华师大版七年级数学第三章整式的加减测试卷
第3章 整式的加减数学七年级上册-单元测试卷-华师大版(含答案)
第3章整式的加减数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列运算正确的是()A. B. C. D.2、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是()A.1B.2C.3D.43、下列各组中,不是同类项的是()A.5 2与2 5B.﹣ab与baC.0.2a 2b与﹣ a 2bD.a 2b 3与﹣a 3b 24、下列等式成立的是()A.3a+2b=5abB.a 2+2a 2=3a 4C.5y 3-3y 3=2y 3D.3x 3-x 2=2x5、若3a x b与2ab1-y是同类项,则x2011-y2010的值为()A.1B.-3C.-1D.06、当x=4时,代数式a(x3)2+b(x3)+3的值为7,则(a+b2)(2 a b)的值为()A.2B. 2C.4D. 47、下列计算正确的是()A. B. C. D.8、下列计算正确的是()A.x 5﹣x 4=xB.x+x=x 2C.x 3+2x 5=3x 8D.﹣x 3+3x 3=2x 39、下列运算正确的是()A. B. C. D.10、下列运算正确的是()A.3m﹣2m=1B.(m 3)2=m 6C.(﹣2m)3=﹣2m 3D.m 2+m2=m 411、如图是一个计算程序,若输入的值为﹣1,则输出的结果应为()A.-1B.-2C.-3D.712、化简3-2[3a-2(a-3)]的结果等于( )A.2a-9B.-2a-9C.-2a+9D.2a+913、小明通常上学时从家到学校要走一段上坡路,途中平均速度为m千米/时,放学时,沿原路返回,途中平均速度为n千米/时,则小明上学和放学路上的平均速度为()A. B. C. D.14、下列式子中,是单项式的是()A. B. C. D.15、在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①,图②,已知大长方形的长为a,两个大长方形未被覆盖的部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()A. aB. aC. aD.2a二、填空题(共10题,共计30分)16、计算:﹣3a+2a=________17、若的值为7,则的值为________.18、已知a2﹣a﹣1=0,则a3﹣a2﹣a+2016=________.19、如果a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则________ .20、若x2+mx+25是完全平方式,则m=________.21、已知x-2y=3,则代数式3-2x+4y=________.22、如果关于x,y的多项式中不含三次项,则2m+5n 的值为________.23、已知长方形的周长为10cm,设一边长为xcm,则它的面积为________cm2。
华东师大版七年级数学上册《第三章整式的加减》单元检测卷-带答案
华东师大版七年级数学上册《第三章整式的加减》单元检测卷-带答案一、单选题1.一列火车长m 米,以每秒v 米的速度通过一个长为n 米的隧道,用式子表示它刚好从开始进隧道口到全部通过隧道所需的时间为( )秒.A .n vB .m n v +C .2m n v +D .n m v- 2.若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .13.下列各式:15- 22a b 112x - -251x 2x y - 222a ab b -+.其中单项式的个数有( ) A .4个 B .3个 C .2个 D .1个4.若8m x y 与36n x y 的和是单项式,则m n +的值为( )A .4B .8C .4-D .8-5.若关于x 的多项式226723x x mx -++不含x 的二次项,则m =( )A .2B .2-C .3D .3-6.下列合并同类项正确的是( )A .336x y xy =+B .2222m n m n m n -=C .22752x x -=D .459ab ab =+7.下列计算正确是( )A .()x y z x y z ----=B .()x y z x y z -----+=C .3)33(x y z x z y --+=+D .()()a b c d a c d b ------=+++ 二、填空题 8.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费________元.9.一个长方形的长、宽分别是34x -和x ,它的面积等于________.10.已知221x x +=-,则代数式()52x x ++的值为________.11.如图所示是一个设计好的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是________.12.在下列式子中:23b 32xy + 2,3xy 5ab x - a b π+ ()23xy π+多项式有________个. 13.把多项式22354xy x y y -+按字母x 降幂顺序排列为:________.14.将多项式22332356xy x x y -+-按v 的升幂排列:________.15.如果32x y a b 与21y x a b +-是同类项,则代数式52x y -的值是________.三、计算题16.先化简,再求值()2222332232x y xy xy x y ⎛⎫----+- ⎪⎝⎭,其中122x y =-=-.