糖代谢

合集下载

第六章 糖代谢

第六章 糖代谢

CH 2OH
H H
OH HO
OH
H OH
H OH
葡萄糖
ATP ADP
己糖激酶; 葡萄糖激酶(肝)
CH 2O
P
H H
OH HO
OH
H OH
H OH
6-磷酸葡萄糖
2. 6-磷酸葡萄糖转变成1-磷酸葡萄糖
CH 2O
P
H H
OH HO
OH
H OH
H OH
6-磷酸葡萄糖
CH 2OH
H
OH
H
磷酸葡萄糖变位酶
OH HO
H H
O H
OH HO
H OH
H OH
6-磷酸葡萄糖
2-磷酸甘油酸
P O CH 2
CH2OH
O
Mg2+
H HO
己糖异构酶 H
OH
OH H
6-磷酸果糖
(fructose-6-phosphate, F-6-P)
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
Glu
ATP
ADP
G-6-P
3. 6-磷酸果糖转变为1,6-双磷酸果糖
葡萄糖
CH 2OH
H H
OH HO
OH
H OH
H OH
CH 2OH
H H
OH HO
OH
H OH
H OH

CH 2OH
H H
OH
CH 2OH
H H
OH
OH HO
?H
H
O
OH
α-1,4-糖苷键
OH
H
H OH
OH
糖原合成特点:
1、葡萄糖活化 2、需要糖原引物

生物化学6.0糖代谢

生物化学6.0糖代谢

(2)麦芽糖的水解
麦芽糖是还原性糖,由水解方式。 麦芽糖酶:(麦芽糖+H2O)生成 2 (葡萄 糖)
(3)乳糖的水解
β-半乳糖苷酶:(乳糖+ H2O)生成(葡萄 糖+半乳糖)
专题:糖酵解途径
糖酵解(glycolysis)是通过一系列酶促反应 将葡萄糖降解成丙酮酸,并伴有能量释放的过程。 糖酵解途径涉及10个酶催化反应,途径中的酶都 位于细胞质中,一分子葡萄糖通过该途径被转换 成两分子丙酮酸。为纪念在研究糖酵解途径方面 有突出贡献的三位生物化学家Embden, Meyerhof 和Parnas, 又把糖酵解途径称为EmbdenMeyerhof-Parnas途径(EMP途径)。糖酵解普遍 存在于动物、植物、微生物的所有细胞中,是在 细胞质中进行的。虽然糖酵解的部分反应可以在 质体或叶绿体中进行,但不能完成全过程。
糖类是指多羟基醛或酮及其衍生物。糖 类在生物体的生理功能主要有: ① 氧化供能:糖类占人体全部供能量的 70%。 ② 作为结构成分:作为生物膜、神经组 织等的组分。 ③ 作为其他重要生物大分子的碳架来源: 如:核苷酸、氨基酸等。 ④ 与细胞识别和细胞信息传递有关 ⑤ 具有保护和润滑作用
糖是含有多羟基的醛类或酮类化合物:: 1、单糖(如葡萄糖、果糖、甘露糖)
淀粉 、糖原的分子结构
专题:多糖降解
(1)淀粉
参与淀粉水解的酶:
1、α-淀粉酶,淀粉内切酶,随机切断α-1,4糖 苷键; 2、β-淀粉酶,淀粉外切酶,随机切断α-1,4糖 苷键; 注: α-淀粉酶在种子里只有在萌发时才被诱导合 成,且耐热(70℃,15分钟)不耐酸(低于 PH3.3); β-淀粉酶耐酸(PH3.3)不耐热。
三、糖酵解的生理意义
1.糖酵解普遍存在于生物体中,是有氧呼吸和无 氧呼吸途径的共同部分。 2.糖酵解的产物丙酮酸的化学性质十分活跃,可 以通过各种代谢途径,生成不同的物质 3.通过糖酵解,生物体可获得生命活动所需的部 分能量。对于厌氧生物来说,糖酵解是糖分解 和获取能量的主要方式。 4. 糖酵解途径中,除了由己糖激酶、磷酸果糖激 酶、丙酮酸激酶等所催化的反应以外,多数反 应均可逆转,这就为糖异生作用提供了基本途 径。

生物化学第八章糖代谢

生物化学第八章糖代谢

§2 糖的分解代谢
主要有以下途径: (一)糖的无氧酵解 (二)糖的有氧氧化 (三)乙醛酸循环 (四)戊糖磷酸途径
途径具体过程
提示
反应实质 个酶作用 进程变化 学习途径时要重点注意噢!
温馨提示
加油!!!
• 酵解过程要学好
• 首条途径很重要 • 总结经验找规律 • 后边学习基础牢
• 举一反三相比较 • 触类旁通有参照 • 事半功倍学的巧 • 一路轻松兴趣高
甘油酸-3-磷酸
磷酸甘油8反酸应变图位酶
甘油酸-2-磷酸
9、2-磷酸甘油酸脱水烯醇化
甘油酸-2-磷酸
烯醇化9反酶应图
磷酸烯醇式丙酮酸
9、2-磷酸甘油酸的脱水生成磷酸烯醇式丙 酮酸
烯醇化酶(enolase) 这一步反应也可看作分子内氧化还原反应,分子 内能量重新分布,又一次产生了高能磷酯键。
反应可以被氟离子抑制,取代天然情况下酶分 子上镁离子的位置,使酶失活。
细胞核
内质网 溶酶体
细胞膜
动物细胞
植物细胞
细胞壁 叶绿体
有色体 白色体 液体 晶体
葡萄糖的主要代谢途径
糖异生
葡萄糖
6-磷酸葡萄糖 (有氧或无氧)
(无氧) 丙酮酸
糖酵解
(有氧)
乳酸 乙醇
乙酰 CoA
磷酸戊糖 途径
三羧酸 循环
第八章:糖代谢
§1 多糖和底聚糖的酶促降解 §2 糖的分解代谢 §3 糖的合成代谢
⑹氧化脱氢,产生 NADH+H+ (磷酸化,使用无机磷酸)
甘油醛-3-磷酸
无机磷酸
甘油醛-3-磷酸 脱氢酶
1,3-二磷酸甘油酸
产生 的 NADH+H+ 的氢,条件不同, H的去向不同,走进的途径不同。

