1:2,则k 的值是( )A .B .C .D .【解答】解:设长方形的AB 边的长为a ,则BC 边的长度为2a ,B 点的纵坐标是a ,把点B 的纵坐标代入直线y =2x 的解析式得:x =,则点B 的坐标为(,a ),点C 的坐标为(+2a ,a ),把点C 的坐标代入y =kx 中得,a =k (+2a ),解得:k =.故选:B .3、函数与()的图象如图所示,这两个函数图象的交点在轴上,那么使,的值都大于零的的取值范围是___________.【思路点拨】使,的值都大于零的图象在轴的上方,这部分图象的自变量在与轴的两个交点的横坐标之间.【答案】-1<<2;11y x =+2y ax b =+0a ≠y 1y 2yx 1y 2y x x x【解析】由,可知与轴的交点坐标为(-1,0),使,的值都大于零的图象在轴的上方,这部分图象的自变量的取值范围是-1<<2.【总结升华】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.4、如图所示,函数和的图象相交于(-1,1),(2,2)两点.当 12y y >时,x 的取值范围是( )A .<-1B .—1<<2C .>2D . <-1或>2【答案】D ;提示:反映在图象上,是的图象在的上方,这部分图象自变量的取值范围有两部分,是<-1或>2.5、作出函数24y x =-的图象,并根据图象回答下列问题:(1)当-2≤x ≤4时,求函数y 的取值范围;(2)当x 取什么值时,y <0,y =0,y >0;(3)当x 取何值时,-4<y <2.【答案与解析】解:当x =0时,y =-4,当y =0时,x =2,即24y x =-过点(0,-4)和点(2,0),过这两点作直线即为24y x =-的图象,从图象得出函数值随x 的增大而增大;11y x =+1y x 1y 2y x x x y =134312+=xy x x x x x 21y y >1y 2y x x(1)当x =-2时,y =-8,当x =4,y =4,∴当-2≤x ≤4时,函数y 的取值范围为:-8≤y ≤4;(2)由于当y =0时,x =2,∴当x <2时,y <0,当x =2时,y =0,当x >2时,y >0;(3)∴当y =-4时,x =0;当y =2时,x =3,∴当x 的取值范围为:0<x <3时,有-4<y <2.【总结升华】本题要求利用图象求解各问题,先求得函数与坐标轴的交点后,画函数图象,根据图象观察,得出函数的增减性后,求得结论.6、某电信公司开设了甲、乙两种市内移动通信业务,甲种使用者每月需缴15元月租费,然后通话每分钟再付话费0.3元,乙种使用者不缴月租费,通话每分钟付费0.6元,若一个月内通话时间为x 分钟,甲、乙两种业务的费用分别为1y 和2y 元.(1)试分别写出1y 、2y 与x 之间的函数关系式;(2)画出1y 、2y 的图象;(3)利用图象回答,根据一个月的通话时间,你认为选哪种通信业务更优惠?【思路点拨】收费与通话时间有关,分别写成两种收费方式的函数模型(建立函数关系式),然后再考虑自变量为何值时两个函数值相等,从而做出选择.【答案与解析】解:(1)根据题意可得:10.315y x =+(x ≥0),20.6y x =(x ≥0).(2)利用两点可画10.315y x =+(x ≥0)和20.6y x =(x ≥0)的图象,如下图所示.(3)由图象可知:两个函数的图象交于点(50,30),这表示当x=50时,两个函数的值都等于30.因此一个月内,通话时间为50分钟.选哪一种通话业务都行,因为付费都是30元,当一个月内通话时间低于50分钟时,选乙种业务更优惠,当一个月内通话时间大于50分钟时,选甲种业务更优惠.【总结升华】解决这类问题首先根据题意确定函数解析式,然后在坐标系内画出函数,找到它们的交点,从而得函数值相等时的自变量的取值,然后根据这一取值就可作出正确的选择.7、如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∴BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出∴ABC的面积;(3)当∴ABC与∴ABP面积相等时,求实数a的值.【解答】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线l的表达式为:;(2)在Rt∴ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∴∴ABC为等腰直角三角形,∴S∴ABC=AB2=;(3)连接BP,PO,P A,则:∴若点P在第一象限时,如图1:∴S∴ABO=3,S∴APO=a,S∴BOP=1,∴S∴ABP=S∴BOP+S∴APO﹣S∴ABO=,即,解得;∴若点P在第四象限时,如图2:∴S∴ABO=3,S∴APO=﹣a,S∴BOP=1,∴S∴ABP=S∴BOP+S∴APO﹣S∴ABO=,即,解得a=﹣3;故:当∴ABC与∴ABP面积相等时,实数a的值为或﹣3.8、如图,在平面直角坐标系中,直线AB分别交x轴、y轴于点A(a,0)点,B(0,b),且a、b满足a2﹣4a+4+|2a﹣b|=0,点P在直线AB的左侧,且∴APB=45°.(1)求a、b的值;(2)若点P在x轴上,求点P的坐标;(3)若∴ABP为直角三角形,求点P的坐标.【解答】解:(1)∴a2﹣4a+4+|2a+b|=0,∴(a﹣2)2+|2a+b|=0,∴a=2,b=4.(2)由(1)知,b=4,∴B(0,4).∴OB=4.∴点P在直线AB的左侧,且在x轴上,∴APB=45°∴OP=OB=4,∴B(4,0).(3)由(1)知a=﹣2,b=4,∴A(2,0),B(0,4)∴OA=2,OB=4,∴∴ABP是直角三角形,且∴APB=45°,∴只有∴ABP=90°或∴BAP=90°,如图,∴当∴ABP=90°时,∴∴BAP=45°,∴∴APB=∴BAP=45°.∴AB=PB.过点P作PC∴OB于C,∴∴BPC+∴CBP=90°,∴∴CBP+∴ABO=90°,∴∴ABO=∴BPC.在∴AOB和∴BCP中,∴AOB=∴BCP=90°,∴ABO=∴BPC,AB=PB,∴∴AOB∴∴BCP(AAS).∴PC=OB=4,BC=OA=2.∴OC=OB﹣BC=2.∴P(﹣4,2).∴当∴BAP=90°时,过点P'作P'D∴OA于D,同∴的方法得,∴ADP'∴∴BOA(AAS).∴DP'=OA=2,AD=OB=4.∴OD=AD﹣OA=2.∴P'(﹣2,2)).即:满足条件的点P(﹣4,2)或(﹣2,﹣2).9、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在∴EOF的内部时(不包括三角形的边),k的值可能是()A.2B.3C.4D.5【解答】解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,∴菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行,∴CQ=AQ=1,CM=2,即AC=2AQ=2,∴C(2,2),当C与M重合时,k=CM=2;当C与N重合时,把y=2代入y=x+4中得:x=﹣2,即k=CN=CM+MN =4,∴当点C落在∴EOF的内部时(不包括三角形的边),k的范围为2<k<4,则k的值可能是3,故选:B.10、如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.当S∴BCD=时,t的值为()A.2或2+3B.2或2+3C.3或3+5D.3或3+5【解答】解:根据题意得:∴BAC=90°,∴∴CAO+∴BAE=90°,∴BE∴x轴,∴∴AEB=90°=∴AOC,∴∴ABE+∴BAE=90°,∴∴CAO=∴ABE.∴∴CAO∴∴ABE.∴=,∴M是AC的中点,AB=AM,∴CA=2AB,∴=,∴BE=t,AE=2.分两种情况:∴当0<t<8时,如图1所示:S=CD•BD=(2+t)(4﹣)=解得:t1=t2=3.∴当t>8时,如图2所示,S=CD•BD=(2+t)(﹣4)=.解得:t1=3+5,t2=3﹣5(不合题意,舍去).综上所述:当t=3或3+5时,S=;故选:D.11、如图,一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3.在直线AB上有一点P,若满足∴CPB>∴ACB,则点P横坐标x的取值范围是.【解答】解:如图所示:过点P1作P1E∴x轴于点E,∴一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3,∴AO=BO=1,则BC=2,AC=,AB=,当∴CP1B=∴ACB时,又∴∴CAB=∴CAP1,∴∴CAB∴∴P1AC,∴=,则=,解得:AP1=5,则AE=P1E=5,故P1(﹣4,5),当∴CPB>∴ACB时,则点P横坐标x满足:﹣4<x,同理可得:当∴CP2B=∴ACB时,又∴∴ABC=∴P2BC,∴∴CAB∴∴P2CB,∴=,则=,解得:BP2=2,可得P2(2,﹣1),故当∴CPB>∴ACB时,则点P横坐标x满足:2>x,综上所述:﹣4<x<2且x≠0.故答案为:﹣4<x<2且x≠0.12、在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.∴求点C的坐标;∴根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∴AOC的平分线ON,若AB∴ON,垂足为E,∴OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.【解答】解:(1)∴由題意,,解得:,所以C(4,4).∴观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∴ON平分∴AOC,∴∴AOQ=∴COQ,又OQ=OQ.∴∴POQ∴∴MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM∴OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB∴ON,∴∴AEO=∴CEO,∴∴AEO∴∴CEO(ASA),∴OC=OA=6,∴∴OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.13、在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD∴AB时,求点D的坐标和∴BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使∴QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.【解答】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∴OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH∴x轴于H,∴C(,1),∴OH=,CH=1,Rt∴ABO中,AB==4,∴AB=2OA,∴∴OBA=30°,∴OAB=60°,∴CD∴AB,∴∴ADE=90°,∴∴AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S∴BCD=BF(x C﹣x D)==4;(3)分四种情况:∴当Q在y轴的正半轴上时,如图2,过D作DM∴y轴于M,过C作CN∴y轴于N,∴∴QCD是以CD为底边的等腰直角三角形,∴∴CQD=90°,CQ=DQ,∴∴DMQ=∴CNQ=90°,∴∴MDQ=∴CQN,∴∴DMQ∴∴QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);∴当Q在x轴的负半轴上时,如图3,过D作DM∴x轴于M,过C作CN∴x轴于N,同理得:∴DMQ∴∴QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);∴当Q在x轴的负半轴上时,如图4,过D作DM∴x轴于M,过C作CN∴x轴于N,同理得:∴DMQ∴∴QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);∴当Q在y轴的负半轴上时,如图5,过D作DM∴y轴于M,过C作CN∴y轴于N,同理得:∴DMQ∴∴QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使∴QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).。