四、综合题17.数学老师给出这样一个题:22=2x x --+□△.(1)若“□”与“△”相等,求“△”(用含的代数式表示);(2)若“□”为2326x x -+,当1x =时,请你求出“△”的值.参考答案与解析一、1.【答案】B【解析】解:根据“通过桥洞所需的时间为=(桥洞长+车长)÷车速”求解即可. 根据分析知:火车通过桥洞所需的时间为m n v +秒. 故答案为:B .2.【答案】D【解析】把所求代数式2483m m +-变形为()2423m m +-,然后把条件整体代入求值即可.解:221m m += 2483m m ∴+-()2423m m =+-413=⨯-1=.故答案为:D .3.【答案】B【解析】由一个数字与一个字母的积或一个字母与一个字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式),据此得出单项式的个数。
华东师大版七年级上册数学 第3章 整式的加减 单元测试卷(含答案解析)
第 1 页 共 13页 华东师大版七年级上册数学 第3章 整式的加减 单元测试卷(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 以下是代数式的是( )A.m =abB.(a +b)(a −b)=a 2−b 2C.a +1D.S =πR 22. a −b =5,那么3a +7+5b −6(a +13b)等于( ) A.−7B.−8C.−9D.103. 下列关于多项式ab −a 2b −1的说法中,正确的是( )A.该多项式的次数是2B.该多项式是三次三项式C.该多项式的常数项是1D.该多项式的二次项系数是−14. 当a =−1,b =1时,(a 3−b 3)−(a 3−3a 2b +3ab 2−b 3)的值是( )A.0B.6C.−6D.95. 小华的存款x 元,小林的存款比小华的一半还多2元,小林的存款是( )A.12x +2B.12(x +2)C.12x −2D.12(x −2)6. 有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x 米,那么窗框的面积是( )A.x(6−x)米2B.x(12−x)米2C.x(6−3x)米2D.x(6−32x)米2第 2 页 共 13页7. 笔记本的单价是m 元,钢笔的单价是n 元,甲买3本笔记本和2支钢笔,乙买4本笔记本和3支钢笔,买这些笔记本和钢笔,甲和乙一共花了多少元?( )A.5m +7nB.7m +5nC.6m +6nD.7n +5m8. 一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )A.3B.4C.5D.6 9. 把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个,…,按这种规律摆放,第五层的正方体的个数是( )A.10B.12C.15D.−20 10. 一个正整数N 的各位数字不全相等,且都不为0,现要将N 的各位数字重新排列,可得到一个最大数和一个最小数,此最大数与最小数的和记为N 的“和数”;此最大数与最小数的差记为N 的“差数”.例如,245的“和数”为542+245=787;245的“差数”为542−245=297.一个四位数M ,其中千位数字和百位数字均为a ,十位数字为1,个位数字为b (且a ≥1,b ≥1),若它的“和数”是6666,则M 的“差数”的值为( )A.3456或3996B.4356或3996C.3456或3699D.4356或3699二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 单项式−3πxy 25的系数和次数分别是________.12. 单项式−xy 25的系数与次数的积是________.。
华师大版七年级数学上册《第3章整式的加减》单元测试卷含答案
华师版七年级数学上册单元测试卷第3章 整式的加减班级 姓名一、选择题(每题3分,共30分)1.对于单项式103x 2y 7,下列说法正确的是( C) A.它是六次单项式 B.它的系数是17C.它是三次单项式D.它的系数是1072.下列判断中,正确的是( D )A.3a 2bc 与bca 2不是同类项B.m 2n 5不是整式C.单项式m 2n 4p 6没有系数D.3x 2-y +5xy 2是三次三项式3.下列各组单项式中,不是同类项的一组是(A )A.x 2y 和2xy 2B.-32和3C.3xy 和-xy 2D.5x 2y 和-2yx 24.化简2(a -b )-(3a +b )的结果是( B )A.-a -2bB.-a -3bC.-a -bD.-a -5b5.下列各式中,去括号正确的是( C )A.x2-(2y-x+z)=x2-2y-x+zB.3a-[6a-(4a-1)]=3a-6a-4a+1C.2a+(-6x+4y-2)=2a-6x+4y-2D.-(2x2-y)+(z-1)=-2x2-y-z-16.某整式与(2x2+5x-2)的和为(2x2+5x+4),则此整式为( B )A.2B.6C.10x+6D.4x2+10x+27.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( A )A.3a+2bB.3a+4bC.6a+2bD.6a+4b8.若x2+xy=2,xy+y2=1,则x2+2xy+y2的值是( D )A.0B.1C.2D.39.已知a、b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( A )A.2a+2bB.2b+4C.2a -4D.010.