生物化学-糖代谢

生物化学-糖代谢

2021/3/29
25
G
G-6-P F-6-P F-1,6-BP 3-磷酸甘油醛
磷酸戊糖途径
NADPH 5-磷酸核糖
丙酮酸
2021/3/29
乙酰CoA
TAC
CO2+H2O+ ATP
26
整个代谢途径在胞液(cytoplasm)中进行。 关键酶是6-磷酸葡萄糖脱氢酶(glucose-6phosphate dehydrogenase)。
内 膜 折 叠 成 嵴
,
有 双 层 膜 结 构
,
2021/3/29
节首
33
章首
线粒体的功能特点
呼吸链(respiratatory chain)由供氢体、传递体、受氢体以 及相应的酶系统所组成的这种代谢途径一般称为生物氧化还原 链。如果受氢体是氧,则称为呼吸链。
外膜对大多数小分子物质和离子可通透,
NADPH在体内可用于: ⑴ 作为供氢体,参与体内的合成代谢:如参与合
成脂肪酸、胆固醇,一些氨基酸。 ⑵ 参与羟化反应:作为加单氧酶的辅酶,参与对
代谢物的羟化。
2021/3/29
29
⑶ 使氧化型谷胱甘肽还原。 ⑷ 维持巯基酶的活性。 ⑸ 维持红细胞膜的完整性:由于6-磷酸葡萄
糖脱氢酶遗传性缺陷可导致蚕豆病,表现为 溶血性贫血。
2021/3/29
30
2. 是体内生成5-磷酸核糖的惟一代谢途径:
体内合成核苷酸和核酸所需的核糖或脱氧核糖均以5-磷酸核糖的 形式提供,这是体内惟一的一条能生成5-磷酸核糖的代谢途径。
磷酸戊糖途径是体内糖代谢与核苷酸及核酸代谢的交汇途径。
2021/3/29
31
能量变化(3)
有氧氧化能量变化:以每分子葡萄糖计

糖代谢

糖代谢
(TCA、有氧分解)、磷酸戊糖途径 、乙醛酸循环(植物中)
(磷酸戊糖途径)
G
糖原
G-6-P - - -
丙酮酸
G-1-P
乳酸
(胞液) (糖酵解)
乙酰辅酶A (TCA)
(线粒体)
(有氧氧化)
CO2+H2O NADH+ATP
(呼吸链)
第二节
糖酵解
1940年,酵解的全过程才被了解。G. Embden和O. Meyerhof等人发现肌肉中
酸生成2分子乳酸:
COOH NADH+H+
NAD+
COOH
C=O
HCOH
CH3
LDH
CH3
2. 有氧时:胞液中这2分子NADH可通过2种穿梭系统进入线立体,经呼吸链氧化成H2O 产生6分子或4分子ATP。
(1)苹果酸穿梭系统:主要存在于肝、心肌等组织细胞内。
注:(1)胞液和线体的苹果酸脱氢酶辅酶均为NAD+,故2分子NADH 经呼吸链氧化可产生2*3=6分子 ATP。 (2)为谷草转氨酶
5. 磷酸三碳糖的同分异构化:
磷酸三碳糖中只有3-磷酸甘油醛能进入酵解途径,磷酸二羟丙酮则不能,但它可在酶催化
下迅速转化为3-磷酸甘油醛:
磷酸丙糖异构酶
己糖转化成三碳糖后,碳原子顺序颠倒,己糖原来的碳原子数的 C3和C4 是3-磷酸甘油醛 的C1,C5和C2 变成 C2,C1和C6 变成 C3。
二.能量变化:
1分子葡萄糖降解成2分子丙酮酸的过程中,消耗2分子ATP,经二次底物水平磷酸化, 可产生4分子ATP,故净生成2分子ATP。总结如图13-5(P87)。
葡萄糖酵解的总反应式为:
三.三、酵解脱氢反应在胞液中产生的2 NADH的可能去路:

糖代谢名词解释

糖代谢名词解释

糖代谢名词解释糖代谢是指机体对糖类物质进行摄取、利用和合成的过程。

糖是人体生理活动中的重要能源来源,它在体内主要通过糖代谢途径进行利用。

糖代谢主要包括糖的摄取和吸收、糖的氧化解磷酸化和糖原合成与分解三个过程。

糖的摄取和吸收是指从食物中吸收糖分子进入血液。

人们摄入食物中的碳水化合物,如蔗糖、淀粉等,经过消化吸收后转化为葡萄糖等单糖,通过肠道上皮细胞的吸收膜转运至血液中,进而被输送至全身各细胞。

糖的氧化解磷酸化是糖在细胞内被氧化分解生成能量的过程。

葡萄糖进入细胞后,通过一系列酶的作用,经过糖酵解和三羧酸循环,最终生成能量丰富的分子三磷酸腺苷(ATP),供细胞进行生物化学反应和各种生理功能的维持和驱动。

糖原合成与分解是机体对糖分子进行储存和利用的过程。

葡萄糖在细胞内可以被合成为糖原,以储存形式保存在肝脏和肌肉中,当身体需要能量时,糖原可以被分解为葡萄糖,以供细胞能量代谢的需要。

这种合成和分解的平衡可以调节血液中葡萄糖水平的稳定,维持机体正常的能量代谢。

糖代谢也与一系列重要的调节机制相关。

胰岛素和胰高血糖素是两种重要的调节激素,胰岛素能够促进葡萄糖的摄取和利用,并促使葡萄糖合成为糖原进行储存;胰高血糖素则能够抑制胰岛素的分泌,促进葡萄糖的释放和糖原的分解。

这些调节机制能够在合适的时机调控机体内葡萄糖的利用和储存,维持血糖平衡。

糖代谢异常与一系列疾病的发生和发展密切相关。

例如,糖尿病是一种由于胰岛素分泌缺陷或细胞对胰岛素抵抗等原因导致血糖水平升高的疾病,使得糖的代谢发生紊乱;糖酵解途径的异常也与肿瘤、心血管疾病等多种疾病的发生有关。

总之,糖代谢是机体中对糖类物质进行摄取、利用和合成的过程,其正常进行对于维持机体能量代谢的稳定和健康具有重要作用。

通过深入了解糖代谢的相关过程和机制,可以对糖相关疾病的预防和治疗提供理论基础。

第六章糖代谢

第六章糖代谢

磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
主要是从丙酮酸生成葡萄糖的具体 反应过程。
糖异生与糖酵解的多数反应是共有 的、可逆的;
糖酵解中有3个不可逆反应,在糖异 生中须由另外的反应和酶代替。
5
(一)丙酮酸转变成磷酸烯醇式丙酮酸
丙酮酸
生物素
丙酮酸羧化酶
CO2 ATP
(线粒体)
ADP+Pi
草酰乙酸
磷酸烯醇式丙酮酸
第六章 糖代谢
Metabolism of Carbohydrates
内容提纲
概述 糖的分解代谢
糖的无氧氧化 糖的有氧氧化 磷酸戊糖途径
糖原的合成与分解 糖异生作用 血糖及其调节
2
第六节 糖异生
Gluconeogenesis
糖异生途径 糖异生的调节 生理意义
3
概念 糖异生(gluconeogenesis)是指从非糖化合
果糖二磷酸酶-1 Pi
1,6-二磷酸果糖 6-磷酸果糖
向反应,这种互变
ADP 6-磷酸果糖激酶-1 ATP
循环称之为底物循
ADP+Pi
GTP 磷酸烯醇式丙
丙酮酸羧化酶
环(substratecycle)。 CO2+ATP
草酰乙酸
酮酸羧激酶 GDP+Pi
丙酮酸
PEP +CO2
ATP 丙酮酸激酶 ADP
14
18


