九年级数学下学期第一次月考试题(扫描版,无答案) 新人教版
2019-2020年九年级数学下学期第一次月考试题 新人教版
2019-2020年九年级数学下学期第一次月考试题新人教版说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上。
3.选择题每小题选出答案后,请用2B铅笔在答题卡指定区域填涂,如需改动,用橡皮擦干净后,再填涂其它答案。
非选择题请用0.5毫米的黑色签字笔在答题卡指定区域作答,在试卷或草稿纸上作答一律无效。
4.如有作图需要,可用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请根据正确选项前的字母代号填涂在答题卡相应位置上)1.-5的绝对值为(▲ )A. -5B. 5C.D.2.若正比例函数y=kx的图象经过点(1,2),则k的值为(▲ )A.-1B.-2C.1D.23.若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是(▲ )A.x≤2B.x>1C.1≤x<2D.1<x≤24.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是(▲ )A.1.71B.1.85C.1.90D.2.315.如图,二次函数的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是(▲ )A.abc<0B.2a+b<0C.a-b+c<0D.6.如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为(▲ )A. B. C. D.7.把一副三角板如图甲放置,其中,,,斜边,,把三角板DCE绕着点C顺时针旋转得到△(如图乙),此时与交于点O,则线段的长度为(▲ )A. B. C.4 D.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的有(▲ )A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每小题3分,共30分,不需要写出解决过程,请把答案直接填在答题卡相应位置上)9.计算:x5÷x3= ▲ .10.二次根式中,x的取值范围是▲ .11.因式分解:▲ .12.等腰三角形的周长为16,其一边长为6,则另两边为▲ .13.如图,AF=DC,BC∥EF,只需补充一个条件▲ ,就能得到△ABC≌△DEF.14.正比例函数的图象与反比例函数的图象有一个交点的坐标是(),则另一个交点的坐标为▲ .15.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B 在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是▲ cm.16.如图,菱形ABCD周长为8㎝.∠BAD=60°,则AC= ▲ cm。
最新人教版九年级下第一次月考数学试卷及答案
最新人教版数学精品教学资料九年级数学试题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.=x -2,那么x 的取值范围是( )A .x ≥2B .x <2C .x ≤2D .x >22.若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为( )A .1B .2C .3D .4 3.如图, AB 是⊙O 的直径,CD 是弦, 连结AC 、AD ,若∠CAB =35°,则∠ADC 为( )A .35°B .45°C .55°D .65° 4.下列事件中,属于随机事件的是( )A .掷一枚均匀的正方体骰子所得的结果超过13B .买一张彩票中奖C .口袋中装有10个红球,从中摸出一个红球D .太阳从西边落下 5.已知135=a b则ba b a +- 的值是( ) A.32 B .23 C .49 D . 946.关于x 的一元二次方程kx 2+1=0有两个不相等的实数根,则k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx .若此炮弹在第8秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的? A.第11秒 B.第10秒 C. 第9秒 D. 第8秒 .8.已知二次函数y =ax 2+bx +c 的图象如图所示,现有下列结论:①b 2-4a c >0 ②a >0 ③b >0 ④c >0 ⑤9a +3b +c <0,则其中结论正确的个数是( ). A 、1个 B 、2个 C 、3个 D 、4个9.如图,在梯形ABCD 中,AD ∥BC ,AD=2,AB=3,BC=6,沿AE 翻折梯形ABCD 使点B 落AD 的延长线上,记为点B ’,连结B ’E 交CD 于点F,则FCDF的值为( ) A .31B .41C .51D .61第3题ADBF学校: 班级: 姓名: 座号:10.如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).A .B .C .D .二、填空题(每题4分,共24分)11.要使式子a 有意义,则a 的取值范围为__________________. 12.关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是13.抛物线2y ax bx c =++上部分点的坐标对应值如下表:从上表可知,下列说法中正确的是 .(填写序号)①函数2y ax bx c =++的最大值为6;②抛物线与x 轴的一个交点为(3,0);③在对称轴右侧,y 随x 增大而减小; ④抛物线的对称轴是直线12x =;⑤抛物线开口向上. 14.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A ″B ″C ″的位置.若BC=1,AC=,则顶点A 运动到点A ″的位置时,点A 两次运动所经过的路程 _________ .(计算结果不取近似值)15.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=2,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 _________ (结果保留π). 16.如图所示,已知直线133+-=x y 与x 、y 轴交于B 、C 两点,(00)A ,,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B AB △,……则第n 个等边三角形的边长等于 .)(10题图)三、解答题(一)(本大题3小题,每小题5分,共15分)17.计算:021423-⎛⎫+-- ⎪⎝⎭⎝⎭.19.某商场以每台2500元进口一批彩电,如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?四、解答题(二)(本大题3小题,每小题8分,共24分)20.如图:在△ABC 中,点M 是BC 上任一点, MD ∥AC ,ME ∥AB,)(16题图) (17题图)2,.5BD CEAB AC=求21.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm , 求这个圆形截面的半径.22.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D为圆心,DB 长为半径作⊙D ,AB =5,EB =3. (1)求证:AC 是⊙O 的切线;(2)求线段AC 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.已知抛物线y=x 2+ax+a ﹣3(1)求证:不论a 取何值,抛物线与x 轴总有两个交点. (2)当a=5时,求抛物线与x 轴的两个交点间的距离.(3)直接写出a= ______ 时,抛物线与x 轴的两个交点间的距离最小.24.已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC , 使∠FCA =∠AOE ,交AB 的延长线于点D . (1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =2,求⊙O 半径的长; (3)在(2)的条件下,当OE =3时,求图中阴影部分的面积.第24题图学校: 班级: 姓名: 座号:25.如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (-1,0). 求: ⑴求抛物线的解析式及顶点D 的坐标;⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点, 当CM +DM 的值最小时,求m 的值.第25题图2013-2014年铜中九年级数学试题(参考答案)一、选择题。
最新人教版九年级下第一次月考数学试卷
最新人教版数学精品教学资料毕业班第一次月考数学试卷班级姓名考号一、选择题(30分)每题3分1、二次函数y=(x-1) 2 +2的最小值是()A.-2B.2C.-1D.12、已知抛物线的解析式为y=(x-2)2+1,则抛物线的顶点坐标是()A.(-2,1)B.(2,1)C.(2,-1)D.(1,2)3、函数2+y ax b y ax bx c=+=+与在同一直角坐标系内的图象大致是()4、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t =4时,该物体所经过的路程为()C.68米D.88米5≠0)的图象如图2所示,给出以下结论:① a+b+c<0;②a abc>0 .其中所有正确结论的序号是()C. ①④D. ①②③6、二次函数y=ax2+bx+c的图象如图3所示,若M=4a+2b+c,N=a-b+c,P=4a+2b,则()A. M>0,N>0,P>0B. M>0,N<0,P>0C. M<0,N>0,P>0D. M<0,N>0,P<0图7()8、二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是()A. y=x2-2B. y=(x-2)2C. y=x2+2D. y=(x+2)29、如图6,小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位:s,h的单位:m)图7可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.0.71sB.0.70sC.0.63sD.0.36s10.已知a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数y=x2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3二、填空题(24分,每题3分)11,抛物线y=(x+1)2- 7的对称轴是直线 .12,平移抛物线y=x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式 . 13,若二次函数y=x2-4x+c的图象与x轴没有交点,其中c为整数,则c= (只要求写出一个).14,现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为___.15,已知抛物线y=x2-6x +5的部分图象如图8,则抛物线的对称轴为直线x=,满足y<0的x的取值范围是 .16,若二次函数2y ax bx c=++的图象经过点(-2,10),且一元二次方程20ax bx c++=的根图6 Oyx图7图8为12-和2,则该二次函数的解析关系式为 。
九年级下学期第一次月考数学试卷含答案
