7三角形

合集下载

第7章《三角形》三套精练精析(含答案)

第7章《三角形》三套精练精析(含答案)

第七章《三角形》提要:本章的考查重点是三角形的性质,包括等腰三角形、直角三角形的一些特殊性质.由于全等三角形是研究图形相等的重要工具,所以这一部分内容也是学好其它几何知识的基础.本章虽然内容较多,但各部分知识之间的联系密切,既要注意了解各部分知识之间的联系,又要保持各部分知识相对的独立性.本章的难点是推理入门.以前在第一册中已了解了推理证明,以及证明几何命题的一般方法步骤,是为现在正规练习证明做准备的.证明要求掌握有理有据地推理,精练准确地表达过程,有一定难度.一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是______三角形.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为_____ .3.三角形中最大的内角不能小于_____,两个外角的和必大于_____ .4.三角形ABC中,∠A=40°,顶点C处的外角为110°,那么∠B=_____ .5.锐角三角形任意两锐角的和必大于_____.6.三角形的三个外角都大于和它相邻的内角,则这个三角形为 _____ 三角形.7.在三角形ABC中,已知∠A=80°,∠B=50°,那么∠C 的度数是.8.已知∠A= 1 2∠B=3∠C,则∠A= .9.已知,如图7-1,∠ACD=130°,∠A=∠B,那么∠A的度数是.10.如图7-2,根据图形填空:(1)AD是△ABC中∠BAC的角平分线,则∠=∠=∠.(2)AE是△ABC中线,则==.(3)AF是△ABC的高,则∠=∠=90°.11.如图7-3所示,图中有个三角形,个直角三角形.12.在四边形的四个外角中,最多有个钝角,最多有个锐角,最多有个直角.13.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C=.14.一个多边形的每个外角都为30°,则这个多边形的边数为;一个多边形的每个内角都为135°,则图7-1 图7-2 图7-3这个多边形的边数为.15.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.16.若一个n边形的边数增加一倍,则内角和将.17.在一个顶点处,若此正n边形的内角和为,则此正多边形可以铺满地面.18.如图7-4,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .19.如图7-5,由平面上五个点A、B、C、D、E连结而成,则∠A+∠B+∠C+∠D+∠E= .20.以长度为5cm、7cm、9cm、13cm的线段中的三条为边,能够组成三角形的情况有种,分别是.二、选择题21.已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形().A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形22.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为().A.4:3:2 B.3:2:4C.5:3:1 D.3:1:523.三角形中至少有一个内角大于或等于().A.45°B.55°C.60°D.65°24.如图7-6,下列说法中错误的是().A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B25.如图7-7,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为().A.50°B.60°C.70°D.80°26.下列叙述中错误的一项是().A.三角形的中线、角平分线、高都是线段.B.三角形的三条高线中至少存在一条在三角形内部.C.只有一条高在三角形内部的三角形一定是钝角三角形.D.三角形的三条角平分线都在三角形内部.27.下列长度的三条线段中,能组成三角形的是().图7-4 图7-5图7-6图7-7A .1,5,7B .3,4,7C .7,4,1D .5,5,528.如果三角形的两边长为3和5,那么第三边长可以是下面的( ). A .1 B .9 C .3 D .1029.三条线段a =5,b =3,c 的值为整数,由a 、b 、c 为边可组成三角形( ). A .1个 B .3个 C .5个 D .无数个 30.四边形的四个内角可以都是( ). A .锐角 B .直角C .钝角D .以上答案都不对 31.下列判断中正确的是( ). A .四边形的外角和大于内角和B .若多边形边数从3增加到n (n 为大于3的自然数),它们外角和的度数不变C .一个多边形的内角中,锐角的个数可以任意多D .一个多边形的内角和为1880°32.一个五边形有三个角是直角,另两个角都等于n ,则n 的值为( ). A .108° B .125° C .135° D .150° 33.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( ). A .7条 B .8条 C .9条 D .10条34.如图7-9,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( ). A .高 B .角平分线 C .中线 D .不能确定35.如图7-10,已知∠1=∠2,则AH 必为三角形ABC 的( ). A .角平分线 B .中线C .一角的平分线D .角平分线所在射线36.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( ). A . 1 B . 2 C . 3 D . 437.如图7-11,三角形ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB 、AD 、AC 及BC 的延长线于点E 、H 、F 、G ,下列四个式子中正确的是( )38.如图7-12,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上的一点,CF ⊥AD 于H .下列判断正确的有( ).(1)AD 是三角形ABE 的角平分线.(2)BE 是三角形ABD 边AD 上的中线. (3)CH 为三角形ACD 边AD 上的高.A .1个B .2个C .3个D .0个图7-9 图7-10 图7-11 图7-12三、解答题39.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD=140°,你能求出∠EDF的度数吗?40.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?41.如图,已知三角形ABC的三个内角平分线交于点I,IH⊥BC于H,试比较∠CIH和∠BID的大小.42.如图,在三角形ABC中,AD⊥BC,BE⊥AC,CF⊥AB,BC=16,AD=3,BE=4,CF=6,你能求出三角形ABC的周长吗?43.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?44.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.45.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?46.某同学在计算多边形的内角和时,得到的答案是1125°,老师指出他少加了一个内角的度数,你知道这个同学计算的是几边形的内角和吗?他少加的那个内角的度数是多少?47.把边长为2cm的正方形剪成四个一样的直角三角形,如图所示.请用这四个直角三角形拼成符合下列条件的图形:(1)不是正方形的菱形;(2)不是正方形的长方形;(3)梯形;(4)不是长方形、菱形的的平行四边形.48.下面是数学课堂的一个学习片段,阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题.“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经过片刻的思考与交流后,李明同学举手说: “其余两角是30°和120°”;王华同学说:“其余两角是75°和75°.” 还有一些同学也提出了自己的看法…(1)假如你也在课堂中, 你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受?(用一句话表示)49.如图,凸六边形ABCDEF的六个角都是120°,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?参考解析一、填空题1.直角2.15°3.60°,180°4.70°5.90°6.锐角7.∠C=180°-80°-50°=50°.8.设∠A的度数为x.则∠B=2x,∠C=x.所以x+2x+x=180°,解得x=54°.所以∠A=54°.9.∠A=∠B=∠ACD=65°.10.(1)BAD,CAD,BAC;(2)BE,CE,BC;(3)AFB,AFC.11.解:有5个三角形,分别是△ABD,△ADE,△CDE,△ADC,△ABC;有4个直角三角形,分别是△ABD,△ADE,△CDE,△ADC.12.3,2,413.120°14.12,815.正三角形和正四边形、正三角形和正六边形、正四边形和正八边形中任选两种即可.16.增加(n-4)×180°17.360°或720°或180°18.解:因为∠BED=∠A+∠D=47°,所以∠B=180°-90°-47°=43°.所以∠BCD=27°+43°=70°.所以∠ACB=180°-70°=110°.19.解:连结BC,如图,则∠DBC+∠ECB=∠D+∠E.所以∠A+∠B+∠C+∠D+∠E=∠A+∠B+∠C+∠DBC+∠ECB=180°.20.解:有3种.分别以长为5cm,7cm,9cm;7cm,9cm13cm;5cm,9cm,13cm的线段为边能组成三角形.二、选择题21.A22.C23.C24.D25.C26.C27.D28.C29.C30.B31.B32.C33.C34.C(点拨:可能会错选A或B.有的同学一看到面积就认为与高相关,故错选A;有的同学认为平分内角必平分三角形的面积,故错选B.其实,因为△ABD与△ACD同高h,又S△ABD=S△ADC,即BD×h=·CD×h,所以,BD=CD,由此可知,AD为三角形ABC中BC边的中线.)35.D(点拨:可能会错选A或选C.错选A的同学,只注重平分内角而忽视了三角形的角平分线为一线段这一条件;而错选C的同学,实质上与错选A的同学犯的是同一个错误,显然这里“角平分线”与“一角的平分线”是一个意思,因为前提条件是说“AH必为三角形ABC的”.)36.A(点拨:由三角形的三边关系知:若长度分别为2cm、4cm、6cm,不可以组成三角形;若长度分别为4cm、6cm、8cm,则可以组成三角形;若长度分别为2cm、4cm、8cm,则不可以组成三角形;若长度分别为2cm、6cm、8cm,则不可以组成三角形.即分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为1,故应选A.)37.C(点拨:因为EG⊥AD,交点为H,AD平分∠BAC,所以在直角三角形AHE中,∠1=90°-,在三角形ABC中,易知∠BAC=180°-(∠2+∠3),所以∠1=90°-[180°-(∠2+∠3)]=(∠3+∠2).又因为∠1是三角形EBG的外角,所以∠1=∠2+∠G.所以∠G=∠1-∠2=(∠3+∠2)-∠2=(∠3-∠2).)38.A(点拨:由∠1=∠2,知AD平分∠BAE,但AD不是三角形ABE内的线段,所以(1)不正确;同理,BE 虽然经过三角形ABD边AD的中点G,但BE不是三角形ABD内的线段,故(2)不正确;由于CH⊥AD 于H,故CH是三角形ACD边AD上的高,(3)正确.应选A.)三、解答题39.解析:要想求∠EDF的度数,我们可以利用平角定义,只要能求出∠EDB即可.而∠EDB在三角形BDE中,只要能求出∠B就可以利用三角形内角和求∠EDB.而∠B又等于∠C,题中告诉了三角形DFC 的一个外角∠AFD=140°,所以我们能得出∠C的度数.解:因为∠AFD是三角形DCF的一个外角.所以∠AFD=∠C+∠FDC.即140°=∠C+90°.解得∠C=50°.所以∠B=∠C=50°.所以∠EDB=180°-90°-50°=40°.所以∠FDE=180°-90°-40°=50°.40.解析:我们可以用字母代替甲、乙、丙、丁,用角度代表方向.把题中数据与图形一一对应,利用各方向的关系可求出丁岛分别在甲岛和乙岛的方向.解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.如图:因为丁岛在丙岛的正北方,所以CD⊥AB.因为甲岛在丁岛的南偏西52°方向,所以∠ACD=52°.所以∠CAD=180°-90°-52°=38°.所以丁岛在甲岛的东偏北38°方向.因为乙岛在丁岛的南偏东40°方向,所以∠BCD=40°.所以∠CBD=180°-90°-40°=50°.所以丁岛在乙岛的西偏北50°方向.41.解析:利用角平分线的性质解.解:因为AI、BI、CI为三角形ABC的角平分线,所以∠BAD=∠BAC,∠ABI=∠ABC,∠HCI=∠ACB.所以∠BAD+∠ABI+∠HCI=∠BAC+∠ABC+∠ACB=(∠BAC+∠ABC+∠ACB)=×180°=90°.所以∠BAD+∠ABI=90°-∠HCI.又因为∠BAD+∠ABI=∠BID,90°-∠HCI=∠CIH,所以∠BID=∠CIH.所以∠BID和∠CIH是相等的关系.42.解析:本题已知一边长和三条高,我们可以利用三角形的面积公式求得另外两边长,三边相加即可得到三角形的周长.解:由三角形面积公式可得S△ABC=BC×AD=AC×BE,即16×3=4×AC,所以AC=12.由三角形面积公式可得S△ABC=BC×AD=AB×CF,即16×3=6×AB.所以AB=8.所以三角形ABC的周长为16+12+8=36.43.解析:本题要求AC与AB的边长的差,且AC与AB的长度都不知道,不少同学感到无从下手.其实,只要我们仔细分析分析题中条件:三角形ABD的周长比三角形ACD的周长小5,即AC-AB+CD-BD=5,又AD是BC边上的中线,所以BD=CD.所以AC-AB=5.解:AC-AB=5.44.解析:在第(1)和第(2)问中,没有说明所给边长是腰长还是底边长,因此我们要进行分类讨论.在第(3)问中,只给出了三边长都是整数,而此三角形又是等腰三角形,所以其最长边小于8cm,我们可以用列表法一一列出各组边长.解:(1)如果腰长为4cm,则底边长为16-4-4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16-4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm.(2)如果腰长为6cm,则底边长为16-6-6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16-6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm.(3)因为周长为16cm,且三边都是整数,所以三角形的最长边不会超过8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.45.解析:要想BE与DF平行,就要找平行的条件.题中只给出了∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.那么我们是利用同位角相等呢还是利用同旁内角互补?经过仔细观察图形我们知道∠BFD是三角形ADF的外角,则∠BFD=∠A+∠ADF.而∠ADF是∠ADC的一半,∠ABE是∠ABC的一半,所以我们选择用同旁内角互补来证平行.解:BE与DF平行.理由如下:由n边形内角和公式可得四边形内角和为(4-2)×180°=360°.因为∠A=∠C=90°,所以∠ADC+∠ABC=180°.因为BE平分∠ABC,DF平分∠ADC,所以∠ADF=∠ADC,∠ABE=∠ABC.因为∠BFD是三角形ADF的外角,所以∠BFD=∠A+∠ADF.所以∠BFD+∠ABE=∠A+∠ADC+∠ABC=∠A+(∠ADC+∠ABC)=90°+90°=180°.所以BE与DF平行.46.解析:我们发现1125°不能被180°整除,所以老师说少加了一个角的度数.我们可设少加的度数为x,利用整除求解.解:设少加的度数为x.则1125°=180°×7-135°.因为0°<x<180°,所以x=135°.所以此多边形的内角和为1125°+135°=1260°.设多边形的边数为n,则(n-2)×180°=1260°,解得n=9.所以此多边形是九边形,少加的那个内角的度数是135°.47.解析:题中告诉了我们按要求拼成.解:如图:48.解析:本题首先要求考生在阅读数学课堂的一个学习片断后,对两名学生的说法提出自己的看法,这时考生应抓住题中条件“等腰三角形ABC的角A等于30°”这个不确定条件进行分析研究.