质 激


胰高血糖素 —
激素对糖异生和糖酵解的调节作用
19
三、糖异生的生理意义
(一)饥饿情况下维持血糖浓度恒定(最主要功 能) (二)补充或恢复肝糖原储备

生物化学 糖代谢

生物化学 糖代谢

生物化学:糖代谢糖是生物体重要的能量来源之一,也是构成生物体大量重要物质的原始物质。

糖代谢是指生物体对糖类物质进行分解、转化、合成的过程。

糖代谢主要包括两大路径:糖酵解和糖异生。

本篇文档将从分解和合成两个角度,介绍生物体内糖的代谢。

糖的分解糖酵解(糖类物质的分解)糖酵解是指生物体内将葡萄糖和其他糖类物质分解成更小的化合物,同时释放出能量。

糖酵解途径包括糖原泛素、琥珀酸途径、戊糖途径、甲酸途径等。

其中主要以糖原泛素和琥珀酸途径为代表。

糖原泛素途径糖原泛素途径又称为糖酵解途径,是生物体内最常用的糖分解方式。

它可以将葡萄糖分解成丙酮酸或者丁酮酸,同时产生2个ATP和2个NADH。

糖原泛素途径一般分为两个阶段:糖分解阶段和草酸循环。

糖分解阶段在这个阶段,葡萄糖通过酸化和裂解反应,进入三磷酸葡萄糖分子中,并生成一个六碳分子葡萄糖酸,此过程中消耗1个ATP。

接着,葡萄糖酸分子被磷酸化,生成高能量化合物1,3-二磷酸甘油酸,同时产生2个ATP。

随后,1,3-二磷酸甘油酸分子的丙酮酸残基被脱除,生成丙酮酸或者丁酮酸。

草酸循环草酸循环是指将生成的丙酮酸和丁酮酸在线粒体内发生可逆反应,生成柠檬酸,随后通过草酸循环将柠檬酸氧化分解成二氧化碳、水和ATP。

草酸循环中的关键酶有乳酸脱氢酶、肌酸激酶等。

琥珀酸途径琥珀酸途径也被称为三羧酸循环,是生物体内另一种重要的糖分解途径,它可以将葡萄糖分解成二氧化碳和水,同时产生30多个ATP。

琥珀酸途径中,葡萄糖通过磷酸化,生成高能分子葡萄糖6-磷酸,随后被氧化酶和酶羧化酶双重氧化分解成二氧化碳和水。

琥珀酸途径的关键酶有异构酶、羧酸还原酶等。

糖异生(糖合成)糖异生是指非糖类物质(如丙酮酸、乳酸等)通过一系列合成反应,转化成糖类物质的过程。

糖异生是生物体内糖类物质的重要来源之一,对维持生命的各种生理过程具有重要意义。

糖异生途径包括丙酮酸途径、戊糖途径和甘油三磷酸途径等。

丙酮酸途径丙酮酸途径是指通过丙酮酸合成糖的途径,它可以将丙酮酸反应生成物乙酰辅酶A进一步转移,合成3磷酸甘油醛,随后通过糖醛酸-3-磷酸酰基转移酶反应,合成葡萄糖6磷酸。

第四章 糖代谢

第四章  糖代谢
纤维素酶水解纤维素的-1,4-糖苷键,产物为纤维二糖和葡萄糖。
(二)糖原的磷酸解
在人和动物的肝脏中,糖原(又称动物淀粉)是葡萄糖非常有效的 贮藏形式,通过糖原分解直接补充血糖。糖原与支链淀粉相似,是 葡萄糖通过-1,4-糖苷键和-l,6-糖苷键构成,分支较支链淀粉 更多,如图所示。
糖原在细胞内的降解称为磷酸解。糖原磷酸化酶催化的反应是不需 要水而需要磷酸参与的磷酸解作用,从糖链的非还原性末端依次切下 葡萄糖残基,产物为1一磷酸葡萄糖和少一个葡萄糖残基的糖原。
-淀粉酶水解淀粉的-1,4-糖苷键。如底物是直链淀粉,则产物为葡 萄糖、麦芽糖。如果是支链淀粉,则水解产物除上述产物外,还含有麦 芽三糖和-糊精,所以又称该酶为液化酶或糊精酶。-1,6-糖苷酶又称 脱支酶,其作用是可以水解带分支的糊精中-1,6-糖苷键,生成-1,4糊精和麦芽糖的混合物。
-淀粉酶水解淀粉的-l,4-糖苷键,其水解的方式是水解淀粉的非还 原性末端残基,并依次切下两个葡萄糖单位,产物为麦芽糖。作用于支 链淀粉,除产生麦芽糖外还产生糊精。
丙酮酸激酶催化的反应是调节糖酵解过程 的另一重要反应步骤。丙酮酸激酶也是变 构酶。
(二) 丙酮酸的去路
①乳酸的生成 例如某些厌氧乳酸菌或肌肉由于剧烈运动而造成 暂时缺氧状态,或由于呼吸、循环系统机能障碍暂时供氧不足时, 丙酮酸接受甘油醛-3-磷酸脱氢酶形成的NADH上的H,在乳酸脱 氢酶的催化下还原为乳酸,这是糖酵解的最终产物。
(一) 糖酵解过程 糖酵解是通过一系列酶促反应将一分子葡萄糖转变为两分子丙酮
酸并伴有ATP生成的过程,共包括11个反应步骤,全部反应位于细 胞质中。
糖酵解是动物、植物以及微生物细胞中葡萄糖分解产生能量的共
同代谢途径。事实上,在所有的细胞中都存在糖酵解途径,对于某 些细胞,糖酵解是唯一生成ATP的途径。

动物生物化学 第六章 糖的代谢

动物生物化学  第六章  糖的代谢

2. 糖原的 合成
(UDP-葡萄 糖焦磷酸化 酶、糖原合 成酶、糖原 分支酶)
糖原合成酶催化的反应
糖原的合成与分解总反应示意图
3. 糖原代谢的调节
• 葡萄糖分解代谢总反应式 • C6H6O6 + 6 H2O + 10 NAD+ + 2 FAD + 4 ADP +
4Pi 6 CO2 + 10 NADH + 10 H+ + 2 FADH2 + 4 ATP • 按照一个NADH能够产生3个ATP,1个FADH2能够产 生2个ATP计算,1分子葡萄糖在分解代谢过程中共产 生38个ATP: • 4 ATP +(10 3)ATP + (2 2)ATP = 38 ATP
Байду номын сангаас
CH2OH CO
HO C H
CHO
H C OH + H C OH
H C OH H C OH
CH2O P
转醛酶
CH2O P
7-磷酸景天庚酮糖 3-磷酸甘油醛
CHO
H C OH +
H C OH CH2O P
4-磷酸赤藓糖
CH2OH CO HO C H HO C H H C OH CH2O P
6-磷酸果糖
H
O
H
OH H HO
H OH
H2O
H C OH
HO C H
O 内酯酶
H C OH
H C OH
G-6-P
6-磷酸葡萄 糖酸内酯
CH2O P 6-磷酸葡萄糖酸
COOH H C OH
NADP+
+ NADPH + H