中考数学专题之数形结合
中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
高三数学专题复习11:数形结合思想
专题十一 数形结合思想一、考点回顾1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。
它可以使抽象的问题具体化,复杂的问题简单化。
“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。
2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。
3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。
4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。
5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。
用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。
二、经典例题剖析1.选择题(1)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( ) A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞解析:因为()g x 是二次函数,值域不会是A 、B ,画出函数()y f x =的图像(图1)易知,当()g x 值域是[)0+,∞时,(())f g x 的仁政域是[)0+,∞,答案:C 。
专题3 实数的运算(考点讲练)(解析版)
专题3 实数的运算考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14−,-3,3−,π−中,最小的数是( ) A . 3.14− B .-3C .3−D .π−【答案】D【分析】根据实数的比较大小的规则比较即可. 【详解】解:∵ 3.14 3.14−=, ∴33 3.14p --<-<-<,在实数 3.14−,-3,3−,π−中,最小的数是:π− ; 故选:D .【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.(2022·湖南益阳·21,2,3中,比0小的数是( )A 2B .1C .2D .13【答案】A【分析】利用零大于一切负数来比较即可.【详解】解:根据负数都小于零可得,﹣2<0,故A 正确. 故选:A .【点睛】本题考查了实数的大小比较,解答此题关键要明确:正实数>零>负实数,两个负实数绝对值大的反而小.是( )A .0a >B .a b <C .10b −<D .0ab >【答案】B【分析】观察数轴得:2123a b −<<−<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b −<<−<<<,故A 错误,不符合题意;B 正确,符合题意;∴10b−>,故C错误,不符合题意;∴0ab<,故D错误,不符合题意;故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键.4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是()A.3B.32−C.23−D.23【答案】C【分析】根据各数的取值范围,即可一一判定.【详解】解:132<<Q,31∴−<−,故A不符合题意;312−<−,故B不符合题意;2103−<−<,故C符合题意;203>,故D不符合题意;故选:C.【点睛】本题考查了实数大小的比较,熟练掌握和运用实数大小的比较方法是解决本题的关键.5.(2022·天津红桥·中考三模)估计17−的值在().A.5−和4−之间B.4−和3−之间C.3−和2−之间D.2−和1−之间【答案】A【分析】先估算4175<<,再由几个负数比较大小,绝对值越小的数越大.【详解】解:161725<<Q4175∴<<4175∴−>−>−故选:A.【点睛】本题考查无理数的估算,是基础考点,掌握相关知识是解题关键.6.(2022·山东临沂·中考真题)比较大小:2______3(填写“>”或“<”或“=”).【答案】>【分析】比较两者平方后的值即可. 【详解】解:221()22=Q ,231()33=,1123>Q , ∴2323>.故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果. 7.(2022·海南·中考真题)写出一个比3大且比10小的整数是___________. 【答案】2或3【分析】先估算出3、10的大小,然后确定范围在其中的整数即可. 【详解】∵32< ,310< ∴32310<<<即比3大且比10小的整数为2或3, 故答案为:2或3【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.考点二:实数的基本运算A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|5【答案】D【分析】各项计算得到结果,即可作出判断. 【详解】A 、原式=﹣1,不符合题意; B 、原式<0,不符合题意;C 、原式=﹣3×25=﹣75,不符合题意;D 、原式=55,符合题意. 故选:D .【点睛】本题考查了实数,有理数的混合运算,熟练掌握运算法则是解本题的关键. A .1332B 342=C 8220=D 2632=【答案】C【分析】根据实数的运算法则即可求解;【详解】解:A.1234332÷=≠,故错误; B.342≠,故错误;C.8220−=,故正确;D.262332⨯=≠,故错误; 故选:C .【点睛】本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键. A 31− B .12−C 32D .32【答案】B【分析】把特殊角的三角函数值代入进行计算即可. 【详解】解:sin30°−tan45° =12−1 =−12, 故选:B .【点睛】本题考查了实数的运算,熟练掌握特殊角的三角函数值是解题的关键. 11.(2022·重庆中考二模)计算:122⎛⎫−+= ⎪⎝⎭( )A .0B .4C .-2D .32【答案】B【分析】先求绝对值,负整指数幂,再进行实数的加法运算. 【详解】解:1122242−⎛⎫−+=+= ⎪⎝⎭,故选:B .【点睛】本题考查了实数的运算,正确理解实数的运算法则是解本题的关键.12.(2022·广东深圳·中考模拟预测)计算021(12)−+−的结果是( )A .1B 2C .22D .221【答案】B【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值. 【详解】解:原式2112=−+=, 故选B .【点睛】此题考查了实数的运算、去绝对值、零指数幂,熟练掌握运算法则是解本题的关键.13.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.【答案】1【分析】根据程序分析即可求解. 【详解】解:∵输出y 的值是2, ∴上一步计算为121x=+或221x =− 解得1x =(经检验,1x =是原方程的解),或32x = 当10x =>符合程序判断条件,302x =>不符合程序判断条件 故答案为:1【点睛】本题考查了解分式方程,理解题意是解题的关键. 14.(2022·陕西·中考真题)计算:325−=______. 【答案】2−【分析】先计算25=5,再计算3-5即可得到答案. 【详解】解:325352−=−=−. 故答案为:-2.【点睛】本题主要考查了实数的运算,化简25=5是解答本题的关键. 15.(2022·四川攀枝花·中考真题)038(1)=−−−__________. 【答案】3−【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可. 【详解】解:原式213=−−=−. 故答案为:3−.【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.16.(2022·辽宁阜新·中考真题)计算:224−−=______.【答案】74−【分析】先计算22−、4,再算减法. 【详解】解:原式17244=−=−. 故答案为:74−.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键. 17.(2022·广东肇庆·中考二模)计算:31008÷=______________. 【答案】5【分析】根据算术平方根的定义及立方根的定义化简,再计算除法. 【详解】解:31008÷=5210=÷, 故答案为:5.【点睛】此题考查了实数的混合运算,正确掌握算术平方根的定义及立方根的定义是解题的关键.18.(2022·湖北黄石·中考真题)计算:20(2)(20223)−−−=____________. 【答案】3【分析】根据有理数的乘法与零次幂进行计算即可求解. 【详解】解:原式=413−=. 故答案为:3.【点睛】本题考查了实数的混合运算,掌握零次幂以及有理数的乘方运算是解题的关键.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π−−−−+的结果为( )A .3−B .3C .6D .9【答案】D【分析】先化简绝对值,计算零次幂与负整数指数幂,再化简即可. 【详解】解:031|2|(2017)()2π−−−−+218=−+189=+=故选D【点睛】本题考查的是化简绝对值,零次幂,负整数指数幂的含义,掌握“零次幂与负整数指数幂:()()0110,0ppa a a a a −=≠=≠”是解本题的关键. 20.(2022·山东威海·中考模拟)计算3024(1)(1)2π−+−−−−的结果是( )A .74B .34C .14D .14−【答案】D【分析】根据二次根式的性质,零指数幂、负整数指数幂、乘方的运算法则先进行化简,然后再计算即可.【详解】解:原式()12114=+−−−12114=−−−14=−故选:D .【点睛】本题主要考查了实数的混合运算,熟练掌握二次根式的性质,零指数幂、负整数指数幂、乘方的运算法则,是解题的关键. 