当∠A是顶角时,设底角是α,∴30°+α+α=180°,α=75°,∴其余两底角是75°和75°.当∠A是底角时,设顶角是β,∴30°+30°+β=180°,β=120°,∴其余两角是30°和120°.由此说明李明和王华两同学都犯了以偏概全的答题的错误.对于第(2)问应在第(1)问的解答的基础上,可总结出“根据图形位置关系,实施分类讨论思想方法解多解型问题”,“考虑问题要全面”等.小结:三角形的中线、角平分线、高(线)是三角形中三条十分重要的线段,初学者常因不能准确理解其概念的实质内涵,而出现这样或那样的错误,现举例分析如下,以达到亡羊补牢或未雨绸缪的目的.49.解析:要求六边形的周长,必须先求出边EF和AF的长.由六边形ABCDEF的六个角都是120°,可知六边形的每一个外角的度数都是60°,如图4,如果延长BA,得到的∠PAF=60°,延长EF,得到的∠PFA=60°,两条直线相交形成三角形APF,在三角形APF中,∠P的度数为180°-60°-60°=60°,因此三角形APF是等边三角形.同样的道理,我们分别延长AB、DC,交于点G,那么三角形BGC为等边三角形.分别延长FE、CD交于点H,则三角形DHE也是等边三角形.所以∠P=∠G=∠H=60°.所以三角形GHP也是等边三角形.于是我们得到三角形APF、三角形BGC、三角形DHE、三角形GHP四个等边三角形.于是就把多边形的问题转化为和等边三角形有关的问题.利用等边三角形的三边相等的性质,可以轻松的求出AF和EF的长,从而求出六边形ABCDEF的周长.解:如图4,分别作直线AB、CD、EF的延长线使它们交于点G、H、P.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等边三角形.所以GC=BC=8cm,DH=DE=6cm.所以GH=8+11+6=25cm,FA=PA=PG-AB-BG=25-2-8=15cm,EF=PH-PF-EH=25-15-6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.小结:本题解题的关键是利用多边形和三角形的关系,通过添加辅助线,利用六边形构造出等边三角形,从而利用转化的思想,把多边形问题转化为和三角形有关的问题,利用三角形的性质、定理来解答多边形的问题.方程思想是我们学习数学的重要思想方法之一.用方程思想求解数学问题时,应从题中的已知量与未知量的关系入手,找出相等关系,运用数学符号语言将相等关系转化为方程,再通过解方程,使问题得到解决.方程思想应用非常广泛.我们不但能用方程思想解决代数问题,而且还能够解决有关的几何问题.第7章 三角形整章同步测试(时间45分钟 满分100分)班级 ______________ 学号 姓名 ____ 得分____一、填空题(每小题2分,共20分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 . 2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.3.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为______.4.如图,已知AB ∥CD ,∠A=55°,∠C=20°,则∠P=___________.5.如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °.6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是 . (写出两种即可)8.如图所示,∠A+∠B +∠C +∠D +∠E +∠F +∠G 的度数为 .9.如图,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系: . 10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为 . 二、选择题(每题3分,共24分)11.三角形的三条高所在的直线相交于一点,这个交点的位置在( )(第2题)(第4题)(第6题)30°30° 30°A(第7题)GFE D CBA(第9题)EDCBA(第3题)(第5题)DCBAA.三角形内B.三角形外C.三角形边上D.要根据三角形的形状才能定12.下列长度的各组线段中,能组成三角形的是()A.1、2、3 B.1、4、2 C.2、3、4 D.6、2、313.一批相同的正六边形地砖铺满地面的图案中,每个顶点处由几块正六边形组成A.2块B.3块C.4块D.6块14.一个多边形只有27条对角线,则这个多边形的边数为()A.8 B.9 C.10 D.1115.下列正多边形的组合中,能够铺满地面(即平面镶嵌)的是A.正三角形和正四边形B.正四边形和正五边形C.正五边形和正六边形D.正六边形和正八边形16.已知一个多边形的内角和为540°,则这个多边形为A.三角形B.四边形C.五边形D.六边形17.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不能进行密铺的地砖的形状是().A.①B.②C.③D.④18.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为()A.①5或7 B.7 C.9 D.7或9三、解答题(共56分)19.(5分)在△ABC中,∠C=900,BD是∠ABC的平分线,∠A=200,求∠BDC的度数.20.(5分)小明在求一个多边形的内角和时,由于疏忽,把一个内角加了两遍,而求出的结果为20040,请问这个内角是多少度?这个多边形是几边形?21.(5分)一个凸多边形的内角的度数从小到大排列,恰好依次增加相同的度数,其中最小角是1000,最大角是1400,求这个多边形的边数.22.(5分)如图所示,在△ABC 中,O 是高AD 和BE 的交点,观察图形,试猜想∠C 和∠DOE 之间具有怎样的数量关系?并证明你的猜想结论.23.(5分)分别测量如图所示的△ABC 和△DEF 的内角 (1)你发现了什么? (2)你有何猜想?(3第23题DE FF ED CB A 24.(5分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?25.(6分)如图所示,BE 、CD 交于A 点,∠C 和∠E 的平分线相交于F . (1)试求:∠F 与∠B ,∠D 有何等量关系? (2)当∠B ﹕∠D ﹕∠F=2﹕4﹕x 时,x 为多少?∠4∠3∠2∠1FEABCD第25题图26.(6分)如图所示,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.27.(6分)已知,如图,∠XOY =900,点A 、B 分别在射线OX 、OY 上移动,BE 是∠ABY 的平分线,BE的反向延长线与∠OAB 的平分线相交于点C ,试问∠ACB 的大小是否发生变化.如果保持不变,请给出证明,如果随点A 、B 移动发生变化,请求出变化范围.YXOABCE28.(8分)(1)AD 是△ABC 的中线,那么△ABD 与△ACD 的面积有什么关系?为什么? (2)你能用三种不同的方法把一个三角形的面积四等分吗?请画出图形.参考答案一、填空题1.2 2.稳定 3.60° 4.35° 5.82.5 6.120 7.答案不唯一 8.540° 9.∠A=2∠D 10.130° 二、选择题11.D 12.C 13.B 14.B 15.A 16.C 17.C 18.D 三、解答题19.550 20.240,十三边形 21.6 22.∠C+∠DOE=1800 23.(1)两个三角形的内角和都等于或接近1800;(2)任意三角形的内角和等于1800;(3)方法很多(略) 24.六边形 25.(1)∠F=21(∠B+∠D );(2)3 26.360° 27.∠C 的大小保持不变 28.(1)相等;(2)略第7章 三角形(中考试题演练)1.(包头)用火柴棒按下图的方式搭三角形,照这样的规律搭下去,搭第10个图形需要_____根火柴棒.2.(陕西)如图所示,在锐角△ABC 中,BE 分别是AB ,AC 边上的高,且CD ,BE交于一点P ,若∠A=50°,则∠BPC 的度数是( ).A.150° B.130° C.120° D.100°3.(南安)若一个多边形的每一个外角都等于30°,•则这个多边形的内角和等于_______.4.(南充)一个三角形的两个内角分别是55°和65°,•这个三角形的外角不可能是().A.115° B.120° C.125° D.130°5.(哈尔滨)以下面各组线段为边,能组成三角形的是().A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm6.(云南)若n边形的内角和是1260°,则边数n为().A.8 B.9 C.10 D.117.(南通)在下列角度中,是多边形内角和的是().A.270° B.560° C.630° D.1800°8.(临沂)在多边形的内角中,锐角的个数最多有().A.1个 B.2个 C.3个 D.4个9.(天津)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=•158•°,•则∠EDF=________.10.(潍坊)某人到瓷砖店去购买一种多边形形状的瓷砖,用来铺设无缝地板,•他购买的瓷砖形状不可以是().A.正三角形 B.矩形(长方形) C.正八边形 D.正六边形答案:1.21 (点拨:第n个图形有2n+1根火柴)2.B 3.1800°4.D (点拨:利用三角形外角性质判断)5.B (点拨:利用三角形三边关系来判断)6.B (点拨:利用三角形内角和公式)7.D 8.C 9.68° 10.C第7章三角形综合测试(时间90分钟,满分120分)一、填空题.(每小题2分,共28分)1.三角形的三个外角中,钝角的个数最多有______个,锐角最多_____个.2.造房子时屋顶常用三角结构,从数学角度来看,是应用了_______,而活动挂架则用了四边形的________.3.用长度为8cm,9cm,10cm的三条线段_______构成三角形.(•填“能”或“不能”)4.要使五边形木架不变形,则至少要钉上_______根木条.5.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.6.如图1所示,AB∥CD,∠A=45°,∠C=29°,则∠E=______.(1) (2) (3)7.如图2所示,∠α=_______.8.正十边形的内角和等于______,每个内角等于_______.9.一个多边形的内角和是外角和的一半,则它的边数是_______.10.把边长相同的正三角形和正方形组合镶嵌,若用2个正方形,则还需要____个正三角形才可以镶嵌.11.等腰三角形的周长为20cm,一边长为6cm,则底边长为______.12.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有_____•条对角线.13.如图3所示,共有_____个三角形,其中以AB为边的三角形有_____,以∠C•为一个内角的三角形有______.14.如图4所示,∠A+∠B+∠C+∠D+∠E=________.(4) (5) (6)二、选择题:(每小题3分,共24分)15.下列说法错误的是().A.锐角三角形的三条高线,三条中线,三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线,三条中线,三条角平分线16.在下列正多边形材料中,不能单独用来铺满地面的是().A.正三角形 B.正四边形 C.正五边形 D.正六边形17.如图5所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为(). A.30° B.36° C.45° D.72°18.D是△ABC内一点,那么,在下列结论中错误的是().A.BD+CD>BC B.∠BDC>∠A C.BD>CD D.AB+AC>BD+CD19.正多边形的一个内角等于144°,则该多边形是正()边形.A.8 B.9 C.10 D.1120.如图6所示,BO,CO分别是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为(). A.80° B.90° C.120° D.140°21.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.k B.2k+1 C.2k+2 D.2k-222.如图所示,在长为5cm,宽为3cm的长方形内部有一平行四边形,则平行四边形的面积为().A.7cm2B.8cm2C.9cm2D.10cm2三、解答题:(共48分)23.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(3分)(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.(5分)24.(8分)如图所示,BE平分∠ABD,DE平分∠CDB,BE和DE相交于AC上一点E,•如果∠BED=90°,试说明AB∥CD.25.(8分)如图所示,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,•求∠A和∠D.26.(1)若多边形的内角和为2340°,求此多边形的边数.(4分)(2)一个多边形的每个外角都相等,如果它的内角与外角的度数之比为13:12,求这个多边形的边数.(4分)27.(8分)一个零件的形状如图所示,按规定∠A应等于90°,∠B与∠C•应分别是32°和21°,检验工人量得∠BDC=148°,就判断这个零件不合格,试用三角形有关知识说明理由.28.(8分)园艺师从土地上收集了许多大理石的边角料,•准备给公共绿地的甬道铺地面,其中最多的一种边角材料形状如图所示,你能否用这种边角料铺满地面?•如果能,请设计出至少两种方案.四、思维拓展题:(共10分)29.请完成下面的说明:(1)如图①所示,△ABC的外角平分线交于G,试说明∠BGC=90°-12∠A.说明:根据三角形内角和等于180°,可知∠ABC+∠ACB=180°-∠_____.根据平角是180°,可知∠ABE+∠ACF=180°×2=360°,所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180•°+•∠______.根据角平分线的意义,可知∠2+∠3=12(∠EBC+∠FCB)=12(180°+∠_____)=90°+12∠_______.所以∠BGC=180°-(∠2+∠3)=90°-∠____.(2)如图②所示,若△ABC的内角平分线交于点I,试说明∠BIC=90°+12∠A.(3)用(1),(2)的结论,你能说出∠BGC和∠BIC的关系吗?①②五、合作探究题:(共10分)30.如图所示,分别在三角形,四边形,五边形的广场各角修建半径为R•的扇形草坪(图中阴影部分).(1)图①中草坪的面积为_____;(2)图②中草坪的面积为_____;(3)图③中草坪的面积为_____;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为_____.答案:一、1.3 12.三角形的稳定性不稳定性3.能 4.两 5.90° 50° 6.16°7.75° 8.1440° 144° 9.3 10.311.8cm或6cm 12.613.3 △ABD,△ABC △ACD,△ACB14.180°二、15.C 16.C 17.B 18.C 19.C 20.D 21.C 22.A三、23.(1)如答图所示.(2)∠BAD=60°,∠CAD=40°.24.证明:在△BDE中,∵∠BED=90°,∠BED+∠EBD+∠EDB=180°,∴∠EBD+∠EDB=180°-∠BED=180°-90°=90°.又∵BE平分∠ABD,DE平分∠CDB,∴∠ABD=2∠EBD,∠CDB=2∠EDB,∴∠ABD+∠CDB=2(∠EBD+∠EDB)=2×90°=180°,∴AB∥CD.25.解:∵∠AOC是△AOB的一个外角.∴∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∵∠AOC=95°,∠B=50°,∴∠A=∠AOC-∠B=95°-50°=45°.∵AB∥CD,∴∠D=∠A(两直线平行,内错角相等)∴∠D=45°.26.解:(1)设边数为n,则(n-2)·180°=2340,n=15.答:边数为15.(2)每个外角度数为180°×215=24°.∴多边形边数为36024︒︒=15.答:边数为15.27.解:延长BD交AC于点E,∠CDB=90°+32°+21°=143°,所以不合格.28.能:如答图所示.四、29.(1)A A A A A A(2)说明:根据三角形内角和等于180°,可得∠ABC+∠ACB=180°-∠A,根据角平分线的意义,有∠6+∠8=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,所以∠BIC=180°-(∠6+∠8)=180°-(90°-12∠A)=90°+12∠A,。