第五章 糖代谢

第五章 糖代谢

糖原结构
……O
非还原端
CH2OH O OH O OH
CH2OH O OH O OH
CH2OH O OH OH O CH2 OH OH O O
α -1,6-糖苷键
……O
CH2OH O OH O OH
CH2OH O OH O OH
CH2OH O OH O OH
CH2OH O OH
OH OH
还原端
α -1,4-糖苷键
胞液
乙酰CoA
线粒体 TAC循环 CO2
[O]
ATP ADP
NADH+H+ FADH2
1.胞质内反应阶段
⑴ 葡萄糖磷酸化
CH2OH H OH HO H OH H H O H
ATP
Mg2+
ADP
H OH HO H
CH2OPO3H2 O H H H OH OH
OH
已糖激酶
葡萄糖
葡萄糖-6-磷酸 糖酵解过程的第一个关键酶
CH2OH H OH HO H OH H H O O H O P OH OH H OH H H O H OH HO CH2OH O H O O P O P O 尿 苷 OH HO
UTP
UDPG焦磷酸化酶
1-磷酸葡萄糖
H2O
2Pi
PPi
尿苷二磷酸葡萄糖(UDPG)
* UDPG是葡萄糖活化形式,合成糖原的葡萄糖供体
H 2C
H2C C HO H H C C C H2C O
HO O P HO
HO O P HO O OH
O
O
C CH2
H OH OH O HO P OH O
磷酸二羟丙酮
醛缩酶
H C HC H2C

糖 代谢

糖 代谢

(1)低血糖是指血糖浓度<3.33mmol/L
空腹血糖浓度低于3.33~3.89mmol/L时称为低血糖(hypoglycemia) 。血 糖水平过低会影响脑细胞功能,出现 头晕、倦怠无力、心悸等症状, 严重时出现昏迷,称为低血糖休克。
低血糖的病因有: ① 胰性(胰岛β-细胞功能亢进、胰岛α-细胞功能低 下等);② 肝性(肝癌、糖原积累病等);③ 内分泌异常(垂体功能 低下、肾上腺皮质功能低下等);④ 肿瘤(胃癌等);⑤ 饥饿或不能 进食;
无氧代谢不能将葡萄糖完全分解为二氧化碳,部分能量仍积累在其 代谢产物中; 有氧代谢通过呼吸链将葡萄糖完全氧化为二氧化碳和水 ,可将葡萄糖的能量全部释放出来为生物体利用;
有氧氧化是糖分解代谢的主要途径。
重要概念
糖酵解(glycolysis):一分子葡萄糖裂解为两分子丙酮酸的过程。 乳酸发酵(lactic acid fermentation):在缺氧条件下,葡萄糖经酵解生 成的丙酮酸还原为乳酸(2-羟基丙酸,lactate) 。 乙醇发酵(ethanol fermentation):在某些植物、脊椎动物组织和微生 物,酵解产生的丙酮酸转变为乙醇和CO2,即乙醇发酵。(丙酮酸脱羧产生 乙醛,乙醛在醇脱氢酶催化下被NADH还原成乙醇) 有氧氧化(aerobic oxidation):在有条件下,需氧生物和哺乳动物组织 内的丙酮酸彻底氧化分解为CO2和H2O,即糖的有氧氧化 。
糖代谢异常与临床疾病
(一)先天性酶缺陷导致糖原累积症
糖原累积症(glycogen storage disease)是一类遗传性代谢病,其 特点为体内某些器官组织中有大量糖原堆积。
引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。
糖原积累症分型

第四章 糖类代谢

第四章  糖类代谢

第四章糖类代谢一名词解释糖异生/ 糖酵解途径/ 磷酸戊糖途径/ UDPG(1)糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖和糖原的过程。

(2)糖酵解途径:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,此反应过程一般在无氧条件下进行,又称为无氧分解。

(3)磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。

磷酸戊糖途径在细胞质中进行。

全部反应分为氧化阶段和非氧化阶段。

(4)UDPG:尿苷二磷酸葡萄糖,是糖原合成酶的糖基供体。

二填空题1.合成糖原的前体分子是UDPG,糖原分解的产物是1-磷酸葡萄糖。

2.1分子葡萄糖转化为2分子乳酸净生成2分子ATP;2分子乳酸异生为葡萄糖要消耗6分子ATP。

3.糖酵解过程中有3个不可逆的酶促反应,这些酶是己糖激酶、磷酸果糖激酶和丙酮酸激酶。

4.糖酵解抑制剂碘乙酸主要作用于3-磷酸甘油醛脱氢酶。

5.调节三羧酸循环最主要的酶是柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体。

6.三碳糖、六碳糖与七碳糖之间相互转变的糖代谢途径是磷酸戊糖途径。

7 磷酸戊糖途径可分为2阶段,分别称为氧化反应阶段和非氧化阶段,其中两种脱氢酶是葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶,它们的辅酶是NADP。