九年级下学期第一次月考数学试卷一、选择题:(本题共10小题,每小题3分,共30分)1.若=,则的值为()A.1 B.C.D.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c 长()A.18cm B.5cm C.6cm D.±6cm3.下列四个命题中,假命题是()A.有一个锐角相等的两个等腰三角形相似B.有一个锐角相等的两个直角三角形相似C.底边和腰对应成比例的两个等腰三角形相似D.斜边和直角边对应成比例的两个直角三角形相似4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.= D.=5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:26.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.127.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)8.cos60°的值等于()A.B.C.D.9.Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于()A.8cm B.cm C.cm D.cm10.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.120二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是千米.12.如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=.13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为.15.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=.16.在△ABC中,若BC=,AB=,AC=3,则cosA=.17.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A′P′B,且BP=2,那么PP′的长为.(不取近似值.以下数据供解题使用:sin15°=,cos15°=)18.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西度.三、解答题19.先化简,再求值:,其中x=3tan30°+1.20.在△ABC中,∠C=90°AB=2,AC=1.求∠A,∠B正弦,余弦,正切.21.(1)计算:2sin30°+•﹣(2﹣π)0﹣()﹣1(2)解方程: +=.22.如图,在平行四边形ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.求证:∠D=∠F.23.如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sin∠C=,BC=12,求AD的长.24.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.25.如图,在一次数学课外实践活动,小文在点C处测得树的顶端A的仰角为37°,BC=20m,求树的高度AB.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)OC=CP,AB=6,求CD的长.九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(本题共10小题,每小题3分,共30分)1.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【专题】计算题.【分析】根据合分比性质求解.【解答】解:∵=,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c 长()A.18cm B.5cm C.6cm D.±6cm【考点】比例线段.【分析】由c是a、b的比例中项,根据比例中项的定义,列出比例式即可得出线段c的长,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故选C.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.3.下列四个命题中,假命题是()A.有一个锐角相等的两个等腰三角形相似B.有一个锐角相等的两个直角三角形相似C.底边和腰对应成比例的两个等腰三角形相似D.斜边和直角边对应成比例的两个直角三角形相似【考点】相似三角形的判定;命题与定理.【分析】根据相似三角形的各种判定方法逐项分析即可.【解答】解:A、有一个锐角相等的两个等腰三角形不一定相似,故该选项错误,是假命题;B、有一个锐角相等的两个直角三角形是相似的,故该选项正确,是真命题;C、有底边和腰对应成比例的两个等腰三角形是相似的,故该选项正确,是真命题;D、斜边和直角边对应成比例的两个直角三角形是相似的,故该选项正确,是真命题;故选A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.= D.=【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.6.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴,∵EF=3,∴,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt △OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.cos60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值解题即可.【解答】解:cos60°=.故选:A.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.9.Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于()A.8cm B.cm C.cm D.cm【考点】锐角三角函数的定义;勾股定理.【分析】首先利用锐角三角函数的定义求出斜边的长度,再运用勾股定理即可求解.【解答】解:∵在Rt△ABC中,∠C=90°,cosA==,AC=6cm,∴AB=10cm,∴BC==8cm.故选A.【点评】本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边,同时考查了勾股定理.10.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.120【考点】解直角三角形.【专题】计算题;等腰三角形与直角三角形.【分析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.【解答】解:如图所示,由tanA=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D【点评】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是34千米.【考点】比例线段.【专题】计算题.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,3.4÷=3400000厘米=34千米.即实际距离是34千米.故答案为:34.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.12.如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=15.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出比例式,代入求出BC的值,即可得出答案.【解答】解:∵:l1∥l2∥l3,∴=,∵AB=6,DE=5,EF=7.5,∴BC=9,∴AC=AB+BC=15,故答案为:15.【点评】本题考查了平行线分线段成比例定理的应用,能根据定理得出正确饿比例式是解此题的关键.13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是(9,0).【考点】位似变换.【专题】网格型.【分析】位似图形的主要特征是:每对位似对应点与位似中心共线.【解答】解:直线AA′与直线BB′的交点坐标为(9,0),所以位似中心的坐标为(9,0).【点评】本题考查位似中心的找法,各对应点所在直线的交点即为位似中心.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为9.【考点】平行线分线段成比例;三角形的重心.【专题】数形结合.【分析】根据题意作图,利用重心的性质AD:GD=3:1,同时还可以求出△ADE ∽△GDH,从而得出AD:GD=AE:GH=3:1,根据GH=3即可得出答案.【解答】解:设BC的中线是AD,BC的高是AE,由重心性质可知:AD:GD=3:1,∵GH⊥BC,∴△ADE∽△GDH,∴AD:GD=AE:GH=3:1,∴AE=3GH=3×3=9,故答案为9.【点评】本题主要考查了作辅助线,重心的特点,全等三角形的性质,难度适中.15.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=.【考点】锐角三角函数的定义.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,∴sinB==.故答案为:.【点评】本题考查了锐角三角函数的定义,解题时牢记定义是关键.16.在△ABC中,若BC=,AB=,AC=3,则cosA=.【考点】解直角三角形.【分析】根据勾股定理的逆定理得出△ABC为直角三角形,再根据余弦函数的定义得出答案即可.【解答】解:∵BC=,AB=,AC=3,∴()2+()2=32,∴BC2+AB2=AC2,∴△ABC为直角三角形,∴cosA==,故答案为.【点评】本题考查了解直角三角形以及勾股定理的逆定理,熟记三角函数的求法是解题的关键.17.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A′P′B,且BP=2,那么PP′的长为.(不取近似值.以下数据供解题使用:sin15°=,cos15°=)【考点】解直角三角形.【专题】压轴题.【分析】如图,连接PP′,过B作BC⊥PP′于点C,由题意知BP=BP′,再根据等腰三角形中底边上高也是底边上的中线和顶角的平分线得到∠CBP=15°,最后利用PC=BPsin15°和已知条件即可求出PP′.【解答】解:如图,连接PP′,过B作BC⊥PP′于点C.由题意知,BP=BP′.∴∠CBP=15°,∴PC=BP•sin15°=2×,∴PP′=2CP=.【点评】本题考查了等腰三角形的性质和三角函数定义的应用.18.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西48度.【考点】方向角;平行线的性质.【专题】应用题.【分析】先根据题意画出图形,利用平行线的性质解答即可.【解答】解:如图,∵AC∥BD,∠1=48°,∴∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.故答案为:48.【点评】解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.三、解答题19.先化简,再求值:,其中x=3tan30°+1.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题;压轴题.