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n )和芍药的数量规律,那么当n =11时,芍药的数量为( B )A.84株B.88株C.92株D.121株【解析】 由图可得,芍药的数量为4+(2n -1)×4, ∴当n =11时,芍药的数量为4+(2×11-1)×4=4+(22-1)×4=4+21×4=4+84=88(株).二、填空题(每题3分,共18分)11.“比x 的4倍大3的数”用代数式表示是__4x +3__.12.当x =5,y =4时,式子x -y 2的值是__3__. 13.若a -b =1,则代数式2a -2b -1的值为__1__.14.一个多项式加上-x 2+x -2得x 2-1,则这个多项式是__2x 2-x +1__.15.若单项式2x 2y m 与-13x n y 4可以合并成一项,则n m =__16__.16.一组代数式:-a 22,a 35-a 410,a 517,…,观察规律,则第10个代数式是__a 11101__. 【解析】 ∵第10项分子为a10+1=a 11, 第10项分母为102+1=101,第10项符号为“+”, ∴第10个代数式为a 11101. 三、解答题(共52分)17.(6分)化简下列多项式:(1)2x 2-(-x 2+3xy +2y 2)-(x 2-xy +2y 2);(2)2(x -y )2-3(x -y )+5(x -y )2+3(x -y ).解:(1)2x 2-(-x 2+3xy +2y 2)-(x 2-xy +2y 2)=2x 2+x 2-3xy -2y 2-x 2+xy -2y 2=2x 2-2xy -4y 2.(2)2(x -y )2-3(x -y )+5(x -y )2+3(x -y )=7(x -y )2=7(x 2-2xy +y 2)=7x 2-14xy +7y 2.18.(6分)先化简,再求值:-5ab +2[3ab -(4ab 2+12ab )]-5ab 2,其中a =-2,b =12. 解:-5ab +2[3ab -⎝ ⎛⎭⎪⎪⎫4ab 2+12ab ]-5ab 2=-5ab +6ab -8ab 2-ab -5ab 2=-13ab 2,当a=-2,b=12时,原式=132.19.(7分)丁丁家买了一套安置房,地面结构如图所示.(1)写出用含x、y的式子表示地面的总面积;(2)如果x=4 m,y=1.5 m,铺1 m2地砖的平均费用为80元,求铺地砖的总费用.解:(1)6x+2y+18.3分(2)当x=4,y=1.5时,6x+2y+18=45.铺地砖的总费用为45×80=3 600(元).7分20.(7分)有这样一道题:计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=-13,y=-2.甲同学把“x=-13”错抄成“x=13”.但他计算的结果是正确的,请你分析这是什么原因.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=(2-1-1)x3+(-3+3)x2y+(-2+2)xy2+(-1-1)y3=-2y 3,4分故代数式的值与x 的取值无关,所以甲同学把“x =-13”错抄成“x =13”,但他计算的结果是正确的.7分21.(8分)某商店有一种商品,每件成本a 元,原来按成本增加b 元定出售价,售价40件后,由于库存积压减价,按售价的80%出售,又销售60件.(1)该商品销售100件的总售价为多少元?(2)销售100件这种商品共盈利了多少元?解:(1)根据题意,得40(a +b )+60(a +b )×80%=88a +88b (元),4分则销售100件这种商品的总售价为(88a +88b )元.(2)根据题意,得88a +88b -100a =-12a +88b (元), 则销售100件这种商品共盈利了(-12a +88b )元.8分22.(8分)已知A =3a 2b -2ab 2+abc ,小明错将“C =2A -B ”看成“C =2A +B ”,算得结果C =4a 2b -3ab 2+4abc .(1)计算B 的表达式;(2)求正确的结果的表达式;(3)小芳说(2)中结果的大小与c 的取值无关,对吗?若a =18,b =15,求(2)中代数式的值. 解:(1)∵2A +B =C ,∴B =C -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc )=4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc=-2a 2b +ab 2+2abc .2分(2)2A -B =2(3a 2b -2ab 2+abc )-(-2a 2b +ab 2+2abc ) =6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc=8a 2b -5ab 2.5分(3)对,与c 无关,将a =18,b =15代入,得 8a 2b -5ab 2=8×⎝ ⎛⎭⎪⎪⎫182×15-5×18×⎝ ⎛⎭⎪⎪⎫152=0.8分23.(10分)如图,一个点从数轴上的原点开始,先向左移动2 cm 到达点A ,再向左移动3 cm 到达点B ,然后向右移动9 cm 到达点C.(1)用1个单位长度表示1 cm ,请你在数轴上表示出A 、B 、C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =__6__cm ;(3)若点B 以每秒2 cm 的速度向左移动,同时A 、C 点分别以每秒1 cm 、4 cm 的速度向右移动,设移动时间为t 秒,试探索: CA -AB 的值是否会随着t 的变化而改变?请说明理由.解:(1)如答图:23题答图3分(2)提示:CB=4-(-2)=4+2=6(cm).5分(3)不会.理由如下:当移动时间为t秒时,点A、B、C分别表示的数为-2+t,-5-2t,4+4t,则CA=(4+4t)-(-2+t)=6+3t,AB=(-2+t)-(-5-2t)=3t+3.∵CA-AB=6+3t-(3t+3)=3,∴CA-AB的值不会随着t的变化而改变.10分。