21.(2022·江苏南京·中考模拟)计算2323的结果是( )A 23B .23C .23−D 23【答案】A【分析】把较高次幂拆分后逆用积的乘方法则,进行运算即可得解. 【详解】解:()()202120202323+− = ()()20202020=(23)2323++−()()2020=(23)[2323]++−222020=(23)[(2)(3)]+− 2020=(23)(1)+⨯−=23+故选:A【点睛】本题考查了二次根式的运算,平方差公式,积的乘方的逆运算等知识,熟练掌握相关运算法则是关键.22.(2022·广东·东莞市中考三模)计算:|2|3sin 302(2022)−+−−−︒等于() A .2−B .12−C .2D .0【答案】C【分析】先化简绝对值,求解特殊角的三角函数,负整数指数幂,零次幂,再进行加减运算即可.【详解】解:10|2|3sin 302(2022)π−−+−−−︒1123122=+?- 312122=+−− =2, 故选C .【点睛】本题考查的是特殊角的三角函数,零次幂,负整数指数幂的含义,绝对值的含义,实数的混合运算,掌握“实数的混合运算的运算顺序”是解本题的关键.23.(2022·广东惠州·中考二模)01tan60|3|(3)122π︒⎛⎫−−−−+−= ⎪⎝⎭__________.【答案】-1【分析】根据负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简等计算法则求解即可.【详解】解:101tan60|3|(3)122π−⎛⎫−−−−+−⎪︒+ ⎝⎭=233123−−−++=1−故答案为:-1.【点睛】本题主要考查了负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简,熟知相关计算法则是解题的关键.24.(2022·山东泰安·中考三模)()02281212cos 45π−−+−−++−︒=________.【答案】74【分析】根据负整指数幂,二次根式的性质,化简绝对值,零次幂,特殊角的三角函数值进行计算即可求解.【详解】解:原式=()1222211242−+−−+−⨯1114=−++7=4故答案为:74【点睛】本题考查了实数的混合运算,掌握负整指数幂,二次根式的性质,化简绝对值,零次幂,特殊角的三角函数值是解题的关键.25.(2022·重庆长寿·中考模拟)计算:201131216012π12tan −−−+−︒+⋅−=−()()__________. 【答案】-4【分析】根据有理娄数的乘方、负整数指数幂、特殊三角函数值、二次根式的化简、零指数幂、绝对值的概念计算即可.【详解】解:1213121tan 601212π−︒⎛⎫−⎛⎫−+−+⋅− ⎪ ⎪⎪−⎝⎭⎝⎭=241312331−+−+⨯−−=()()()231431233131+−+−+−−+=4313123−+−++− =-4【点睛】本题考查了实数的运算,解题的关键是掌握有关运算法则.26.(2022·内蒙古内蒙古·中考真题)计算:0312cos30(3π)82︒⎛⎫−++−− ⎪⎝⎭.【答案】31+【分析】根据负整数指数幂、30°角的余弦值、零次幂以及开立方的知识计算每一项,再进行实数的混合运算即可.【详解】原式1321(2)122=+⨯+−−−2312=−+++31=+.【点睛】本题主要考查了含特殊角的三角函数值的实数的混合运算,牢记30°角的余弦值是解答本题的基础.27.(2022·湖南·中考真题)计算:012cos 45( 3.14)12()2π−︒+−++.【答案】222+【分析】先将各项化简,再算乘法,最后从左往右计算即可得【详解】解:原式2212122=⨯++−+ 222=+.【点晴】本题考查特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂,解题的关键是掌握特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂的性质. 28.(2022·湖南郴州·中考真题)计算:()2022112cos30133⎛⎫−−︒++ ⎪⎝⎭.【答案】3【分析】根据特殊角的三角函数值、绝对值的意义和负整数指数幂的计算方法计算即可. 【详解】解:原式()3123132=−⨯+−+13313=−+−+ =3.【点睛】本题考查了特殊角的三角函数值、绝对值的意义和负整数指数幂的运算法则等知识,熟记特殊角的三角函数值是解答本题的关键.29.(2022·广东中考三模)计算:()0120222sin 6032123π⎛⎫+−+︒ ⎪⎝⎭【答案】1223−【分析】根据负整数指数幂,零指数幂,特殊角的三角函数值,化简绝对值,二次根式的性质化简各数,然后即可求解. 【详解】解:原式=391223232++⨯+−− 9132323=+++−− 1223=−.【点睛】本题考查了实数的混合运算,掌握负整数指数幂,零指数幂,特殊角的三角函数值,化简绝对值,掌握二次根式的性质是解题的关键. 30.(2022·湖南·0332cos60820222π+︒. 【答案】13−【分析】根据零指数幂、特殊角的三角函数值、绝对值及二次根式的运算法则进行计算,再相加减可得结果.【详解】解:原式=33−+211822⨯−⨯−1=33−+1﹣2﹣1 =13−.【点睛】本题考查实数的综合运算能力,熟练掌握零指数幂、特殊角的三角函数值、绝对值及二次根式的运算是解决本题的关键.31.(2022·四川德阳·中考真题)计算:()()0212 3.143tan 60132π−+−−︒+−+−. 【答案】14【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:0212 3.143tan 6013())2(π−+−−︒+−+−123133314=+−+−+ 14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.。
高中数学二轮专题复习——数形结合思想
思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
2012届高三数学第二轮复习《数形结合思想》专题三
2012届高三数学第二轮复习【数形结合】专题三 数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面。
题型一数形结合思想在解决方程的根的个数、不等式解集的问题中的应用【例题1】① 已知:函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时, f (x )=x 2,则方程f (x )=lg x 解的个数是 ;A .5B .7C .9D .10② 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则f (x )-f (-x )x<0的解集为 ; A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)题型二 数形结合思想在求参数、代数式的取值范围、最值问题中的应用【例题2】已知a 是实数,函数f (x )=2a |x |+2x -a ,若函数y =f (x )有且仅有两个零点,则实数a 的取值范围是__________________.题型三 数形结合思想在几何中的应用【例题3】已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为________.题型三 数形结合思想在向量中的应用 【例题4】已知,a b 为不共线的向量,设条件:()M b a b ⊥- ;条件:N 对一切x R ∈,不等式a xb a b -≥- 恒成立.则M 是N 的________条件.1.方程sin ⎝⎛⎭⎫x -π4=14x 的实数解的个数是 ( ) A .2 B .3 C .4 D .以上均不对2.设函数,021(),0x x f x x x -≤⎧-=⎨>⎩,若f (x 0)>1,则x 0的取值范围是 ( ) A.(-1,1) B.(-1,+∞) C.(-∞,-2)∪(0,+∞) D.(-∞,-1)∪(1,+∞)3.在R 上的偶函数y =f (x )满足f (x +2)=f (x ),当x ∈[3,4]时,f (x )=x -2,则 ( )A .f (sin 12)<f (cos 12)B .f (sin π3)>f (cos π3)C .f (sin 1)<f (cos 1)D .f (sin 32)>f (cos 32) 4.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到 直线l 1和直线l 2的距离之和的最小值是 ( )A .2B .3 C.115 D.37165.不等式x 2-log a x <0,在x ∈(0,12)时恒成立,则a 的取值范围是 ( ) A .0<a <1 B .116≤a <1 C .a >1 D .0<a ≤1166.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |, 0<x ≤10,-12x +6, x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ), 则abc 的取值范围是 ( )A .(1,10)B .(5,6)C .(10,12)D .(20,24) 7.不等式组00x y x y x a +⎧⎪-⎨⎪⎩≥≥≤表示的平面区域的面积是4,则y x +2的最小值为 .8.在ABC ∆中,4,3AB AC ==,G 为外心,则AG BC ⋅ 的值为________.9(1)k x ≤+的解集为区间[,]a b ,且1=-a b ,则k = .10.已知实系数一元二次方程x 2+ax +2b =0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)点(a ,b )对应的区域的面积;(2)b -2a -1的取值范围;(3)(a -1)2+(b -2)2的值域.2012届高三数学第二轮复习【数形结合】解答【例题1】解答:(1)由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.又∵lg 10=1,故当x >10时,无交点.∴由图象可知共9个交点.(2) ∵f (x )为奇函数,∴f (x )-f (-x )=2f (x )画出y =2f (x )的大致图象.则f (x )与x 异号的区间 ∴解集为(-1,0)∪(0,1),故选D.【例题2】解析 易知a ≠0,f (x )=0,即2a |x |+2x -a =变形得|x |-12=-1a x ,分别画出函数y 1=|x |-12,y 2=-1ax 当0<-1a <1或-1<-1a<0时,y 1和y 2∴当a <-1或a >1时,函数y =f (x )有且仅有两个零点,即实数a 的取值范围是(-∞,-1)∪(1,+∞).【例题3】(14,-1) 【例题4】【解析】 方法一:构造直角三角形OAB ,其中a =OA →,b =OB →,xb =OD →,则a -b =BA →,由b ⊥(a -b )得∠ABO =90°,当点D 与点B 不重合时,由斜边大于直角边得 |a -xb |>|a -b |,当点D 与点B 重合时|a -xb |=|a -b |,反之也成立,M 是N 的充要条件.