初一数学第七章三角形

初一数学第七章三角形

BC第七章 三角形认识三角形1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角. 3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高. 注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习:1、图中共有( )个三角形。

A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF3、三角形一边上的高( )。

A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能4、能将三角形的面积分成相等的两部分的是( )。

A :三角形的角平分线B :三角形的中线C :三角形的高线D :以上都不对 6、具备下列条件的三角形中,不是直角三角形的是( )。

新版苏教版数学四年级下册 第7单元 第7单元 三角形、平行四边形和梯形 总结(001)

新版苏教版数学四年级下册 第7单元 第7单元 三角形、平行四边形和梯形 总结(001)

一、三角形1.认识三角形:(1)生活中的三角形:生活中的三角形无处不在,如大桥的桥柱、斜拉索与桥面可以组成三角形。

生活中一些物体的包装盒的面,一些积木的面等都是三角形。

(2)画三角形:(步骤)①先画一条线段。

②再以第一条线段的一个端点为端点画第二条线段。

③最后连接另两个端点,围成封闭图形。

(3)三角形的特点:①三角形有3条边、3个角和3个顶点。

②三角形的3条边都是线段。

③三角形的三条线段要首尾相接地围起来。

(4)三角形的定义:三条线段首尾相接围成的图形叫作三角形。

(5)三角形各部分的名称:①围成三角形的三条线段就是三角形的边,每两条边所组成的角就是三角形的角,每个角的顶点就是三角形的顶点。

②三角形有3个顶点、3条边和3个角。

要点提示:三角形具有稳定性。

三角形是由三条线段首尾相接围成的图形。

易错点:过同一条直线上的3个点不能画出三角形;围成三角形的3个顶点不能在同一条直线上。

要点提示:如果有三条线段,而没有说是首尾相接围成的图形,就不是三角形。

(6)认识三角形的底和高:①从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。

(7)三角形高的画法:通常用三角尺画三角形的高。

①把三角尺的一条直角边与指定的底边重合。

②沿底边平移三角尺,直到另一条直角边与该底边相对的顶点重合。

③再从该顶点沿三角尺的另一条直角边向底边画一条虚线段,这条虚线段就是三角形的高。

④最后标上直角符号。

(8)解决问题:①运用类推法解决数三角形的问题:从三角形的一个顶点向对边引若干条线段,将三角形分成了若干个小三角形,所分成的三角形的个数与对边上的线段的条数相等。

如果对边被分成n段,则三角形有【n+(n-1)+(n-2)+…+1】个。

②运用分析法解决求用时最短的路线问题:要想使每次走的路线最短,就应从每个顶点向与对面路垂直的方向走,即点到对边的垂直线段最短。

三角形的底和高一一对应。

三角形都有高,由于三角形的种类不同,三角形高的位置也就不同。

人教版四年级数学下第七讲 三角形(一)精讲精练 提升版

人教版四年级数学下第七讲 三角形(一)精讲精练 提升版

人教版四年级数学下第7讲三角形(一)提高篇知识点一:三角形的特性1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。

三角形只有3条高。

重点:三角形高的画法:一落二移三画四标3、三角形具有稳定性。

如:自行车的三角架,电线杆上的三角架。

4、三角形三边的关系:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

两边之差〈第三边〈两边之和。

判断三条线段能不能组成三角形,只要看最短的两条边的和是不是大于第三条边。

5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

知识点二:三角形的分类1、按照角大小来分:锐角三角形,直角三角形,钝角三角形。

2、按照边长短来分:三边不等的△,三边相等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。

3、等边△的三边相等,每个角是60度。

(顶角、底角、腰、底的概念)4、三个角都是锐角的三角形叫做锐角三角形。

5、有一个角是直角的三角形叫做直角三角形。

6、有一个角是钝角的三角形叫做钝角三角形。

7、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

8、两条边相等的三角形叫做等腰三角形。

9、三条边都相等的三角形叫等边三角形,也叫正三角形。

10、等边三角形是特殊的等腰三角形考点1:三角形的特性【典例1】(2020春•桐梓县期末)下面每组中三条线段,不能围成三角形的是()A.5m、7m、9m B.7dm、5dm、ldmC.4cm、8cm、5cm【典例2】(2020春•桐梓县期末)下面形状中具有稳定性的是()A.B.C.【典例3】(2020春•峄城区期末)把一根13厘米的小棒截成3根整厘米的小棒围成一个三角形.最长的一根小棒不能超过()厘米.【典例4】(2020春•浦城县期末)动物王国举行围篱笆比赛,()围的比较牢固.A.小熊B.公鸡C.小狗【典例5】(2020春•鄄城县期末)爷爷要给一块地围上篱笆,()形状的篱笆稳固不易变形.A.B.C.D.【典例6】(2020春•微山县期末)下面三种物品,利用了三角形稳定性的是()A.三角形花坛B.红领巾C.自行车的三角形车架考点2:三角形的分类【典例1】(2020春•邛崃市期末)如图中是锐角三角形.【典例2】(2019春•梁子湖区期末)在图中,一共有个钝角三角形,6个直角三角形,个等腰三角形,个等边三角形.【典例3】(2020春•灌阳县期末)红领巾按角分类属于三角形,按边分类属于三角形..【典例4】(2020春•洪山区期末)三角形如果有两个角是锐角,就一定是锐角三角形..(判断对错)综合练习一.选择题1.(2020秋•宁化县期中)任意一个三角形中,()有两个锐角。

06-第四章7相似三角形的性质

06-第四章7相似三角形的性质

= 2 ,∴ S ABC 3 S ADE
=

2 3
2

= 4 ,
9
∵△ADE的面积是135 cm2,∴S△ABC=135× 4=60(cm2).
9
解题技巧 解答本题的关键是根据相似三角形的判定定理判定△ABC
∽△ADE,进而利用相似三角形的性质定理求解.
7 相似三角形的性质
栏目索引
m.Leabharlann 图4-7-17 相似三角形的性质
栏目索引
解析 如图4-7-2,过点P作PN⊥CD,分别交AB,CD于点M,N.由AB∥CD
易得△APB∽△CPD.由相似三角形的性质可知 PM = AB ,即 PM = 2 ,所
PN CD 2.7 6
以PM=0.9(m),所以MN=PN-PM=2.7-0.9=1.8(m).故AB与CD间的距离是
=
AD BM
2
=4,
∵S△BMG=1,∴S△ADG=4.
栏目索引
7 相似三角形的性质
知识点三 相似多边形的性质
栏目索引
9.如图4-7-4,在四边形ABCD中,E,F,G分别是BA,BD,BC上的点,EF∥AD,
FG∥DC,且 AE = 1 ,则四边形ABCD和四边形EBGF的周长之比为( )
2
=

1 2

2= 1 .
4
7 相似三角形的性质
知识点三 相似多边形的性质
相似多边形 性质
边、角
相似多边形的对应边的比相等,对应角相等
周长
相似多边形的周长比等于相似比
面积
相似多边形的面积比等于相似比的平方
栏目索引
7 相似三角形的性质
栏目索引

7全等三角形的尺规作图

7全等三角形的尺规作图

第7讲三角形的尺规作图一、教学目标理解尺规作图的含义,掌握尺规作图的步骤。

二、知识点梳理1、尺规作图定义:只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图。

注意:尺规作图中的直尺没有刻度。

2、已知三边作三角形已知三边求作三角形是利用三角形全等的条件“边边边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,c求作:△ABC,使AB=c,BC=a,AC=b作法与示范:(1)作线段AB=c(2)以点A为圆心,b为半径画弧(3)以点B为圆心,a为半径画弧,两弧交于点C(4)连接AC,BC,△ABC即为所求3、已知两边及其夹角作三角形已知两边及其夹角作三角形是利用三角形全等的条件“边角边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,∠α求作:△ABC,使∠B=∠α,BC=a,BA=b作法与示范:(1)作∠MBN=∠α(2)在射线BM,BN上分别截取线段BC=a,BA=b(3)连接AC,则△ABC为所求作的三角形4、已知两角及其夹边作三角形已知两角及其夹边求作三角形是利用三角形全等的条件“角边角”来作图的,具体作图的方法、步骤、图形如下:已知:∠α,∠β,线段a求作:△ABC,使∠BAC=∠α,∠ABC=∠β,AB=a作法与示范:(1)作线段AB=a(2)在AB同侧,作∠DAB=∠α,∠EBA=∠β,AD与BE相交于点C,则△ABC为所求作的三角形三、典型例题例1 下列作图属于尺规作图的是()A、用量角器画出∠AOB的平分线B、用圆规和直尺作∠AOB等于已知的∠αC、用刻度尺画线段AB=3 cmD、用三角板作直线AB的平分线例2 如图13-4-1,已知:线段a、b。

求作:△ABC,使AB=2a,AC=b,BC=a。

例3 如图13-4-3,已知:线段m,n,∠α。

求作:△ABC,使AB=2m,AC=2n,∠A=∠α。

例4 如图13-4-5,已知:线段a和∠α。

湖北省黄石市四小四年级数学下册七三角形平行四边形和梯形第2课时三角形三边之间的关系教案苏教版7

湖北省黄石市四小四年级数学下册七三角形平行四边形和梯形第2课时三角形三边之间的关系教案苏教版7

三角形三边之间的关系第 2 课时教学目标:1.通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。

2.引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。

3.培养学生积极的学习态度和乐于探究的数学情感。

教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。

教学难点:运用三角形三边的关系解决实际问题。

教学准备:课件教学过程:一、谈话引入1.举例:生活中哪些物体的面是三角形的?2.复习三角形的各部分名称。

提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高……3.导入新课。

三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。

(板书课题)二、交流共享1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?2.操作交流。

(1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。

教师巡视,了解学生的操作情况。

(2)小组交流。

布置学生将各自的操作情况在四人小组内进行交流。

(3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形?学生回答预设:①选择8cm、5cm、4cm三根小棒,能围成三角形。