华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)
华东师大版七年级数学上册第三章整式的加减专题训练试题专题(一)整式的化简与求值1.已知有理数a,b,c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是()A .a+cB .c-aC .-a-cD .a+2b-c2.有理数a,b 在数轴上的位置如图所示,则化简式子|a+b|+a 的结果是______.3.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x-7的值为______.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于______.5.计算:(1)6a 2+4b 2-4b 2-7a 2;(2)(8a-7b)-(4a-5b);(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);(5)3x 2-[5x-(12x-3)+3x 2].6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;(3)2(a 2b-ab 2)-3(a 2b-1)+2ab 2+1,其中a=2,|b+1|=0.8.若单项式3x 2y 5与-2x1-a y 3b-1是同类项,求下面代数式的值:5ab 2-[6a 2b-3(ab 2+2a 2b)].9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=______;(2)因为b_____0,-b_____0,所以|b|=_____;|-b|=_____;(3)因为1+a_____0,所以|1+a|=_____;(4)因为1-b<_____,所以|1-b|=_____=_____;(5)因为a+b>0,所以|a+b|=_____;(6)因为a-b_____0,所以|a-b|=_____=_____.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.13.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2020.”小明做题时把“x =2020”错抄成了“x =-2020”.但他计算的结果却是正确的,请你说明这是什么原因?14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是()A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.83.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6D.3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是()A.1009+1010+…+3026=20172B.1009+1010+…+3027=20182C.1010+1011+…+3028=20192D.1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_____.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是_____粒.7.按规律写出空格中的数:-2,4,-8,16,_____,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是_____.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____.11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.参考答案专题(一)整式的化简与求值1.已知有理数a,b,c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是(A)A.a+c B.c-a C.-a-c D.a+2b-c 2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.若多项式2x2+3x+7的值为10,则多项式6x2+9x-7的值为2.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于3.5.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)(8a-7b)-(4a-5b);解:原式=8a-7b-4a+5b =4a-2b.(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);解:原式=-12x 2y+xy 2+12x 2+13x 2+13x 2y+13xy2=-16x 2y+56x 2+43xy 2.