高中文科数学解三角形部分讲练整理
高中数学必修五第一章《解三角形》知识点知识讲解
高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
高考数学热点专题突破讲练:三角恒等变换与解三角形(含新题详解)
第七讲 三角恒等变换与解三角形简单三角恒等变换差角余弦公式倍角公式和(差)角公式余弦定理正弦定理三角形面积公式解三角形应用举例1.(倍角公式)(2013·课标全国卷Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4=( ) A.16 B.13 C.12D.23【解析】 ∵sin 2α=23,∴cos 2⎝⎛⎭⎫α+π4=1+cos ⎝⎛⎭⎫2α+π 22 =1-sin 2α2=1-232=16.【答案】 A2.(正弦定理与和角公式)(2013·陕西高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【解析】 由正弦定理,及b cos C +c cos B =a sin A ,得 sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A , ∴sin A =1,得A =π2(由于0<A <π),故△ABC 是直角三角形. 【答案】 A3.(正弦定理)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =________. 【解析】 在△ABC 中,AC sin B =BCsin A, ∴AC =BC ·sin B sin A=2 3.【答案】 2 3图2-2-14.(余弦定理的应用)(2013·福建高考)如图2-2-1,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.【解析】 ∵sin ∠BAC =sin(90°+∠BAD )=cos ∠BAD =223,∴在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , ∴BD 2=18+9-2×32×3×223=3,∴BD = 3. 【答案】35.(三角恒等变换)(2013·重庆高考改编)4cos 50°-tan 40°=________. 【解析】 4cos 50°-tan 40°=4sin 40°-sin 40°cos 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=sin 80°+sin (60°+20°)-sin (60°-20°)cos 40°=sin 80°+2cos 60°sin 20°cos 40°=sin 80°+sin 20°cos 40°=sin (50°+30°)+sin (50°-30°)cos 40°=2sin 50°cos 30°cos 40°=3·cos 40°cos 40°= 3.【答案】 3简单的三角恒等变换(2013·湖南高考)已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335, 求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合.【思路点拨】 (1)利用和(差)角、倍角公式将f (x )、g (x )化简,沟通二者联系;(2)由f (x )≥g (x ),化为“一角一名称”的三角不等式,借助三角函数的图象、性质求解.【自主解答】 f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x , 即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎫x +π6≥12, 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.1.(1)注意角之间的关系,灵活运用和(差)、倍角公式化为“同角x ”的三角函数,这是解题的关键;(2)重视三角函数图象,性质在求角的范围中的应用,由图象的直观性、借助周期性,整体代换可有效避免错误.2.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.变式训练1 已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2. 求cos 2αsin (α-π4)的值.【解】 依题意得sin α-cos α=12,所以1-2sin αcos α=14,2sin αcos α=34.则(sin α+cos α)2=1+2sin αcos α=74.由0<α<π2,知sin α+cos α=72>0.所以cos 2αsin (α-π4)=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-142.正(余)弦定理(2013·山东高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a+c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.【思路点拨】 (1)由余弦定理,得关于a ,c 的方程,与a +c =6联立求解;(2)依据正弦定理求sin A ,进而求cos A ,sin B ,利用两角差的正弦公式求值.【自主解答】 (1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429,由正弦定理得sin A =a sin B b =223.因为a =c ,所以A 为锐角. 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.1.(1)本题求解的关键是运用正弦(余弦)定理完成边角转化;(2)求解易忽视判定A 的范围,错求cos A =±13,导致增解.2.以三角形为载体考查三角变换是近年高考的热点,要时刻关注它的两重性:一是作为三角形问题,它必然通过正弦(余弦)定理、面积公式建立关于边的方程,实施边角转化;二是它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的.变式训练2 (2013·重庆高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc .(1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值. 【解】 (1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因为0<A <π,所以A =5π6.(2)由(1)得sin A =12.又由正弦定理及a =3得S =12bc sin A =12·a sin B sin A·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C )=3cos(B -C ). 所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取最大值3.解三角形及应用(2013·济南质检)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .【思路点拨】 (1)从要证的结论看,需将条件中角的三角函数化为边,因此需统一为正弦函数,然后运用三角变换公式化简.(2)由(1)的结论,联想余弦定理,求cos B ,进而求出△ABC 的面积.【自主解答】 (1)在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B (sin Acos A+sin C cos C )=sin A cos A ·sin Ccos C, 所以sin B (sin A cos C +cos A sin C )=sin A sin C . 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 所以sin 2B =sin A sin C . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列. (2)因为a =1,c =2,所以b = 2. 由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34.因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.认真分析题设与要求结论的联系与区别,消除差异,从而找到解题的突破口,这是本题求解的关键.2.三角形中的边角计算是近年命题的重点,解决这类问题要抓住两点:(1)根据条件,恰当选择正弦、余弦定理完成边角互化;(2)结合内角和定理、面积公式,灵活运用三角恒等变换公式.变式训练3 已知三角形的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量m =(c -a ,b -a ),n =(a +b ,c ),且m ∥n .(1)求角B 的大小;(2)求sin A +sin C 的取值范围.【解】 (1)∵m ∥n ,∴c (c -a )=(b -a )(a +b ), ∴c 2-ac =b 2-a 2,则a 2+c 2-b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =12.又0<B <π,因此B =π3.(2)∵A +B +C =π,∴A +C =2π3,∴sin A +sin C =sin A +sin ⎝⎛⎭⎫2π3-A =sin A +sin2π3 cos A -cos 2π3sin A =32sin A +32cos A =3sin ⎝⎛⎭⎫A +π6, ∵0<A <2π3,∴π6<A +π6<5π6,∴12<sin ⎝⎛⎭⎫A +π6≤1,∴32<sin A +sin C ≤ 3. 故sin A +sin C 的取值范围是⎝⎛⎦⎤32,3正(余)弦定理的实际应用【命题要点】 ①实际问题中的距离,高度测量;②实际问题中角度、方向的测量;③实际行程中的速度、时间的计算.如图2-2-2所示,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间?图2-2-2【思路点拨】 由题设条件,要求该救援船到达D 点的时间,只需求出C 、D 两点间的距离,先在△ABD 中求BD ,再在△BDC 中求CD ,进而求出时间.【自主解答】 由题意知AB =5(3+3),∠DBA =90°-60°=30°,∠DAB =45°,∴∠ADB =105°.∴sin 105°=sin 45°·cos 60°+sin 60°·cos 45° =22×12+32×22=2+64. 在△ABD 中,由正弦定理得: BD sin ∠DAB =ABsin ∠ADB,∴BD =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)×222+64=103(1+3)1+3=10 3.又∠DBC =180°-60°-60°=60°,BC =203, 在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2·BD ·BC ·cos 60° =300+1 200-2×103×203×12=900.∴CD =30(海里),∴救援船需要的时间t =3030=1(小时).1.该题求解的关键是借助方位角构建三角形,要把需求量转化到同一个三角形(或相关三角形)中,运用正(余)弦定理沟通边角关系.2.应用解三角形知识解决实际问题需要下列三步: (1)根据题意,画出示意图,并标出条件.(2)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解.(3)检验解出的结果是否符合实际意义,得出正确答案.