方法二:将不等式|a -xb |≥|a -b |两边平方后转化为b 2x 2-2()a ·b x +2a ·b -b 2≥0对于任意实数x 恒成立,Δ=4()a ·b 2-4b 2()2a ·b -b 2=4()b 2-a ·b 2≤0,即b 2-a ·b =0,b (b -a )=0,所以有b ⊥(a -b ).1.解析:分别作出y =sin ⎝⎛⎭⎫x -π4和y =14x 的图象如图: 由图象知方程的实数解有3个.2.解析 方法二 首先画出函数y =f (x )与y =1的图象(如图),解方程f (x )=1,得x =-1,或x =1.由图中易得f (x 0)>1时,所对应x 0的取值范围为(-∞,-1)∪(1,+∞).3.解析 由f (x )=f (x +2)知T =2为f (x )的一个周期,设x ∈[-1,0],知x +4∈[3,4], f (x )=f (x +4)=x +4-2=x +2,画出函数f (x )的图象,如图所示:sin 12<cos 12⇒f (sin 12)>f (cos 12); sin π3>cos π3⇒f (sin π3)<f (cos π3); sin 1>cos 1⇒f (sin 1)<f (cos 1);sin 32>cos 32⇒f (sin 32)<f (cos 32).故选C. 4.解析 记抛物线y 2=4x 的焦点为F ,则F (1,0),注意到直线l 2:x =-1是抛物线y 2=4x 的准线,于是抛物线y 2=4x 上的动点P 到直线l 2的距离等于|PF |,问题即转化为求抛物线y 2=4x 上的动点P 到直线l 1:4x -3y +6=0的距离与它到焦点F (1,0)的距离之和的最小值,结合图形,可知,该最小值等于焦点F (1,0)到直线l 1:4x -3y +6=0的距离,即等于|4×1-3×0+6|5=2,5.解析 B.6.解析 作出f (x )的大致图象.由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6.∴lg a +lg b =0,∴ab =1,∴abc =c .由图知10<c <12,∴abc ∈(10,12).7.解析 当抛物线2y x z =-+与直线0x y +=相切时,z 最小联立20y x z x y ⎧=-+⎨+=⎩,得20x x z --=,min 11404z z ∆=+=⇒=-. 8.11(2)()22AG BC AB AC GO BC AB AC BC ∴⋅=+-⋅=+⋅ 22117()()()222AB AC AC AB AC AB =+⋅-=-=- .9.解 令1y =)1(2+=x k y .其示意图如图8-3:若0k >,要满足21y y ≤,则2=b ,此时1=a .从而k ==若0k <,要满足21y y ≤,则2-=a .则11-=+=a b ,从而k 不存在.10.解 方程x 2+ax +2b =0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y =f (x )=x 2+ax +2b 与x 轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,由此可得不等式组⎩⎪⎨⎪⎧ f (0)>0,f (1)<0,f (2)>0,⇒⎩⎪⎨⎪⎧ b >0,a +2b +1<0,a +b +2>0.由⎩⎪⎨⎪⎧ a +2b +1=0,a +b +2=0.解得A (-3,1).由⎩⎪⎨⎪⎧ a +b +2=0,b =0.解得B (-2,0), 由⎩⎪⎨⎪⎧a +2b +1=0b =0.解得C (-1,0).∴在如图所示的aOb 坐标平面内,满足约束条件的点(a ,b )对应的平面区域为△ABC (不包括边界).(1) △ABC 的面积为S △ABC =12×|BC |×h =12(h 为A 到Oa 轴的距离). (2) b -2a -1几何意义是点(a ,b )和点D (1,2)连线的斜率.∵k AD =2-11+3=14,k CD =2-01+1=1, 由图可知k AD <b -2a -1<k CD ,∴14<b -2a -1<1,即b -2a -1∈(14,1). (3) ∵(a -1)2+(b -2)2表示区域内的点(a ,b )与定点(1,2)之间距离的平方,∴(a -1)2+(b -2)2∈(8,17).。
中考数学复习:专题3-4 一次函数考点分析及典型试题
一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。
类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。
专题3 空间图形的基本关系与公理(解析版)-2021年高考数学立体几何中必考知识专练
专题3:空间图形的基本关系与公理(解析版)一公理1 公理2 公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内.过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言,,A lB llA Bααα∈∈⎫⇒⊂⎬∈∈⎭,,,,A B CA B Cα⇒不共线确定平面,lP PP lαβαβ=⎧∈∈⇒⎨∈⎩作用判断线在面内确定一个平面证明多点共线推论1 经过一条直线和这条直线外的一点,有且只有一个平面;推论2 经过两条相交直线,有且只有一个平面;推论3 经过两条平行直线,有且只有一个平面.二.直线与直线的位置关系直线:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;直线:不同在任何一个平面内,没有公共点。
(既不平行,也不相交)三.直线与平面的位置关系有三种情况:在平面内——有无数个公共点.符号 aα相交——有且只有一个公共点符号 a∩α= A平行——没有公共点符号 a∥α说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示对应练习一、单选题1.如图所示的是平行四边形ABCD所在的平面,有下列表示方法:①平面ABCD;②平面BD;③平面AD;④平面ABC;⑤AC;⑥平面α.其中不正确的是()A.④⑤B.③④⑤C.②③④⑤D.③⑤【答案】D【分析】根据平面的表示方法判断.【详解】③中AD不为对角线,故错误;⑤中漏掉“平面”两字,故错误.故选:D.2.下列叙述错误的是()A.若p∈α∩β,且α∩β=l,则p∈l.B.若直线a∩b=A,则直线a与b能确定一个平面.C.三点A,B,C确定一个平面.D.若A∈l,B∈l且A∈α,B∈α则l α.【答案】C【分析】由空间线面位置关系,结合公理即推论,逐个验证即可.【详解】选项A,点P在是两平面的公共点,当然在交线上,故正确;选项B,由公理的推论可知,两相交直线确定一个平面,故正确;选项C,只有不共线的三点才能确定一个平面,故错误;选项D,由公理1,直线上有两点在一个平面内,则整条直线都在平面内.故选:C3.在空间中,下列结论正确的是()A.三角形确定一个平面B.四边形确定一个平面C.一个点和一条直线确定一个平面D.两条直线确定一个平面【答案】A【分析】根据确定平面的公理及其推论对选项逐个判断即可得出结果.【详解】三角形有且仅有3个不在同一条直线上的顶点,故其可以确定一个平面,即A正确;当四边形为空间四边形时不能确定一个平面,故B错误;当点在直线上时,一个点和一条直线不能确定一个平面,故C错误;当两条直线异面时,不能确定一个平面,即D错误;故选:A.【点睛】本题主要考查平面的基本定理及其推论,解题时要认真审题,仔细解答,属于基础题.4.下列命题中正确的是( )A .若直线l 上有无数个点不在平面α内,则//l αB .如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行C .若两条直线都与第三条直线垂直,则这两条直线互相平行D .垂直于同一个平面的两条直线互相平行 【答案】D 【分析】利用空间中直线与直线、直线与平面的位置关系进行判断. 【详解】解:选项A: 若直线l 上有无数个点不在平面α内,则//l α或相交,故A 错误;选项B: 如果两条平行直线中的一条与一个平面平行,那么另一条可能与这个平面平行,也可包含于这个平面,故B 错误;选项C: 若两条直线都与第三条直线垂直,则这两条直线相交、平行或异面,故C 错误; 选项D: 垂直于同一个平面的两条直线互相平行, 故D 正确, 故选:D 【点睛】本题考查空间中直线与直线、直线与平面的位置关系的判断,解题时要认真审题,注意空间思维能力的培养.5.已知直线l 和不重合的两个平面α,β,且l α⊂,有下面四个命题:①若//l β,则//αβ;②若//αβ,则//l β;③若l β⊥,则αβ⊥;④若αβ⊥,则l β⊥ 其中真命题的序号是( ) A .①② B .②③ C .②③④ D .①④【答案】B 【分析】对于①,由//l β可得α与β可平行,可相交;对于②,若//αβ,则由面面平行的性质定理可判断;对于③,由线面垂直的判定定理可判断;对于④,当αβ⊥时,l 可能在β内,可能与β平行,可能相交 【详解】解:对于①,由//l β可得α与β可平行,可相交,故错误; 对于②,若//αβ,则由面面平行的性质定理可得//l β,故正确; 对于③,若l β⊥,则由线面垂直的判定定理可得αβ⊥,故正确;对于④,当αβ⊥时,l 可能在β内,可能与β平行,可能相交,所以不一定有l β⊥,故错误, 故选:B 【点睛】此题考查线线、线面、面面关系的判断,属于基础题6.四个顶点不在同一平面上的四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 上的点,如果直线EF ,GH 交于点P ,那么( )A .点P 一定在直线AC 上B .点P 一定在直线BD 上C .点P 一定在平面ABC 外D .点P 一定在平面BCD 内 【答案】A 【分析】由两个面的交点在两个面的交线上,知P 在两面的交线上,由AC 是两平面的交线,知点P 必在直线AC 上. 【详解】解:∵EF 在面ABC 内,而GH 在面ADC 内, 且EF 和GH 能相交于点P , ∴P 在面ABC 和面ADC 的交线上, ∵AC 是两平面的交线, 所以点P 必在直线AC 上. 故选:A .【点睛】本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答. 7.平面α平面l β=,点A α∈,点B β∈,且B l ∉,点C α∈,又ACl R =,过A 、B 、C 三点确定的平面为γ,则βγ⋂是( )A .直线CRB .直线BRC .直线ABD .直线BC【答案】B 【分析】确定平面β、γ的公共点,利用公理可得出平面β与γ的交线. 【详解】 如下图所示:由题意可知,AC γ⊂,AC l R =,则R γ∈,又平面α平面l β=,则l α⊂,l β⊂,AC l R =,R β∴∈,B β∈,B γ∈,因此,βγ⋂=直线BR .故选:B. 【点睛】本题考查两平面交线的确定,关键是确定两平面的公共点,属于基础题.8.设l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若//l α,m α⊂,则//l m C .若//αβ,m β⊄,//m α,则//m β D .若//l α,//m α,则//l m【答案】C 【分析】由线面垂直的判定定理可判断A ,由线面平行的性质定理可判断B ,由面面平行的性质定理可判断C ,由线面平行的性质定理可判断D. 