(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);解:原式=2x 3-4y 2-x+2y-x+3y 2-2x 3=-y 2-2x+2y.(5)3x 2-[5x-(12x-3)+3x 2].解:原式=3x 2-(5x-12x+3+3x 2)=3x 2-5x+12x-3-3x2=-92x-3.6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x 2-2x+1+2(2x 2-6x+3)=x 2-2x+1+4x 2-12x+6=5x 2-14x+7.(2)2A-B=2(x 2-2x+1)-(2x 2-6x+3)=2x 2-4x+2-2x 2+6x-3=2x-1.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;解:原式=-x 2+12x-2-12x+1=-x 2-1.当x=12时,原式=-(12)2-1=-54.(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;解:原式=-2ab+3a-4a+2b+2ab=-a+2b.当a=3,b=1时,原式=-3+2=-1.(3)(安阳期末)2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=2,|b+1|=0.解:原式=2a2b-2ab2-3a2b+3+2ab2+1=-a2b+4.因为a=2,|b+1|=0,即b=-1,所以原式=-22×(-1)+4=4+4=8.8.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2,3b-1=5.解得a=-1,b=2.原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.解:原式=-3a2+8ab-3b2=-3(a2+b2)+8ab,因为a2+b2=6,ab=-2,所以原式=-3×6+8×(-2)=-34.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b<0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b<0,所以|a-b|=-(a-b)=b-a.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.解:由数轴知,a<b<0<c,且|b|<|c|,所以b+c>0,a-c<0,a+b<0.所以原式=2(b+c)-[-3(a-c)]-[-4(a+b)]=2b+2c+3(a-c)+4(a+b)=2b+2c+3a-3c+4a+4b=6a+6b-c.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.解:2mx2-x2+5x+8-(7x2-3y+5x)=2mx2-x2+5x+8-7x2+3y-5x=(2m-8)x2+3y+8.因为此多项式的值与x无关,所以2m-8=0,解得m=4.m2-[2m2-(5m-4)+m]=m2-(2m2-5m+4+m)=-m2+4m-4,当m=4时,原式=-42+4×4-4=-4.13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中x=2020.”小明做题时把“x=2020”错抄成了“x=-2020”.但他计算的结果却是正确的,请你说明这是什么原因?解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3=17x2-8x2-5x-4x2-x+3+5x2+6x-1-3=10x2-1.因为当x=2020和x=-2020时,x2的值不变,所以他计算的结果是正确的.14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),(10b+a)-(10a+b)=10b+a-10a-b=9b-9a=9(b-a),因为a,b都是整数,所以a-b,b-a也是整数.所以这两个数的差一定是9的倍数.专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是(D )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是(A )A .0B .1C .7D .83.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为(D )A .3nB .6nC .3n+6D .3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是(C )A .1009+1010+…+3026=20172B .1009+1010+…+3027=20182C .1010+1011+…+3028=20192D .1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是(2n+1)粒.7.按规律写出空格中的数:-2,4,-8,16,-32,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有6058个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2019个单项式是-4037x2019,第2020个单项式是4039x2020.。
七年级数学华东师大版上册课件:第3章《整式的加减》测试卷 (共33张PPT)
20
(2)求当 t=8 小时,s=40 千米时,骑自行车每小 时比步行多走的距离.