变式训练4 如图2-2-3,A 、C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度沿北偏东15°方向直线航行,图2-2-3下午4时到达C 岛. (1)求A 、C 两岛之间的距离; (2)求∠BAC 的正弦值.【解】 (1)在△ABC 中,由已知,得AB =10×5=50(海里),BC =10×3=30(海里), ∠ABC =180°-75°+15°=120°,由余弦定理,得AC 2=502+302-2×50×30 cos 120°=4 900, 所以AC =70(海里).故A 、C 两岛之间的距离是70海里. (2)在△ABC 中,由正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC ·sin ∠ABC AC =30sin 120°70=3314.故∠BAC 的正弦值是3314.从近两年的高考命题看,正弦定理、余弦定理是高考命题的热点,不仅是用来解决一些简单的三角形边角计算问题;且常与三角函数、向量、不等式交汇命题,灵活考查学生分析解决问题的能力,多以解答题的形式出现,属中低档题目.以三角形为载体的创新交汇问题(12分)已知△ABC 是半径为R 的圆内接三角形,且2R ·(sin 2A -sin 2C )=(2a -b )sin B .(1)求角C ;(2)试求△ABC 的面积S 的最大值. 【规范解答】 (1)由2R (sin 2A -sin 2C ) =(2a -b )sin B ,得a sin A -c sin C =2a sin B -b sin B , ∴a 2-c 2=2ab -b 2,4分由余弦定理得cos C =a 2+b 2-c 22ab =22,又0<C <π,∴C =π4.6分(2)∵csin C=2R , ∴c =2R sin C =2R . 由(1)知c 2=a 2+b 2-2ab , ∴2R 2=a 2+b 2-2ab .8分又a 2+b 2≥2ab (当且仅当a =b 时取“=”), ∴2R 2≥2ab -2ab , ∴ab ≤2R 22-2=(2+2)R 2.10分∴S △ABC =12ab sin C =24ab ≤2+12R 2. 即△ABC 面积的最大值为2+12R 2. 12分【阅卷心语】易错提示 (1)不能灵活运用正弦定理化简等式,致使求不出角C ,究其原因是不能深刻理解正弦定理的变形应用.(2)对求△ABC 的面积的最大值束手无策,想不到利用等式求ab 的最大值. 防范措施 (1)利用a =2R sin A ,b =2R sin B ,c =2R sin C ,可实施边角转化.(2)对于“已知一边及其对角”的三角形,常用余弦定理,得到其他两边的关系,再利用基本不等式便可求三角形面积的最值.1.已知函数f (x )=sin(x +7π4)+cos(x -3π4),x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求f (β)的值. 【解】 (1)∵f (x )=sin ⎝⎛⎭⎫x +74π-2π+sin ⎝⎛⎭⎫x -34π+π2 =sin(x -π4)+sin(x -π4)=2sin(x -π4). ∴T =2π,f (x )的最小值为-2.(2)由cos(β-α)=45,cos(β+α)=-45得 cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2. ∴f (β)=2sin ⎝⎛⎭⎫π2-π4=2sin π4= 2. 2.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.【解】 (1)由已知及正弦定理得sin A =sin B cos C +sin C sin B ,①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4. (2)△ABC 的面积S =12ac sin B =24ac . 由已知及余弦定理得4=a 2+c 2-2ac cos π4. 又a 2+c 2≥2ac ,故ac ≤42-2, 当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.。
2019版文科数学讲义:第四章 三角函数 解三角形4.1 含答案
§4.1任意角、弧度制及任意角的三角函数最新考纲考情考向分析1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3。
理解任意角三角函数(正弦、余弦、正切)的定义.以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识.题型以选择题为主,低档难度。
1.角的概念(1)角的分类(按旋转的方向)角错误!(2)象限角(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.(2)角度制和弧度制的互化:180°=π rad,1°=错误!rad,1 rad=错误!°. (3)扇形的弧长公式:l=|α|r,扇形的面积公式:S=错误!lr=错误!|α|r2.3.任意角的三角函数的定义α为任意角,α的终边上任意一点P (异于原点)的坐标(x ,y ),它与原点的距离OP =r =错误! (r >0),则sin α=y r ;cos α=错误!;tan α=错误!;cot α=错误!;sec α=错误!;csc α=错误!.4.三角函数在各象限的符号规律及三角函数线(1)三角函数在各象限的符号:象限符号函数Ⅰ Ⅱ Ⅲ Ⅳsin α,csc α + + - -cos α,sec α + - - +tan α,cot α + - + -(2)三角函数线:正弦线 如图,角α的正弦线为错误!。
余弦线 如图,角α的余弦线为错误!。
正切线 如图,角α的正切线为错误!.知识拓展三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P的位置无关.(√) (3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α〉1。
专题3-2 解三角形最值范围与图形归类(讲+练)-2023年高考数学二轮复习讲练测(全国通用原卷版)
专题3-2解三角形最值、范围与图形归类目录讲高考................................................................................................................................................................................1题型全归纳......................................................................................................................................................................2【题型一】最值与范围1:角与对边....................................................................................................................2【题型二】最值与范围2:角与邻边....................................................................................................................2【题型三】范围与最值3:有角无边型................................................................................................................3【题型四】最值与范围4:边非对称型................................................................................................................4【题型五】最值:均值型...........................................................................................................................................4【题型六】图形1:内切圆与外接圆....................................................................................................................4【题型七】图形2:“补角”三角形....................................................................................................................6【题型八】图形3:四边形与多边形....................................................................................................................7【题型九】三大线1:角平分线应用....................................................................................................................8【题型十】三大线2:中线应用..............................................................................................................................8【题型十一】三大线3:高的应用.........................................................................................................................9【题型十二】证明题.................................................................................................................................................10专题训练. (10)讲高考1.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC(2)若sin sin A C =,求b .2.(2022·全国·统考高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.3.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B =++.(1)若23C π=,求B ;(2)求222a b c +的最小值.4.(2021·全国·统考高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.5.(2021·北京·统考高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ∠;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC 的周长为4+条件③:ABC 题型全归纳【题型一】最值与范围1:角与对边【讲题型】例题1.