8.丙酮酸激酶是糖酵解途径的关键酶;丙酮酸羧化酶是糖异生途径的关键酶。

9.TCA循环中有两次脱羧反应,分别是由异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体催化。

10.TCA循环中发生底物水平磷酸化的化合物是琥珀酰CoA。

催化琥珀酸形成延胡索酸的酶是___琥珀酸脱氢酶,此酶的辅因子是FAD。

11在糖酵解中提供高能磷酸基团,使ADP磷酸化成A TP的高能化合物是1,3-二磷酸甘油酸和磷酸烯醇式丙酮酸12.参与丙酮酸氧化脱羧反应的辅酶为TPP,硫辛酸,FAD,NAD和CoA。

糖代谢知识点总结图

糖代谢知识点总结图

糖代谢知识点总结图一、糖的吸收和转运1. 糖的消化吸收:糖类主要通过小肠粘膜上皱不整的绒毛处的吸收上皮细胞,通过主动运输、被动扩散、依赖能活转移等方式被吸收。

2. 糖的转运:糖在肠道吸收后进入血管系统,在体内通过各种糖转运蛋白进入细胞内,参与能量代谢和结构物质的合成。

二、糖的利用和合成1. 糖的利用:糖类在体内主要参与葡萄糖代谢途径,包括糖的磷酸化、糖酵解、糖异生等途径。

磷酸化途径是糖类进入细胞之后的首要代谢途径,通过磷酸化反应将葡萄糖转化为葡萄糖-6-磷酸。

糖酵解途径是葡萄糖分解为丙酮酸,生成差异合酶酸后进入三羧酸循环产生ATP。

糖异生是指通过某些组织的特异合成途径,例如肝脏和肾脏可以合成葡萄糖以满足机体组织的需要。

2. 糖的合成:糖类合成主要包括糖异生途径和异生糖合成途径,通过这些途径可以合成各种不同类型的糖类物质,如多糖、寡糖和核苷酸糖。

三、糖的代谢调节1. 体内糖代谢平衡:机体通过血糖浓度调节、胰岛素和胰高血糖素的分泌调节以及神经内分泌调节等方式维持体内糖代谢的平衡状态,确保机体内糖代谢处于一个相对稳定的状态。

2. 糖代谢失调:血糖浓度异常、胰岛素分泌或功能异常、肝脏糖异生功能障碍等因素可能导致糖代谢失调,引起糖尿病、胰岛素抵抗等疾病。

四、糖代谢与疾病1. 糖尿病:糖尿病是一种以高血糖为主要特征的代谢性疾病,分为Ⅰ型和Ⅱ型糖尿病。

Ⅰ型糖尿病主要由于胰岛素分泌不足引起,Ⅱ型糖尿病主要由于胰岛素抵抗和胰岛素分泌减少引起。

2. 低血糖症:低血糖症是指血糖浓度过低的疾病,主要原因是胰岛素过多或者酮体生成不足引起的。

五、糖代谢与健康1. 膳食糖的选择:合理的膳食结构和糖的摄入量对于机体健康非常重要,过多摄入糖类可能导致肥胖、糖尿病等代谢性疾病。

2. 运动与糖代谢:适量的运动可以促进糖代谢途径,提高机体对葡萄糖的利用率,对于预防糖尿病和其他代谢性疾病具有积极意义。

总结:糖代谢是机体内糖类物质在生物体内进行化学反应和能量转换的过程。

第四章糖代谢

第四章糖代谢

第四章糖代谢重点内容:1.糖代谢的途径2.糖代谢的生理意义3.要注意的几个知识点糖的代谢开始于口腔,结束于小肠。

—糖的代谢途径主要有:糖酵解,有氧氧化,磷酸戊糖途径1.糖代谢的途径1)糖的无氧酵解途径(糖酵解途径):是在无氧情况下,葡萄糖分解生成乳酸的过程。

它是体内糖代谢最主要的途径。

糖酵解途径包括三个阶段:第一阶段:引发阶段。

葡萄糖的磷酸化、异构化:①葡萄糖磷酸化成为葡萄糖-6-磷酸,由己糖激酶催化。

为不可逆的磷酸化反应,酵解过程关键步骤之一,是葡萄糖进入任何代谢途径的起始反应,消耗1分子ATP.②葡萄糖-6-磷酸转化为果糖-6-磷酸,磷酸己糖异构酶催化;③果糖-6-磷酸磷酸化,转变为1,6-果糖二磷酸,由6磷酸果糖激酶催化,消耗1分子ATP,是第二个不可逆的磷酸化反应,酵解过程关键步骤之二,是葡萄糖氧化过程中最重要的调节点。

第二阶段:裂解阶段。

1,6-果糖二磷酸折半分解成2分子磷酸丙糖(磷酸二羟丙酮和3-磷酸甘油醛),醛缩酶催化,二者可互变,最终1分子葡萄糖转变为2分子3-磷酸甘油醛。

$第三阶段:氧化还原阶段。

能量的释放和保留:①3-磷酸甘油醛的氧化和NAD+的还原,由3-磷酸甘油醛脱氢酶催化,生成1,3-二磷酸甘油酸,产生一个高能磷酸键,同时生成NADH用于第七步丙酮酸的还原。