解:当 t=8,s=40 时,t-s 3-st=84-03-480=3 千 米/小时,即骑自行车比步行每小时多走 3 千米.
21
21. (8 分)阅读理解:小红、小英和小强三个同学, 针对同一道数学题“先化简,后求值:(xyz2-4xy-1) +(-3xy+xyz2-3)-(2xyz2+xy),其中 x=-0.125,y =0.5,z=0.315.”展开争论:
(1)在第 n 个图形中,每一横行共有________块瓷 砖,每一竖列共有________块瓷砖;
(2)在铺设第 n 个图形时,共用多少,每块白瓷砖 3 元,铺设 当 n=10 时的图形时,共需花多少钱购买瓷砖?
29
解:(1)(n+3);(n+2); (2)(n+3)(n+2); (3)当 n=10 时,总砖数为 13×12=156(块),其中 白瓷砖 10×11=110 块,黑瓷砖 156-110=46(块). 所需购买瓷砖的钱数为 4×46+3×110=514(元).
A.x(6-x)平方米 B.x(12-x)平方米 C.x(6-32x)平方米 D.x(6-3x)平方米
10
【解析】窗框的宽度为12-2 3x=6-32x米,则窗 框的面积是 x(6-32x)平方米.
11
10. (2017·荆州)如图,用黑白两种颜色的菱形 纸片,按黑色纸片数逐渐增加 1 的规律拼成下列图 案.若第 n个图案有2017 个白色纸片,则 n的值为( B )
解:(1)如图所示; (2)原式=a-2(a-b)+a+b =3b.
24
23. (10 分)“囧”(jiǒng)是网络流行语,像一个人 脸郁闷的神情.如图所示,一张边长为 20 的正方形的 纸片,剪去两个一样的小直角三角形和一个长方形得 到一个“囧”字图案(阴影部分).设剪去的小长方形长 和宽分别为 x,y,剪去的两个小直角三角形的两直角 边长也分别为 x,y.
华东师大版七年级数学第三章整式的加减单元检测试题含答案
七年级数学第三章整式的加减单元检测试题姓名:__________ 班级:__________一、单选题(共10题;共30分)1.李华每分钟走a m,张明每分钟走b m,2分钟后,他们一共走了()A. 2(a-b)mB. 2(a+b)mC. 2ab mD. m2.一个两位数,个位上的数字是a,十位上的数字是b,用代数式表示这个两位数是()A. aB. baC. 10a+bD. 10b+a3.若x=-3,y=1,则代数式2x-3y+1的值为( )A. -10B. -8C. 4D. 104.若a3x b y与﹣2a2y b x+1是同类项,则x+y=()A. 1B. -1C. -5D. 55.现定义两种运算“⊕”“*”.对于任意两个整数,a⊕b=a+b-1,a*b=a×b-1,则(6⊕8)*(3⊕5)的结果是()A. 60B. 90C. 112D. 696.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A. ﹣3B. 0C. 3D. 67.规定:正整数n的“H运算”是:①当n为奇数时,H=3n+13;②当n为偶数时,H=n×0.5×0.5…(连续乘以0.5,一直算到H为奇数止).如:数3经过“H运算”的结果是22,经过2次“H运算”的结果为11,经过三次“H运算”的结果为46,那么257经2017次“H运算”得到的结果是()A. 161B. 1C. 16D. 以上答案均不正确8.观察下面的一列单项式::-x、2x2、-4x3、8x4、-16x5、…根据其中的规律,得出的第10个单项式是()A. -29x10B. 29x10C. -29x9D. 29x99.1×2+2×3+3×4+…+99×100=()A. 223300B. 333300C. 443300D. 43330010.若|n+2|+|m+8|=0,则n﹣m等于()A. 6B. ﹣10C. ﹣6D. 10二、填空题(共8题;共9分)11.出租车收费标准为:起步价10元(不超过3千米收费10元),3千米后每千米1.4元(不足1千米按1千米算)、小明坐车x(x是大于3的整数)千米,应付车费________元(化简).12.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是________.13.已知:x-2y=-3,则代数式-2x+4y+7的值为________ 。
华师大版七年级数学第三章整式的加减测试卷