【详解】解:对于A ,由线面垂直的判定定理可知当直线l 垂直平面α内的两条相交直线时,l α⊥才成立,所以A 不正确;对于B ,若//l α,m α⊂,则//l m 或l ,m 异面,所以B 不正确; 对于C ,由面面平行的性质定理可知是正确的,对于D ,若//l α,//m α,则l ,m 有可能相交、平行或异面,所以D 不正确, 故选:C 【点睛】此题考查了线线、线面和面面的位置关系,考查平行和垂直的判定和性质,考查空间想象能力和推理能力,属于基础题.9. 下列命题中,正确的是 ( )A .经过正方体任意两条面对角线,有且只有一个平面B .经过正方体任意两条体对角线,有且只有一个平面C .经过正方体任意两条棱,有且只有一个平面D .经过正方体任意一条体对角线与任意一条面对角线,有且只有一个平面 【答案】B 【解析】因为正方体的四条体对角线相交于同一点(正方体的中心),因此经过正方体任意两条体对角线,有且只有一个平面,故选B .点睛:确定平面方法: 过不在一条直线上的三点,有且只有一个平面;经过一条直线和这条直线外一点有且只有一个平面;经过两条相交直线有且只有一个平面;经过两条平行直线有且只有一个平面.10.设α,β表示平面,l 表示直线,A ,B ,C 表示三个不同的点,给出下列命题:①若∈A l ,A α∈,B l ∈,B α∈,则l α⊂;②若A α∈,A β∈,B α∈,B β∈,则AB αβ=;③若l α⊄,∈A l ,则A α;④若,,A B C α∈,,,A B C β∈,则α与β重合.其中,正确的有( ) A .1个 B .2个C .3个D .4个【答案】B 【分析】根据平面的基本性质及推论进行判断. 【详解】若∈A l ,A α∈,B l ∈,B α∈,根据公里1,得l α⊂,①正确;若A α∈,A β∈,B α∈,B β∈,则直线AB 既在平面α内,又在平面β内, 所以AB αβ=,②正确;若l α⊄,则直线l 可能与平面α相交于点A ,所以∈A l 时, A α∈,③不正确; 若,,A B C α∈,,,A B C β∈,当,,A B C 共线时,α与β可能不重合,④不正确; 故选:B. 【点睛】本题主要考查平面的性质,明确平面的基本性质及推论是求解的关键,侧重考查直观想象的核心素养.11.平面α的一条斜线AP 交平面α于P 点,过定点A 的直线l 与AP 垂直,且交平面α于M 点,则M 点的轨迹是( ).A .一条直线B .一个圆C .两条平行直线D .两个同心圆【答案】A 【分析】由过定点A 的直线l 与AP 垂直可知,直线l 绕点A 旋转形成一个平面,由此可知两平面的交线即为所求.【详解】解:如图,设直线l与l'是其中两条任意的直线,⊥,则这两条相交直线确定一个平面β,且斜线APβ由过平面外一点有且只有一个平面与已知直线垂直可知,过定点定点A且与AP垂直的直线都在平面β内,∴M点都在平面α与平面β的交线上,故选:A.【点睛】本题主要考查空间中点、线、面的位置关系,考查空间想象能力,属于基础题.12.和直线l都平行的直线,a b的位置关系是()A.相交B.异面C.平行D.平行、相交或异面【答案】C【分析】直接利用平行公理,即可得到答案.【详解】由平行公理,可知平行与同一直线的两直线是平行的,所以和直线l都平行的直线,a b的位置关系是平行,故选C.【点睛】本题考查两直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题.二、填空题13.如图,已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1BC 与AC 所成的角为_____.【答案】60︒ 【解析】11//BC AD ∴ 异面直线1BC 与AC 所成的角为0160CAD ∠=14.已知l ,m 是两条不同的直线,α,β是两个不同的平面,给出下列四个论断:①//l m ,②//αβ,③m α⊥,④l β⊥.以其中的两个论断作为命题的条件,l α⊥作为命题的结论,写出一个真命题:______.【答案】若//l m ,m α⊥,则l α⊥ 【分析】若//l m ,m α⊥,则l α⊥,运用线面垂直的性质和判定定理,即可得到结论. 【详解】解:l ,m 是两条不同的直线,α,β是两个不同的平面, 可得若//l m ,m α⊥,则l α⊥, 理由:在α内取两条相交直线a ,b , 由m α⊥可得m a ⊥.m b ⊥, 又//l m ,可得l a ⊥.l b ⊥,而a ,b 为α内的两条相交直线,可得l α⊥. 故答案为:若//l m ,m α⊥,则l α⊥ 【点睛】此题考查线面垂直的判定定理和性质定理的应用,考查推理能力,属于基础题15.如图,在正方体1111ABCD A B C D -中,E ,F 依次是11A D 和11B C 的中点,则异面直线AE 与CF 所成角的余弦值为__.【答案】35【分析】连AE 、BF 、EF ,利用平行四边形可得//BF AE ,可得BFC ∠是异面直线AE 与CF 所成角(或所成角的补角),然后用余弦定理可得结果. 【详解】在正方体1111ABCD A B C D -中,连AE 、BF 、EF ,E ,F 依次是11A D 和11B C 的中点,所以11//A E B F 且11A E B F =,所以四边形11A B FE 为平行四边形, 所以11//EF A B 且11EF A B =,又11//A B AB 且11A B AB =, 所以//EF AB 且EF AB =,所以四边形ABFE 为平行四边形,//BF AE ∴,BFC ∴∠是异面直线AE 与CF 所成角(或所成角的补角), 设正方体1111ABCD A B C D -的棱长为2,则415BF CF ==+3cos5BFC∴∠==.∴异面直线AE与CF所成角的余弦值为35.故答案为:35.【点睛】本题考查了求异面直线所成的角,考查了余弦定理,属于基础题.16.在长方体1111ABCD A B C D-中,11AA AD==,2AB=,则直线AC与1A D所成的角的大小等于__________.【答案】arccos10【分析】连接11,B A B C,可得直线AC与1A D所成的角为1B CA∠,利用余弦定理求1cos B CA∠即可.【详解】解:如图,连接11,B A B C,由长方体的结构特点可知11//B C A D,则直线AC与1A D所成的角为1B CA∠(或其补角),因为11B A BC AC======,在1B CA中,2221111cos210BC AC ABB CABC AC+-∠===⋅,1arccos10B CA∴∠=.故答案为:arccos10.【点睛】本题考查异面直线所成的角,关键是要通过平移找到异面直线所成的角的平面角,是基础题.三、解答题17.如图,在正方体1111ABCD A B C D -中,E ,F ,1E ,1F 分别为棱AD ,AB ,11B C ,11C D 的中点.求证:111EA F E CF ∠=∠.【答案】见解析 【分析】根据空间中两个角的两边平行时,角的关系可知两个角相等或互补. 结合空间中平行线的传递性及当两个角的方向相同时,即可证明两个角相等. 【详解】证明:如图,在正方体1111ABCD A B C D -中,取11A B 的中点M ,连接名BM ,1F M由题意得112BF A M AB ==又1BF M A ∥∴四边形1A FBM 为平行四边形 ∴1A F BM ∥又1F ,M 分别为11C D ,11A B 的中点,则111F M C B =∥而11C B BC =∥∴1F M BC =∥∴四边形1F MBC 为平行四边形 ∴1BM F C ∥ 又1BM A F ∥ ∴11A F F C ∥ 同理可得11A ECE∴1EA F ∠与11E CF ∠的两边分别平行,且方向都相反 ∴111EA F E CF ∠=∠. 【点睛】本题考查了直线与直线平行的证明,空间中角的两边分别平行时两个角的关系,属于基础题. 18.(不写做法)(1)如图,直角梯形ABCD 中,//AB CD ,AB CD >,S 是直角梯形ABCD 所在平面外一点,画出平面SBD 和平面SAC 的交线.(2)如图所示,在正方体1111ABCD A B C D -中,试画出平面11AB D 与平面11ACC A 的交线.【答案】(1)见解析(2)见解析 【分析】(1)延长BD 和AC 交于点O ,再连接SO ,即得到交线; (2)先记11B D 与11A C 的交点为O ,连接AO ,即可得出交线. 【详解】(1)(延长BD 和AC 交于点O ,连接SO ,SO 即为平面SBD 和平面SAC 的交线),如图:(2)(记11B D 与11A C 的交点为O ,连接AO ,则AO 即为平面11AB D 与平面11ACC A 的交线),如图:【点睛】本题主要考查画出平面与平面的交线,考查空间想象能力,属于基础题型. 19.如图,已知正方体ABCD -A ′B ′C ′D .(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在的直线与直线AA′垂直?【答案】(1)棱AD、DC、CC′、DD′、D′C′、B′C′(2)45°(3)AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′【分析】(1)根据异面直线的定义判断即可;(2)∠B′BA′为异面直线BA′与CC′的夹角,进而可得直线BA′和CC′的夹角;(3)根据正方体的性质即可判断.【详解】(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与直线BA′是异面直线;(2)由BB′∥CC′可知,∠B′BA′为异面直线BA′与CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°;(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.【点睛】本题考查异面直线的定义,考查线线角的求解,考查线线垂直的判断,是基础题.VB VC的中点,求异20.如图,AB是圆O的直径,点C是弧AB的中点,,D E分别是,面直线DE与AB所成的角.【答案】45︒ 【分析】根据题意,直径所对圆周角是直角,BC AC ∴⊥,又知点C 是弧AB 的中点,则等腰直角三角形,再根据中位线平行,找到异面直线所成角的平面角,即可求解. 【详解】AB 是圆O 的直径,BC AC ∴⊥.∵点C 是弧AB 的中点,,45BC AC ABC ∴=∴∠=︒. 在VBC △中,,D E 分别为,VB VC 的中点,DE BC ∴∥,DE ∴与AB 所成的角为45ABC ∠=︒.故答案为:45︒ 【点睛】本题考查异面直线所成角问题,考查转化与化归思想,属于基础题.21.如图1所示,在梯形ABCD 中,//AB CD ,E ,F 分别为BC ,AD 的中点,将平面CDFE 沿EF 翻折起来,使CD 到达C D ''的位置(如图2),G ,H 分别为AD ',BC '的中点,求证:四边形EFGHEFGH 为平行四边形.图1 图2【答案】证明见详解.【分析】通过证明EF //GH ,且EF =GF ,即可证明. 【详解】在题图1中,∵四边形ABCD 为梯形,//AB CD ,E F ,分别为BC AD ,的中点,∴//EF AB 且()12EF AB CD =+. 在题图2中,易知////C D EF AB ''. ∵,G H 分别为AD ',BC '的中点, ∴//GH AB 且()()1122GH AB C D AB CD ''=+=+, ∴//GH EF ,GH EF =,∴四边形EFGH 为平行四边形.即证. 【点睛】本题考查通过线线平行证明平行四边形,主要借助几何关系进行证明.22.如图所示,已知,E F 分别是正方体1111ABCD A B C D -的棱11,AA CC 的中点,求证:四边形1BED F 是平行四边形.【答案】见解析 【分析】取1D D 的中点G ,连接,EG GC ,证明四边形EGCB 是平行四边形,再证四边形1D GCF 为平行四边形,即可证明四边形1BED F 是平行四边形. 【详解】证明 取1D D 的中点G ,连接,EG GC .∵E 是1A A 的中点,G 是1D D 的中点,//EG AD ∴. 由正方体的性质知//AD BC ,//EG BC ∴, ∴四边形EGCB 是平行四边形,//EB GC ∴. 又,G F 分别是1D D ,1C C 的中点,1//D G FC ∴,且1D G FC =,∴四边形1D GCF 为平行四边形,1//D F GC ∴, 1//EB D F ∴,∴四边形1BED F 是平行四边形. 【点睛】本题考查了线线平行的判定,利用平行四边形的对边平行且相等证明线线平行,是基础题.。