②选择5cm、4cm、2cm三根小棒,能围成三角形。

③选择8cm、4cm、2cm三根小棒,不能围成三角形。

④选择8cm、5cm、2cm三根小棒,不能围成三角形。

追问:第③种情况和第④种情况为什么不能围成三角形?引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。

教师小结:因为4cm+2cm<8cm,5cm+2cm<8cm,所以不能围成三角形。

3.探索规律。

师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。

第7章《三角形》精练精析

第7章《三角形》精练精析

第7章《三角形》精练精析提要:本章的考查重点是三角形的性质,包括等腰三角形、直角三角形的一些特殊性质.由于全等三角形是研究图形相等的重要工具,所以这一部分内容也是学好其它几何知识的基础.本章虽然内容较多,但各部分知识之间的联系密切,既要注意了解各部分知识之间的联系,又要保持各部分知识相对的独立性.本章的难点是推理入门.以前在第一册中已了解了推理证明,以及证明几何命题的一般方法步骤,是为现在正规练习证明做准备的.证明要求掌握有理有据地推理,精练准确地表达过程,有一定难度.习题一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是______三角形.2.已知△ABC 中,AD ⊥BC 于D ,AE 为∠A 的平分线,且∠B =35°,∠C =65°,则∠DAE 的度数为_____ .3.三角形中最大的内角不能小于_____,两个外角的和必大于_____ .4.三角形ABC 中,∠A =40°,顶点C 处的外角为110°,那么∠B =_____ .5.锐角三角形任意两锐角的和必大于_____.6.三角形的三个外角都大于和它相邻的内角,则这个三角形为 _____ 三角形.7.在三角形ABC 中,已知∠A =80°,∠B =50°,那么∠C 的度数是 .8.已知∠A =12∠B =3∠C ,则∠A = .9.已知,如图7-1,∠ACD =130°,∠A =∠B ,那么∠A 的度数是 .10.如图7-2,根据图形填空:(1)AD 是△ABC 中∠BAC 的角平分线,则∠ =∠ =∠ . (2)AE 是△ABC 中线,则 = = .(3)AF 是△ABC 的高,则∠ =∠ =90°.11.如图7-3所示,图中有 个三角形, 个直角三角形.12.在四边形的四个外角中,最多有 个钝角,最多有 个锐角,最多有 个直角.13.四边形ABCD 中,若∠A +∠B =∠C +∠D ,若∠C =2∠D ,则∠C = .14.一个多边形的每个外角都为30°,则这个多边形的边数为 ;一个多边形的每个内角都为135°,则这个多边形的边数为 .15.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是 .16.若一个n 边形的边数增加一倍,则内角和将 .17.在一个顶点处,若此正n 边形的内角和为 ,则此正多边形可以铺满地面.图7-1 图7-2 图7-318.如图7-4,BC ⊥ED 于O ,∠A =27°,∠D =20°,则∠B= ,∠ACB = .19.如图7-5,由平面上五个点A 、B 、C 、D 、E 连结而成,则∠A +∠B +∠C +∠D +∠E = .20.以长度为5cm 、7cm 、9cm 、13cm 的线段中的三条为边,能够组成三角形的情况有 种,分别是 .二、选择题21.已知三角形ABC 的三个内角满足关系∠B +∠C =3∠A ,则此三角形( ).A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形22.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( ).A .4:3:2B .3:2:4C .5:3:1D .3:1:523.三角形中至少有一个内角大于或等于( ).A .45°B .55°C .60°D .65°24.如图7-6,下列说法中错误的是( ).A .∠1不是三角形ABC 的外角B .∠B <∠1+∠2C .∠ACD 是三角形ABC 的外角 D .∠ACD >∠A +∠B25.如图7-7,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F =40°,∠C =20°,则∠FBA 的度数为( ).A .50°B .60°C .70°D .80°26.下列叙述中错误的一项是( ).A .三角形的中线、角平分线、高都是线段.B .三角形的三条高线中至少存在一条在三角形内部.C .只有一条高在三角形内部的三角形一定是钝角三角形.D .三角形的三条角平分线都在三角形内部. 27.下列长度的三条线段中,能组成三角形的是( ).A .1,5,7B .3,4,7C .7,4,1D .5,5,528.如果三角形的两边长为3和5,那么第三边长可以是下面的( ).A .1B .9C .3D .1029.三条线段a =5,b =3,c 的值为整数,由a 、b 、c 为边可组成三角形( ).A .1个B .3个C .5个D .无数个30.四边形的四个内角可以都是( ).A .锐角B .直角C .钝角D .以上答案都不对图7-4 图7-5 图7-6 图7-731.下列判断中正确的是( ).A .四边形的外角和大于内角和B .若多边形边数从3增加到n (n 为大于3的自然数),它们外角和的度数不变C .一个多边形的内角中,锐角的个数可以任意多D .一个多边形的内角和为1880°32.一个五边形有三个角是直角,另两个角都等于n ,则n 的值为( ).A .108°B .125°C .135°D .150°33.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( ).A .7条B .8条C .9条D .10条34.如图7-9,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( ).A .高B .角平分线C .中线D .不能确定35.如图7-10,已知∠1=∠2,则AH 必为三角形ABC 的( ).A .角平分线B .中线C .一角的平分线D .角平分线所在射线36.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( ).A . 1B . 2C . 3D . 437.如图7-11,三角形ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB 、AD 、AC 及BC 的延长线于点E 、H 、F 、G ,下列四个式子中正确的是( )38.如图7-12,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上的一点,CF ⊥AD 于H .下列判断正确的有( ).(1)AD 是三角形ABE 的角平分线.(2)BE 是三角形ABD 边AD 上的中线.(3)CH 为三角形ACD 边AD 上的高.A .1个B .2个C .3个D .0个三、解答题39.如图,在三角形ABC 中,∠B =∠C ,D 是BC 上一点,且FD ⊥BC ,DE ⊥AB ,∠AFD =140°,你能求出∠EDF 的度数吗?图7-9 图7-10 图7-11 图7-1240.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?41.如图,已知三角形ABC的三个内角平分线交于点I,IH⊥BC于H,试比较∠CIH和∠BID 的大小.42.如图,在三角形ABC中,AD⊥BC,BE⊥AC,CF⊥AB,BC=16,AD=3,BE=4,CF=6,你能求出三角形ABC的周长吗?43.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?44.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.45.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?46.某同学在计算多边形的内角和时,得到的答案是1125°,老师指出他少加了一个内角的度数,你知道这个同学计算的是几边形的内角和吗?他少加的那个内角的度数是多少?47.把边长为2cm的正方形剪成四个一样的直角三角形,如图所示.请用这四个直角三角形拼成符合下列条件的图形:(1)不是正方形的菱形;(2)不是正方形的长方形;(3)梯形;(4)不是长方形、菱形的的平行四边形.48.下面是数学课堂的一个学习片段,阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题.“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经过片刻的思考与交流后,李明同学举手说: “其余两角是30°和120°”;王华同学说:“其余两角是75°和75°.” 还有一些同学也提出了自己的看法…(1)假如你也在课堂中, 你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受?(用一句话表示)49.如图,凸六边形ABCDEF的六个角都是120°,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?参考解析:一、填空题1.直角3.60°,180°4.70°5.90°6.锐角7.∠C=180°-80°-50°=50°.8.设∠A的度数为x.则∠B=2x,∠C=x.所以x+2x+x=180°,解得x=54°.所以∠A=54°.9.∠A=∠B=∠ACD=65°.10.(1)BAD,CAD,BAC;(2)BE,CE,BC;(3)AFB,AFC.11.解:有5个三角形,分别是△ABD,△ADE,△CDE,△ADC,△ABC;有4个直角三角形,分别是△ABD,△ADE,△CDE,△ADC.12.3,2,413.120°14.12,815.正三角形和正四边形、正三角形和正六边形、正四边形和正八边形中任选两种即可.16.增加(n-4)×180°17.360°或720°或180°18.解:因为∠BED=∠A+∠D=47°,所以∠B=180°-90°-47°=43°.所以∠BCD=27°+43°=70°.所以∠ACB=180°-70°=110°.19.解:连结BC,如图,则∠DBC+∠ECB=∠D+∠E.所以∠A+∠B+∠C+∠D+∠E=∠A+∠B+∠C+∠DBC+∠ECB=180°.20.解:有3种.分别以长为5cm,7cm,9cm;7cm,9cm13cm;5cm,9cm,13cm的线段为边能组成三角形.二、选择题21.A22.C23.C24.D25.C26.C28.C29.C30.B31.B32.C33.C34.C(点拨:可能会错选A或B.有的同学一看到面积就认为与高相关,故错选A;有的同学认为平分内角必平分三角形的面积,故错选B.其实,因为△ABD与△ACD同高h,又S△ABD=S△ADC,即BD×h=·CD×h,所以,BD=CD,由此可知,AD为三角形ABC中BC边的中线.)35.D(点拨:可能会错选A或选C.错选A的同学,只注重平分内角而忽视了三角形的角平分线为一线段这一条件;而错选C的同学,实质上与错选A的同学犯的是同一个错误,显然这里“角平分线”与“一角的平分线”是一个意思,因为前提条件是说“AH必为三角形ABC的”.)36.A(点拨:由三角形的三边关系知:若长度分别为2cm、4cm、6cm,不可以组成三角形;若长度分别为4cm、6cm、8cm,则可以组成三角形;若长度分别为2cm、4cm、8cm,则不可以组成三角形;若长度分别为2cm、6cm、8cm,则不可以组成三角形.即分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为1,故应选A.)37.C(点拨:因为EG⊥AD,交点为H,AD平分∠BAC,所以在直角三角形AHE中,∠1=90°-,在三角形ABC中,易知∠BAC=180°-(∠2+∠3),所以∠1=90°-[180°-(∠2+∠3)]=(∠3+∠2).又因为∠1是三角形EBG的外角,所以∠1=∠2+∠G.所以∠G=∠1-∠2=(∠3+∠2)-∠2=(∠3-∠2).)38.A(点拨:由∠1=∠2,知AD平分∠BAE,但AD不是三角形ABE内的线段,所以(1)不正确;同理,BE虽然经过三角形ABD边AD的中点G,但BE不是三角形ABD内的线段,故(2)不正确;由于CH⊥AD于H,故CH是三角形ACD边AD上的高,(3)正确.应选A.)三、解答题39.解析:要想求∠EDF的度数,我们可以利用平角定义,只要能求出∠EDB即可.而∠EDB 在三角形BDE中,只要能求出∠B就可以利用三角形内角和求∠EDB.而∠B又等于∠C,题中告诉了三角形DFC的一个外角∠AFD=140°,所以我们能得出∠C的度数.解:因为∠AFD是三角形DCF的一个外角.所以∠AFD=∠C+∠FDC.即140°=∠C+90°.解得∠C=50°.所以∠B=∠C=50°.所以∠EDB=180°-90°-50°=40°.所以∠FDE=180°-90°-40°=50°.40.解析:我们可以用字母代替甲、乙、丙、丁,用角度代表方向.把题中数据与图形一一对应,利用各方向的关系可求出丁岛分别在甲岛和乙岛的方向.解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.如图:因为丁岛在丙岛的正北方,所以CD⊥AB.因为甲岛在丁岛的南偏西52°方向,所以∠ACD=52°.所以∠CAD=180°-90°-52°=38°.所以丁岛在甲岛的东偏北38°方向.因为乙岛在丁岛的南偏东40°方向,所以∠BCD=40°.所以∠CBD=180°-90°-40°=50°.所以丁岛在乙岛的西偏北50°方向.41.解析:利用角平分线的性质解.解:因为AI、BI、CI为三角形ABC的角平分线,所以∠BAD=∠BAC,∠ABI=∠ABC,∠HCI=∠ACB.所以∠BAD+∠ABI+∠HCI=∠BAC+∠ABC+∠ACB=(∠BAC+∠ABC+∠ACB)=×180°=90°.所以∠BAD+∠ABI=90°-∠HCI.又因为∠BAD+∠ABI=∠BID,90°-∠HCI=∠CIH,所以∠BID=∠CIH.所以∠BID和∠CIH是相等的关系.42.解析:本题已知一边长和三条高,我们可以利用三角形的面积公式求得另外两边长,三边相加即可得到三角形的周长.解:由三角形面积公式可得S△ABC=BC×AD=AC×BE,即16×3=4×AC,所以AC=12.由三角形面积公式可得S△ABC=BC×AD=AB×CF,即16×3=6×AB.所以AB=8.所以三角形ABC的周长为16+12+8=36.43.解析:本题要求AC与AB的边长的差,且AC与AB的长度都不知道,不少同学感到无从下手.其实,只要我们仔细分析分析题中条件:三角形ABD的周长比三角形ACD的周长小5,即AC-AB+CD-BD=5,又AD是BC边上的中线,所以BD=CD.所以AC-AB=5.解:AC-AB=5.44.解析:在第(1)和第(2)问中,没有说明所给边长是腰长还是底边长,因此我们要进行分类讨论.在第(3)问中,只给出了三边长都是整数,而此三角形又是等腰三角形,所以其最长边小于8cm,我们可以用列表法一一列出各组边长.解:(1)如果腰长为4cm,则底边长为16-4-4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16-4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm.(2)如果腰长为6cm,则底边长为16-6-6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16-6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm.(3)因为周长为16cm,且三边都是整数,所以三角形的最长边不会超过8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.45.解析:要想BE与DF平行,就要找平行的条件.题中只给出了∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.那么我们是利用同位角相等呢还是利用同旁内角互补?经过仔细观察图形我们知道∠BFD是三角形ADF的外角,则∠BFD=∠A+∠ADF.而∠ADF是∠ADC 的一半,∠ABE是∠ABC的一半,所以我们选择用同旁内角互补来证平行.解:BE与DF平行.理由如下:由n边形内角和公式可得四边形内角和为(4-2)×180°=360°.因为∠A=∠C=90°,所以∠ADC+∠ABC=180°.因为BE平分∠ABC,DF平分∠ADC,所以∠ADF=∠ADC,∠ABE=∠ABC.因为∠BFD是三角形ADF的外角,所以∠BFD=∠A+∠ADF.所以∠BFD+∠ABE=∠A+∠ADC+∠ABC=∠A+(∠ADC+∠ABC)=90°+90°=180°.所以BE与DF平行.46.解析:我们发现1125°不能被180°整除,所以老师说少加了一个角的度数.我们可设少加的度数为x,利用整除求解.解:设少加的度数为x.则1125°=180°×7-135°.因为0°<x<180°,所以x=135°.所以此多边形的内角和为1125°+135°=1260°.设多边形的边数为n,则(n-2)×180°=1260°,解得n=9.所以此多边形是九边形,少加的那个内角的度数是135°.47.解析:题中告诉了我们按要求拼成.解:如图:48.解析:本题首先要求考生在阅读数学课堂的一个学习片断后,对两名学生的说法提出自己的看法,这时考生应抓住题中条件“等腰三角形ABC的角A等于30°”这个不确定条件进行分析研究.当∠A是顶角时,设底角是α,∴30°+α+α=180°,α=75°,∴其余两底角是75°和75°.当∠A是底角时,设顶角是β,∴30°+30°+β=180°,β=120°,∴其余两角是30°和120°.由此说明李明和王华两同学都犯了以偏概全的答题的错误.对于第(2)问应在第(1)问的解答的基础上,可总结出“根据图形位置关系,实施分类讨论思想方法解多解型问题”,“考虑问题要全面”等.小结:三角形的中线、角平分线、高(线)是三角形中三条十分重要的线段,初学者常因不能准确理解其概念的实质内涵,而出现这样或那样的错误,现举例分析如下,以达到亡羊补牢或未雨绸缪的目的.49.解析:要求六边形的周长,必须先求出边EF和AF的长.由六边形ABCDEF的六个角都是120°,可知六边形的每一个外角的度数都是60°,如图4,如果延长BA,得到的∠P AF=60°,延长EF,得到的∠PF A=60°,两条直线相交形成三角形APF,在三角形APF中,∠P的度数为180°-60°-60°=60°,因此三角形APF是等边三角形.同样的道理,我们分别延长AB、DC,交于点G,那么三角形BGC为等边三角形.分别延长FE、CD交于点H,则三角形DHE 也是等边三角形.所以∠P=∠G=∠H=60°.所以三角形GHP也是等边三角形.于是我们得到三角形APF、三角形BGC、三角形DHE、三角形GHP四个等边三角形.于是就把多边形的问题转化为和等边三角形有关的问题.利用等边三角形的三边相等的性质,可以轻松的求出AF和EF的长,从而求出六边形ABCDEF的周长.解:如图4,分别作直线AB、CD、EF的延长线使它们交于点G、H、P.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等边三角形.所以GC=BC=8cm,DH=DE=6cm.所以GH=8+11+6=25cm,F A=P A=PG-AB-BG=25-2-8=15cm,EF=PH-PF-EH=25-15-6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.小结:本题解题的关键是利用多边形和三角形的关系,通过添加辅助线,利用六边形构造出等边三角形,从而利用转化的思想,把多边形问题转化为和三角形有关的问题,利用三角形的性质、定理来解答多边形的问题.方程思想是我们学习数学的重要思想方法之一.用方程思想求解数学问题时,应从题中的已知量与未知量的关系入手,找出相等关系,运用数学符号语言将相等关系转化为方程,再通过解方程,使问题得到解决.方程思想应用非常广泛.我们不但能用方程思想解决代数问题,而且还能够解决有关的几何问题.。