②1,3-二磷酸甘油酸的氧化和ADP的磷酸化,生成3-磷酸甘油酸和ATP.磷酸甘油酸激酶催化。

③3-磷酸甘油酸转变为2-磷酸甘油酸。

④2-磷酸甘油酸经烯醇化酶催化脱水,通过分子重排,生成具有一个高能磷酸键的磷酸烯醇式丙酮酸。

⑤磷酸烯醇式丙酮酸经丙酮酸激酶催化将高能磷酸键转移给ADP,生成烯醇式丙酮酸和ATP,为不可逆反应,酵解过程关键步骤之三。

⑥烯醇式丙酮酸与酮式丙酮酸互变。

⑦丙酮酸还原生成乳酸。

一分子的葡萄糖通过无氧酵解可净生成2个分子三磷酸腺苷(ATP),这过程全部在胞浆中完成。

2)糖的有氧氧化途径:葡萄糖在有氧条件下彻底氧化成水和二氧化碳称为有氧氧化,有氧氧化是糖氧化的主要方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pentose Phosphate Pathway (PPP) Hexose Monophosphate Shunt (HMS)
1.磷酸戊糖途径(磷酸己糖支路)
• 磷酸戊糖——磷酸戊糖为代表性中间产物。
• 支路——糖酵解在磷酸己糖处分生出的新途径。
2
磷酸戊糖 途径
细胞质中
A.过程(2个阶段:氧化/非氧化)
1 G-1-P 糖核 磷酸化酶+ H3PO4 G-1-P
(2)纤维素的分解: 纤维素酶 (3)双糖的降解 蔗糖: 蔗糖酶(surcrase)---转化酶(invertase) 乳糖: 乳糖酶
Section 3 糖酵解(Glycolysis)
1 概念 指糖在细胞液中,在无氧条件下, 分解生成为丙酮酸并伴随着生成ATP的 过程。 又称EMP途径
原核细胞
1. 丙酮酸氧化脱羧
(1)
丙酮酸脱氢酶复合体
丙酮酸+NAD+ →乙酰CoA+CO2+NADH+H+ 氧化部位:线粒体
丙酮酸脱氢酶复合体
酶 辅助因子 TPP(焦磷酸硫胺素) 硫辛酸 辅酶A FAD NAD
丙酮酸脱氢酶 二氢硫辛酸转乙酰酶 二氢硫辛酸脱氢酶
(2)
反应过程:4步
二氢硫辛酸脱 氢酶
苹果酸
CH3CO~SCoA
乙酰CoA
+
CoASH
• 只有一些植物和微生物兼具有这样
的途径;
Ⅰ.种子发芽
油类植物种 子中的油
脂 代 谢
乙酰CoA
乙醛酸循环 草酰乙酸
糖异生