感悟数形结合思想 发展数学核心素养——“解直角三角形中的数形结合”专题复习教学及反思
一、内容和内容解析1.内容“解直角三角形中的数形结合”专题复习课包括图1本节课为第1课时,以解直角三角形及其应用为载体,在综合运用相关知识解决问题的过程中,提炼运用数形结合思想方法解题的操作步骤、作用、注意要点等.2.内容解析(1)地位和作用.代数和几何是初中数学的主要研究对象.数形结合是通过数与形的相互转化达到认识和解决问题的一种思想和方法.通过“以形助数”和“以数解形”,准确把握数与形的关联点,可以使抽象的问题形象化、直观的问题精细化,从而快速获取解题思路,逻辑清晰地解决问题.运用数形结合思想解决问题的过程也是学生发展直观想象、数学运算、数学抽象、逻辑推理、数学建模等素养的过程.数形结合在数学学习和研究中占有重要地位,它不仅是一种重要思想,也是一种常用的解题策略与方法.本节课是运用数形结合思想解决相关问题的专题复习课,从具体的锐角三角函数问题的解决开始,总结提炼数形结合思想方法的作用、操作步骤和注意要点,并用于解决综合性问题.锐角三角函数是数形结合的产物,它的概念的产生和应用都与图形有着密切的联系,在历年中考试题中都占有一定的比重.因此,学好本节课的内容对中考备考有重要作用.(2)概念的解析.运用数形结合思想方法解决问题的操作步骤、注收稿日期:2021-01-16基金项目:河南省教育科学规划2020年度一般课题——基于“互联网+信息技术”的初中数学解题教学实践研究(2020YB0980).作者简介:赵智勇(1963—),男,中学高级教师,主要从事中学数学教育教学研究.——“解直角三角形中的数形结合”专题复习教学及反思赵智勇摘要:文章以锐角三角函数知识内容为载体,着眼于数形结合思想方法的深层感悟,实现数与形的双向沟通.通过“解直角三角形中的数形结合”专题复习课的教学,引导学生概括数形结合解决问题的基本思路,体会其作用,归纳其注意要点;引导学生应用概括出的数形结合思想的基本思路解决问题,实现数形结合思想的巩固和迁移;引导学生融合不同的思想方法解决综合性问题,实现思想方法的融合.关键词:数形结合;锐角三角函数;专题复习;教学研究感悟数形结合思想发展数学核心素养··47意要点、作用如下.操作步骤:分析问题结构—构想数形关联—实施数形转换—获得问题答案.注意要点:考虑数形结合解决问题的必要性、可行性和简洁性;解决几何证明题需要几何直观分析、代数抽象分析对应进行;代数性质与几何图形的对应互换.作用:运用数形结合思想方法解决问题能够使抽象的问题形象化,使复杂的关系得到直观、具体的表示,对理解题意、挖掘题目中的各种信息、发现蕴含的条件和关系、获得解题的灵感和方法等都具有重要意义.(3)思想方法.数形结合的实质是把抽象的数量关系与直观的图形表示结合起来,或把几何中的定性结论转化为可计算的定量结果,或以直观图形辅助抽象的代数运算与推理.(4)知识类型.本专题内容属于程序性知识,还是策略性知识,由知识类型所决定.在教学中,教师要注重以问题为引导,以学生活动为主,在独立思考、合作交流中,师生共同提炼数形结合思想方法的操作步骤和核心要点,进一步体会数形结合思想方法的作用;在应用中注重引导学生用数形结合思想方法去分析问题和解决问题.(5)教学重点.基于以上分析,确定本节课的教学重点为:提炼数形结合思想解题的一般步骤和注意要点.二、目标和目标解析1.目标(1)通过解直角三角形及其应用问题,了解数形结合思想的内涵和作用.(2)经历问题解决过程,能抽象概括出用数形结合思想解决问题的操作步骤、注意要点和作用.(3)能正确进行数形互化,运用数形结合思想解决有一定综合性的问题,形成解题策略.2.目标解析达成目标(1)的标志:知道数形结合研究数的精确与形的直观之间的转化,可使解题思路变得简单明了,从而化繁为简、化难为易.达成目标(2)的标志:明确运用数形结合解决问题一般需要经历“分析、构想、建立、求解”四个步骤.数与形的对应转换是运用数形结合解决问题的关键,明确以形助数、以数解形的具体操作步骤.知道在运用数形结合解决问题时,要考虑可行性等,不能用形的显然替代推理论证,既需要进行几何直观分析,又需要通过符号抽象、运算和推理进行量化研究.达成目标(3)的标志:在解决相关问题的过程中,能有意识借助形的几何直观性来阐述数之间的普遍关系和一般规律,借助数的精确性阐述形的某些属性和一般规律;能运用数形结合思想方法解决一些有一定难度的中考试题.三、教学问题诊断分析1.已具备的认知基础学生已经学习了直角三角形的两锐角互余、勾股定理、锐角三角函数等知识,并能运用直角三角形的性质解直角三角形;经历了数轴、坐标系、函数等概念的学习,对数形结合有一定的认识,对数与形的对应和转换有一定的模仿经验,具有一定的解决问题的能力,这为本节课的学习奠定了基础.2.与本课目标的差距分析(知识、能力)初中生运用数形结合解决问题,需要具备以下能力:敏锐的观察能力;准确的语言表达能力;灵活的思维能力;较强的综合应用能力.运用数形结合思想解决有一定难度的综合问题时,需要进一步培养学生敏锐的观察能力和灵活的思维能力.3.可能存在的问题运用数形结合思想解决综合性较强的题目时,纵横联系的知识点多,这对学生的数形结合能力提出了较高的要求.对于某些问题,学生有可能误用形的直观替代严谨的推理论证,也可能抓不住数的特征构建适当的形.4.应对策略本节课需要通过具体实例多次展现数形结合的具体操作步骤,使学生获取更多活动经验,提升学生对数形结合思想的认识和理解.首先,创设问题情境,引导学生利用数形结合思想解决问题;其次,引导学··48生对上述问题分解并进行反思总结,组织学生进行思想方法的交流和一般性思考;最后,通过对例题进行有针对性地指导,使学生经历数形结合解决问题的过程,既进行几何直观分析,又对应进行代数抽象探究,提升学生的认知加工水平和解题能力.基于以上分析,确定本节课的教学难点为:进行数与形的等价转化,并运用数形结合思想解决有一定难度的综合问题.四、教学支持条件分析利用希沃白板制作课件、互动授课;借助希沃授课助手拍照上传、进行投屏等,灵活展示和点评学生的学习成果,呈现课堂细节;结合GeoGebra 软件辅助构图操作,提升课堂效率.五、教学过程设计1.课前检测——针对强化,提升实效检测题1:△ABC 在正方形网格中的位置如图2所示,则sin α的值为().(A )34(B )43(C )35(D )45A BCαACB图3图2补测题:△ABC 在正方形网格中的位置如图3所示,则sin B 的值为.检测题2:如图4,已知在Rt△ABC 中,∠C =90°,tan ∠DBC =13,AD =3,AB =5,则cos A 的值为.A C D B图4DA BC图5补测题:如图5,在Rt△ABC 中,∠C =90°,∠BAC =30°,延长CA 至点D ,使AD =AB ,则tan D 的值为.【设计意图】通过课前检测题,了解学生对本节课的相关基础知识的掌握情况,可以根据检测的结果决定是否需要补测题,为后续提炼数形结合步骤和要点及进一步利用数形结合解决问题做好铺垫.2.解决问题——经历过程,感悟应用问题1:如图6,已知在△ABC中,AB =BC =5,tan∠ABC =43.(1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为点D ,求AD AB的值.师生活动:教师引导学生审清题意,从数与形两个方面的关联分析问题.第(1)小题中,作高构建数所对应的形,根据形所对应的数量关系确定求AC 的长的方法(设未知数,将求AC 的长转化为解方程问题求解).第(2)小题中,从图形特征关联图形对应的数量关系,确定求比值的方法.在引导学生审题和分析问题的过程中,教师结合学生的回答给出如表1所示的数形关联表,然后通过追问使学生理解“图形的形状确定,则图形中对应的数量关系也随之确定”.因此,求图形中两条线段的比值时,不必关注具体的数量,而把目光聚焦到图形中元素间的数量关系上,则求解过程更为简捷.表1追问1:你是如何使用“tan∠ABC =43”这个条件的?AB C图6··49追问2:条件“边BC的垂直平分线与边AB的交点为点D”对应的图形和数量关系表达式是什么?追问3:若将“AB=BC=5”改为“AB=BC”,你还能求出ADAB的值吗?为什么?【设计意图】通过解决第(1)小题,使学生经历以数解形的思考与解决问题的过程,将图形信息转换为具体的数量关系,借助图形的直观性,增加问题解决的准确性,使问题求解更加简明.通过解决第(2)小题,使学生经历以形助数的思考与解决问题的过程,让学生感悟借助图形的几何直观来解决数的问题,常常可以避免复杂的推理计算,使问题化难为易,使抽象的问题具体化.解决问题后,借助数形关联表,通过问题串促进学生对解决问题的过程进行反思总结,提炼运用数形结合解决问题的一般步骤、注意要点和作用,提升学生的思维能力.3.交流提炼——合作交流,提炼方法问题2:结合课前检测和问题1,你能总结一下利用数形结合思想解决问题的一般步骤和作用吗?师生活动:引导学生回顾课前检测题2的问题解决过程,师生共同建立如表2所示的数形关联表.表2结合问题1的解决过程和如表1、表2所示的数形关联表,师生共同归纳上述问题的解题思路和方法,总结提炼数形结合的一般操作步骤、作用和转化策略.作用:实现数与形的相互转化,使抽象思维与形象思维相结合,从而化繁为简、化难为易.一般操作步骤如下.(1)分析问题结构——审题,得到数的关系和形的特征.(2)构想数形关联——从数的角度想象和表示图形特征,从形的角度想象和描述数量关系,找到数与形的关联点,如几何度量(如距离、角度等)或坐标.(3)实施数形转换——构建数所对应的形,对形所对应的数量或数量关系进行符号抽象、运算和推理.(4)获得问题答案——有逻辑地表达解题过程.转化策略:关注具有显著特征的对象,基于基本的几何度量(距离和角度)找出数量关系与几何图形的关联点.【设计意图】概括数学思想方法,需要把数形结合思想的操作过程模型化、程序化、一般化.组织学生相互讨论交流,进一步挖掘数形结合思想的本质内涵,使学生对数形结合思想的认识从内隐转化为外显,实现运用数形结合思想解决问题操作策略的明朗化. 4.迁移应用——知识迁移,能力拓展问题3:如图7,我国两艘海监船A,B在南海海域巡航.某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向.已知A船的航速为30海里/时,B船的航速为25海里/时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,2≈1.41.)图7AB45°53°C师生活动:学生按以下步骤进行独立探索,并在学案上构建数形关联表,解决问题3.第一步:分析问题结构.