7-4 数字三角形问题分数 10

7-4 数字三角形问题分数 10

一、问题描述数字三角形问题是一个常见的数学问题,它通常指的是将一组数字排列成一个三角形状,并且要求从顶点到底边的某一个位置的数字之和最大。

这个问题可以用动态规划的方法来解决,但是由于数字量较大时,计算量会非常庞大,因此需要一定的技巧和优化来降低计算复杂度。

本文将针对数字三角形问题进行详细的分析和解决方法讨论。

二、问题分析1. 数字三角形的表示方法数字三角形可以用一个二维数组来表示,其中每个位置的数字表示在三角形的相应位置上的值。

2. 动态规划的求解方法动态规划是一种有效的求解数字三角形问题的方法,它可以通过保存之前已经计算的结果来避免重复计算,从而降低整体的计算复杂度。

3. 计算路径的技巧在具体求解最大路径和的时候,可以通过计算从顶点到每一个可能的底边位置的最大路径和,并保存中间结果来避免重复计算。

三、解决方法1. 动态规划求解(1)初始化一个与数字三角形相同大小的数组,用来保存中间结果。

(2)从三角形的底边开始向上逐层计算每个位置的最大路径和。

(3)最终得到顶点到每一个底边位置的最大路径和,取其中最大的值即为所求。

2. 优化过程(1)路径计算中保存中间结果,避免重复计算。

(2)采用自底向上的动态规划,而不是自顶向下。

四、举例说明假设我们有以下数字三角形:```73 88 1 02 7 4 44 5 2 6 5```我们可以采用动态规划的方法来求解最大路径和。

我们初始化一个与数字三角形相同大小的数组来保存中间结果,然后从底边开始向上逐层计算每个位置的最大路径和。

最终得到顶点到每一个底边位置的最大路径和,取其中最大的值即为所求。

五、总结数字三角形问题是一个常见的数学问题,可以通过动态规划的方法来求解。

在具体求解过程中,需要注意保存中间结果,避免重复计算,以提高计算效率。

本文通过详细的分析和举例说明,希望读者能够对数字三角形问题有一个更深入的理解,并且能够在实际应用中灵活运用动态规划的方法来解决类似的问题。

四年级下册数学讲义-第七章 三角形 苏教版 (无答案)

四年级下册数学讲义-第七章 三角形 苏教版 (无答案)

数学四年级下册第七章三角形——三角形复习1、进一步认识三角形的相关概念;2、能够求三角形的面积;一.三角形的定义:不在同一直线上的三条线段首尾相连得到的图形,叫三角形。

围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点二.三角形的特征:三.三角形的高与底1.从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底;画的这条线段用虚线表示,画完后还要画出直角标记和“高”(或用字母“h”表示)2.三角形中有一个角是直角,那么这两条直角边可以互相看作是一底一高,不用另外画;只有当把斜边当作底的时候它的高要另外画;3条高相交于原来的直角处。

四.三角形的分类三个角都是锐角的三角形是锐角三角形有一个角是直角的三角形是直角三角形有一个角是钝角的三角形是钝角三角形五、三角形的内角和等于180度。

题型1 围成三角形的条件例2:下面三条小棒能否围成三角形?请说明理由巩固练习:下面哪几组中的三条线段可以围成一个三角形?为什么?题型2 作三角形的高作图中三角形底边的高巩固练习:作出下列三角形的高题型3 三角形的分类三角形三个角的度数如下,它们各是什么三角形?填在后面的括号里。

(1)18度 90度 72度()(2)30度 50度 100度()(3)85度 65度 30度()题型4 分割成两个三角形在下面的三角形中画一条线段,把它分成两个直角三角形巩固练习:在直角三角形中画一条线段,把它分成两个三角形。

你分成了两个什么样的三角形?还可以怎样分?题型5 求未知角例1:在三角形中已知∠1=65度,∠2=35度,那么∠3=巩固练习:算出下面三角形中∠3的度数.(1)∠1=42度,∠2=38度;(2)∠1=80度,∠2=56度;(3)∠1=27度,∠2=63度.题型6 直角三角形中未知角度数已知在直角三角形中,其中一个锐角为27度,求另一个锐角的度数。

巩固练习:已知∠1和∠2是直角三角形中的两个锐角。

初中数学7三角形的有关概念与性质(教师)

初中数学7三角形的有关概念与性质(教师)

三角形的有关概念与性质课时目标1. 了解三角形的有关概念及三角形的分类;2. 理解三角形的任意两边之和大于第三边的性质;3. 掌握三角形的内角和定理以及外角的性质.知识精要1. 三角形的主要概念(1)三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形的边、角:组成三角形的三条线段叫做三角形的边,每两边所组成的角叫做三角形的内角,简称角.(3)三角形的表示方法:三角形用符号“∆”表示,三角形ABC可记作“∆ABC”或“∆BCA”或“∆ACB”.(4)三角形的外角:三角形的内角的一边与另一边的反向延长线所组成的角叫做三角形的外角.一个三角形的每个顶点上各有两个外角,这两个外角是对顶角.2. 三角形的分类(1)按角来分类:锐角三角形、直角三角形、钝角三角形;(2)按边来分类:不等边三角形、等腰三角形(等边三角形);注:等边三角形(正三角形)是特殊的等腰三角形.3. 三角形中的主要线段(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:联结三角形的一个顶点和它的对边中点的线段叫做三角形的中线.(3)三角形的高:从三角形的一个顶点向它的对边(或其延长线)引垂线,顶点和垂足之间的线段叫做三角形的高.(4)一个三角形有三条角平分线,三条中线,三条高.注意:①三角形的角平分线、中线都在三角形内部,而高线可以在内部(锐角三 角形),可以在外部(钝角三角形),也可以在三角形的边上(直角三角形). ②三角形的三条角平分线交于三角形内部一点,三条中线交于三角形内部 一点,三条高线所在直线交于一点.③三角形的角平分线、中线、高线都是线段.④三角形的中线将三角形分成面积相等的两个三角形.4. 三角形的基本要素及基本性质三角形有三个顶点、三个角、三条边共九个要素. (1)三角形边与边的关系:①三角形中任意两边之和大于第三边; ②三角形中任意两边之差小于第三边; ③直角三角形中,斜边大于直角边. (2)三角形角与角的关系:①三角形内角关系:三角形的内角和等于︒180 ②三角形的外角性质: <a >三角形的外角和等于︒360<b >三角形的一个外角等于与它不相邻的两个内角的和 <c >三角形的一个外角大于与它不相邻的任何一个内角 5. 三角形具有稳定性,而四边形不具有稳定性热身练习1. 如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( A ) A . 5米 B .10米 C . 15米D .20米2. 在一个三角形中,下列说法中错误的是( B ) A .至少有两个锐角 B . 最多能有两个钝角 C .至多有一个直角 D . 最多能有三个锐角3. 在△ABC 中,︒=∠︒=∠50,90A C ,则=∠B 40° .4. 在三角形ABC 中,若3:2:1::=∠∠∠C B A ,则=∠+∠B A 90° .5. 三角形的三边为1,a -1,9,则a 的取值范围是 -7< a <-9 . 6.一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长为 9 厘米7. 建造房屋时,屋顶的支架通常为三角形,这是利用了三角形的 稳定 性. 8. 已知等腰三角形的一条边长为4,周长为10,那么它的底边长是 2 或 4 . 9. 已知等腰三角形一边长为20 cm ,另一边长为10cm ,则这个三角形的周长为 50cm .10. 若三角形边分别是3,4,5,8,用其中的三条线段组成三角形,可以有 2 种 不同选择.11. ∠ACD 是△ABC 的外角,则图中x 的值为 60° .C'B'C(11题图) (13题图)12. △ABC 的BC 边上的高把∠A 分成两个角分别为30°,50°,则∠B ,∠C 的度数分别为 60°,40°13. 在△ABC 中,∠B=∠C=45°,将△ABC 以A 为旋转中心顺时针旋转25°至AB C ''V ,则B C ''与AB 、BC 的夹角BEB '∠= 70 度,CDC '∠= 25 度. 14. 若一个三角形的一个内角为120°,那么另两个角的外角和为 300° .15. 在R t △ABC 中,AB=AC ,∠BAD=20°,AD=AE , ∠CDE= 25 度·ED CB AFE DCBA(15题图) (16题图)16. ∠A+∠B+∠C+∠D+∠E+∠F= 360° .17. 已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .精解名题例1 如图,∠A=70°,P 为△ABC 角平分线的交点,求∠BPC. 解:∠BPC=125°EGHEDC BAGF EDC BA例2如图,BE平分∠ABD,CF平分∠ACD,BE与CF相交于G,若∠BDC=140°,∠BGC=100°,求∠A的度数.解:∵∠DBC+∠DCB=40°,∠GBC+∠GCB=80°∴∠GBD+∠GCD=80°-40°=40°∵BE平分∠ABD,CF平分∠ACD,∴∠ABD+∠ACD=2(∠GBD+∠GCD)=80°∴∠ABC+∠ACB=80°+40°=120°∴∠A=60°例3 求图中∠A+∠B+∠C+∠D+∠E的大小.解:∠A+∠B+∠C+∠D+∠E=180°(提示:三角形外角的性质)例4纸片△ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),若∠1=20°,求∠2的度数.解:∠B=80°例5 如图所示,将△ABC 沿着DE 翻折,若∠1+∠2=80O ,求∠B 的度数. 解:∠B =40°巩固练习1. 已知在△ABC 中,C B A ∠=∠=∠2121,则=∠B 72° . 2. 已知三角形两边的长分别为1和2,如果第三边为整数,那么第三边长为 2 . 3. 在ABC ∆中,AB=3,BC=7,则AC 的取值范围是 4 < AC < 7 . 4. 如图,将三角尺的直角顶点放在直尺的一边上,已知∠1=30°,∠2=50°,则∠3= 20°.1FE BACDCBA(4题图) (6题图) (7题图)5. 已知一个三角形中两条边的长分别是a 、b ,且b a >,那么这个三角形的周长L 的取值范围是( B )A .b L a 33>>B .a L b a 2)(2>>+C .a b L b a +>>+262D .b a L b a 23+>>-6. 如图,在△ABC 中,90C ∠=。

7.三角形、平行四边形和梯形-苏教版四年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)

7.三角形、平行四边形和梯形-苏教版四年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)