【分析】将原式除式的第一项分子分母同时乘以x+3,然后利用同分母分式的减法法则计算,将被除式分母利用平方差公式分解因式,除式分母利用平方差公式分解因式,分子利用完全平方公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,然后利用特殊角的三角函数值求出x的值,将x的值代入化简后的式子中计算,即可求出原式的值.【解答】解:÷(﹣)=÷[﹣]=÷=•=,当x=3tan30°+1=3×+1=+1时,原式===.【点评】此题考查了分式的化简求值,以及特殊角的三角函数值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时若分式的分子分母出现多项式,应将多项式分解因式后再约分.20.在△ABC中,∠C=90°AB=2,AC=1.求∠A,∠B正弦,余弦,正切.【考点】勾股定理;锐角三角函数的定义.【分析】由勾股定理首先求得BC的长度,然后根据锐角三角函数的定义计算即可.【解答】解:如图所示:∵在△ABC中,∠C=90°,AB=2,AC=1,∴BC==,∴sinA==,cosA==,tanA=,sinB=,cosB=,tanB=.【点评】本题主要考查的是锐角三角函数的定义和勾股定理的应用,掌握锐角三角函数的定义是解题的关键.21.(1)计算:2sin30°+•﹣(2﹣π)0﹣()﹣1(2)解方程: +=.【考点】实数的运算;解分式方程;特殊角的三角函数值.【分析】(1)分别利用零指数幂的性质和特殊角的三角函数值、二次根式的性质分别化简求出答案;(2)首先找出最简公分母,进而去分母得出答案.【解答】解:(1)2sin30°+•﹣(2﹣π)0﹣()﹣1=2×+4﹣1﹣2=2;(2)去分母得:x﹣2+3x=﹣2,解得:x=0,检验:当x=0时,x(x﹣2)=0,故此方程无实数根.【点评】此题主要考查了零指数幂的性质和特殊角的三角函数值、二次根式的性质、分式方程的解法等知识,正确把握相关性质是解题关键.22.如图,在平行四边形ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.求证:∠D=∠F.【考点】平行四边形的性质.【分析】BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;【解答】证明:设BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,∵∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴由三角形内角和定理得:∠D=∠F.【点评】本题考查了平行四边形的性质、平行线的性质、三角形内角和定理;熟练掌握平行四边形的性质是解决问题的关键.23.如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sin∠C=,BC=12,求AD的长.【考点】解直角三角形.【专题】几何综合题.【分析】(1)由于tanB=cos∠DAC,所以根据正切和余弦的概念证明AC=BD;(2)设AD=12k,AC=13k,然后利用题目已知条件即可解直角三角形.【解答】(1)证明:∵AD是BC上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°,在Rt△ABD和Rt△ADC中,∵tanB=,cos∠DAC=,又∵tanB=cos∠DAC,∴=,∴AC=BD.(2)解:在Rt△ADC中,,故可设AD=12k,AC=13k,∴CD==5k,∵BC=BD+CD,又AC=BD,∴BC=13k+5k=18k由已知BC=12,∴18k=12,∴k=,∴AD=12k=12×=8.【点评】此题考查解直角三角形、直角三角形的性质等知识,也考查逻辑推理能力和运算能力.24.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)先根据矩形的性质,得到AD∥BC,则∠DAE=∠AMB,又由∠DEA=∠B,根据有两角对应相等的两三角形相似,即可证明出△DAE∽△AMB;(2)由△DAE∽△AMB,根据相似三角形的对应边成比例,即可求出DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB;(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.【点评】此题主要考查了相似三角形的判定与性质,矩形的性质.(1)中根据矩形的对边平行进而得出∠DAE=∠AMB是解题的关键.25.如图,在一次数学课外实践活动,小文在点C处测得树的顶端A的仰角为37°,BC=20m,求树的高度AB.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】几何图形问题.【分析】通过解直角△ABC可以求得AB的长度.【解答】解:如图,在直角△ABC中,∠B=90°,∠C=37°,BC=20m,∴tanC=,则AB=BC•tanC=20×tan37°≈20×0.75=15(m).答:树的高度AB为15m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.26.(14分)(2013•菏泽)如图,BC是⊙O的直径,A是⊙O上一点,过点C 作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)OC=CP,AB=6,求CD的长.【考点】切线的判定与性质;解直角三角形.【分析】(1)连接AO,AC(如图).欲证AP是⊙O的切线,只需证明OA⊥AP即可;(2)利用(1)中切线的性质在Rt△OAP中利用边角关系求得∠ACO=60°.然后在Rt△BAC、Rt△ACD中利用余弦三角函数的定义知AC=2,CD=4.【解答】(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.∵CD是⊙O的切线,∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP==,∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴AC==2,又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD===4.【点评】本题考查了切线的判定与性质、解直角三角形.注意,切线的定义的运用,解题的关键是熟记特殊角的锐角三角函数值.。
九年级数学下学期第一次月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题
某某省池州市石台中学2015-2016学年九年级数学下学期第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?2015-2016学年某某省池州市石台中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米==2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]= 2015 .【考点】估算无理数的大小.【分析】先求出的X围,再求出2020﹣的X围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2= 4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC,CD的长,即可求出钢管ABCD的长度.【解答】解:在△BCG中,∠GBC=30°,BC=2BG=80cm,CD=≈41.2,钢管ABCD的长度=AB+BC+CD=25+80+41.2=146.2≈146cm.答:钢管ABCD的长度为146cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为60 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD (只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值X围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值X围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
九年级数学下册第一次月考试题(含答案)
九年级数学下册第一次月考试题(含答案)九年级数学下册第一次月考试题(含答案)一、选择题(本大题共 8小题,每小题3分,共24 分)1.绝对值是6的有理数是 ( )A.6B.6C.-6D.2.计算的结果是 ( )A. B. C. D.3.半径为6的圆的内接正六边形的边长是 ( )A.2B.4C.6D.84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为 ( )A. B. C. D.5.某校共有学生600 名,学生上学的方式有乘车、骑车、步行三种. 如图是该校学生乘车、骑车、步行上学人数的扇形统计图.,乘车的人数是 ( )A.180B.270C.150D.2006.函数的自变量X的取值范围是 ( )A. B. C. D.7. 如右图, 是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,容器内对应的水高度为h,则h 与t的函数图象只可能是 ( )8. 如图所示的正方体的展开图是 ( )A. B. C. D.二、填空题(本大题共7 小题,每小题3分,共21分.)9、.若分式的值为零 , 则 .10. 已知反比例函数的图象经过点 (3,-4),则这个函数的解析式为11 已知两圆内切,圆心距,一个圆的半径,那么另一个圆的半径为12. 用科学记数法表示20 120427的结果是 (保留两位有效数字);13.二次函数的图象向右平移 1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是: ;14.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC 的长是 .15. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第 ( 是大于0的整数)个图形需要黑色棋子的个数是 .三、解答题(本大题共10小题,共75分.解答应写出文字说明,证明过程或演算步骤.)17、(本小题5分) 计算:18. (本小题5分)先化简,再求值,其中x= 。
最新九年级下学期第一次月考数学试卷及答案