过点C作AB所在直线的垂线,垂足为点D,由已知AD=DC,∠CBD=53°,··50AB=5.根据两艘船的速度,求等待时间,就要求AC 和BC的长.已知两角和一边,求另外两条边的长,这其实就是解直角三角形问题.第二步:构想数形关联.当已知角和边的条件时,利用锐角三角函数解决问题,通常要构建直角三角形.第三步:实施数形转换.设未知数,根据图形结构列出方程.第四步:获得问题答案.检验解的意义,得到实际问题的答案.教师在学生的分析、思考过程中,关注学生对数形结合解决问题一般步骤的操作表现,并利用希沃授课助手(手机APP结合电脑端)对学生完成的较规范的数形关联表和解题过程进行拍照上传、展示点评.结合学生的思考,师生共同构建如表3所示的数形关联表,解决问题3.表3【设计意图】通过对问题3的解决,进一步明确运用数形结合解决问题的思考步骤和注意要点,感知数与形之间的关联性,挖掘数与形之间的联系,促使学生自觉运用数形结合思想,提升分析问题和解决问题的能力.问题4:如图8,在△ABC中,AB=AC,AD是边BC上的高,E是AB的中点,F是边AC上一个动点,EF与AD相交于点G,AC=10,cos∠DAC=45.当△AGF为等腰三角形时,求EG的长.师生活动:首先,引导学生关注问题中的特殊元素,如两个中点E,D,连接ED构造△AGF∽△DGE;其次,解题需要关注主要构图对象,借助GeoGebra软件中的“复选框”功能简化图形,最终将问题转化为“在△DEG中,DE=5,cos∠EDG=45,当△DEG为等腰三角形时,求EG的长”.再运用GeoGebra软件中的“滑动条”控制动点F在边AC上移动,通过分类讨论,师生共同构建如表4所示的数形关联表,利用数形结合解决问题.代数关系式由BD=DC,BE=EA,得△AGF∽△DGE.由△AGF为等腰三角形,得△DGE为等腰三角形.得DE=5,cos∠EDG=45情况1:DE=EG;情况2:DE=DG;情况3:EG=DG对应的几何图形EDG(舍去)情况1EGDEGD(方法1)(方法2)情况2EGDEGD(方法1)(方法2)情况3AEFGDB CEGD5表4AEFGDB C图8··51追问1:此题还有其他解法吗?追问2:“EG=ED”这种情况不存在,我们还可以怎样说明?追问3:当EG=DG时,E G的长有限制吗?【设计意图】通过对问题4的解决,以数形结合、分类讨论思想为基础,引导学生在分析问题、规划思路时,将目光聚焦在特殊的视角和特殊的对象(等腰、中点、平行线)上,根据已有的数学活动经验合理寻求解决问题的突破口,体会利用数形结合进行推理得到的结论具有一般性,掌握目标导向的认知策略,使学生进一步感知数与形之间的关联性,挖掘数与形之间的必然联系,提升分析问题和解决问题的能力.追问4:结合以上问题,你能总结一下利用数形结合解决问题的注意要点和转化策略吗?注意要点如下.(1)代数性质与几何图形要对应互换.(2)考虑数形结合解决问题的必要性、可行性和简洁性.(3)不能用图形的直观代替严密的逻辑推理,既需要几何直观分析,又需要进行对应的代数抽象分析.5.反思总结——回顾思考,深化思维(1)数形结合的作用是什么?(2)运用数形结合解决问题可以分为哪些步骤?(3)运用数形结合解决问题的过程中最关键是哪一步?需要注意什么?(4)你还有哪些收获?师生共同总结出如图9所示的框图.数形结合作用实现数与形的相互转化,使抽象思维与形象思维相结合化繁为简,化难为易1.分析问题结构2.构想数形关联3.实施数形转换4.获得问题答案转化策略:找出数量关系与几何图形的关联点操作步骤注意要点1.考虑数形结合解决问题的必要性、可行性和简洁性2.几何证明题需几何直观分析、代数抽象分析对应进行3.代数性质与几何图形的对应互换图9【设计意图】回顾本节课的学习历程,并再次总结数形结合思想的解题思路、操作步骤、要点和作用,深化学生对数形结合思想的理解,强化目标导向的认知策略.六、目标检测——自我检测,巩固反馈1.新冠肺炎疫情期间,教育部号召各地各类学生居家学习.为支持小明学习,妈妈特意买了新台灯.图10(1)是放置在水平桌面上的台灯,图10(2)是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,AC 可以绕点A上下调节一定的角度,CD可以绕点C上下调节一定的角度.使用时发现:当灯臂与底座构成的夹角∠CAB=53°,∠ACD=157°时,台灯光线最佳.求光线最佳时点D到桌面的距离为多少?(结果保留一位小数.参考数据:sin53°≈45,cos53°≈35.)A BCD(2)(1)图102.如图11,在Rt△ABC中,∠C=90°,sin B=45,AC=4.D是BC的延长线上的一个动点,∠EDA=∠B,AE∥BC.当△ADE为等腰三角形时,求AE的长.AB C DE图11【设计意图】巩固利用数形结合思想解决问题的过程与方法,对应知应会的核心知识进行检测,为下节课的解题课奠定基础.通过解决问题,进一步体现数形结合思想应用的广泛性和有效性,提高学生对数学思想的感悟层次,提升学生分析问题和解决问题的能力,感受数形结合的育人价值.··52七、教学反思教学设计是静态的,而课堂生成是动态的.通过对数形结合的设计和实施教学,笔者认为,在教学中,教师引导学生感悟数形结合思想方法,发展数学学科核心素养应注意以下几点.1.进行单元整体教学从整体上把握教学内容,整体构思单元各课时的教学内容,注重知识的前后联系,以及对后续学习的重要作用,体现数学知识的整体性、逻辑的连贯性、思想的一致性和方法的一般性.在相互联系中引导学生感悟其中蕴涵的数学思想方法,发展学生的数学素养,有利于深化学生对数形结合思想的理解,培养理性精神和探究精神,提升中考数学备考能力.2.发挥一般观念的引领作用本节课的教学设计和实施是在一般观念的指导下,以数学知识的内在逻辑构建自然而然的研究过程.以解直角三角形内容为载体,根据题目条件和数学知识的内在逻辑关系设计系列问题串,自然引出数形关联表,利用问题串和数形关联表引导学生概括总结问题的解决思路和方法,提炼数形结合的作用、一般操作步骤、转化策略,形成基本套路,提升教学的整体性和思想性,帮助学生体会数形结合思想方法,使学生透过现象看本质,从复杂问题中抓住关键要素,从而化繁为简,形成数学的思维方式,提升发现问题、提出问题、分析问题和解决问题的能力. 3.遵循数学思想方法教学的原理数学思想方法的学习要经历“解决问题—概括提炼—迁移应用—联系发展”这四个阶段.本节课以此为依据进行教学设计.首先,通过具体问题的解决,体会数形结合思想;其次,将如何分析问题结构、构想数形关联、实施数形转换这一操作过程显性化,明确其作用、操作步骤和要点,提炼和概括数形结合思想;最后,让学生用概括出来的数形结合思想解决新的问题,感悟利用数形结合解决问题的关键是从数的角度观察图形特征,从形的角度实现数量代换,找到数与形的关联点,使学生内化数形结合思想,形成数学活动的经验.例如,在回顾检测题2和问题1时,给表格加个题目“数形关联表”,在对照表格进行引导时用“数量关系关联的几何图形”和“几何图形关联的数量关系”等语言,可以促进学生使用“关联”进行概括.4.精选样例引导学生感悟数形结合思想方法,重要的是精选适当的题目,利用题目归纳操作流程.巩固操作流程可以利用相关的变式题目和拓展题目进行迁移训练,使学生在合作探究中内化数形结合的操作流程,在反思总结中形成有结构的知识经验.5.坚持以学为中心在以学生活动为主、以感悟数形结合思想为目标的复习教学中,教师需要注意鼓励学生积极思考、提出有价值的问题,关注学生是否能够用数学的思维方式观察、分析、解决问题,使学生感受数与形之间的相互转化,使抽象思维与形象思维相结合;合理运用信息技术手段,有利于增强学生的学习兴趣,提高课堂学习效果.教学时,若教师不揭示方法的本质,学生只会看到简单的数学操作,看不到问题的本质.数学思想是对数学知识的更高层次的概括与提炼,是培养学生的数学能力、发展数学学科核心素养的重要环节.数学思想方法的教学对解题教学具有十分重要的指导作用,有助于提升学生的解题能力和应用能力,发展学生的理性思维和科学精神,有效发挥数学学科的育人价值.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[3]吴增生.科学用脑高效复习:初中数学总复习教学设计[M].杭州:浙江科技出版社,2018.[4]吴增生.整体建构核心素养导向下的总复习教学策略体系[J].中国数学教育(初中版),2019(7/8):3-11,37.[5]王华鹏.“四个理解”指导下的教学设计新思路:以“位似”教学设计为例[J].中国数学教育(初中版),2019(9):3-8,13.··53。
2013年中考数学复习课件:第四部分 专题三 数形结合思想
解:(1)140<x≤230 (2)54
x>230
(3)设第二档每月电费 y 与用电量 x 之间的函数关系式为:y =ax+c,将(140,63),(230,108)代入,得:
140a+c=63, 230a+c=108.
1 a= , 2 解得 c=-7.
1 则第二档每月电费 y 与用电量 x 之间的函数关系式为 y=2x -7(140<x≤0 度,需要付费 108 元,用电 140度,需要付费63元,故108-63=45(元),230-140=90(度),
45÷90=0.5(元),则第二档电费为 0.5 元/度.
∵小刚家某月用电 290 度,交电费 153 元,
∴290-230=60(度),153-108=45(元).
实际问题的数形结合 例 1:(2012 年贵州遵义)为了促进节能减排,倡导节约用电,
某市将实行居民生活用电阶梯电价方案,图 Z3-1 中的折线反
映了每户每月用电电费 y(单位:元)与用电量 x(单位:度)间的函 数关系式. (1)根据图象,阶梯电价方案分为三个档次,填写下表: 档 次 每月用电量 x(度) 第一档 0<x≤140 第二档 __________ 第三档 __________
60- 2x 2× cm. 2
60- 由题意,得 2 2x 2 × 2 =1 250.
解得 x1=5
2,x2=55
2(不符合题意舍去). 2 cm. 2x.
答:长方体包装盒的高为 5
60- 2x (2)由题意,得 S=4× 2× ×x=-4x2+120 2 ∵a=-4<0, ∴当 x=15 2时,S 有最大值.
(2)设剪掉的等腰直角三角形的直角边长为 x(单位:cm),长
专题分类训练3 数形结合与无理数
杭州良品图书有限公司
跟踪训练
解:(1)有两种情况,见如图的两个三角形. (2)面积是 2 的正方形如图所示. (3)A、B 所对应的点分别是- 2和 5.
第 18 页
杭州良品图书有限公司
杭州良品图书有限公司
跟踪训练
第 12 页
3.如图,数轴上有 A、B、C、D 四点,根据图中各点的位置,所表示的数
与 5- 11最接近的点是( D )
A.A
B.B
C.C
D.D
4.如图,点 A,B 在数轴上,以 AB 为边作正方形,该正方形的面积为 8,
若点 A 对应的数是-2,则点 B 对应的数是( A )
图形面积割补与无理数 第8 页
(2)现有5个边长为2的正方形,排列形式如 图1,请在图1中用分割线把它们分割后标 上序号,重新在图2中拼接成一个正方形(标 上相应的序号),并指出正方形的边长. 解:(1)如图所示:
杭州良品图书有限公司
图形面积割补与无理数 第9 页
AB= 2 CD= 8 EF= 18 (2)如图所示:边长为 20.
杭州良品图书有限公司
图形面积割补与无理数 第7 页
【变式】 (1)在下列4×4方格图中,每个小正方形的边长都为1,请在每一个图 中分别画出一条线段,且它们的长度均表示不等的无理数.