已知ABC 的内角,,A B C 所对的边分别为()()22,,,sin sin sin sin sin a b c B C A B C -=-(1)求A ;(2)已知a =.例题2.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,已知22222202b c a ca b c b c+-+=+-+.(1)求角A 的值;1.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且2sin 2cos )A A B C -+sin 30A -=.(1)求A 的大小;(2)若2a =,求ABC ∆的周长L 的取值范围.2.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a,b,c ,且()222πcos B b a c ac sinAcosA---=(1)求角A ;(2)若a =bc 的取值范围.【题型二】最值与范围2:角与邻边【讲题型】例题1..已知ABC 为锐角三角形,角,,A B C 所对边分别为,,a b c ,ABC 满足:222sin sin sin sin sin A B C B C +-≤.(1)求角A 的取值范围;1..在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知sinsin 2A Ca b A +=.(1)求角B ;(2)若△ABC 为锐角三角形,且2c =,求△ABC 面积的取值范围.2.在ABC 中,设A ,B ,C 所对的边长分别为a ,b ,c ,且()()()sin sin sin c b C a b A B -=-+.(1)求A ;(2)若2b =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.【题型三】范围与最值3:有角无边型【讲题型】例题1.三角形ABC 中,已知222sin sin +sin sin sin A B A B C +=,其中,角A B C 、、所对的边分别为a b c 、、.(Ⅰ)求角C 的大小;(Ⅱ)求a b c +的取值范围.例题2.在锐角三角形ABC,若ac c b a c b a 3))((=+++-(I)求角B(II)求A A cos sin 3+的取值范围【练题型】1.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)若a =5c =,求b(Ⅱ)求cos sin A C +的取值范围.2.在锐角三角形ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,且2sin sin cos sin cos C B a BB b A-=.(1)求A ;(2)求bc 的取值范围.【题型四】最值与范围4:边非对称型【讲题型】例题1.在ABC ∆中,,,a b c 分别是角,,A B C 的对边()()3a b c a b c ab +++-=.(1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求2a b -的范围.【练题型】在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin A C B A C +=.(Ⅰ)求角B 的大小;(Ⅱ)若ABC 为锐角三角形,b =a -的取值范围.【题型五】最值:均值型【讲题型】例题1.已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c+的最大值.【练题型】1.在△ABC 中,设AD 为BC 边上的高,且AD =BC BC ,b ,c 分别表示角B ,C 所对的边长,则b cc b+的取值范围是_.【题型六】图形1:内切圆与外接圆【讲题型】例题1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知4b =,2c =,且sin sin sin()C B A B =+-.(1)求角A 和边a 的大小;(2)求△ABC 的内切圆半径.例题2.ABC 中,已知1AB =,BC =D 为AC 上一点,2AD DC =,AB BD ⊥.(1)求BD 的长度;(2)若点P 为ABD △外接圆上任意一点,求2+PB PD 的最大值.【讲技巧】外接圆:1.外接圆的圆心到三角形的三个顶点的距离相等。
高中数学解三角形-练习及详细答案
解三角形练习题一:在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=(). A.43B.2 3C. 3D.3 2题二:在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=23,c=22,1+tan Atan B=2cb,则C =().A.30°B.45°C.45°或135°D.60°题三:在△ABC中,角A、B、C所对的边分别是a、b、c.若b=2a sin B,则角A的大小为________.题四:在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cos A-a cos C=0.求角A的大小.题五:在△ABC中,内角A,B,C依次成等差数列,AB=8,BC=5,则△ABC外接圆的面积为________.题六:在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan A tan C. 求证:a,b,c成等比数列.题七:某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.题八:如图,在△ABC中,已知B=π3,AC=43,D为BC边上一点.若AB=AD,则△ADC的周长的最大值为________.题九:如图,在△ABC中,点D在BC边上,AD=33,sin∠BAD=513,cos∠ADC=35.(1)求sin∠ABD的值;(2)求BD的长.题十:如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)().A.2.7 m B.17.3 mC.37.3 m D.373 m题十一:在△ABC中,若sin2A+sin2B < sin2C,则△ABC的形状是().A.锐角三角形B.直角三角形C.钝角三角形D.不能确定题十二:在△ABC中,a=2b cos C,则这个三角形一定是().A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形解三角形参考答案题一: B.详解:由正弦定理得:BC sin A = AC sin B ,即32sin 60° = AC sin 45° ,所以AC = 3232×22 =2 3. 题二: B.详解:由1+tan A tan B =2c b和正弦定理, 得cos A sin B +sin A cos B =2sin C cos A ,即sin C =2sin C cos A ,所以cos A =12,则A =60°. 由正弦定理得23sin A = 22sin C , 则sin C = 22, 又c < a ,则C < 60°,故C = 45°.题三: 30°或150°详解:由正弦定理得sin B =2sin A sin B ,因为sin B ≠ 0,所以sin A = 12,所以A =30°或A =150°. 题四: A =π3. 详解:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,所以2sin B cos A -sin(A +C )=0,即sin B (2cos A -1)=0.因为0 < B < π,所以sin B ≠ 0,所以cos A = 12. 因为0 < A < π,所以A = π3. 题五: 49π3. 详解:记△ABC 的外接圆半径为R .依题意得2B =A +C ,又A +C +B =π,因此有B = π3,所以AC =AB 2+BC 2-2AB ·BC ·cos B =7.又2R =AC sin B = 7sin 60°,即R = 73,故△ABC 的外接圆的面积是πR 2= 49π3. 题六: 见详解.详解:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B ()sin A cos A +sin C cos C =sin A cos A ·sin C cos C, 因此sin B (sin A cos C +cos A sin C )=sin A sin C ,所以sin B sin(A +C )=sin A sin C .又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sin C .由正弦定理得b 2=ac ,即a ,b ,c 成等比数列.题七: (1) 303;(2) 小艇航行速度的最小值为1013 海里/小时. 详解:(1)设相遇时小艇航行的距离为S 海里, 则S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400 = 900()t -132+300, 故当t = 13时,S min =103,v = 10313=303, 即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,如图所示.由题意可得:(vt )2=202+(30t )2-2·20·30t ·cos(90°-30°),化简得: v 2=400t 2-600t +900=400()1t -342+675. 由于0 < t ≤ 12,即1t ≥ 2,所以当 1t=2时,v 取得最小值1013, 即小艇航行速度的最小值为1013海里/小时.题八: 8+4 3.详解:因为AB =AD ,B = π3,所以△ABD 为正三角形, 在△ADC 中,根据正弦定理,可得AD sin C = 43sin 2π3 = DC sin ()π3-C , 所以AD =8sin C ,DC =8sin ()π3-C ,所以△ADC 的周长为AD +DC +AC=8sin C +8sin ()π3-C +4 3=8⎝⎛⎭⎫sin C +32cos C -12sin C +4 3 =8⎝⎛⎭⎫12sin C +32cos C +4 3 =8sin ()C +π3+43,因为∠ADC = 2π3,所以0 < C < π3,所以π3 < C +π3 < 2π3,所以当C +π3 = π2,即C = π6时,△ADC 的周长的最大值为8+4 3. 题九: (1) 3365.(2) 25. 详解:(1)因为cos ∠ADC = 35, 所以sin ∠ADC =1-cos 2∠ADC = 45. 又sin ∠BAD = 513, 所以cos ∠BAD =1-sin 2∠BAD =1213. 因为∠ABD =∠ADC -∠BAD ,所以sin ∠ABD =sin(∠ADC -∠BAD )=sin ∠ADC cos ∠BAD -cos ∠ADC sin ∠BAD= 45 × 1213 - 35 × 513 = 3365. (2)在△ABD 中,由正弦定理得BD sin ∠BAD = AD sin ∠ABD, 所以BD = AD ×sin ∠BAD sin ∠ABD= 33×5133365=25. 题十: C.详解:在△ACE 中,tan 30°=CE AE = CM -10AE . 所以AE = CM -10tan 30°. 在△AED 中,tan 45°=DE AE = CM +10AE , 所以AE =CM +10tan 45°, 所以CM -10tan 30° = CM +10tan 45°, 所以CM = 10(3+1)3-1=10(2+3)≈37.3(m). 题十一: C.详解:由正弦定理得a 2+b 2 < c 2,所以cos C = a 2+b 2-c 22ab < 0,所以C 是钝角,故△ABC 是钝角三角形. 题十二: A.详解:由余弦定理知cos C = a 2+b 2-c 22ab, 所以a =2b ·a 2+b 2-c 22ab = a 2+b 2-c 2a, 所以a 2=a 2+b 2-c 2,所以b 2=c 2,所以b =c .。