九年级下学期第一次月考数学试卷范围:第一章~第二章满分:150分考试用时:120分钟题号一二三总分得分一、选择题(本大题共15小题,共45.0分)1.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=4,则BD的长度为()5A. 94B. 125C. 154D. 42.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. tanαtanβB. sinβsinαC. sinαsinβD. cosβcosα3.如图,在Rt△ACB中,∠C=90°,sinB=0.5,若AC=6,则BC的长为()A. 8B. 12C. 6√3D. 12√34.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()C. 7cos35°D. 7tan35°A. 7sin35°B. 7cos35∘5.在△ABC中,AB=12√2,AC=13,cosB=√2,则BC边长为()2A. 7B. 8C. 8或17D. 7或176.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C 到x轴的距离等于()A. acosx+bsinxB. acosx+bcosxC. asinx+bcosxD. asinx+bsinx7.在Rt△ABC中,∠C=90°,若AB=2AC,则sin A的值是()A. √3B. 12C. √32D. √338.如图,中,,,,点P是斜边AB上任意一点,过点P作,垂足为P,交边或边于点Q,设,的面积为y,则y与x之间的函数图象大致是()A. B.C. D.9.设函数y=a(x−ℎ)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A. 若ℎ=4,则a<0B. 若ℎ=5,则a>0C. 若ℎ=6,则a<0D. 若ℎ=7,则a>010.抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的()A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先回右平移3个单位,再向上平移2个单位11.竖直上抛物体离地面的高度ℎ(m)与运动时间t(s)之间的关系可以近似地用公式ℎ=−5t2+v0t+ℎ0表示,其中ℎ0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A. 23.5mB. 22.5mC. 21.5mD. 20.5m12.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A. 若M1=2,M2=2,则M3=0B. 若M1=1,M2=0,则M3=0C. 若M1=0,M2=2,则M3=0D. 若M1=0,M2=0,则M3=013.已知二次函数y=ax2+bx+c的图象经过(−3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+ n=0(0<n<m)有两个整数根,这两个整数根是()A. −2或0B. −4或2C. −5或3D. −6或414.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=−1,x2=3;③3a+c>0;④当x<0时,y随x增大而增大.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个15.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N−1或M=N+1B. M=N−1或M=N+2C. M=N或M=N+1D. M=N或M=N−1二、填空题(本大题共5小题,共25.0分)16.若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+ℎ)2的图象,则ℎ=________.17.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+1=0无实数根;③4a−2b+c≥0;④a+b+c最小值为3,其中正确的结论是______.a−b(a>0)与y轴交于点A,过18.如图,在平面直角坐标系中,抛物线y=ax2−2ax+83点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM 于点B,且M为线段AB的中点,则a的值为;19.如图,在△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cos C=________.20.如图,在平面直角坐标系中,P是第一象限内的点,其坐标是(3,m),且OP与x轴正半轴的夹角α的正切值是4,则sinα3的值为________.三、计算题(本大题共7小题,共80.0分)21.(8分)计算:|2−tan60°|−(π−3.14)0+(−12)−2+12√12.22.(8分)求2sin60°−tan45°3cot60°+2cos60°⋅cot45°的值.23.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?24.(12分)如图所示,两个建筑物AB和CD的水平距离为30m,张明同学住在建筑物AB内10楼P室,他观测建筑物CD楼的顶部D处的仰角为30°,测得底部C处的俯角为45°,求建筑物CD的高度.(√3取1.73,结果保留整数.)25.(12分)某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%,经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润为Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店获得最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.26.(14分)数学兴趣小组活动课上测量电线杆的高度.在位于电线杆同侧的A、B处(点A、B及电线杆底部F在同一条直线上),测得电线杆顶部E的仰角分别为36°和45°(如图所示).已知测量仪器距离地面都是1.5m,两测点A、B的距离是12m,求电线杆EF的高度(tan54°≈1.38,结果精确到0.1m).27.(16分)实验数据显示:一般成年人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=ax2+bx刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例(k≠0)刻画.如图所示,并且通过测试发函数y=kx现酒后半小时和1.5小时的酒精含量均为150毫克/百毫升,酒后5小时为45毫克/百毫升.(1)求二次函数和反比例函数解析式;(2)喝酒后几时血液中的酒精含量达到最大值?最大值为多少?(3)按国家规定:车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾驶上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上8:00能否驾车去上班?请说明理由.答案1.C2.B3.C4.C5.D6.A7.C8.D9.C10.A11.C12.B13.B14.C15.C16.217.①②③④18.219.2320.4521.解:原式=|2−√3|−1+4+√3,=2−√3−1+4+√3,=5.22.解:原式=2×√32−13×√33+2×12×1=√3−1√3+1=2−√3.23.解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10]=−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵−2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.24解:过点P作PE⊥CD于E,则四边形BCEP是矩形.∴PE=BC=30.在Rt△PDE中,∵∠DPE=30°,PE=30,∴DE=PE×tan30°=30×√3=10√3.3在Rt△PEC中,∵∠EPC=45°,PE=30,∴CE=PE×tan45°=30×1=30.∴CD=DE﹢CE=30﹢10√3=30﹢17.3≈47(m)答:建筑物CD的高约为47 m.25.解:(1)设y=kx+b,根据题意得:{55k+b=6560k+b=60,解得:k=−1,b=120.所求一次函数的表达式为y=−x+120.(2)利润Q与销售单价x之间的函数关系式为:Q=(x−50)(−x+120)=−x2+170x−6000;Q=−x2+170x−6000=−(x−85)2+1225;∵成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.∴50≤x≤70,∴当试销单价定为70元时,该商店可获最大利润,最大利润是1000元.(3)依题意得:−x2+170x−6000≥600,解得:60≤x≤110,∵获利不得高于40%,∴最高价格为50(1+40%)=70,故60≤x≤70的整数.26.解:如图,过点C作CH⊥EF于点H,则∠CHE=90°.由题意可知:∠ECH=36°,∠EDH=45°,CD=AB=12(m).AC=BD=FH=1.5(m),∴∠CEH=54°,∠DEH=∠EDH=45°.∴DH=EH,设EH=x,则DH=x.∴CH =CD +DH =12+x .在Rt △CHE 中,tan∠CEH =CH EH ,即tan54°=12+x x , ∴x =12tan54∘−1,即EH =12tan54∘−1,∴EF =EH +HF =12tan54∘−1+1.5≈33.1(m).所以电线杆EF 的高约为33.1 m .27.解:(1)根据题意:酒后半小时和1.5小时的酒精含量均为150毫克/百毫升,即当x =0.5时,y =150,x =1.5时,y =150.∵1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y =ax 2+bx 刻画,即当0<x <1.5时,y =ax 2+bx ,∴{0.25a +0.5b =1502.25a +1.5b =150解得{a =−200b =400所以二次函数解析式为y =−200x 2+400x(0<x <1.5);∵酒后5小时为45毫克/百毫升.1.5小时以后(包括1.5小时)y 与x 可近似地用反比例函数y =k x (k ≠0)刻画, 即当x =5时,y =45,∴k =5×45=225,所以反比例函数解析式为y =225x (x ≥1.5).答:二次函数解析式为y =−200x 2+400x(0<x <1.5);反比例函数解析式为y =225x (x ≥1.5).(2)∵二次函数解析式为y =−200x 2+400x ,∴y =−200x 2+400x =−200(x −1)2+200,∴当x =1时,血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);(3)第二天早上8:00能驾车去上班,理由如下:∵晚上20:00在家喝完半斤低度白酒,第二天早上8:00,一共12个小时,∴将x=12代入y=225,x<20,则y=22512答:第二天早上8:00能驾车去上班.。
九年级下学期第一次月考数学试卷(附参考答案与解析)