初一数学整式的加减测试试卷(本测试卷正卷满分150分,考试时间为100分钟)姓名__________学号________总分_________一. 选择题(每小题3分,共30分)1、1.小明身上带着a元去商店里买学习用品,付给服务员b元,找回c元,小明身上还有 ( )A.c元 B.(a+c)元 C.(a-b+c)元 D.(a-b)元.2、下列说法中正确的是 ( )A 、x -的次数为0,B 、x π-的系数为1-,C 、-5是一次单项式,D 、b a 25-的次数是3次3、多项式x x -227是 ( )A 、一次二项式B 、二次二项式C 、四次二项式D 、五次二项式4、下列各组式子中,是同类项的是 ( )A. 32b a 与b a 2 B.y x 23与23xy C.a 与1 D. bc 2与abc 2 5、下列计算正确的是 ( )A.x x x =-45B.2x x x =+C.85332x x x =+D.33323x x x =+-6、某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,加价1.5元,现在某人乘出租车行驶P 千米的路程(P >7)所需费用是 ( )A 、5+1.5PB 、5+1.5C 、5-1.5PD 、5+1.5(P -7)7、代数式yx y x -+中的y x ,都扩大10倍,则代数式的值 ( ) A 、扩大10倍, B 、缩小, C 、扩大11倍, D 、不变8、一个两位数,十位上的数字是个位上的数字的3倍,如果十位上的数是x ,则这个两位数是 ( )A 、x x 31+B 、x x +⋅310C 、310x x +D 、3x x ⋅9、某人以每小时3千米的速度登山,下山以每小时6千米的速度返回原地,则来回的平均速度为 ( )A 、4千米/小时B 、4.5千米/小时C 、5千米/小时D 、5.5千米/小时10、观察下列等式:819=-;12416=-;25-9=16;36-16=20;……设n 表示正整数,下面符合上述规律的等式是 ( )A 、)1(4)2(22+=-+n n nB 、2224)1()1(n n n =--+C 、14)2(22+=-+n n nD 、)1(2)2(22+=-+n n n二、 填空题(每小题3分,共30分)11、某次数学测试,全班男生m 人,平均分数是80分,女生n 人,平均分数是85分,则全班的平均分数是 。
华师大版七年级上册数学第3章 整式的加减 含答案
华师大版七年级上册数学第3章整式的加减含答案一、单选题(共15题,共计45分)1、如果a2+4a-4=0,那么代数式的值为()A.13B.-11C.3D.-32、已知x=a时,多项式的值为﹣4,则x=﹣a时,该多项式的值为().A.0B.6C.12D.183、下列计算正确的是()A. B. C. D.4、下列运算中,正确的是()A.3a+5b=15abB.(a 2)3=a 9C.a 6﹣a 2=a 4D.2a×3a=6a 25、下列运算中结果正确的是()A.3a+2b=5abB.﹣4xy+2xy=﹣2xyC.3y 2﹣2y 2=1D.3x2+2x=5x 36、下列各式中,计算正确的是A. B. C. D.7、下列各对数中,互为相反数的是()A.﹣(﹣2)和2B.+(﹣3)和﹣(+3)C.D.﹣(﹣5)和﹣|﹣5|8、如图,在公园长方形空地上,要修两条路(图中的阴影所示),按照图中标的数据,计算图中空白部分的面积为()A.ab-bc-ac+c 2B.bc-ab+acC.b 2-bc+a 2-abD.a 2+ab+bc-ac9、已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.﹣1B.1C.﹣5D.510、下列运算正确的是()A.2a+4b=7abB.1+2a=3aC.5x﹣5y=0D.﹣3a+a﹣(﹣2a)=011、一个两位数,用x表示十位数字,个位数字比十位数字大3,则这个两位数为()A.11x+3B.11x﹣3C.2x+3D.2x﹣312、在-(-3),-5,+,-|-2|这四个数中,负数的个数是()A.1个B.2个C.3个D.4个13、下列各对数中,互为相反数的是()A.﹣(﹣2)和2B.+(﹣3)和﹣(+3)C.D.