苏教版四年级下册数学期末复习专题讲义-7.三角形、平行四边形和梯形【知识点归纳】三角形:三条线段首尾相接围成的图形叫做三角形。

三角形的高和底:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。

三角形三边关系:三角形任意两边长度的和大于第三边。

三角形的内角和等于180°。

三角形分类:按角分为:锐角三角形、直角三角形、钝角三角形。

按边分类:等腰三角形、等边三角形(正三角形)、不等边三角形。

平行四边形:两组对边分别平行的四边形叫作平行四边形。

平行四边形的高和底:从平行四边形一条边上的一点到它对边的垂直线段,是平行四边形的高,这条对边是平行四边形的底。

梯形:只有一组对边平行的四边形叫作梯形。

梯形的上底、下底和腰:互相平行的一组对边分别是梯形的上底和下底,不平行的一组对边是梯形的腰。

梯形的高:从梯形一条底边上的一点到它对边的垂直线段叫作梯形的高。

两腰相等的梯形是等腰梯形。

多边形内角和=180°×(边数-2)。

(根据三角形的内角和推算出来)【典例讲解】例1.等腰三角形中有一个内角是80°,另外两个角()A.都是50°B.分别是20°和80C.分别是20°和80°或都是50°【分析】等腰三角形这个80°的内角可能是顶角,也可能是底角.根据等腰三角形的内角和定理(三角形三个内角之和是180°)及等腰三角形两个底角相等的性质,即可分别计算出当这个角是顶角时的底角度数、当这个角是底角时顶角的度数.【解答】解:当等腰三角形的顶角是80°时它的两个底角:(180°﹣80°)÷2=100°÷2=50°当当等腰三角形的底角是80°时180°﹣80°×2=180°﹣160°=20°答:另外两个角分别是20°和80°或都是50°.故选:C.【点评】解答此题的关键是三角形内角定理及等腰三角形性质的应用.例2.一个三角形中,有两个角的度数分别是32°和46°,第三个内角为102°,这个三角形是钝角三角形.(按角分类)【分析】根据三角形内角和定理,三角形三个内角之和是180°,已知这个三角形的两个角的度数,用180°减这两个角的度数之和就是第三个角的度数.由前面计算可知,这个三角形的第三个角是102°,是钝角,根据钝角三角形的意义,有一个角是钝角的三角形是钝角三角形,这个三角形是钝角三角形.【解答】解:180°﹣(32°+46°)=180°﹣78°=102°这个三角形有一个角是钝角,是钝角三角形答:第三个内角为102°,这个三角形是钝角三角形.故答案为:102,钝角.【点评】此题考查的知识有三角形内角和定理的应用、三角形的分类(按角分类).例3.三角形的三边长分别是3cm、4cm、5cm,这样的三角形的形状只有一种.√(判断对错)【分析】三角形的三边长分别是3cm、4cm、5cm,因为三条边是确定的,三角形的形状就是确定的,所以这样的三角形的形状只有一种,那就是直角三角形.【解答】解:三角形的三边长分别是3cm、4cm、5cm,这样的三角形的形状只有直角三角形一种.故原题说法正确.故答案为:√.【点评】解决此题还可以利用三角板画出图,然后直观判断.例4.在三角形ABC中,∠1=65°,∠2=20°,求∠4的度数.【分析】利用三角形内角和定理:三角形内角和是180°,∠3=180°﹣90°﹣20°=70°,∠4=180°﹣70°﹣65°=45°.据此解答.【解答】解:∠3=180°﹣90°﹣20°=70°∠4=180°﹣70°﹣65°=45°答:∠4=45°.【点评】本题主要考查三角形的内角和,关键是利用三角形内角和定理做题.例5.红红家有一块三角形的小菜园,菜园的最大角是120°,且最大角的度数是最小角的4倍,这块三角形菜地其他角的度数是多少?这块地的形状是一个什么三角形?【分析】这块三角形菜园的最大角是120°,且最大角的度数是最小角的4倍,用120°除以4就是最小角的度数;再根据三角形内角和定理(三角形三个内角之和是180°)即可求出另一个角的度数.这个三角形中最大角是120°,属于钝角,根据钝角三角形的意义,有一个角是钝角的三角形是钝角三角形,此三角形为钝角三角形.【解答】解:120°÷4=30°180°﹣120°﹣30°=30°这个三角形的最大角是钝角,它是一个钝角三角形答:这块三角形菜地其他角的度数都是30°,这块地的形状是一个钝角三角形.【点评】此题考查的知识有三角形内角和定理、三角形(按角)分类.【同步测试】一.选择题(共10小题)1.根据下列描述,一定是锐角三角形的是()A.有一个内角是85°的三角形B.有两个内角都是锐角的三角形C.其中最大的内角小于90°D.等腰三角形2.下面的说法正确的是()A.有一组对边平行的四边形是梯形B.平行四边形和梯形都是四边形C.在梯形中,平行的一组对边叫做梯形的腰3.一个三角形的底不变,要使面积扩大2倍,高要扩大()A.2倍B.4倍C.6倍D.8倍4.小明用小棒摆三角形,应该选取()组小棒.A.12cm,12cm,24cm B.12cm,15cm;27cmC.12cm,15cm,24cm D.15cm,15cm,31cm5.一个三角形两个角的度数分别是50°和65°.这个三角形一定是()A.等腰的锐角三角形B.等边的锐角三角形C.等腰的钝角三角形D.三边不等的锐角三角形6.小明在研究平行四边形的面积时,想把一个平行四边形转化成一个长方形.下面的四种剪法中不能拼成长方形的是图()A.B.C.D.7.一个三角形与一个平行四边形的面积相等,底也相等.三角形的高是2分米,平行四边形的高是()分米.A.1B.2C.3D.48.如图中,平行四边形的高是28cm,它的对应底是()A.36cm B.20cm C.25cm D.28cm9.张浩将梯形ABCD通过割补的方法,转化成三角形ABF(过程如图).已知三角形ABF的面积是24cm2,则CF的长是()cm.A.2B.4C.6D.1210.一个等腰三角形的两条边是10厘米和4厘米,它的周长是()厘米.A.18B.14C.24D.20二.填空题(共8小题)11.一个平行四边形的底是13分米,高是70厘米,面积是平方分米.12.在锐角三角形中,任何两个内角的度数之和都90°.13.等腰三角形ABC,其中AB等于AC,∠B=,∠A=.14.两组对边分别平行的四边形是或.15.在一个三角形中,有两个角分别是28°和62°,另一个角是,这是一个三角形.16.把一个平行四边形的底扩大到原来的2倍,高扩大到原来的3倍,得到的平行四边形的面积是原来的倍.17.一个平行四边形的面积是60dm2,底是5dm,这条底边对应的高是dm.18.一个等腰直角三角形两条直角边的长度和是18cm,它的面积是cm2.三.判断题(共5小题)19.两个三角形的面积相等,它们的底和高不一定相等.(判断对错)20.在梯形里画一条线段,分成两个图形,这两个图形不可能是平行四边形.(判断对错)21.一个三角形的周长是30cm,它的最长边的长一定不小于15厘米.(判断对错)22.一个等腰三角形的周长是21cm,其中一条边长5cm,它的另外两条边可能是5cm和11cm.(判断对错)23.一个平行四边形的面积是24cm2,将它的底增加2cm,高减少2cm,得到的平行四边形的面积一定仍是24cm2.(判断对错)四.计算题(共2小题)24.求平行四边形的面积(单位:厘米)25.计算下面图形的周长.五.应用题(共6小题)26.把一根长25米的彩带剪成三段,第一段长5米,第二段长8米,这三段能围成一个三角形吗?为什么?27.有5根小棒,长度分别是3厘米、3厘米、3厘米、4厘米、6厘米,可以摆成几种不同的三角形?请你列举出来.28.如图,一个长方形框架拉成平行四边形后,面积是18dm2,长方形框架的周长是多少分米?29.一个三角形的面积是12cm2,底边长6cm,这条底边上的高是多少cm?30.在一块平行四边形空地(如图)上种草坪,1平方米草坪的价格是10元.种这块草坪需要多少钱?31.一块平行四边形玻璃,底长150厘米,高比底少50厘米,刘阿姨买这块玻璃用了90元钱.每平方米玻璃的价钱是多少?参考答案与试题解析一.选择题(共10小题)1.【分析】根据角的分类、三角形按角的大小分类情况,小于90度的角叫做锐角;等于90度的角叫做直角;大于90度小于180度的角叫做钝角;有一个角是钝角的三角形,叫做钝角三角形;有一个角是直角的三角形,叫做直角三角形;三个角都是锐角的三角形,叫做锐角三角形;据此解答.【解答】解:根据锐角三角形的特征,锐角三角形的三个角都是锐角,由此可知,三角形中最大角小于90度的三角形一定是锐角三角形.故选:C.【点评】此题考查的目的是理解掌握角的分类、三角形按照角的大小分类及应用.2.【分析】有且只有一组对边平行的四边形是梯形,A错误;平行四边形和梯形都是四边形,B正确;在梯形中,平行的一组对边叫做梯形的上底和下底,C错误;据此解答即可.【解答】解:有且只有一组对边平行的四边形是梯形,A错误;平行四边形和梯形都是四边形,B正确;在梯形中,平行的一组对边叫做梯形的上底和下底,C错误;只有B正确;故选:B.【点评】此题考查了梯形的特征,要熟练掌握.3.【分析】三角形的面积=底×高÷2,若底不变,要使面积扩大2倍,高要扩大2倍.【解答】解:因为三角形的面积=底×高÷2,若底不变,要使面积扩大2倍,高要扩大2倍.故选:A.【点评】此题主要考查三角形的面积公式的灵活运用.4.【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行依次分析、进而得出结论.【解答】解:A、因为12+12=24,不能组成三角形,不符合题意;B、因为12+15=27,不能组成三角形,不符合题意;C、12+15>24,所以能组成三角形,符合题意;D、15+15<31,所以不能组成三角形,不符合题意;故选:C.【点评】解答此题的关键是根据三角形的特性进行分析、解答即可.5.【分析】三角形的两个内角的度数已知,依据三角形的内角和是180°,即可求出第三个内角的度数,从而可以判定这个三角形的类别.【解答】解:180°﹣50°﹣65°=130°﹣65°=65°因为三角形三个内角都是锐角,且有两个角相等,所以这个三角形是等腰的锐角三角形.故选:A.【点评】解答此题的主要依据是:三角形的内角和是180度以及三角形的分类方法.6.【分析】选项A:图形中是沿着高剪得,有直角,把剪下的左边图形平移到右边可以得到一个长方形.选项B:图形中不是沿着高剪得,没有直角,把剪下的上面图形平移到下面不能得到一个长方形.选项C,沿平行四边形的一边中点分别剪下了个直角三角形,通过旋转、平移后能够拼成一个长方形.选项D,沿平行四边形的高剪开后,可以平成一个长方形,据此解答.【解答】解:根据长方形的特征,长方形的对边平行且相等,选项A:图形中是沿着高剪得,有直角,把剪下的左边图形平移到右边可以得到一个长方形.选项B:图形中不是沿着高剪得,没有直角,把剪下的上面图形平移到下面不能得到一个长方形.选项C,沿平行四边形的一边中点分别剪下了个直角三角形,通过旋转、平移后能够拼成一个长方形.选项D,沿平行四边形的高剪开后,可以平成一个长方形.故选:B.【点评】此题主要考查平行四边形面积公式的推导过程及应用.7.【分析】由题意可知:一个三角形和一个平行四边形的面积相等,底也相等,由两种图形的面积公式可得,平行四边形的高应是三角形高的一半,三角形的高是2分米,所以用三角形的高除以2即可解答.【解答】解:2÷2=1(分米)答:平行四边形的高是1分米.故选:A.【点评】此题主要考查三角形和平行四边形的面积公式的灵活运用.8.【分析】根据平行四边形高的意义,从平行四边形的一个顶点向对边作垂线,顶点到垂足的距离叫做平行四边形的高,通过观察图形可知,高28厘米对应的底是25厘米.据此解答即可.【解答】解:如图中,平行四边形的高是28cm,它的对应底25cm.故选:C.【点评】此题考查的目的是理解掌握平行四边形高的意义及应用.9.【分析】CF的长就是梯形的上底,24平方厘米是梯形的面积,梯形的下底是8厘米,高是4厘米,根据梯形的面积=(上底+下底)×高÷2,则上底=梯形的面积×2÷高﹣下底,据此即可解答.【解答】解:24×2÷4=8=12﹣8=4(厘米)答:CF的长是4cm.故选:B.【点评】本题考查了梯形面积公式的灵活运用情况.10.【分析】求等腰三角形的周长,就要确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为10厘米和4厘米,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4厘米为腰长,10厘米为底边长,由于4+4=8,两边之和不大于第三边,则三角形不存在;(2)若10厘米为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+4=24(厘米).故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.二.填空题(共8小题)11.【分析】根据平行四边形的面积公式:S=ah,把数据代入公式解答.【解答】解:70厘米=7分米,13×7=91(平方分米)答:它的面积是91平方分米.故答案为:91.【点评】此题需要考查平行四边形面积公式的灵活运用,关键是熟记公式.12.【分析】根据锐角三角形的性质和三角形内角和是180°解答即可.【解答】解:锐角三角形中,三个角都是锐角,因为三角形的内角和是180°,所以任意两个锐角之和都大于90°.故答案为:大于.【点评】此题是考查了三角形内角和以及锐角三角形的性质的灵活应用.13.【分析】已知角为145°,它的补角是等腰三角形的一个底角,可求出底角度数为180°﹣145°=35°,两底角度数相等,三角形内角和是180°,则顶角度数为180°﹣35°﹣35°=110°.【解答】解:∠B=∠C=180°﹣145°=35°∠A=180°﹣35°﹣35°=110°故答案为:35°,110°.【点评】本题考查了三角形内角和定理,属于基础题,关键是掌握三角形内角和为180度.14.【分析】两组对边分别平行的四边形是平行四边形.平行四边形包括一般平行四边形或特殊平行四边形.特殊平行四边形即正方形、长方形、菱形等.【解答】解:两组对边分别平行的四边形是一般平行四边形或特殊平行四边形.故答案为:一般平行四边形,特殊平行四边形.【点评】此题考查了平行四边形的判定方法和分类.15.【分析】根据三角形的内角和定理:三角形内角和是180°,用180°减掉两个已知角的度数,就是第三个角的度数;根据三角形按角分率的标准,判断三角形的分类即可.【解答】解:180°﹣28°﹣62°=90°答:另一个角是90°,这是一个直角三角形.故答案为:90°;直角.【点评】本题主要考查三角形的内角和,关键是利用三角形内角和定理做题.16.【分析】根据平行四边形的面积公式:S=ah,再根据因数与积的变化规律,积扩大的倍数等于因数扩大倍数的乘积.据此解答.【解答】解:2×3=6答:平行四边形的面积是原来的6倍.故答案为:6.【点评】此题考查的目的是理解掌握平行四边形的面积公式、因数与积的变化规律及应用.17.【分析】根据平行四边形的面积公式:S=ah,那么h=S÷a,把数据代入公式解答.【解答】解:60÷5=12(分米)答:这条底边对应的高是12分米.故答案为:12.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.18.【分析】由条件“一个等腰直角三角形两条直角边的长度和是18cm”可知,此三角形的直角边为18÷2=9cm,再利用三角形的面积公式:三角形面积=底×高÷2即可求得结果.【解答】解:18÷2=9(cm)9×9÷2=40.5(cm2)答:它的面积是40.5cm2.故答案为:40.5.【点评】此题主要考查三角形的面积公式:三角形面积=底×高÷2,将数据代入公式即可求得结果.三.判断题(共5小题)19.【分析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的底和高不一定相等;比如,底和高分别是4、3,6、2的两个三角形的面积相等,但底和高不相等,判断即可.【解答】解:因为两个三角形的面积相等,则两个三角形面积的2倍也相等,也就是底乘高相等;比如,底和高分别是4、3,6、2的两个三角形的面积相等,但底和高不相等,所以说“两个三角形的面积相等,它们的底和高不一定相等”是正确的.故答案为:√.【点评】掌握三角形的面积公式是解题的关键.20.【分析】(1)过上底上的除两个端点外的任意一点做腰的一条平行线,把梯形分成两个图形:一个平行四边形和一个梯形;(2)过上底上的除两个端点外的任意一点做底的一条垂线,把梯形分成两个图形:两个梯形;(3)连接梯形的对角线,可以得到两个三角形.(4)这不是一个直角梯形,得不到一个长方形和一个梯形,由此求解.【解答】解:根据分析画图如下:(1)一个平行四边形和一个梯形(2)两个梯形(3)一个三角形(4)一个三角形和梯形得不到两个平行四边形.所以本题说法正确;故答案为:√.【点评】本题主要考查了学生根据三角形、平行四边形、梯形的定义来对图形进行分割的能力.21.【分析】根据三角形的特性:任意两边之和大于第三边,三角形的任意两边的差一定小于第三边;进行解答即可.【解答】解:如果三边长分别为14cm、7cm、9cm,周长是30cm,符合7+9>14,能组成三角形,但最长边是14cm,14<15,故原题说法错误;故答案为:×.【点评】此题是考查三角形的特性,应灵活掌握和运用.22.【分析】首先根据等腰三角形的性质可分为两种情况讨论:5cm为腰长、5cm为底的长度.然后看是否能围成三角形,由此解答即可.【解答】解:当5厘米是腰时,底边是21﹣5×2=11(厘米),5+5<11,这种情况不成立;如果5厘米是底边,则腰长为:(21﹣5)÷2=8(厘米),5+8>8,所以能围成三角形;所以其中一条边长5cm,它的另外两条边不可能是5cm和11cm.故原题说法错误;故答案为:×.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.23.【分析】根据平行四边形的面积公式:S=ah,可以通过举例证明.假如原来平行四边形的底是3厘米,高是8厘米,底增加2厘米后是5厘米,高减少2厘米后是6厘米,分别求出原来和增加后的面积,然后进行比较即可.【解答】解:假如原来平行四边形的底是3厘米,高是8厘米,底增加2厘米后是5厘米,高减少2厘米后是6厘米,原来的面积:3×8=24(平方厘米);增加后的面积:(3+2)×(8﹣2)=5×6=30(平方厘米);24平方厘米<30平方厘米,答:所得到的平行四边行面积比原来平行四边形面积大.因此,所得到的平行四边行面积与原来平行四边形面积相等,这种说法是错误的.故答案为:×.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.四.计算题(共2小题)24.【分析】根据题意,如图,这个平行四边形的底是3cm,高是2.8cm.根据面积公式:S=ah,把数据代入公式解答.【解答】解:3×2.8=8.4(平方厘米)答:它的面积是8.4平方厘米.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.25.【分析】根据三角形的周长=三条边的和,用8+8+10计算即可得到三角形的周长;根据长方形的周长=(长+宽)×2,用(15+7)×2计算即可得到长方形的周长.【解答】解:8+8+10=26(厘米)答:三角形的周长是26厘米;(15+7)×2=22×2=44(厘米)答:长方形的周长是44厘米.【点评】本题考查长方形的周长、三角形的周长,明确长方形的周长=(长+宽)×2、三角形的周长=三条边的和是解答本题的关键.五.应用题(共6小题)26.【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【解答】解:因为25﹣5﹣8=12(米)且5+8=13>12所以这三段能围成一个三角形,因为两边之和大于第三边.【点评】此题主要依据三角形的两边之和大于第三边的特点和减法的意义解决问题.27.【分析】根据三角形边的特征,在三角形中任意两边之和大于第三边,由此解答.【解答】解:根据分析知,共有以下情况,①3厘米,3厘米,3厘米;②3厘米,3厘米,4厘米;③3厘米,4厘米,6厘米;答:一共可以拼成3个不同的三角形.【点评】此题主要根据三角形的任意两边之和大于第三边解决问题.28.【分析】由题意可知:平行四边形的高已知,面积已知,利用平行四边形的面积公式,即可求出平行四边形的底,也就是长方形的长,从而利用长方形的周长公式就能求出长方形框架的周长.【解答】解:18÷3=6(dm)(6+4)×2=10×2=20(dm)答:长方形框架的周长是20分米.【点评】本题主要考查了长方形的周长计算以及平行四边形面积公式的实际应用.29.【分析】根据三角形的面积=底×高÷2,则三角形的面积×2÷底=高,把数据代入即可求解.【解答】解:12×2÷6=24÷6=4(厘米)答:这条底边上的高是4厘米.【点评】本题考查了三角形的面积=底×高÷2的灵活应用.30.【分析】先利用平行四边形的面积S=ah求出这块空地的面积,再用草坪的面积乘单位面积草坪的价格,就是种这块草坪需要多少钱.【解答】解:15×12×10=180×10=1800(元)答:种这块草坪需要1800元.【点评】此题主要考查平行四边形的面积的计算方法,在实际生活中的应用.31.【分析】根据平行四边形的面积公式:S=ah,已知底是150厘米,高比底少50厘米,那么高是150﹣50=100厘米,把数据代入公式求出这块玻璃的面积,然后根据已知总价和数量求单价,用除法解答.【解答】解:150×(150﹣50)=150×100=15000(平方厘米)15000平方厘米=1.5平方米90÷1.5=60(元)答:每平方米玻璃的价钱是60元.【点评】此题主要考查平行四边形面积公式的灵活运用,以及总价、数量、单价三者之间关系的应用.。