九年级下学期第一次月考数学试卷(附参考答案与解析)班级:___________姓名:___________考号:___________一.选择题(共6小题,每小题3分,共18分)1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形2.下列哪个是一元二次方程x2﹣6x+8=0的解()A.﹣2或﹣4B.2C.2或4D.无解3.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A.B.C.D.4.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB 的高度为()A.B.20米C.30D.60米5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④6.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5二.填空题(共6小题,每小题3分,共18分)7.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是.8.如图,在⊙O中,AB是⊙O的弦,AB=10,OC⊥AB,垂足为点D,则AD=.9.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A (3,0),则由图象可知,不等式ax2+bx+c<0的解集是.10.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂=3,则k的值是.足为M,连接BM,若S△ABM11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.12.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为.三.解答题13.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.14.计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°15.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.16.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?17.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.18.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)19.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?20.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.21.我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为元,这批蘑菇的销售量是千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?22.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.参考答案与解析一.选择题(共6小题,每小题3分,共18分)1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.2.下列哪个是一元二次方程x2﹣6x+8=0的解()A.﹣2或﹣4B.2C.2或4D.无解【考点】一元二次方程的解.【分析】利用因式分解法求出方程的解,即可作出判断.【解答】解:方程分解得:(x﹣2)(x﹣4)=0可得x﹣2=0或x﹣4=0解得:x=2或x=4故选C3.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面看,是正方形右下角有阴影,故选C.4.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB 的高度为()A.B.20米C.30D.60米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据仰角为30°,BD=30米,在Rt△BDE中,可求得ED的长度,根据题意恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,可得AB=2ED.【解答】解:在Rt△BDE中∵∠EBD=30°,BD=30米∴=tan30°解得:ED=10(米)∵当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像∴AB=2DE=20(米).故选:B.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a﹣b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选:B.6.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5【考点】垂径定理;勾股定理.【分析】由垂线段最短可知当OM⊥AB时最短,当OM是半径时最长.根据垂径定理求最短长度.【解答】解:由垂线段最短可知当OM⊥AB时最短,即OM===3;当OM是半径时最长,OM=5.所以OM长的取值范围是3≤OM≤5.故选A.二.填空题(共6小题,每小题3分,共18分)7.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是.【考点】锐角三角函数的定义;勾股定理;勾股定理的逆定理.【分析】连接BC,根据勾股定理,可求得AB,BC,AC,再根据勾股定理的逆定理,可得△ABC 为直角三角形,即可求得sin∠BAD的值.【解答】解:连接BC根据勾股定理,可求得AB=,BC=,AC=根据勾股定理的逆定理,可得∠ABC=90°∴sin∠BAD===.故答案为:.8.如图,在⊙O中,AB是⊙O的弦,AB=10,OC⊥AB,垂足为点D,则AD=5.【考点】垂径定理;勾股定理.【分析】根据垂径定理得出AD=BD,即可求出答案.【解答】解:∵OC⊥AB,垂足为点D,OC过0∴AD=BD∵AB=10∴AD=5故答案为:5.9.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A (3,0),则由图象可知,不等式ax2+bx+c<0的解集是﹣1<x<3.【考点】二次函数与不等式(组).【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.【解答】解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集∴﹣1<x<3故填:﹣1<x<310.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂=3,则k的值是3.足为M,连接BM,若S△ABM【考点】反比例函数系数k的几何意义;反比例函数图象的对称性.【分析】由反比例函数图象的对称性和反比例函数系数k的几何意义可得:△ABM的面积为=2S△AOM=|k|.△AOM面积的2倍,S△ABM=2S△AOM=3,S△AOM=|k|=,则k=3.【解答】解:由题意得:S△ABM故答案为:3.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看两张图案一样的情况数占总情况数的多少即可.【解答】解:设粽子用A表示,龙舟用B表示.共有12种情况,两张图案一样的有4种所以所求的概率为.故答案为.12.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为(﹣1,0)或(5,﹣2).【考点】位似变换;坐标与图形性质.【分析】由图形可得两个位似图形的位似中心必在x轴上,连接AF、DG,其交点即为位似中心,进而再由位似比即可求解位似中心的坐标.【解答】解:当位似中心在两正方形之间连接AF、DG,交于H,如图所示,则点H为其位似中心,且H在x轴上∵点D的纵坐标为2,点F的纵坐标为1∴其位似比为2:1∴CH=2HO,即OH=OC又C(﹣3,0),∴OC=3∴OH=1所以其位似中心的坐标为(﹣1,0);当位似中心在正方形OEFG的右侧时,如图所示,连接DE并延长,连接CF并延长两延长线交于M,过M作MN⊥x轴∵点D的纵坐标为2,点F的纵坐标为1∴其位似比为2:1∴EF=DC,即EF为△MDC的中位线∴ME=DE,又∠DEC=∠MEN,∠DCE=∠MNE=90°∴△DCE≌△MNE∴CE=EN=OC+OE=3+1=4,即ON=5,MN=DC=2则M坐标为(5,﹣2)综上,位似中心为:(﹣1,0)或(5,﹣2).故答案为:(﹣1,0)或(5,﹣2).三.解答题13.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.【考点】中心投影.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把AB和DE的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接MN顶部N的直线与地面相交即可找到MN影子的顶端.线段GM是大树的高.若小明的眼睛近似地看成是点D,则看不到大树,GM处于视点的盲区.【解答】解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,GM处于视点的盲区.14.计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负指数幂、绝对值的化简、特殊角的锐角三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1×1+9﹣2+=8+2.15.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.【考点】列表法与树状图法;中心对称图形.【分析】(1)列举出所有情况即可;(2)中心对称图形是绕某点旋转180°后能够和原来的图形完全重合,那么B,D是中心对称图形,看所求的情况占总情况的多少即可.【解答】解:(1)树状图:或列表法A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D);(2)由图可知:只有卡片B、D才是中心对称图形.所有可能的结果有16种,其中满足摸出的两张卡片图形都是中心对称图形(记为事件A)有4种,即:(B,B)(B,D)(D,B)(D,D).∴P(A)=.16.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?【考点】反比例函数与一次函数的交点问题.【分析】(1)设反比例函数解析式为y=,把点A的坐标代入解析式,利用待定系数法求反比例函数解析式即可,把点B的坐标代入反比例函数解析式进行计算求出a的值,从而得到点B的坐标;(2)写出一次函数图象在反比例函数图象上方的x的取值范围即可.【解答】解:(1)设反比例函数的解析式为y=(k≠0)∵反比例函数图象经过点A(﹣4,﹣2)∴﹣2=∴k=8∴反比例函数的解析式为y=∵B(a,4)在y=的图象上∴4=∴a=2∴点B的坐标为B(2,4);(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.17.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.【考点】条形统计图.【分析】(1)将训练前各等级人数相加得总人数,将总人数减去训练后B、C两个等级人数可得训练后A等级人数;(2)将训练后A等级人数占总人数比例乘以总人数可得.【解答】解:(1)∵抽取的人数为21+7+2=30∴训练后“A”等次的人数为30﹣2﹣8=20.补全统计图如图:(2)600×=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400.18.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】(1)本题可通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN 的度数,又已知了AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出了.(2)本题可先计算出最小安全距离是多少,然后于大灯的照明范围进行比较,然后得出是否合格的结论.【解答】解:(1)过A作AD⊥MN于点D在Rt△ACD中,tan∠ACD==,CD=5.6(m)在Rt△ABD中,tan∠ABD==,BD=7(m)∴BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m;(2)该车大灯的设计不能满足最小安全距离的要求.