表示:________ 表示:________ 表示:________ (注:横线上填入对应的无理数)
杭州良品图书有限公司
A.2 2-2
B.2-2 2
C.2 2
D.2 2+2
杭州良品图书有限公司
跟踪训练
5.如图,在数轴上点A和点B之间的整数有___-__1_、__0_、__1_、__2____.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 数形结合思想概述:数形结合思想是教学中的一种重要思想,在解题过程中,•能画出图形的要尽量画出图形,图形能帮助你理解题意,有利于着手解题.典型例题精析例.以x 为自变量的二次函数y=-x 2+2x+m ,它的图象与y 轴交于点C (0,3),与x 轴交于点A 、B ,点A 在点B 的左边,点O 为坐标原点.(1)求这个二次函数的解析式及点A ,点B 的坐标,画出二次函数的图象; (2)在x 轴上是否存在点Q ,在位于x 轴上方部分的抛物线上是否存在点P ,•使得以A 、P 、Q 三点为顶点的三角形与△AOC 相似(不包含全等),若存在,请求出点P 、点Q 的坐标;若不存在,请说明理由.分析:(1)∵y=-x 2+2x+m 与y 轴交于C (0,3), ∴3=m ,代入y=-x 2+2x+m 得y=-x 2+2x+3, 令-x 2+2x+3=0,x 2-2x-3=0,x 1=-1,x 2=3. ∴A (-1,0),B (3,0),由y=-x 2+2x-1+4, y=-(x-1)2+4,得顶点M (1,4).(2)若存在这样的P 、Q 点,一定是∠PAQ=∠ACO .∵若∠PAQ=∠CAO ,则△ACO ∽△AQP 不合题意, 若∠PAB=90°=∠AOC ,显然P•点不在抛物线上. ∴分∠AQP=90°和∠APQ=90°两种情况考虑.①当∠AOC=∠PQA ,∠ACO=∠PAQ 时,有△AOC ∽△PQA (如图1) 设Q (x 1,0),P (x 1,y 2)由AQ QPOC AO=得11131x y +=,而y 1=-x 12+2x 1+3, ∴x 1+1=3(-x 12+2x 1+3), 3x 12-5x 1-8=0, x 1=83或x 1=-1(不合题意,舍去) 把x 1=83代入y 1=-x 12+2x 1+3=119,M OBCAy xQ P∴Q(83,0),P(83,119).∴存在这样的P、Q点使得△AOC∽△PQA.②∠APQ=∠COA=90°,且∠ACO=∠QAP时,有△AOC∽△APQ 过P作PN⊥x轴于N,设Q(x,0),P(,)由△AOC∽△APQ得AC COAQ AP=2=解得83 27,∴Q(8327,0),P(83,119).∴存在这样的P、Q点使得△AOC∽△APQ说明:(1)在考虑三角形相似时,应考虑不同情况,这是这道题的难点.(2)第二种情况的P点可以认为和第一种情况是同一点.(3)能够求出Q、P点坐标为存在,不能求出P、Q点坐标(即方程无解)为不存在.中考样题看台1.已知四边形ABCD中,AB∥CD,且AB、CD•的长是关于x•的方程x2-2mx+(m-12)+74=0的两个根.(1)当m=2和m>2时,四边形ABCD分别是哪种四边形?并说明理由.(2)若M、N分别是AD、BC中点,线段MN分别交AC、BD于点P、Q,PQ=1,且AB<CD,求AB、CD的长;(3)在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan•∠BDC和tan∠BCD.2.已知,如图,⊙O1与⊙O2外切于点A,BC是⊙1和⊙2的公切线,B、C为切点.(1)求证:AB⊥AC;(2)若r1、r2分别为⊙O1、⊙O2的半径,且r1=2r2,求ABAC的值.3.在平面直角坐标系中,给定五点:A(-2,0),B(1,0),C(4,0)•,D(-2,92),E(0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴,我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示).(1)问符合条件的抛物线还有哪几条?不求解析式,•请用约定的方法一一表示出来;(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线与直线的解析式;如果不存在,请说明理由.4.某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,讨论如下:甲同学:这种多边形不一定是正多边形,如圆内接矩形;乙同学:我发现边数是6,它也不一定是正多边形.如图一,△ABC是正三角形,AD=BE=CF,可以证明六边形ADBECF的各角相等,但它未必是正六边形;丙同学:我能证明,边数是5时,它是正多边形.我想,边数是7时,它可能是正多边形,……(1)请你说明乙同学构造的六边形各角相等;(2)请你证明,各角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证);(3)根据以上探索过程,提出你的猜想(不必证明);5.高致病性禽流感是比SARS病毒传染速度更快的传染病.(1)某养殖场有8万只鸡,假设有1只鸡得了禽流感,如果不采取任何防治措施,那么,到第2天将新增病鸡10只,第3天又将新增病鸡100只,以后每天新增病鸡数依次类推,请问:到第4天,共有多少只鸡得了禽流感?到第几天,该养殖场所有鸡都会被感染.(2)为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,•所有禽类全部捕杀;离疫点3千米至5千米范围内为免疫区,所有的禽类强制免疫;同时,对扑杀区和免疫区的村庄、道路实行全封闭管理,现有一条笔直的公路AB通过禽流感病区,如图,O 为疫点,在扑杀区内的公路CD长为4千米,问这条公路在该免疫区内有多少千米.考前热身训练1.已知,在半径为r的半圆O中,半径OA⊥直径BC,点E与点F分别在弦AB、AC•上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合.(1)求证:S四边形AEDF=12r2;(2)设AE=x,S△OEF=y,写出y与x之间的函数解析式,并求出自变量x的取值范围;(3)当S△OEF=518S△ABC时,求点E、F分别在AB、AC上的位置及E、F之间的距离.A2.已知二次函数y=x2-(m2-4m+52)x-2(m2-4m+92)的图象与x轴的交点为A、B(点B•在点A的右边),与y轴的交点为C.(1)若△ABC为直角三角形,求m的值;(2)在△ABC中,若AC=BC,求∠ACB的正弦值;(3)设△ABC的面积为S,求当m为何值时,S有最小值,并求这个最小值.3.已知抛物线y=ax2+bx+c(a<0)与x轴交于A、B两点,点A在x轴的负半轴上,点B 在x轴的正半轴上,又此抛物线交y轴于点C,连接AC、BC,且满足△OAC的面积与△OBC的面积之差等于两线段OA与OB的积.(1)求b的值;(2)若tan∠CAB=12,抛物线的顶点为点P,是否存在这样的抛物线,使得△PAB•的外接圆半径为134?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.答案 中考样题看台1.(1)当m=2时,x 2-4x+4=0,∴△=0,∴AB=CD ,∵AB ∥CD ,∴四边形ABCD 是平行四边形.当m>2时,△=(-2m )2-4[(m-12)2+74]=m-2>0. 又AB+CD=2m>0,AB ·CD=(m-12)2+74>0,∴AB ≠CD ,•∵AB ∥CD ,∴四边形ABCD 是梯形.(2)∵AM=MD ,BN=NC ,AB ∥CD ,∴MN ∥AB ,MN ∥CD ,∴AP=PC ,BQ=QD ,∴QD=12DC ,PN=12AB , ∵AB<CD ,PQ=1,∴12DC-12AB=1,∴DC-AB=2,由已知得AB+CD=2m ,AB ·CD=(m-12)2+74=m 2-m+2, ∵(DC-AB )2=(DC+AB )2-4DC ·AB , ∴22=(2m )2-4(m 2-m+2),∴m=3, 当m=3时,x 2-6x+8=0,•∴x 1=2,x 2=4, ∵AB<CD ,∴AB=2,CD=4.(3)由(1)知,四边形ABCD 是梯形, ∵AD=BC ,∴四边形ABCD 是等腰梯形,• 过点B•作BE ∥AD ,交DC 于点E , ∴ED=AB=2,∴CE=2,∴BC=BE=CE=2,∴△BEC 为等边三角形,•∴∠BCD=60°,∠BDC=30°,∴tan ∠tan ∠∴所求方程为y 2-43.2.(1)过点A 作两圆的内公切线交BC 于点O ,∴OA=OB ,同理OA=OC ,∴OA=OB=OC ,•于是△BAC 是直角三角形,∠BAC=90°,所以AB ⊥AC . (2)连结OO ,OO ,与AB 、AC 分别交于点E 、F ,∴O 1O ⊥AB . 同理OO 2⊥AC ,根据(1)•的结论AB ⊥AC , 可知四边形OEAF 是矩形,有∠EOF=90°,连结O 1O 2,有OA ⊥O 1O 2,在Rt △O 1OO 2中,•有Rt △O 1AD ∽Rt △OAO 2, 于是OA 2=OA·O 2A=r 1·r 2=2r 22,∴2, 又∵∠ACB 是⊙O 2的弦切角,•∴∠ACB=∠AO 2O , 在Rt △OAO 2中,tan ∠AO 2O=2OAO A∴ABAC=tan ∠ACB=tan ∠AO 23.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ;•③△DEB ;④抛物线DEC ;⑤抛物线DBC . (2)在(1)中存在抛物线DBC ,它与直线AE 不相交, 设抛物线DBC 的解析式为y=ax 2+bx+c , 将D (-2,92),B (1,0),C (4,0)三点坐标分别代入, 得:942201640a b c a b c a b c ⎧-+=⎪⎪++=⎨⎪++=⎪⎩解这个方程组,得:a=14,b=54,c=1. ∴抛物线DBC 的解析式为y=14x 2-54x+1.另法:设抛物线为y=a (x-1)(x-4),代入D (-2,92),得a=14也可. 又设直线AE 的解析式为y=mx+n .将A (-2,0),E (0,-6)两点坐标分别代入, 得:206m n n -+=⎧⎨=-⎩ 解这个方程组,得m=-3,n=-6,∴直线AE 的解析式为y=-3x-6.4.解:(1)由图知∠AFC 对ABC ,因为AD=CF ,而∠DAF 对的DEF=DBC+CF=AD+DBC=ABC ,所以∠AFC=∠DAF .同理可证,其余各角都等于∠AFC .所以,图1中六边形各内角相等.(2)因为∠A 对BEG ,∠B 对CEA ,又因为∠A=∠B ,所以∠BEG=∠CEA .所以BC=AG ,•同理AB=CD=EF=AG=BC=DE=FG .所以,七边ABCDEFG 是七边形.(3)猜想:当边数是奇数时(即当边数是3,5,7,9,……时),• 各内角相等的圆内接多边形是正多边形.5.解:(1)由题意可知,到第4天得禽流感病鸡数为1+10+100+1000=1111.到第5天得禽流感病鸡数为1000+111=11111.到6天得禽流感病鸡数为100000+11111>800000.所以,到第6天所有鸡都会被感染.(2)过点O 作OE ⊥CD 交CD 于点E ,连结OC 、OA .∵OA=5,OC=3,CD=4,∴CE=2,在Rt•△OCE 中,OE 2=32-22=5.在Rt △OAE 中,∴,∵AC=BC ,∴.答:这条公路在该免疫区内有()千米.考前热身训练1.(1)先证△BOE ≌△AOF .∴S 四边形AEOF =S △AOB =12OB ·12OA=r 2.(2)由∠EAF=90°且,∵y=S △OEF =S 四边形AEOF -S △AEF ,∴y=12x 2-2rx+12r 2(). (3)当S △OEF =518S △ABC 时,即y=518(12·2r ·r )=518r 2∴12x 2-2rx+12r 2=518r 2.即12x 2-2rx+29r 2=0.解之得x 1=3r ,x 2=3r . ∴S △OEF =518S △ABC 时,AE AB =13,AF AC =23或AE AB =23,AF AC =13.当AE=3r 时,AF=3r ,;当r 时,,. 2.A (-2,0),B (m 2-4m+92,0),C[0,-2(m 2-4m+92)]. (1)m=2. (2)过A 作AD ⊥BC 于D ,sin ∠ACB=AD AC =45. (3)m=2时,S 最小值=54. 3.解:(1)设A (x 1,0),B (x 2,0),由题设可求得C 点的坐标为(0,c ),且x 1<0,x 2>0∵a<0,∴c>0由S △AOC -S △BOC =OA ×OB 得:-12x 1c-12x 2c=-x 1x 2 得:12c (-b a )=c a,得:b=-2. (2)设抛物线的对称轴与x 轴交于点M ,与△PAB 的外接圆交于点N .∵tan∠CAB=12,∴OA=2·OC=2c,∴A点的坐标为(-2c,0),∵A点在抛物线上.∴x=-2c,y=0,代入y=ax2-2x+c得a=-54c.又∵x1、x2为方程ax2-2x+c=0的两根,∴x1+x2=2a即:-2c+x2=2a=-85c.∴x=25c.∴B点的坐标为(25c,0).∴顶点P的坐标为(-45c,95c).由相交弦定理得:AM·BM=PM·MN.又∵AB=125c,∴AM=BM=65c,PM=95c,∴c=52,a=-12.∴所求抛物线的函数解析式是:y=-12x2-2x+52.。