高中数学解三角形知识点总结与练习
解三角形一、知识点总结1. 内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -;sin cos cos sin tan cot 222222A B C A B C A B C +++===;;. 2.面积公式:1sin 2ABC S ab C ∆== 1sin 2bc A =1sin 2ca B 3.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:R Cc B b A a 2sin sin sin ===或变形:::sin :sin :sin a b c A B C = (解三角形的重要工具) 形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具)4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A =+-2222cos b c a ca B =+- (解三角形的重要工具)2222cos c a b ab C =+-形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cos C =abc b a 2222-+ 5.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.7. 已知条件定理应用 一般解法 一边和两角(如a 、B 、C )正弦定理 由A+B+C=180˙,求角A ,由正弦定理求出b 与c ,在有解时 有一解。
两边和夹角(如a 、b 、c)余弦定理 由余弦定理求第三边c ,由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有解时有一解。
专题18三角函数与解三角形解答题20题-备战高考数学冲刺横向强化精练精讲(原卷版)
三角函数与解三角形解答题20题1.(2019年天津市高考数学试卷(文科)) 在ABC 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值. 2.(2021年浙江省高考数学试题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y f x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期; (2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值. 3.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a 3,b 7ABC 的面积;(2)若sin A 3C 2,求C . 4.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(222a b c +=,求sin C .5.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若22DC =BC .6.(2021年全国新高考Ⅰ卷数学试题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.7.(2021年全国新高考II 卷数学试题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.8.(2021年北京市高考数学试题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:2c b =;条件②:ABC 的周长为423+;条件③:ABC 的面积为334; 9.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形. 10.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.11.(2020年江苏省高考数学试卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.12.(2020年浙江省高考数学试卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a -=.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.13.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A C a b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 14.(2021·全国·模拟预测)如图,在ABC 中,D ,E 分别为边AB ,AC 上的点,满足321BC =,7BD =,tan 33BDC ∠=-,3DEC π∠=.(1)求BCD ∠的大小;(2)求CE DE +的最大值.15.(2021·上海黄浦·一模)已知直线()x t t =∈R 与函数sin 2y x =、cos 26y x π⎛⎫=+ ⎪⎝⎭的图像分别交于M 、N 两点.(1)当4t π=时,求MN 的值; (2)求MN 关于t 的表达式()f t ,写出函数()y f t =的最小正周期,并求其在区间[]0,2π内的零点.16.(2021·上海徐汇·一模)已知向量113,sin 22,((),1)22m x x n f x ⎛⎫==- ⎪ ⎪⎝⎭,且m n ⊥, (1)求函数()f x 在[0,]x π∈上的单调递减区间;(2)已知ABC 的三个内角分别为,,A B C ,其对应边分别为,,a b c , 若有112f A π⎛⎫-= ⎪⎝⎭,3BC =,求ABC 面积的最大值.17.(2021·山东·泰安一中模拟预测)设函数()()sin f x m x ωϕ=+,其中0,0,2m πωϕ>><,其图象的两条对称轴间的最短距离是2π,若()12f x f π⎛⎫- ⎪⎝⎭对x ∈R 恒成立,且212f π⎛⎫-=- ⎪⎝⎭. (1)求()f x 的解析式; (2)在锐角ABC 中,,,A B C 是ABC 的三个内角,满足()()sin 3cos 2B f A B A B ⎛⎫=-- ⎪⎝⎭,求sin sin C B的取值范围. 18.(2021·辽宁·模拟预测)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()2cos 3sin b A a B -.(1)若::1:2:2a b c =,则此时ABC 是否存在?若存在,求ABC 的面积;若不存在,请说明理由;(2)若ABC 的外接圆半径为4,且2a b c -=,求ABC 的面积. 19.(2021·新疆昌吉·模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3cos cos cos a A c B b C =+.(1)若89a =ABC 的面积为102b ,c 的值;(2)若sin sin B k C =,且ABC 为钝角三角形,求k 的取值范围. 20.(2021·四川雅安·模拟预测(文))已知函数()3sin2cos2f x x x =-. (1)求函数()f x 的最小正周期和对称中心;(2)在ABC 中,角,,A B C 的对边分别为,,a b c ,其中4,,3b A ABC π==的面积为3求()f C 的值.。
高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案
第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。
高考数学二轮复习专题篇素养提升 专题1三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形文理
②由 f(x)=12sin2x-π6= 63,
得 sin2x-π6= 33,
∵x∈0,π4,∴-π6≤2x-π6≤π3,
∴cos2x-π6=
6 3.
∴cos 2x=cos2x-π6+π6 =cos2x-π6× 23-sin2x-π6×21 = 36× 23- 33×12= 22- 63.
三角恒等变换的“四大策略” (1)常值代换:特别是“1”的代换, 1=sin2θ+cos2θ=tan 45°等. (2)项的拆分与角的配凑: 如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.
分值 10 12 10
年份 卷别 Ⅰ卷
2019 Ⅱ卷 Ⅲ卷 Ⅰ卷
2018 Ⅱ卷 Ⅲ卷
题号
考查角度
分值
17 正余弦定理
12
二倍角公式、基本关系式、余弦定理、
15
5
三角形面积公式
18
正余弦定理、三角形面积公式
12
17
正余弦定理、解三角形
12
二倍角、辅助角公式、基本关系式、
10、15 和的正弦公式、余弦定理
10°=
典例1
A.34
(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin
( A)
B.14
C.12+
3 2
D.3
3 4
(2)(2020·宜宾模拟)已知 α∈0,π2,且 3sin2α-5cos2α+sin 2α=0,则
sin 2α+cos 2α=
( A)
A.1
B.-2137
文科高考数学重难点02 三角函数与解三角形(解析版)
重难点02 三角函数与解三角形【高考考试趋势】新高考环境下,三角函数与解三角形依然会作为一个重点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考,而且文理有别,或"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题.三角函数的图象与性质是高考考查的重点及热点内.备考时要熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化鉴于新课标核心素养的要求,三角函数与解三角形在实际背景下的应用也将是一个考试试点.考点主要集中在三角函数图像及其性质的应用,三角函数恒等变换,以及正弦余弦定理的应用.本专题在以往高考常见的题型上,根据新课标的要求,精选了部分预测题型,并对相应的题型的解法做了相应的题目分析以及解题指导,希望你在学习完本专题以后能够对三角函数以及解三角形的题型以及解答技巧有一定的提升.【知识点分析以及满分技巧】三角函数与解三角形:从返几年高考情况来看,高考对本部分内容的考查主要有,1.三解恒等变换与三角函数的图象、性质相结合;2.三角恒等变换与解三角形相结合;3.平面向量、不等式、数列与三角函数和解三角形相结合,难度一般不大,属中档题型.三角函数图形的性质以及应用:对于选择题类型特别是对称中心,对称轴等问题选项中特殊点的带入简单方便,正确率比较高.总额和性的问题一般采用换元法转化成最基本的函数问题去解答.对于三角函数有关恒等变换的题目应注重公式的变形.解三角形类型的大题中,重点是角边转化,但是要注意两边必须同时转化,对于对应的面积的最大值问题以及周长的最值问题一般转化成基本不等式去求,但是在用基本不等式的时候应注意不等式等号成立的条件.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2020·贵溪市实验中学高三月考(文))在中,角,,所对的边分别ABC :A B C 为,,,且,则的最大值是( )a b c BC c bb c +A .8B .6C .D .4【答案】D【分析】由已知可得:,11sin 22bc A a =所以,2sin a A =因为,所以222cos 2b c a A bc +-=2222cos sin 2cos b c a bc AA bc A +=+=+所以,222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭所以的最大值是4c bb c +故选:D2.