理由如下:∵以60 km/h的速度驾驶∴速度还可以化为:m/s最小安全距离为:×0.2+=8(m)大灯能照到的最远距离是BD=7m∴该车大灯的设计不能满足最小安全距离的要求.19.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.【分析】(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.【解答】解:(1)设直线AB的解析式为y=kx+b由题意,得解得所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10﹣2t①当∠APQ=∠AOB时,△APQ∽△AOB.所以=解得t=(秒)②当∠AQP=∠AOB时,△AQP∽△AOB.所以=解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣tS△APQ=AP•QE=t•(8﹣t)=﹣t2+4t=解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△APQ的面积为个平方单位20.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【考点】切线的判定;圆心角、弧、弦的关系;圆周角定理.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC∴∠DAO=∠COB,∠ADO=∠DOC又∵OA=OD∴∠DAO=∠ADO∴∠COB=∠COD∴=;(2)由(1)知∠DOE=∠BOE在△COD和△COB中CO=CO∠DOC=∠BOCOD=OB∴△COD≌△COB∴∠CDO=∠B.又∵BC⊥AB∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.21.我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为(10+0.1x)元,这批蘑菇的销售量是千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据等量关系蘑菇的市场价格每天每千克上涨0.1元则可求出则x天后这批蘑菇的销售单价,再根据平均每天有10千克的蘑菇损坏则可求出这批蘑菇的销售量;(2)按照等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求解即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【解答】解:(1)因为蘑菇的市场价格每天每千克上涨0.1元,所以x天后这批蘑菇的销售单价为(10+0.1x)元;因为均每天有10千克的蘑菇损坏,所以x天后这批蘑菇的销售量是千克;故答案为:(10+0.1x),.(2)由题意得:(10+0.1x)=100000整理得:x2﹣500x+40000=0解方程得:x1=100,x2=400(不合题意,舍去)所以胡经理将这批蘑菇存放100天后,一次性出售所得的销售总金额为100000元;((3)设利润为w,由题意得w=(10+0.1x)﹣240x﹣6000×10=﹣x2+260x=﹣(x﹣130)2+16900∵a=﹣1<0∴抛物线开口方向向下∴x=110时,w最大=16500∴存放110天后出售这批香菇可获得最大利润16500元.22.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是相等;结论2:DM、MN的位置关系是垂直;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;三角形中位线定理;旋转的性质.【分析】(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE ≌△ADF,得到AE=AF,证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,位置关系式垂直;(3)连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,再有(1)的结论以及角角之间的数量关系得到∠DMN=∠DGE=90°.【解答】(1)证明:∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠ADF=90°∵△CEF是等腰直角三角形,∠C=90°∴CE=CF∴BC﹣CE=CD﹣CF即BE=DF∴△ABE≌△ADF∴AE=AF∴△AEF是等腰三角形;(2)解:相等,垂直;证明:∵在Rt△ADF中DM是斜边AF的中线∴AF=2DM∵MN是△AEF的中位线∴AE=2MN∵AE=AF∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD∵∠FMN=∠FAE,∠DAF=∠BAE∴∠ADM=∠DAF=∠BAE∴∠DMN=∠BAD=90°∴DM⊥MN;(3)(2)中的两个结论还成立证明:连接AE,交MD于点G∵点M为AF的中点,点N为EF的中点∴MN∥AE,MN=AE由(1)同理可证AB=AD=BC=CD,∠B=∠ADF,CE=CF又∵BC+CE=CD+CF,即BE=DF∴△ABE≌△ADF∴AE=AF在Rt△ADF中∵点M为AF的中点∴DM=AF∴DM=MN∵△ABE≌△ADF∴∠1=∠2∵AB∥DF∴∠1=∠3同理可证:∠2=∠4∴∠3=∠4∵DM=AM∴∠MAD=∠5∴∠DGE=∠5+∠4=∠MAD+∠3=90°∵MN∥AE∴∠DMN=∠DGE=90°∴DM⊥MN.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A代入解析式求出c和a,最后根据抛物线的对称轴求出b,即可求出最后结果.(2)①本题需根据题意列出S与t的关系式,再整理即可求出结果.②本题需分三种情况:以PB为对角线,当点R在BQ的左边,且在PB下方时;以PQ为对角线,当点R在BQ的左边,且在PB上方时;以BQ为对角线,当点R在BQ的右边,且在PB 上方时,然后分别代入抛物线的解析式中,即可求出结果.【解答】解:(1)∵抛物线的解析式为y=ax2+bx+c由题意知点A(0,﹣12)∴c=﹣12又∵18a+c=0∵AB∥OC,且AB=6cm∴抛物线的对称轴是∴b=﹣4所以抛物线的解析式为;(2)①,(0<t<6)②当t=3时,S取最大值为9(cm2)这时点P的坐标(3,﹣12)点Q坐标(6,﹣6)若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:(Ⅰ)以PB为对角线,当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18)(Ⅰ)以PQ为对角线,当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.(Ⅰ)以BQ为对角线,当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.综上所述,点R坐标为(3,﹣18).。
九年级数学下学期月考试卷(一)(含解析) 新人教版(2021年整理)
云南省昆明市2016届九年级数学下学期月考试卷(一)(含解析)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(云南省昆明市2016届九年级数学下学期月考试卷(一)(含解析)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为云南省昆明市2016届九年级数学下学期月考试卷(一)(含解析)新人教版的全部内容。
2015—2016学年云南省昆明市九年级(下)月考数学试卷(一)一、选择题(共9小题,每小题3分,满分27分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.下列调查中,适宜采用普查方式的是( )A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件3.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.4.下列计算正确的是()A.|﹣2|=﹣2 B.a2•a3=a6C.(﹣3)﹣2=D. =35.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°6.不等式组的解集在数轴上可表示为( )A.B.C.D.7.为执行“均衡教育"政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是( ) A.2500(1+x)2=1。
2B.2500(1+x)2=12000C.2500+2500(1+x)+2500(1+x)2=1.2D.2500+2500(1+x)+2500(1+x)2=120008.如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB9.已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A. B.C. D.二、填空题(共6小题,每小题3分,满分18分)10.2016年全国毕业高校毕业人数预计达到7500000人,其中7500000用科学记数法表示为.11.如果有意义,那么x的取值范围是.12.分解因式:m3﹣4m= .13.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k<0)的图象上,则m n(填“>”,“<”或“=”)14.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.15.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).三、解答题(共10小题,满分75分)16.计算:()﹣2﹣(﹣)0+2sin30°+|﹣3|.17.解方程:.18.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.19.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.20.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少",共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0。
人教版九年级下学期第一次月考数学试卷含答案详解