第七章《三角形》知识点归纳与练习

第七章《三角形》知识点归纳与练习

第七章 三角形知识点一: 三角形1、定义:由不在同一条直线上的三条线段顺次首尾相接所组成的图形叫做三角形。

2、分类:(1)按角分:锐角三角形;直角三角形;钝角三角形;(2)按边分:不等边三角形;等腰三角形;等边三角形;3、角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

4、中线:连接一个顶点与对边中点的线段叫做三角形的中线。

5、高:从三角形的一个顶点向它的对边作垂线,顶点与垂足之间的线段叫做三角形的高。

注意:三角形的角平分线、中线和高都有三条。

6、三角形的三边关系:三角形的任意两边的和大于第三边,任意两边的差小于第三边。

7、三角形的内角:三角形的内角和等于180。

如图:180321=∠+∠+∠ 8、三角形的外角(1)三角形的一个外角与相邻的内角互补。

18041=∠+∠(2)三角形的一个外角等于与它不相邻的两个内角的和。

324∠+∠=∠ (3)三角形的一个外角大于任何一个与它不相邻的内角。

4∠>2∠或4∠>3∠6、三角形的周长、面积求法和三角形稳定性。

(1)如图1:C △A BC =AB +BC +AC 或C △A BC = a +b +c 。

四个量中已知其中三个能求第四个。

(2)如图2:AD 为高,S △ABC =·BC ·AD三个量中已知其中两个能求第三个。

(3)如图3:△ABC 中,∠ACB=90°,CD 为AB 边上的高,则有:4321S △ABC =·AB ·CD=·AC ·BC 即:AB ·CD=AC ·BC四条线段中已知其中三条能求第四条。

知识点二:多边形及其内角和1、n 边形的内角和=()2180-⨯n ;2、n 边形的外角和=360。

3、一个n 边形的对角线有()23-n n 条,过n 边形一个顶点能作出()3-n 条对角线,把n 边形分成了()2-n 个三角形。

七年级三角形知识点

七年级三角形知识点

一、基础知识1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形. (三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点)2、三角形的表示三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三个顶点用大写字母A,B,C来表示。

注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的△没有意义3、三角形的分类:(1)按边分类:等腰三角形、等边三角形、不等边三角形(2)按角分类:锐角三角形、直角三角形、钝角三角形定义:三角形的中线:三角形中,连结一个顶点和它对边中点的线段.性质:性质1:三角形的中线是线段;性质2:三角形三条中线全在三角形的内部且交于三角形内部一点(重心)性质3:直角三角形斜边上中线长度是斜边一半。

如果三角形一边中线等于这边的一半,那么这个三角形是直角三角形;性质4:中线把三角形分成两个面积相等的三角形.性质5:三角形三条中线能将三角形分成面积相等的六部分;性质6:重心定理:三角形重心到一个顶点的距离等于它到对边中点距离的2倍;性质7:重心和三顶点的连线所构成的三个三角形面积相等;题型:1.三角形的下列线段中,能将三角形的面积分成相等两部分的是( )A: 中线B: 角平分线C: 高D: 中位线2.三角形的重心是三角形三条()的交点。

A: 中线B: 高C: 角平分线D: 垂直平分线3.直角三角形斜边上的中线等于斜边的__________ .4.如图,AD是△ABC的边BC上的中线,BE是△ABD的边AD上的中线,若△ABC的面积是16,求△ABE的面积5.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为()6.一定在△ABC内部的线段是()A: 锐角三角形的三条高、三条角平分线、三条中线B: 钝角三角形的三条高、三条中线、一条角平分线C: 任意三角形的一条中线、二条角平分线、三条高D: 直角三角形的三条高、三条角平分线、三条中线7.如图,△ABC的面积为40,AD为△ABC的中线,BD=5,BE为△ABD的中线,EF⊥BC,求点E到BC边的距离8.如图,CD是Rt△ABC斜边AB上的中线,CD=1006,则AB=__________ .直角三角形斜边上中线长度是斜边一半。

专题7 等边三角形的判定与性质(含答案)

专题7 等边三角形的判定与性质(含答案)

专题7 等边三角形的判定与性质知识解读等边三角形的判定方法有三种:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形.在这三种判定方法中,证明角度等于60°和证明两个角度相等比证明线段相等容易些,因此在证明一个三角形是等边三角形的时候,尽可能寻找60°的角.如果能找到两个60°的角,则就完成了三角形全等的证明.如果找到一个60°的角,则可继续证明这个三角形是等腰三角形.当一个图形中出现等边三角形时,由于等边三角形的三边相等,三个角都等于60°,这就为全等三角形提供了可能.而当一个图形中出现两个等边三角形的时候,由于图中出现了太多相等的线段和相等的角,此时一般会出现全等三角形.培优学案典例示范一、等边三角形判定方法的选择例1 如图,△ABC是等边三角形,D是BC延长线上一点,CE平分∠ACD,且CE=BD.求证:△DAE为等边三角形.【提示】由于CE=BD,AB=AC,因此可考虑证明△ABD≌△ACE,因此可证AD=AE,要说明△DAE为等边三角形,我们只需证明DE和AD,AE相等或者证明△ADE中一个角等于60°即可.【解答】EABCD【技巧点评】要证明一个三角形是等边三角形时,当已知这个三角形是等腰三角形,可设法证明第三条边和这两条边相等,或者证明这个三角形中有一个角等于60°.跟踪训练1.如图,在等边△ABC中,∠ABC和∠ACB的平分线相交于点O,BO、OC的垂直平分线分别交BC于点E 和点F ,求证:△OEF 是等边三角形.FEOCBA二、等边三角形为全等三角形提供可能例2 如图,△ABD 、△AEC 都是等边三角形,BE 、CD 相交于点O .(1)求证:BE=DC ; (2)求∠BOC 的度数. 【提示】(1)BE 和DC 可置于△ACD ,△AEB 中,通过证明△ACD ≌△AEB ,来证得BE=DC ,要证明△ACD ≌△AEB 需要的条件可从等边三角形中获得;(2)根据外角的性质可知∠BOC=∠BDO +∠DBO ,可将求∠BOC 转化为求∠BDO +∠DBO . 【解答】OEDCBA【技巧点评】等边三角形的三条边相等、三个角相等,相等的线段、相等的角是三角形全等的条件,因此当图形中出现两个等边三角形时,一般会出现全等三角形.跟踪训练2.在△AOB 和△COD 中,OA=OB ,OC=OD .(1)如图1,若∠AOB =∠COD =60°,求证:①AC=BD ;②∠APB =60°;(2)如图2,若∠AOB =∠COD=a ,则AC 与BD 间的等量关系式为 ,∠APB 的大小为 (直接写出结果,不证明)图 1 图 2PPOCAODCBA三、旋转线段,构造等腰直角三角形和等边三角形例3 已知:如图,在△ABC 中,AC=BC ,∠ACB=90°,将线段CB 绕点C 旋转60°得到CB',∠ACB 的平分线CD 交直线AB'于点D ,连接DB ,在射线DB'上截取DM=DC . (1)在图1中证明:MB'=DB ;(2)若6,分别在图1、图2中,求出AB'的长(直接写出结果).【提示】(1)本题隐含两个等边三角形,△BCB'和△CDM 都是等边三角形,连接CM 后,可得到一对全等三角形;(2)在图1中,可证明△ACB'是一个等腰三角形,其底角为15°6,要求的是底边长;图2中,图1的两个三角形仍然全等,△ACB'还是等腰三角形,其顶角是30°6,要求的是底边长,充分利用30°角构造直角三角形可解决这个问题. 【解答】图 1 图 260°60°M B'DCBAB'MDC BA【技巧点评】线段绕其一个端点旋转60°,连接另一个端点的对应点,可得一个等边三角形,线段绕其一个端点旋转90°,连接另一个端点的对应点,可得一个等腰直角三角形.跟踪训练3.(北京中考题)在△ABC 中,AB=AC ,∠BAC=a (0°<a <60°),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连接DE ,若∠DEC=45°,求a 的值.图 1 图 2EDCBA DCBA四、借助60°构造等边三角形解决问题例4 如图,△ABC 是等边三角形,延长BC 到D ,延长BA 到E ,使AE=BD ,连接CE 、DE .求证:EC=ED .【提示】要证明EC=ED ,可考虑将这两条线段置于一对全等三角形中,图中没有全等三角形,可设法构造全等三角形,由于∠B =60°,可考虑延长BD 到点F ,构造一个等边三角形. 【解答】F EDC B A跟踪训练4.已知:△ABC 为等边三角形.(1)如图1,P 为等边△ABC 外一点,且∠BPC=120°.试猜想线段BP 、PC 、AP 之间的数量关系,并证明你的猜想;(2)如图2,P 为等边△ABC 内一点,且∠APD=120°.求证:PA+PD+PC >BD .图 1 图 2PDCBAPCBA拓展延伸五、与等边三角形有关的动态问题例5 如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 运动到点C 时,P 、Q 都停止运动.(1)出发后运动2s 时,试判断△BPQ 的形状,并说明理由;那么此时PQ 和AC 的位置关系呢?请说明理由;(2)设运动时间为t ,△BPQ 的面积为S ,请用t 的表达式表示S .QP C BA【提示】(1)当出发后两秒时,AP =2×1=2,所以BP =4,BQ =2×2=4,又△ABC 是等边三角形,∠B =60°,所以△BPQ 是等边三角形,∠BPQ =∠A =60°,所以PQ //AC .(2)过Q 作QH ⊥AB ,因为∠B =60°,所以∠BQH =30°,又BQ =2t ,所以BH=t ,由勾股定理,得3t ,所以得面积S ()36t -. 跟踪训练5.如图2-7-10,在等边△ABC 中,AB =9cm ,点P 从点C 出发沿CB 边向点B 以2cm/s 的速度移动,点Q 点从B 点出发沿BA 边向A 点以5cm/s 速度移动.P ,Q 两点同时出发,它们移动的时间为t 秒钟。