(2020·南昌市新建一中(文))在中,内角,,所对应的边分别为ABC :A B C a ,,,且,若,则边的最小值为()b c sin 2sin 0a B b A +=2a c +=b AB .C .2D【答案】D【分析】根据由正弦定理可得,sin2sin 0a B b A +=sin sin2sin sin 0A B B A +=即,,2sin sin cos sin sin 0A B B B A +=sin 0,sin 0A B ≠≠ ,,∴1cos 2B =-23B π∴=由余弦定理可得.()2222222cos 4b a c ac B a c ac a c ac ac=+-=++=+-=- .2a c +=≥ 1ac ∴≤ 即.,243bac ∴=-≥,b ≥故边.b 故选:D .3.(2020·吉林高三其他模拟(文))在中,内角,,所对的边分别为,ABC :A B C a ,,且,,在边上,且,则b c 3a =b =c =M AB BM CM =AMAB=( )A .B .C .D .14133423【答案】C【分析】因为,BM CM =所以为等腰三角形,MBC △因为,,.3a =b =c =由条件可得,222cos2a c b B ac +-==所以,解得3·cos 22BC BM B ==BM =所以AM AB BM =-=可得.34AM AB =故选:.C 4.(2020·河南郑州市·高三月考(文))已知的三个内角,,对应的边分ABC :A B C 别为,,,且,,成等差数列,则a b c sin 2a C π⎛⎫- ⎪⎝⎭()cos 4b B π-()cos 3c A π-的形状是( )ABC :A .直角三角形B .锐角三角形C .钝角三角形D .正三角形【答案】C【分析】,,sin cos 2a C a Cπ⎛⎫-=- ⎪⎝⎭()cos 4cos b B b B π-=,()cos 3cos c A c Aπ-=-依题意得,2cos cos cos b B a C c A =--根据正弦定理可得,()2sin cos sin cos cos sin B B A C A C =-+即,()2sin cos sin sin B B A C B=-+=-又,则,sin 0B ≠1cos 2B =-又,所以,()0,B π∈23B π=故的形状是钝角三角形.ABC :故选:C .5.(2020·安徽六安市·六安一中高三月考(文))已知的三个内角,,所ABC :A B C 对的边分别为,,,满足,且a b c 222cos cos cos 1sin sin A B C A C -+=+,则的形状为( )sin sin 1A C +=ABC :A .等边三角形B .等腰直角三角形C .顶角为的非等腰三角形D .顶角为的等腰三角形120120【答案】D【分析】因为,222cos cos cos 1sin sin A B C A C -+=+所以,2221sin (1sin )1sin 1sin sin A B C A C ---+-=+所以,222sin sin sin sin sin A C B A C +-=-根据正弦定理可得,即,222a cb ac +-=-222122a c b ac +-=-所以,因为,所以,所以,1cos 2B =-0B π<<120B = 60A C += 由得,sin sin 1A C +=sin sin(60)1A A +-=得,sin sin 60cos cos 60sin 1AA A +-=得,1sin sin 12A A A +-=得,1sin 12A A +=得,因为为三角形的内角,所以,,sin(60)1A +=A 30A = 30C =所以为顶角为的等腰三角形.ABC :120故选:D6.(2020·贵州黔东南苗族侗族自治州·高三月考(文))将函数的图象向右平2sin 2y x =移个单位得到函数的图象.若,则的值为(02πϕϕ⎛⎫<<⎪⎝⎭()f x 50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ϕ)A .B .C .D .12π8π6π3π【答案】A依题意,函数,由得()()2sin 22)i (2s n 2f x x x ϕϕ-=-=50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即,故5124f f ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭52sin 222sin 22124ππϕϕ⎛⎫⎛⎫⨯-=--⨯- ⎪ ⎪⎝⎭⎝⎭,即,5sin 262sin 2ππϕϕ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭1cos 22cos 22ϕϕϕ+=2cos 2ϕϕ=故,又,则,故,即.tan 2ϕ=02πϕ<<02ϕπ<<26πϕ=12πϕ=故选:A.7.(2020·梅河口市第五中学高三月考(文))已知角的顶点为坐标原点,始边与αβ,轴的非负半轴重合,若角的终边过点,,且,则x α()21,()4cos 5αβ+=0,2πβ⎛⎫∈ ⎪⎝⎭( )sin β=ABCD【答案】C【分析】因为角的终边过点,所以是第一象限角,α()21,α所以sin α==cos α==因为,,所以为第一象限角,,0,2πβ⎛⎫∈⎪⎝⎭()4cos 5αβ+=αβ+所以,()sin 35αβ+==所以()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦3455==故选:C.8.(2020·罗山县楠杆高级中学高三月考(文))函数的()()cosln 2xx f x x e e π-⎛⎫=-+ ⎪⎝⎭图象大致为()A .B .C .D .【答案】C【分析】因为,()()()πcos ln sin ln 2x x x x f x x e e x e e --⎛⎫=-+=+ ⎪⎝⎭所以,()()()()()sin ln sin ln x x x x f x x x e e x e e f x ---=-+=-+=-即函数为奇函数,其图象关于原点对称,故排除D ,()f x又因为,当且仅当时取等号,2xxy e e-=+≥=0x =所以,()ln ln 2ln10x x e e -+≥>=当时,,当时,,[)0,πx ∈sin 0x ≥[)π,2πx ∈sin 0x ≤所以,当时,,当时,,故排除A 、B ,[)0,πx ∈()0f x >[)π,2πx ∈()0f x ≤故选:C .二、填空题9.(2020·新疆实验高三月考(文))在中,ABC :BC =,则外接圆的面积为______.222cos cos sin sin C A B B C --=ABC :【答案】π【分析】,222cos cos sin sin C A B B C --=,()()2221sin 1sin sin sin C A B B C∴----=即.222sin sin sin sin A C B B C --=由正弦定理得,222222a cb ac b --=⇒-=+由余弦定理得,所以,2222cos a c b bc A =+-cos A =,则,0A π<< 4A π=设的外接圆半径为,则,则,ABC :R 2sin BCRA =1R =则外接圆的面积为:,ABC :2R ππ=故答案为:.π10.(2020·山西高三期中(文))中,角A ,B ,C 所对的边分别为a ,b ,c ,若ABC :函数有极值点,则的取值范围是()()3222113f x x bx a c ac x =+++-+cos 23B π⎛⎫- ⎪⎝⎭______.【答案】11,2⎡⎫-⎪⎢⎣⎭【分析】由题意,函数,()()3222113f x x bx a c ac x =+++-+可得,()2222()f x x bx a c ac '=+++-因为函数有极值点,所以有两个不同的实数根,()f x 2222()0x bx a c ac +++-=可得,整理得,222(2)4()0b a c ac ∆=-+->222ac a c b >+-又由,2221cos 222a c b ac B ac ac +-=<=因为,所以,可得,(0,)B π∈3B ππ<<52333B πππ<-<当时,即时,取得最小值,最小值为;23B ππ-=23B π=cos 23B π⎛⎫- ⎪⎝⎭cos 1π=-当时,即时,此时,233B ππ-=3B π=1cos 2cos 332B ππ⎛⎫-<= ⎪⎝⎭所以的取值范围是.cos 23B π⎛⎫- ⎪⎝⎭11,2⎡⎫-⎪⎢⎣⎭三、解答题11.(2020·山东济南市·高三开学考试)在四边形中,,是上的ABCD A C ∠=∠E AD 点且满足与相似,,,.BED ∆ABD ∆34AEB π∠=6DBE π∠=6DE =(1)求的长度;BD (2)求三角形面积的最大值.BCD【答案】(1)2)36+【分析】(1),4BED AEB ππ∠=-∠=在三角形中,,BDE sin sin DE BD DBE BED =∠∠即,6sinsin 64BD ππ=所以612=BD =(2)因为,所以,BED ABD ∆∆:C A ∠=∠=6DBE π∠=在三角形中,,BDC 2222cos 6BD DC BC DC BCπ=+-::所以,2272DCBC BC =+:所以,722DCBC BC ≥::所以,(72DCBC ≤:所以,((11sin 7218264BCD S DC BC π∆=≤⨯=::所以三角形面积的最大值为BCD 36+12.(2020·北京海淀区·人大附中高三月考)已知,(2sin ,sin cos )mx x x =-,记函数.,sin cos )n x x x =+ ()f x m n =⋅ (1)求函数取最大值时的取值集合;()f x x (2)设函数在区间是减函数,求实数的最大值.()f x ,2m π⎡⎤⎢⎥⎣⎦m【答案】(1) ;(2).,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭56π【分析】(1)由题意,得,()2cos 22sin(26f x m n x x x π=⋅=-=- 当取最大值时,即,此时()f x sin(2)16x π-=22()62x k k Z πππ-=+∈所以的取值集合为.x ,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(2)由得3222262k x k πππππ+≤-≤+,41022266k x k ππππ+≤≤+536k x k ππππ+≤≤+所以的减区间,()f x 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦当,得是一个减区间,且1k =5,36ππ⎡⎤⎢⎥⎣⎦52,36πππ∈⎡⎤⎢⎥⎣⎦所以,5,,236m πππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦所以, 5(,]26m ππ∈所以的最大值为.m 56π13.(2020·宁夏固原市·固原一中高三月考(文))已知函数.()2cos sin 3f x x x x π⎛⎫=⋅+ ⎪⎝⎭x ∈R(1)求的最小正周期;()f x (2)求在闭区间上的值域.()f x ,44ππ⎡⎤-⎢⎥⎣⎦【答案】(1);(2).π11,24⎡⎤-⎢⎥⎣⎦【分析】(1)由已知,有21()cos sin 2f x x x x x ⎛⎫=⋅+ ⎪ ⎪⎝⎭21sin cos 2x x x =⋅-1sin 2cos 2)4x x =-+,11sin 22sin 2423x x x π⎛⎫=-=- ⎪⎝⎭的最小正周期;∴()f x 22T ππ==(2)∵,,,44x ππ⎡⎤∈-⎢⎥⎣⎦52,366x πππ⎡⎤∴-∈-⎢⎥⎣⎦当,即时,取得最大值为,236x ππ-=4x π=()f x 14当,即时,取得最小值为,232x ππ-=-12x π=-()f x 12-的值域为.