九年级(下)第一次月考数学试卷一、选择题:(每小题4分,共48分)1.的值是()A.2B.﹣2C.±2D.42.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.x•x3=x4D.(2x2)3=6x53.如图,已知AB∥CD,∥DFE=135°,则∥ABE的度数为()A.30°B.45°C.60°D.90°4.下列说法中正确的是()A.想了解某种饮料中含色素的情况,宜采用抽样调查B.“打开电视,正在播放《新闻联播》”是必然事件C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小5.若﹣5x2y m与x n y是同类项,则m+n的值为()A.1B.2C.3D.46.若一个多边形的内角和等于900°,则这个多边形的边数是()A.9B.8C.7D.67.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.58.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC∥BD D.AC=BD9.如图,∥ABC内接于∥O,∥OBC=40°,则∥A的度数为()A.80°B.100°C.110°D.130°10.大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六按驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.11.下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有()A.482B.483C.484D.48512.如图,已知反比函数y=的图象过Rt∥ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若∥ABO的周长为4+2,AD=2,则∥ACO的面积为()A.B.C.1D.2二、填空题(每小题4分,共24分)13.我国国内生产总值约为676700亿元,请用科学记数法表示国内生产总值约为亿元.14.代数式3x2﹣4x+6的值为12,则x2﹣x+6=.15.如图,在∥ABC中,D,E分别是AB,BC上的点,且DE∥AC,AE,CD交于点F,若S∥BDE:S∥DEC=1:3,则S∥DEF:S∥AFC=.16.如图,∥ABC是∥O的内接三角形,AD是∥O的直径,∥ABC=50°,则∥CAD=.17.有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为,(2)点C的坐标为.三、解答题:(每小题7分,共14分)19.如图,已知AB∥CD,AF=CE,∥B=∥D,证明BE和DF的关系.20.某班有50名同学,男、女生人数各占一半.在本周操行评定中,该班操行得分情况见如下统计表;其中男生操行得分情况见如下不完整的条形统计图:操行分得分1分2分3分4分5分人数2410304(1)补全条形统形图;(2)若要在操行得分为5分的4名同学中选出两名同学作“本周操行明星”,用画树状图或列表的方法求出选为“本周操行明星”的正好是一名男同学和一名女同学的概率.四、解答题:(每题10分,共40分)21.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.22.如图,一次函数的图象与y轴交于C(0,4),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点,(1)求∥AOC的面积;(2)若=2,求反比例函数和一次函数的解析式.23.如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC∥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?24.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A(﹣1,3),那么「A」=|﹣1|+|3|=4.(1)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(2)求满足条件「N」=3的所有点N围成的图形的面积.五、解答题:(每个小题12分,共24分)25.在∥ABC中,AB=AC,点D,点E在边BC上不同的两点,且∥ADE=75°.(1)如图1,若∥BAC=90°,CD=,求BC的长;(2)如图2,若∥BAC=90°,∥EAD=45°,求证:DC=BE;(3)如图3,若∥BAC=120°,∥EAD=60°,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.26.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使∥BPC为直角三角形的点P的坐标.-学年重庆市开县九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(每小题4分,共48分)1.的值是()A.2B.﹣2C.±2D.4【考点】算术平方根.【分析】根据如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.【解答】解:∥表示4的算术平方根,∥=2.故选:A.2.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.x•x3=x4D.(2x2)3=6x5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、利用合并同类项法则计算;B、利用同底数幂的除法计算;C、利用同底数幂的乘法计算;D、利用积的乘方计算,再分别判断对错.【解答】解:A、x+x=2x,此选项错误;B、x6÷x2=x4,此选项错误;C、x•x3=x4,此选项正确;D、(2x2)3=8x6,此选项错误.故选C.3.如图,已知AB∥CD,∥DFE=135°,则∥ABE的度数为()A.30°B.45°C.60°D.90°【考点】平行线的性质.【分析】先根据两角互补的性质得出∥CFE的度数,再由平行线的性质即可得出结论.【解答】解:∥∥DFE=135°,∥∥CFE=180°﹣135°=45°,∥AB∥CD,∥∥ABE=∥CFE=45°.故选B.4.下列说法中正确的是()A.想了解某种饮料中含色素的情况,宜采用抽样调查B.“打开电视,正在播放《新闻联播》”是必然事件C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小【考点】全面调查与抽样调查;众数;方差;随机事件.【分析】根据随机事件、必然事件以及众数、方差的意义即可作出判断.【解答】解:A、正确;B、打开电视,正在播放《新闻联播》”是随机事件,故选项错误;C、数据1,1,2,2,3的众数是1和2,故选项错误;D、一组数据的波动越大,方差越大,故选项错误.故选A.5.若﹣5x2y m与x n y是同类项,则m+n的值为()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可.【解答】解:∥﹣5x2y m和x n y是同类项,∥n=2,m=1,m+n=2+1=3,故选:C.6.若一个多边形的内角和等于900°,则这个多边形的边数是()A.9B.8C.7D.6【考点】多边形内角与外角.【分析】n边形的内角和为(n﹣2)180°,由此列方程求n的值.【解答】解:设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7,故选C.7.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.5【考点】一元一次方程的解.【分析】根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.【解答】解;∥方程2x+a﹣9=0的解是x=2,∥2×2+a﹣9=0,解得a=5.故选:D.8.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC∥BD D.AC=BD【考点】菱形的性质.【分析】直接根据菱形的性质对各选项进行判断.【解答】解:∥四边形ABCD为菱形,∥AD∥BC,OA=OC,AC∥BD,所以A、B、C选项的说法正确,D选项的说法错误.故选D.9.如图,∥ABC内接于∥O,∥OBC=40°,则∥A的度数为()A.80°B.100°C.110°D.130°【考点】圆周角定理.【分析】连接OC,然后根据等边对等角可得:∥OCB=∥OBC=40°,然后根据三角形内角和定理可得∥BOC=100°,然后根据周角的定义可求:∥1=260°,然后根据圆周角定理即可求出∥A的度数.【解答】解:连接OC,如图所示,∥OB=OC,∥∥OCB=∥OBC=40°,∥∥BOC=100°,∥∥1+∥BOC=360°,∥∥1=260°,∥∥A=∥1,∥∥A=130°.故选:D.10.大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六按驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据题意可得离家的距离越来越远,根据途中加油,可得路程不变,根据加速行驶,可得路程变化快,燃放烟花炮竹时,路程不变,时间加长,再匀速回家,离家距离越来越近.【解答】解:由题意得:离家的距离越来越远,直线呈上升趋势,根据途中加油,可得路程不变,时间加长,直线呈水平状态,后来加速行驶,可得路程变化快,直线上升快,燃放烟花炮竹时,路程不变,时间加长,直线呈水平状态,再匀速回家,离家距离越来越近,直线呈下降趋势.故选:A.11.下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有()A.482B.483C.484D.485【考点】规律型:图形的变化类.【分析】由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.【解答】解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故选:D.12.如图,已知反比函数y=的图象过Rt∥ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若∥ABO的周长为4+2,AD=2,则∥ACO的面积为()A.B.C.1D.2【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.【解答】解:在Rt∥AOB中,AD=2,AD为斜边OB的中线,∥OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2﹣x,根据勾股定理得:AB2+OA2=OB2,即x2+(2﹣x)2=42,整理得:x2﹣2x+2=0,解得x1=+,x2=﹣,∥AB=+,OA=﹣,过D作DE∥x轴,交x轴于点E,可得E为AO中点,∥OE=OA=(﹣)(假设OA=+,若OA=﹣,求出结果相同),在Rt∥DEO中,利用勾股定理得:DE==(+),∥k=﹣DE•OE=﹣(+)×(﹣)=﹣,∥S∥AOC=DE•OE=×(+)×(﹣)=,故选A.二、填空题(每小题4分,共24分)13.我国2015年国内生产总值约为676700亿元,请用科学记数法表示2015年国内生产总值约为 6.767×105亿元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将676700亿用科学记数法表示为:6.767×105亿.故答案为:6.767×105.14.代数式3x2﹣4x+6的值为12,则x2﹣x+6=8.【考点】代数式求值.【分析】将原式变形成=(3x2﹣4x)+6,根据题意知3x2﹣4x=6,整体代入上式可得.【解答】解:∥3x2﹣4x+6=12,∥3x2﹣4x=6,则x2﹣x+6=(3x2﹣4x)+6=×6+6=8,故答案为:8.15.如图,在∥ABC中,D,E分别是AB,BC上的点,且DE∥AC,AE,CD交于点F,若S∥BDE:S∥DEC=1:3,则S∥DEF:S∥AFC=1:16.【考点】相似三角形的判定与性质.【分析】由三角形的面积关系得出BE:CE=1:3,得出BE:BC=1:4,由平行线得出DE:AC=BE:BC=1:4,∥DEF∥∥AFC,由相似三角形的面积比等于相似比的平方即可得出结果.【解答】解:∥S∥BDE:S∥DEC=1:3,∥BE:CE=1:3,∥BE:BC=1:4,∥DE∥AC,∥DE:AC=BE:BC=1:4,∥DEF∥∥AFC,∥S∥DEF:S∥AFC=()2=()2=.故答案为:1:16.16.如图,∥ABC是∥O的内接三角形,AD是∥O的直径,∥ABC=50°,则∥CAD=40°.【考点】圆周角定理.【分析】首先连接CD,由AD是∥O的直径,根据直径所对的圆周角是直角,可求得∥ACD=90°,又由圆周角定理,可得∥D=∥ABC=50°,继而求得答案.