Ⅱ原始细菌生存
乙酸
乙醛酸循环
NH3
四碳、 转化 六碳化 合物
乙酸菌
以乙酸为主要食物的细菌 (物质循环中的重要一环) 乙酰CoA合成酶

磷酸解方式(磷酸化酶) 淀粉磷酸化酶 淀粉 + nH3PO4 n G-1-P n G-1-P
变位酶
n G-6-P
酯酶
n G + nPi
α葡萄糖1,4糖苷键
α葡萄糖1,6糖苷键 糖核
+ 7H3PO4
磷酸化酶(别构酶)
ATP抑制-AMP激活
7 G-1-P +
糖核
转移酶 糖核
去分枝酶 + H3PO4
(1) 单糖---丙糖
(1) 单糖—丁糖
(1) 单糖—戊糖
(1) 单糖—己糖
(1) 单糖—己糖
(1) 单糖—庚糖
(2) 寡 糖
(2) 寡 糖
(2) 寡 糖
(2) 寡 糖
(2) 寡 糖
(3) 多 糖
(3) 多 糖
Hale Waihona Puke (3) 多 糖(3) 多 糖
(3) 多 糖
糖原
(4) 糖复合物 糖蛋白 蛋白多糖 糖脂 脂多糖
3-磷酸甘油醛 4-磷酸赤藓糖 3-磷酸甘油醛
磷酸戊糖异构酶
5-磷酸核酮糖
5-磷酸核糖
差向(异构)酶
5-磷酸木酮糖
5-磷酸木酮糖
转酮醇酶 5-磷酸核糖
C5 + C5
7-磷酸景天酮糖
C7 + C3
HCOH
H O HC P
H2COH OH
2-磷酸甘油酸
P
P
P H 2C O
3-磷酸甘油酸
CH2
磷酸烯醇 式丙酮酸
1,3-二磷酸 甘油酸
产能步骤:
3-磷 酸甘 3-磷酸甘油醛 油醛 NAD+ ⑥3-磷酸甘油醛脱氢酶 脱氢 酶 NADH + H 1.3-二磷酸甘油酸 ADP 磷酸 ⑦磷酸甘油酸激酶 甘油 ATP 酸激 3-磷酸甘油酸 酶 磷酸烯醇 ⑩丙酮酸激酶 式丙酮酸 丙酮酸 ADP ATP
Section 2 双糖和多糖的降解
1.多糖和低聚糖的酶促降解
淀粉、糖原、纤维素、低聚糖的酶促降解
• A.胞外降解
细胞外
多糖和低聚糖
• B.胞内降解
胞外水解酶(淀粉酶、寡糖酶) 单糖
主要是葡萄糖
细胞内储备 的 糖原或淀粉
磷酸化酶
活化、水解
转移酶 去分枝酶 磷酸化酶
断支链 活化、水解
(1) 淀粉的降解
4H2O
2ATP 1H2O O2 ADP ATP - 3H2O GTP GDP 1ATP 1H2O ————————————————————————— 15ATP 2H2O
② 糖酵解+三羧酸循环的效率
EMP: 1G → 2丙酮酸 2ATP+2NADH+2H+ =2+2×2.5(1.5)=5~7ATP 2丙酮酸 → 2乙酰CoA 2NADH+2H+ =2×2.5=5ATP TCA:2乙酰CoA →2CO2 1ATP+ 3NADH+1FADH =2×10=20ATP ——————————————————————— 30~32ATP
重新加入到 草酰乙酸库
五碳二羧酸 四碳二羧酸
三种羧酸!
(1) 反应历程:8步
①缩合 → ②异构 → ③脱羧(H)→ ④再脱羧(H)→⑤ 硫激(产生1ATP) → ⑥脱H → ⑦水化 → ⑧脱H
三羧酸循环
丙酮酸
H 3C CO COOH
+ NAD CoASH
(4)(6)(7)(8)(10)
产能步骤 • 3NAD(P)H • 1FADH2 • 1GTP
• •
柠檬酸
异柠檬酸
+ NADH + H
(1)
CO 2
草酰乙酸
(10)
H HOC COOH L-苹果酸 H 2 (9) O HC COOH C COOH H2 OC COOH
CH 3CO~SCoA
乙酰 CoA
C COOH H2 + (2) NADH+H H2O NAD+ CoASH
CH 2COOH C(OH)COOH CH 2COOH
(1) 丙酮酸脱氢酶复合体 (2) 柠檬酸合酶 (4) (3) 顺乌头酸酶 + NAD(P)H+H (4)(5)异柠檬酸脱氢酶 CH 2COOH (6) α-酮戊二酸脱氢酶复合体 CHCOOH CH 2COOH (7) 琥珀酰CoA合成酶 + + COCOOH NADH + H NAD CH 2 (5) 草酰琥珀酸 (8) 琥珀酸脱氢酶 COCOOH CO 2 (9) 延胡索酸酶 (6) (10)L-苹果酸脱氢酶 CO 2 CoASH α-酮戊二酸
共三步不可逆反应! 反应总体不能全部逆转。
3、生理意义
(1)是无氧条件下产能的有效方式,起应急作用
1葡萄糖→2ATP;1糖原→3ATP (2)某些细胞仅以此获能(成熟的红细胞 );某 些组织有氧下仍以此获能(皮肤……)。 ( 3 ) 中间产物为其他代谢过程提供碳骨架
4、EMP的调控:
能量\中间物 EMP反应速度受3种酶活性调控: ① 己糖激酶
淀粉的降解方式:
① 水解反应(α-淀粉酶和β-淀粉酶)
α-淀粉酶又称α-1,4-葡聚糖水解酶—切α-1.4糖苷
(内切淀粉酶)
β-淀粉酶又称α-1,4-麦芽糖苷酶β- 外切淀粉酶
(外切淀粉酶)
淀粉酶的作用
β
淀 粉 酶 的 作 用
α-淀粉酶和β-淀粉酶的比较
脱枝酶(R-酶)— 切α- 1.6糖苷键 麦芽糖酶
生存
乙酸 + ATP +CoASH → 乙酰CoA + H2O +AMP +PPi
这种途径对于植物和微生物意义重大!
• 只保留三羧酸循环中的(10)脱氢
(1NADH)产能,只相当于2.5个ATP, 意义不在于产能,在于生存。
生物学意义 (1) 作为TCA环上化合物的补充 (2)将脂肪转变为糖
Section 5 磷酸戊糖途径
(1)(6)-产能脱碳 2NADH + 2 CO2
•(5)-脱碳-1CO2
延胡索酸
C COOH H FADH 2
(3)
(8)
CH 2COOH CHCOOH
→ 3步不可逆反应
FAD
琥珀酸
H 2C COOH C COOH GTP H2
CoASH
(7)
H
2
GDP+Pi
CO~SCoA
O CH 2 CH 2
琥珀酰 CoA COOH
2 反应历程
第一阶段 磷酸丙糖的生成
特点:耗能 步骤:磷酸化、异构、再磷酸化、裂解及异构化
第二阶段
丙酮酸的生成
特点: 产能 步骤:
G
①活化
CH2O P O
P OCH2 O
②异构
CH2OH
③活化
P OCH2 O CH2O P
HO OH
1,6-二磷 酸果糖
HO OH
葡萄糖
HO
6-磷酸葡萄糖
6-磷酸果糖
• ② 磷酸果糖激酶
③丙酮酸激酶
5、几点说明
反应部位:细胞液 NAD+/NADH=103
起始物:糖原、淀粉、葡萄糖
终产物:丙酮酸 能量收支:消耗2ATP 脱氢1次 产生4ATP
辅因子: NAD, Pi,金属离子(Mg2+,K+)
6. 丙酮酸去向
(1) 乙醇发酵
COOH C CH3
CO2
+ NADH + H
+ NAD
O丙酮酸脱羧酶 HC
+ TPP
O 乙醇脱氢酶
CH2OH CH3
乙醇
CH3
• (2) 乳酸发酵 提问:发酵不产生能量,其生物意义何在呢? + + COOH NADH + H NAD COOH
相关文档
最新文档