()f x ∴11,24⎡⎤-⎢⎥⎣⎦14.(2020·梅河口市第五中学高三月考(文))在的中,角,,的对边分ABC :A B C别为,且a b c ,,sin (sin sin )sin 0a A b A B c C ++-=(1)求角;C (2)若,求的取值范围.2c =+a b 【答案】(1);(2).23C π=2⎛ ⎝【分析】:(1)由,及正弦定理得sin (sin sinB)sin 0a A b A c C ++-=,2220a ab b c ++-=由余弦定理得,又,所以;2221cos 222a b c ab C ab ab +--===-0C π<<23C π=(2)由及,得,即,2220a ab b c ++-=2c =224a ab b ++=2()4a b ab +-=所以,所以,当且仅当221()4()4ab a b a b =+-≤+a b +≤a b ==成立,又,所以,2a b c +>=2a b <+≤所以的取值范围为.+a b 2⎛ ⎝15.(2020·黑龙江高三月考(文))在中,角,,所对的边分别为,ABC :A B C a b,,,.c sin 3sin b A B =222b c a bc +-=(1)求外接圆的面积;ABC :(2)若的周长.BC ABC :【答案】(1);(2)9.3π【分析】解:(1)因为,又,即,所以,sin 3sin b A B =sin sin a b A B =sin sin b A a B =3a =由,得,设外接圆的半径为2221cos 22b c a A bc --==3A π=ABC :R 则,所以外接圆的面积为.12sin a R A=⋅==ABC :3π(2)设的中点为,则.因为,BC D AD =()12AD AB AC =+ 所以,()()222221127||2444AD AB AC AB AC c b bc =++⋅=++= 即,又,,则 ,2227c b bc ++=222b c a bc +-=3a =22918bc b c =⎧⎨+=⎩整理得,解得或(舍去),则.所以的周长为9.()2290b -=3b =3-3c =ABC :。
高中数学竞赛第七章 解三角形【讲义】
第七章 解三角形一、基础知识在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2cb a p ++=为半周长。
1.正弦定理:CcB b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。
推论1:△ABC 的面积为S △ABC =.sin 21sin 21sin 21B ca A bc C ab ==推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足)sin(sin a ba a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 21;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理BbA a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]=21-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。
2.余弦定理:a 2=b 2+c 2-2bccosA bca cb A 2cos 222-+=⇔,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq qp qc p b -++ (1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π,所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq qp qc p b -++ 注:在(1)式中,若p=q ,则为中线长公式.222222a c b AD -+=(2)海伦公式:因为412=∆ ABC S b 2c 2sin 2A=41b 2c 2(1-cos 2A)=41b 2c 21614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b [(b+c)2-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c). 这里.2cb a p ++=所以S △ABC =).)()((c p b p a p p ---二、方法与例题1.面积法。
高考文科数学三角函数的图像和性质专项讲解
上一页
返回导航
下一页
第二部分
函数 y=Asin(ωx+φ)(或 y=Acos(ωx+φ))的最小正周期 T=2|ωπ|.应特别注意 y=
π
|Asin(ωx+φ)|的最小正周期为 T=|ω|.
上一页
返回导航
下一页
第二部分 专题一 三角函数与解三角形
7
【解析】
(1)A
中,函数
f(x)=|cos
π 2x|的周期为 2 ,当
x∈π4 ,π2 时,2x∈π2 ,π,
函数
f(x)单调递增,故
A
正确;B
中,函数
f(x)=|sin
π 2x|的周期为 2 ,当
x∈π4 ,π2
时,2x∈π2 ,π,函数 f(x)单调递减,故 B 不正确;C 中,函数 f(x)=cos|x|=cos x
第二部分 高考热点 分层突破
专题一 三角函数与解三角形
第1讲 三角函数的图象与性质
数学
第二部分 专题一 三角函数与解三角形
1
01
做高考真题 明命题趋向
02
研考点考向 破重点难点
03
练典型习题 提数学素养
上一页
返回导航
下一页
第二部分 专题一 三角函数与解三角形
2
考点 3 三角函数的性质(综合型) [知识整合]
上一页
返回导航
下一页
第二部分 专题一 三角函数与解三角形
25
2.若存在实数 φ,使得圆面 x2+y2≤4 恰好覆盖函数 y=sinπk x+φ图象的最高点
或最低点共三个,则正数 k 的取值范围是________. 解析:函数 y=sinπk x+φ的图象的最高点或最低点一定在直线 y=±1 上,由
最全面的解三角形讲义
解三角形【高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法.4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形关系 式 a <b sin A a =b sin Ab sin A <a <b a ≥b a >b a ≤b解的 个数无解 一解 两解 一解 一解 无解5.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.6.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)). (3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等. (4)坡度:坡面与水平面所成的二面角的度数.考向探究题型一 正弦余弦定理运用【例题1】在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c.【例题2】 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b2.(1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.【例题3】 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (1)求角A 的大小;(2)若a=3,求bc的最大值;(3)求cb Ca--︒)30sin(的值.【变式】1.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a= .2.(1)△ABC中,a=8,B=60°,C=75°,求b;(2)△ABC中,B=30°,b=4,c=8,求C、A、a.3.在△ABC中,A=60°,AB=5,BC=7,则△ABC的面积为 .4.已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,求tanC的值.5.在△ABC中,角A、B、C所对的边分别为a、b、c.若(3b-c)cosA=acosC,则cosA= .6. 在△ABC中,角A、B、C的对边分别为a、b、c,若(a2+c2-b2)tanB=3ac,则角B的值为 .7.在△ABC中,内角A、B、C对边的边长分别是a、b、c.已知c=2,C=3π.(1)若△ABC的面积等于3,求a、b的值;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.题型二判断三角形形状【例题】在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形的形状.【变式】已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.题型三测量距离问题【例题】如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【变式】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.题型四测量高度问题【例题】如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【变式】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C 与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.题型五正、余弦定理在平面几何中的综合应用【例题】如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【变式】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.巩固训练1.在△ABC 中,若2cosBsinA=sinC,则△ABC 一定是 三角形.2.在△ABC 中,A=120°,AB=5,BC=7,则CB sin sin 的值为 .3.已知△ABC 的三边长分别为a,b,c,且面积S △ABC =41(b 2+c 2-a 2),则A= .4.在△ABC 中,BC=2,B=3 ,若△ABC 的面积为23,则tanC 为 .5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= .8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 . 9.下列判断中不正确的结论的序号是 . ①△ABC 中,a=7,b=14,A=30°,有两解 ②△ABC 中,a=30,b=25,A=150°,有一解 ③△ABC 中,a=6,b=9,A=45°,有两解 ④△ABC 中,b=9,c=10,B=60°,无解10. 在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.11. 在△ABC 中,cosB=-135,cosC=54.(1)求sinA 的值;(2)△ABC 的面积S △ABC =233,求BC 的长.12.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x-b=0 (a >c >b)的两根之差的平方等于4,△ABC 的面积S=103,c=7. (1)求角C ;(2)求a ,b 的值.13. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a+b=5,c=7,且4sin 22B A +-cos2C=27.