【解答】解:连接CD,∥AD是∥O的直径,∥∥ACD=90°,∥∥D=∥ABC=50°,∥∥CAD=90°﹣∥D=40°.故答案为:40°.17.有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是.【考点】概率公式;根的判别式;二次函数图象上点的坐标特征.【分析】首先根据使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)确定a的值,然后利用概率公式求解.【解答】解:∥使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,∥[﹣2(a﹣1)]2﹣4×1×a(a﹣3)>0,解得:a>﹣1,∥以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0),∥12﹣(a2+1)﹣a+2≠0,∥a≠1且a≠﹣2,∥满足条件的a只有0和2,∥使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x 为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是,故答案为:.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为2,(2)点C的坐标为(﹣,1).【考点】正方形的性质;坐标与图形性质.【分析】(1)利用勾股定理直接计算即可求出OA的长;(2)过点A作AD∥x轴于D,过点C作CE∥x轴于E,根据同角的余角相等求出∥OAD=∥COE,再利用“角角边”证明∥AOD和∥OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解答】解:(1)∥点A的坐标为(1,),∥OA==2,故答案为:2;(2)如图,过点A作AD∥x轴于D,过点C作CE∥x轴于E,∥四边形OABC是正方形,∥OA=OC,∥AOC=90°,∥∥COE+∥AOD=90°,又∥∥OAD+∥AOD=90°,∥∥OAD=∥COE,在∥AOD和∥OCE中,,∥∥AOD∥∥OCE(AAS),∥OE=AD=,CE=OD=1,∥点C在第二象限,∥点C的坐标为(﹣,1).故答案为(﹣,1).三、解答题:(每小题7分,共14分)19.如图,已知AB∥CD,AF=CE,∥B=∥D,证明BE和DF的关系.【考点】全等三角形的判定与性质;平行线的性质.【分析】要证相等,可利用AAS判定∥ABE∥∥CDF从而得出BE=DF.【解答】证明:∥AB∥CD,BE=DF,∥∥A=∥C,又∥AF=CE,∥AF+FE=CE+FE,即AE=CF.在∥ABE和∥CDF中,,∥∥ABE∥∥CDF(AAS),∥BE=DF.20.某班有50名同学,男、女生人数各占一半.在本周操行评定中,该班操行得分情况见如下统计表;其中男生操行得分情况见如下不完整的条形统计图:操行分得分1分2分3分4分5分人数2410304(1)补全条形统形图;(2)若要在操行得分为5分的4名同学中选出两名同学作“本周操行明星”,用画树状图或列表的方法求出选为“本周操行明星”的正好是一名男同学和一名女同学的概率.【考点】列表法与树状图法;条形统计图.【分析】(1)利用男生人数25分别减去1分、2分、3分45分的人数即可得到5分人数,即可解答;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两位同学恰好是一名男同学和一位女同学的情况,再利用概率公式即可求得答案.【解答】解:(1)男生操行得分为5分的人数=25﹣2﹣2﹣8﹣11=2,补全统计图如下:(2)画树状图得:∥共有12种等可能的结果,所选两位同学恰好是一名男同学和一位女同学的有8种情况,∥所选两位同学恰好是一名男同学和一位女同学的概率为:=.四、解答题:(每题10分,共40分)21.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.【考点】分式的混合运算;整式的混合运算.【分析】(1)根据平方差公式进行计算即可;(2)先对式子能分解因式的先分解因式,对括号内的先通分再相加,然后化简即可.【解答】解:(1)(x﹣1)2(x+1)2﹣1=[(x﹣1)(x+1)]2﹣1=(x2﹣1)2﹣1=x4﹣2x2+1﹣1=x4﹣2x2;(2)÷(﹣x+2)+=======.22.如图,一次函数的图象与y轴交于C(0,4),且与反比例函数y=(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点,(1)求∥AOC的面积;(2)若=2,求反比例函数和一次函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)作AD∥y轴于D,根据题意得出AD=3,OC=4,然后关键数据线面积公式即可求得;(2)根据反比例函数系数k=xy,得出3a=b,然后代入=2,即可求得a的值,求得A的坐标,从而求得k的值,然后关键待定系数即可求得一次函数的解析式.【解答】解:(1)作AD∥y轴于D,∥A(3,a),∥AD=3,∥一次函数的图象与y轴交于C(0,4),∥OC=4,∥S∥AOC=OC•AD=×4×3=6;(2)∥A(3,a),B(1,b)两点在反比例函数y=(x>0)的图象上,∥3a=b,∥=2,∥a2﹣2ab+b2=4,∥a2﹣2a•3a+(3a)2=4,整理得,a2=1,∥a>0,∥a=1,∥A(3,1),∥k=3×1=3,设直线的解析式为y=mx+n,∥,解得,∥反比例函数和一次函数的解析式分别为y=和y=﹣x+4.23.如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC∥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?【考点】解直角三角形的应用-坡度坡角问题;分式方程的应用.【分析】(1)根据题意得出EF=BF,进而利用tan∥AEF=即可得出答案;(2)利用坡比的定义得出QN,QH的长,进而利用梯形面积求法求出总的土方量,进而得出答案.【解答】解:(1)如图所示:过点E作EF∥BF交BC于点F,设EF=x,则EF=x,则根据题意可得:BF=x,同理可知tan∥AEF==≈1.28,解得:x=10,即BC=10+1.8=11.8(m).答:建筑物的高度BC为11.8m;(2)如图所示:过点M,G分别作MQ、GP垂直于CN,交CN于点Q、P,根据题意可得:PH=11.8×1.5=17.7(m),QN=5.9(m),可得:NH=17.7﹣5.9+4.2=11.8(m),故可得加固所需土石方为:(MG+NH)×PG=×11.8×(4.2+16)×50=5959,则根据题意可列方程:设原方程每天填筑土石方a立方米,=20+,解得:a=198.答:士兵们原计划平均每天填筑土石方198立方米.24.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A(﹣1,3),那么「A」=|﹣1|+|3|=4.(1)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(2)求满足条件「N」=3的所有点N围成的图形的面积.【考点】反比例函数图象上点的坐标特征.【分析】(1)设点M的坐标为(m,),根据勾股值的定义式可得出关于m的一元二次方程,解方程即可得出m的值,将m的值代入到点M的坐标中即可得出结论;(2)设点N的坐标为(x,y),根据勾股值的定义式可分段找出y关于x的函数解析式,画出图象根据菱形的面积公式即可得出结论.【解答】解:(1)设点M的坐标为(m,),∥「M」=4=|m|+||,∥m2﹣4m+3=0,或m2+4m+3=0,解得:m1=1,m2=3,m3=﹣1,m4=﹣3.∥点M的坐标为(﹣3,﹣1),(﹣1,﹣3),(1,3)和(3,1).(2)设点N的坐标为(x,y),∥「N」=3=|x|+|y|,∥分三种情况考虑.①xy>0时,x+y=3(x、y均为正),或x+y=﹣3(x、y均为负);②xy<0时,x﹣y=3(x>0,y<0),或﹣x+y=3(x<0,y>0);③xy=0时,x=0,y=±3,或y=0,x=±3.画出图象如图所示.点A(0,3),B(3,0),C(0,﹣3),D(﹣3,0).围城图形的面积S=BD•AC=[3﹣(﹣3)]×[3﹣(﹣3)]=6×6=36.五、解答题:(每个小题12分,共24分)25.在∥ABC中,AB=AC,点D,点E在边BC上不同的两点,且∥ADE=75°.(1)如图1,若∥BAC=90°,CD=,求BC的长;(2)如图2,若∥BAC=90°,∥EAD=45°,求证:DC=BE;(3)如图3,若∥BAC=120°,∥EAD=60°,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.【考点】相似形综合题.【分析】(1)作DG∥AC于G,证明出∥ABC是等腰直角三角形,进而求出AG的长,即可求出BC的长;(2)作DH∥AE于H,设DC=a,利用a表示出BC、DE和CD的长,根据线段之间的关系得到结论;(3)作DG∥AC于G,AH∥BC于H,设DC=2a,还是利用a表示出BC、DE和CD的长,即可表示出线段DC和BE之间的数量关系.【解答】解:(1)如图1所示,作DG∥AC于G,∥∥BAC=90°,AB=AC,∥∥ABC是等腰直角三角形,∥∥1=∥B=45°,∥∥ADE=75°,∥∥2=60°,∥DAG=30°,∥DG=CG=CD=1,AD=2DG=2,∥AG==,∥AC=AG+CG=+1,∥BC=AG=+;(2)如图2所示,作DH∥AE于H,设DC=a,则DG=CG=a,∥AD=2DG=a,AG=a,∥AC=AG+CG=a,∥BC=AC=(+1)a,∥∥EAD=45°,∥∥ADH是等腰直角三角形,∥AH=DH=AD=a,∥∥4=180°﹣∥ADE﹣∥DAE=60°,∥DE=2EH,∥DE=DH÷=a,∥BE=BC﹣DE﹣CD=a=DC,∥DC=BE;(3)(2)中的结论不成立,理由如下:如图3所示,作DG∥AC于G,AH∥BC于H,∥AB=AC,∥BAC=120°,∥∥B=∥C=30°,∥∥1=60°,又∥∥ADE=75°,∥DAE=60°,∥∥2=∥3=∥4=∥5=45°,设DC=2a,则DG=AG=a,CG=a,∥AC=AG+CG=(+1)a,∥EH=AH=AC=a,CH=AC=a,∥BC=2CH=(3+)a,DH=CH﹣DC=a,∥DE=EH+DH=a,∥BE=BC﹣DE﹣DC=(3+)a﹣a﹣2a=a=DC,∥DC=2BE.26.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使∥BPC为直角三角形的点P的坐标.【考点】二次函数综合题.【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n 的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】解:(1)依题意得:,解之得:,∥抛物线解析式为y=﹣x2﹣2x+3∥对称轴为x=﹣1,且抛物线经过A(1,0),∥把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∥直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∥M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∥B(﹣3,0),C(0,3),∥BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).2016年5月16日。