一条边为7的直角三角形

一条边为7的直角三角形

一条边为7的直角三角形哎,今天咱们聊聊那个边长为7的直角三角形。

听起来是不是有点枯燥?其实并没有!直角三角形可不是单纯的三条边、几个角那么简单,它就像是一位勇敢的骑士,在数学的世界里冲锋陷阵,时不时还带来一场精彩的冒险。

想象一下,一个边长为7的直角三角形,就像是拿着一把巨剑的英雄,时刻准备迎接挑战。

咱们得搞明白直角三角形的特点。

这个三角形有一个90度的角,就像是一个弯弯的拐角,真是让人恨不得绕着它跑个几圈。

两条短边的长度就是咱们的武器,边长7的短边,像是小小的手枪,虽然看上去不起眼,但威力十足!而那个最长的边,也就是斜边,仿佛是一条高高在上的巨龙,既神秘又强大。

要说这斜边的长度,你得用个公式,叫做勾股定理,听起来高深莫测,其实就是简单的平方和嘛。

边长为7的短边,经过计算,那斜边可不止是简单的一个数字哦。

而这7,真是个好数字。

它不仅在直角三角形中熠熠生辉,在生活中也常常和我们不期而遇。

你看,走进超市,一件商品标价7块钱,感觉就像是个小幸运;朋友聚会时,你们拼酒,也许一轮轮下来,你手里的酒杯就7分满,杯子里的酒液闪着光,宛如黄金。

每当看到这样的数字,心里总会冒出一阵亲切感,仿佛这世间的一切都与我有着不解之缘。

再说了,直角三角形的应用可不小。

想象一下,搭建一个阳光棚,你得用到直角三角形的知识。

木材、铁丝、各种材料拼凑在一起,最后形成了一个稳稳的结构,仿佛在向你炫耀着它的强壮。

你可能觉得这没什么,可别小看它,咱们的房屋、桥梁,很多设计的原理都是靠这些几何知识撑起来的。

真是神奇对吧?很多小朋友在学校学数学的时候,总会遇到直角三角形。

老师可能会说,"同学们,这个三角形的应用可广泛了。

"于是,孩子们就认真听着,心里想着,学了这个能干嘛呢?可等到长大后,发现当年那些看似无用的知识,如今竟然派上用场了。

就像小时候吃的那颗糖,现在突然想起来,甜得让人怀念。

直角三角形的美感也不容小觑。

看看那些建筑设计,许多现代建筑里都运用了这个形状,简单却不失大气,像极了艺术家的创作。

以7为直角边的三角形

以7为直角边的三角形

以7为直角边的三角形在数学的世界里,三角形就像是那种不太起眼但又总能给你惊喜的小家伙。

特别是以7为直角边的三角形,听起来是不是挺有意思的?想象一下,这个小家伙,直角边上“挂着”个7,仿佛在跟你说:“嘿,我可不是随便的三角形哦!”我们在生活中见过许多形状,方方正正的正方形,圆润的圆形,三角形呢,总是显得那么独特,它有点尖锐,像个小小的尖刀,时不时给我们带来一些挑战。

7这个数字,它就像那种刚刚好的小伙伴,既不显得过于庞大,也不会觉得太微小。

你知道吗?在数学中,三角形的边长就像我们生活中的目标,直角边代表着基础的扎实,而另外两条边呢,就像是我们在追逐梦想时需要努力的方向。

直角边7,就像那种在打拼中总是给你力量的支柱,让你在困境中站得稳,心里踏实。

可以说,这个7就像是我们的朋友,支持着我们向上攀登。

再说说这个三角形的面积,公式是什么来着?哦,对了,面积=(底×高)÷2。

嘿,听起来是不是很简单?把底和高的数字带进去,就能得到一个结果,真是简单明了。

不过,想想生活中的道理,我们很多时候也是这样,要想得到理想的结果,就得认真地把每一步都做好。

像7这个数字,它不仅仅是个数字,它是一种态度,是在每个三角形中都能找到的乐趣和挑战。

你知道吗?三角形不仅仅是数学的概念,它在生活中也无处不在。

比如说,你看那些房顶,多数都是三角形的形状,为什么呢?因为三角形稳固呀,风吹雨打都不怕!就像我们的生活,总会遇到一些风风雨雨,只有扎实的基础才能让我们屹立不倒。

有些人甚至把三角形的形状和关系比作朋友之间的联系,彼此之间的支持,才让这个关系变得更加稳固。

说到这里,我就想起了我们小时候在玩那个“折纸”的游戏。

你知道吧,折一只小船,一开始要折出一个三角形,那个形状真的很有意思。

小船在水中漂荡的时候,就像我们的梦想,时不时会碰到波浪,但只要保持三角形的结构,它总能找到平衡。

7这个数字就像是那只小船的一个关键支撑,让它在水中更稳当,走得更远。

以7为边长的直角三角形

以7为边长的直角三角形

以7为边长的直角三角形说到以7为边长的直角三角形,嘿,真是个有趣的话题!想象一下,一个三角形,边长都是7,这可是个怪物啊。

说它怪,倒不是说它不好,而是这玩意儿的每一边都差不多,特别有趣。

你看,直角三角形嘛,两个边形成了一个90度的角,另一个边就是斜边,嘿,不得不说,这个斜边可是个明星!大家都知道,直角三角形就像生活中的小伙伴,总是能让我们觉得意外。

咱们先来聊聊这三角形的边。

两条边都7,哇,那真是有点小对称啊,简直像个萌萌的正方形,偏偏它又不那么死板,有了点活泼的感觉。

说到这里,可能有人会想,这三角形到底有什么用呢?它可用处多着呢。

建筑啊、设计啊,这玩意儿都能派上用场。

听说很多建筑师就爱用这种简单又实用的形状,真是“能者多劳”呀!然后,再说说这个三角形的面积,算起来也不复杂。

面积公式是底乘高再除以二,底和高都可以是7,算一算,嘿,35!真是个不错的数字呢。

想象一下,你在草地上画个这么大的三角形,简直像是在搞艺术展览!要是能在里面躺一躺,享受一下阳光,那感觉肯定美极了。

不过,你要是打算在上面野餐,记得带上防蚊水哦,不然可就要被小虫子给“围攻”了。

说到直角三角形,我总是想起那些几何课上的日子。

老师在黑板上画着各种三角形,我一边听一边想着:这玩意儿有什么好学的呢?可等我真的用到的时候,才发现,原来它真的是个宝贝。

比如,玩飞盘的时候,如果你想让盘子飞得又远又稳,了解一下角度和距离的关系就能帮你提高命中率。

嘿,这可不是我自夸,是真的有用的!直角三角形还带给我们很多“智慧”。

比如,生活中遇到困难,咱们就像这三角形一样,找到一个合适的角度去解决问题。

别忘了,换个方向思考,事情就会迎刃而解。

就像我们用三角形去理解世界一样,很多事情都有个简单的解决方法,只要咱们不怕麻烦。

说到这,我总想起小时候和小伙伴们一起在操场上玩游戏。

有时候我们会用三角形来比拼,看谁能在短时间内找到最短的路线。

虽然那时候有点天真,但现在回想起来,真是快乐无比啊。

培优提能7 三角形中的中线、角平分线、高线问题

培优提能7 三角形中的中线、角平分线、高线问题
2
2
所以 cos∠ADB+cos∠CDB=0,所以 a +c =17,
2
2
2
2
2
由余弦定理 b =c +a -2accos B,可得 9=c +a -ac,即 ac=8,

由三角形的面积公式得 S△ABC= acsin B=2 ,

2
2
2
又(a+c) =a +c +2ac=17+2×8=33,所以 a+c= ,
(2)利用中线长定理求解,但要书写其证明过程.
(3)利用向量法求解.
触类旁通 1 在△ABC 中,内角 A,B,C 的对边分别是 a,b,c,已

知 b=acos C+ csin A,点 M 是 BC 的中点.
(1)求A的值;


解:(1)因为 b=acos C+ csin A,


根据正弦定理得 sin B=sin Acos C+ sin Csin
(3)高线的两个作用:①产生直角三角形;②与三角形的
面积相关.
培优点1
三角形中的中线问题
典例 1 在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,且满

足 cos C= - .

(1)求角B;


解:(1)由 cos C= - ,得 2bcos C=2a-c,

利用正弦定理得 2sin Bcos C=2sin A-sin C,


A,
所以 sin(A+C)=sin Acos C+ sin Csin A,


所以 sin Acos C+cos Asin C=sin Acos C+ sin Csin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形
(时间:45分钟满分:100分)姓名
一、选择题(每小题4分,共24分)
1.图中三角形的个数是()
A.8 B.9 C.10 D.11
2.下面四个图形中,线段BE是⊿ABC的高的图
是()
B
A C
E
B
C A.B.
B
A
C
E
B
A
C
E
C.D.
3.以下各组线段为边,能组成三角形的是()A.1cm,2cm,4cm
B.8cm,6cm,4cm
C.12cm,5cm,6cm
D.2cm,3cm,6cm
4.三角形一个外角小于与它相邻的内角,这个三角形是()
A.直角三角形B.锐角三角形
C.钝角三角形D.属于哪一类不能确定5.如图,在直角三角形ABC中,AC≠AB,AD 是斜边上的高,DE⊥AC,DF⊥AB,垂足分
别为E、F,则图中与∠C(∠C除外)相等的
角的个数是()
F
E
C B
A
6.下面各角能成为某多边形的内角和的是()A.430°B.4343°
C.4320°D.4360°
二、填空题(每空4分,共24分)
7.如图,在⊿ABC中,AD是中线,则⊿ABD的
面积⊿ACD的面积(填“>”“<”“=”)。

C
B
A
E D
C
B
A
F
(第7题图)(第8题图)
8.如图,⊿ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,
则∠CDF = 度。

9.一个四边形的四个内角中最多有个钝角,最多有个锐角。

10.一个多边形的每一个外角都等于30°,这个多边形的边数是,它的内角和是。

三、想一想(本题7分)
11.有人说,自己的步子大,一步能走三米多,你相信吗?用你学过的数学知识说明理由。

四、试一试(每题10分,共20分)
12.小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒。

如果要求第三根木棒的长
度是整数,小颖有几种选法?第三根木棒的长
度可以是多少?
13.小华从点A出发向前走10m,向右转36°然后继续向前走10m,再向右转36°,他以同样
的方法继续走下去,他能回到点A吗?若能,当他走回到点A时共走多少米?若不能,写出
理由。

五、算一算(本题15分)
14.⊿ABC中,∠ABC、∠ACB的平分线相交于点O。

(1)若∠ABC = 40°,∠ACB = 50°,则∠BOC = 。

(2)若∠ABC +∠ACB =116°,则∠BOC = 。

(3)若∠A = 76°,则∠BOC = 。

(4)若∠BOC = 120°,则∠A = 。

(5)你能找出∠A与∠BOC 之间的数量关系吗?六、小设计(本题10分)
15.一块三角形优良品种试验田,现引进四种不同的种子进行对比试验,需要将这块地分成面积相等的四块,请你设计出两种划分方案供选择,画图说明。

附:命题意图及参考答案
(一)命题意图
一、选择题
1.考查三角形的概念,看能从复杂的图形中分解出基本图形,会采用适当的方式找到这些基本
图形。

2.考查三角形高的概念。

3.考查学生是否掌握了三角形三边关系。

4.考查学生是否掌握三角形外角概念及三角形分类。

5.考查三角形的高及三角形的内角和等于180°,看学生是否能综合运用。

6.考查多边形的内角和公式,了解学生能否利用方程思想方法来解决问题。

二、填空题
7.考查三角形中线的概念及三角形面积公式。

8.考查三角形的高、角平分线及三角形内角和等于180°。

9.考查学生能否运用四边形的内角和是360°说明有关结论。

10.考查多边形内角和与外角和公式。

三、想一想
11.考查三角形的三边关系,让学生体会数学在生活中的实际运用。

四、试一试
12.考查三角形的三边关系及其在实际中的应用,发展学生的应用意思。

13.考查正多边形的概念的理解,发展学生的抽象思维能力。

五、算一算
14.考查角平分线及三角形内角和公式的综合运用。

六、小设计
通过具体情境的创设,调动学生学习数学的兴趣,考查学生能否采用多种方式解决问题
的能力。

(二)参考答案
1.B
2.A
3.B
4.C
5.B
6.C
7.=
8.74°
9.3,3
10.12,1800°
11.不能。

如果此人一步能走三米多,由三角形三边的关系得,此人两腿的长大于3米多,这与实际情况不符。

所以他一步不能走三米多。

12.小颖有9种选法。

第三根木棒的长度可以是4cm,5cm,6cm,7cm,8cm,9cm,10cm,11cm,12cm。

13.小华能回到点A。

当他走回到点A时,共走1000m。

14.(1)135°
(2)122°
(3)128°
(4)60°
(5)∠BOC = 90°+
1
2
∠A
15.以下是部分答案:。

相关文档
最新文档