(1)求角C 的大小; (2)求△ABC 的面积.14.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522m15.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ).A.α>β B.α=β C.α+β=90° D.α+β=180°16.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的( ).A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10°17.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里 B.53海里C.10海里 D.103海里18.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.19.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?参考答案例题答案题型一 正弦、余弦定理【例题1】 解 ∵B=45°<90°且asinB <b <a,∴△ABC 有两解.由正弦定理得sinA=b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A=60°时,C=180°-(A+B)=75°, c=BCb sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A=120°时,C=180°-(A+B)=15°, c=B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-.故在△ABC 中,A=60°,C=75°,c=226+或 A=120°,C=15°,c=226-. 【例题2】 解(1)由余弦定理知:cosB=ac b c a 2222-+,cosC=ab c b a 2222-+.将上式代入C B cos cos =-ca b+2得:ac b c a 2222-+·2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cosB=acb c a 2222-+=ac ac2- =-21∵B 为三角形的内角,∴B=32π.(2)将b=13,a+c=4,B=32π代入b 2=a 2+c 2-2accosB,得b 2=(a+c)2-2ac-2accosB ∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac=3.∴S △ABC =21acsinB=433. 【例题3】解(1)∵cosA=bc a c b 2222-+=bc bc 2-=-21,又∵A∈(0°,180°),∴A=120°.(2)由a=3,得b 2+c 2=3-bc,又∵b 2+c 2≥2bc(当且仅当c=b 时取等号),∴3-bc≥2bc(当且仅当c=b 时取等号).即当且仅当c=b=1时,bc 取得最大值为1.(3)由正弦定理得:===CcB b A a sin sin sin 2R, ∴CR B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒=C B C A sin sin )30sin(sin --︒ =CC C C sin )60sin()sin 23cos 21(23--︒- C C C C sin 23cos 23)sin 43cos 43--==21【变式】1. 22. 解(1)由正弦定理得BbA a sin sin =. ∵B=60°,C=75°,∴A=45°,∴b=︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sinC=430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C=90°.∴A=180°-(B+C)=60°,a=22b c -=43. 3. 1034. 解 依题意得absinC=a 2+b 2-c 2+2ab,由余弦定理知,a 2+b 2-c 2=2abcosC. 所以,absinC=2ab(1+cosC), 即sinC=2+2cosC,所以2sin2C cos 2C =4cos 22C 化简得:tan 2C=2.从而tanC=2tan 12tan22C C -=-34. 5.336. 3π或32π7. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab=4.又因为△ABC 的面积等于3, 所以21absinC=3,所以ab=4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a .(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA, 即sinBcosA=2sinAcosA, 当cosA=0时,A=2π,B=6π,a=334,b=332.当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a所以△ABC 的面积S=21absinC=332. 题型二 判断三角形形状【例题】 解方法一 已知等式可化为a 2[sin (A-B )-sin (A+B )]=b 2[-sin (A+B )-sin(A-B)]∴2a 2cosAsinB=2b 2cosBsinA 由正弦定理可知上式可化为:sin 2AcosAsinB=sin 2BcosBsinA∴sinAsinB(sinAcosA -sinBcosB)=0 ∴sin2A=sin2B,由0<2A,2B <2π 得2A=2B 或2A=π-2B, 即A=B 或A=2π-B,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cosAsinB=2b 2sinAcosB 由正、余弦定理,可得a 2b bc a c b 2222-+= b 2a acb c a 2222-+∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2) 即(a 2-b 2)(a 2+b 2-c 2)=0∴a=b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.【变式】 解 方法一 ∵2cos 2B-8cosB+5=0,∴2(2cos 2B-1)-8cosB+5=0.∴4cos 2B-8cosB+3=0,即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去).∴cosB=21. ∵0<B <π,∴B=3π. ∵a,b ,c 成等差数列,∴a+c=2b. ∴co sB=acbc a 2222-+=acc a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac=0,解得a=c. 又∵B=3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B -8cosB+5=0,∴2(2cos 2B-1)-8cosB+5=0.∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0. 解得cosB=21或cosB=23(舍去).∴cosB=21,∵0<B <π,∴B=3π, ∵a,b,c 成等差数列,∴a+c=2b. 由正弦定理得sinA+sinC=2sinB=2sin 3π=3. ∴sinA+sin ⎪⎭⎫⎝⎛-A 32π=3, ∴sinA+sin A cos 32π-cos A sin 32π=3. 化简得23sinA+23cosA=3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A+6π=2π,∴A=3π,∴C=3π,∴△ABC 为等边三角形.题型三 测量距离问题【例题】解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45° 在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a . 在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . 【变式】解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620 km.题型四 测量高度问题【例题】解 如图,设CD =x m , 则AE =x -20 m ,tan 60°=CD BD, ∴BD =CDtan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m. 【变式】解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDCsin ∠CBD =s ·sin βsin α+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin α+β.题型五 正、余弦定理在平面几何中的综合应用 【例题】解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC ,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.【变式】解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6巩固训练1. 等腰;2.53;3. 45°;4. 33;5. 60°;6. 45°或135°;7. 65π; 8. 3或23;9. ①③④10.(1)证明 因为a 2=b(b+c),即a 2=b 2+bc, 所以在△ABC 中,由余弦定理可得, cosB=ac b c a 2222-+=acbc c 22+=a cb 2+=ab a 22=b a 2=BA sin 2sin , 所以sinA=sin2B,故A=2B. (2)解 因为a=3b,所以ba=3, 由a 2=b(b+c)可得c=2b, cosB=ac b c a 2222-+=22223443bb b b -+=23, 所以B=30°,A=2B=60°,C=90°. 所以△ABC 为直角三角形. 11. 解 (1)由cosB=-135,得sinB=1312, 由cosC=54,得sinC=53. 所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533. (2)由S △ABC =233,得21×AB×AC×sinA=233. 由(1)知sinA=6533,故AB×AC=65.又AC=CB AB sin sin ⨯=1320AB, 故1320AB 2=65,AB=213. 所以BC=C A AB sin sin ⨯=211.12. 解 (1)设x 1、x 2为方程ax 2-222b c -x-b=0的两根,则x 1+x 2=ab c 222-,x 1·x 2=-a b .∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab4=4. ∴a 2+b 2-c 2=ab.又cosC=abc b a 2222-+=ab ab 2=21,又∵C∈(0°,180°),∴C=60°. (2)S=21absinC=103,∴ab=40 ……① 由余弦定理c 2=a 2+b 2-2abcosC,即c 2=(a+b)2-2ab(1+cos60°). ∴72=(a+b)2-2×40×⎪⎭⎫ ⎝⎛+211.∴a+b=13.又∵a>b ……②∴由①②,得a=8,b=5.13. 解 (1)∵A+B+C=180°,由4sin22B A +-cos2C=27, 得4cos 22C-cos2C=27,∴4·2cos 1C +-(2cos 2C-1)=27,整理,得4cos 2C-4cosC+1=0,解得cosC=21, ∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2abcosC,即7=a 2+b 2-ab,∴7=(a+b)2-3ab , 由条件a+b=5,得7=25-3ab,ab=6, ∴S △ABC =21absinC=21×6×23=233. 14.解析 由正弦定理得AB sin ∠ACB =ACsin B,又∵B =30°∴AB =AC ·sin ∠ACBsin B =50×2212=502(m).答案 A15.解析 根据仰角与俯角的定义易知α=β.答案 B 16.解析 如图.答案 B17.解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时). 答案 C18.解析 由正弦定理,知BC sin 60°=ABsin 180°-60°-75.解得BC =56(海里).答案 5 619.如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分)在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中文科数学解三角形部分整理一 正弦定理 (一)知识与工具:正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===。
变形:::sin :sin :sin a b c A BC =.在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。
注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180° 两边之和大于第三边,两边之差小于第三边 (2)三角函数的恒等变形s in(A+B)=sinC,cos (A +B)=-cosC ,s in 2B A +=cos 2C ,cos 2BA +=si n2C(3)面积公式:S=21absin C=Rabc 4=2R 2s inA sinBsinC(二)题型 使用正弦定理解三角形共有三种题型 题型1 利用正弦定理公式原型解三角形例一、在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B.1- C .32 D.32-【解析】C .00tan 30,tan 302bb ac b c b a=====-=题型2 利用正弦定理公式变形边角互化解三角形:关于边或角的齐次式可以直接边角互化。
例二、在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或【解析】D . 012sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或0150题型3 三角形解的个数的讨论方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。
例三、等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为(D ) A.2 B.23C.3 D.32二 余弦定理(一)知识与工具:a2=b2+c 2﹣2bcco sAc osA =bca 2cb 222-+b 2=a 2+c 2﹣2accosB cos B=acbc a 2222-+c2=a2+b2﹣2abcosCco sC=abc b a 2222-+注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。
在变形中,注意三角形中其他条件的应用:(1)三内角和为180°;(2)两边之和大于第三边,两边之差小于第三边。
(3)面积公式:S=21ab sinC =R abc 4=2R 2sinAsin Bs inC(4)三角函数的恒等变形。
(二)题型使用余弦定理解三角形共有三种现象的题型 题型1 利用余弦定理公式的原型解三角形例一、在△A BC 中,若=++=A c bc b a 则,222_________。
【解析】120 22201cos ,12022b c a A A bc +-==-=题型2 利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。
题型3 判断三角形的形状结论:根据余弦定理,当a2+b 2<c2、b 2+c 2<a 2、c 2+a 2<b 2中有一个关系式成立时,该三角形为钝角三角形,而当a 2+b 2>c 2、b 2+c 2>a 2,c 2+a 2>b2中有一种关系式成立时,并不能得出该三角形为锐角三角形的结论。
判断三角形形状的方法:(1)将已知式所有的边和角转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状。
例一、在△ABC 中,若,cos cos cos C c B b A a =+则△A BC 的形状是什么? 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-=cos()cos(),2cos cos 0A B A B A B -=-+=cos 0A =或cos 0B =,得2A π=或2B π=所以△A BC 是直角三角形。
(2)应用题 求 距离两点间不可通又不可视两点间可视但不可达两点都不可达求 高度底部可达底部不可达题型1 计算高度 题型2 计算距离题型3 计算角度 题型4 测量方案的设计实际应用题型的本质就是解三角形,无论是什么样的现象,都要首先画出三角形的模型,再通过正弦定理和余弦定理进行求解。
例一、(三)其他常见结论1三角形内切圆的半径:2S r a b c∆=++,特别地,2a b c r +-=斜直2三角学中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,… 3两内角与其正弦值:在△ABC 中,B A B A sin sin <⇔<,…例一、在△ABC 中,若8,3,7===c b a ,则其面积等于( )A .12 B.221C .28 D.36【解析】D 011cos ,60,sin 22ABC A A S bc A ====基础练习一、选择题1.若A 为△AB C的内角,则下列函数中一定取正值的是( )A.A sin B .A cos C.A tan D.Atan 12.在△ABC 中,角均为锐角,且,sin cos B A >则△ABC 的形状是( ) A.直角三角形 B .锐角三角形 C.钝角三角形 D.等腰三角形3.边长为5,7,8的三角形的最大角与最小角的和是( ) A.090 B.0120 C.0135 D.0150 4.在△A BC 中,::1:2:3A B C =,则::a b c 等于( )A.1:2:3 B .3:2:1 C.2 D.2:5.在△ABC 中,若B A 2=,则a 等于( )A .A b sin 2 B.A b cos 2 C.B b sin 2 D .B b cos 26.在△AB C中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( ) A.直角三角形 B .等边三角形 C .不能确定 D.等腰三角形7.在△A BC中,若,3))((bc a c b c b a =-+++则A = ( ) A .090 B.060 C.0135 D .0150 8.在△ABC 中,若tan2A B a ba b--=+,则△ABC 的形状是( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D .等腰三角形或直角三角形二、填空题1.在△ABC 中,若=++=A c bc b a 则,222_________。
2.在△AB C中,若====a C B b 则,135,30,20_________。
3.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
4.若在△ABC 中,060,1,ABC A b S ∆∠===则CB A cb a sin sin sin ++++=_______。
5.在△A BC 中,若,12,10,9===c b a 则△ABC 的形状是_________。
6.在△AB C中,若=+===A c b a 则226,2,3_________。
三、解答证明题1. 在△ABC 中,0120,,ABCA c b a S =>==,求c b ,。
2. 在△ABC 中,若0120=+B A ,则求证:1=+++c a b c b a 。
3.在△ABC 中,若223cos cos 222C A b a c +=,则求证:2a c b +=4.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-【答案】选择题1.A 0,sin 0A A π<<>2.C cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>3.B 设中间角为θ,则22200005871cos ,60,180601202582θθ+-===-=⨯⨯为所求 4.C12,,,::sin :sin :sin ::2632222A B C a b c A B C πππ====== 5.D sin sin 22sin cos ,2cos A B B B a b B === 6.D sin sin lglg 2,2,sin 2cos sin cos sin cos sin A AA B C B C B C===sin()2cos sin ,sin cos cos sin 0,B C B C B C B C +=-=sin()0,B C B C -==,等腰三角形7.B 22()()3,()3,a b c b c a bc b c a bc +++-=+-=222222013,cos ,6022b c a b c a bc A A bc +-+-==== 8.D 2cossinsin sin 22tan 2sin sin 2sin cos 22A B A BA B a b A B A B A Ba b A B +----===+-++, tan2tan ,tan 022tan 2A B A B A B A B ---==+,或tan 12A B += 所以A B =或2A B π+=填空题1.0120 22201cos ,12022b c a A A bc +-==-= 2.26-00sin 15,,4sin 4sin154sin sin sin a b b A A a A A B B ====== 3. 0120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,令7,8,13a k b k c k === 22201cos ,12022a b c C C ab +-==-= 4.3392211sin 4,13,222ABC S bc A c c a a ∆==⨯====sin sin sin sin a b c a A B C A ++===++ 5.锐角三角形 C 为最大角,cos 0,C C >为锐角6. 060222231cos 22b c a A bc -+-====四、解答证明题1.解:1sin 4,2ABC S bc A bc ∆=== 2222cos ,5a b c bc A b c =+-+=,而c b >所以4,1==c b2.证明:要证1=+++ca bc b a ,只要证2221a ac b bc ab bc ac c +++=+++, 即222a b c ab +-=而∵0120,A B +=∴060C =2222220cos ,2cos 602a b c C a b c ab ab ab+-=+-==∴原式成立。