﹣(﹣5)和﹣|﹣5|14、下面说法中①-a一定是负数;②0.5πab是二次单项式;③倒数等于它本身的数是±1;④若∣a∣=-a,则a<0;⑤由-2(x-4)=2变形为x - 4 =-1,其中正确的个数是()A.1个B.2个C.3个D.4个15、我们规定:,例如,则的值为()A. B. C. D.二、填空题(共10题,共计30分)16、若a,b互为相反数,互为倒数,则的值是________.17、某地对居民用电的收费标准为:每月如果不超过100度,那么每度电价按a元收费,如果超过100度,超出部分电价按每度b元收费,某户居民一个月用电160度,该户居民这个月应交纳电费是________元(用含a、b的代数式表示)18、古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an ,计算a1+a2, a2+a3, a3+a4,…由此推算a399+a400=________ .19、符号“*”表示一种新的运算,规定,求的值为________20、若a=3﹣,则a2﹣6a﹣3的值为________.21、 x a-1y与-3x2y b+3是同类项,则a+3b=________.22、若x2+3x=2,那么多项式2x2+6x﹣8=________.23、列式表示:P的3倍的是________.24、已知x是实数且满足,则相应的代数式x2+2x﹣1的值为________.25、观察下面一组数:﹣1,﹣2, 3,﹣4,﹣5,6,﹣7,…,将这组数排成如图的形式,按照如图规律排下去,则第________行从左边向右数第________个数是2019.第一行 -1第二行 -2 3 -4第三行 -5 6 -7 -8 9第四行 -10 -11 12 -13 -14 15 -16……三、解答题(共5题,共计25分)26、先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2017.27、合并同类项:5y﹣2x2y﹣3y+3x2y.28、已知多项式A、B,计算A-B.某同学做此题时误将A-B看成了A+B,求得其结果为 A+B= ,若,请你帮助他求得正确答案.29、已知a与b互为倒数,m与n互为相反数,x的绝对值等于1,求:2014(m+n)﹣2015x2+2016ab的值.30、化简|1-a|+|2a+1|+|a|,其中a<-2.参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、D5、B6、C7、D8、A9、A10、D11、A12、C13、D14、C15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)
华东师大版七年级数学上册第三章 整式的加减 专题训练试题专题(一) 整式的化简与求值1.已知有理数a ,b ,c 在数轴上的位置如图所示,化简|a +b|-|c -b|的结果是( )A .a +cB .c -aC .-a -cD .a +2b -c2.有理数a ,b 在数轴上的位置如图所示,则化简式子|a +b|+a 的结果是______.3.若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为______. 4.已知xy =-1,x +y =12,那么y -(xy -4x -3y)的值等于______.5.计算:(1)6a 2+4b 2-4b 2-7a 2;(2)(8a -7b)-(4a -5b);(3)-12(x 2y -2xy 2-x 2)-13(-x 2-x 2y -xy 2);(4)2(x 3-2y 2)-(x -2y)-(x -3y 2+2x 3);(5)3x 2-[5x -(12x -3)+3x 2].6.已知A =x 2-2x +1,B =2x 2-6x +3.求:(1)A +2B ; (2)2A -B.7.先化简,再求值:(1)14(-4x 2+2x -8)-(12x -1),其中x =12;(2)(-2ab +3a)-2(2a -b)+2ab ,其中a =3,b =1;(3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,|b +1|=0.8.若单项式3x 2y 5与-2x1-a y 3b -1是同类项,求下面代数式的值:5ab 2-[6a 2b -3(ab 2+2a 2b)].9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=______;(2)因为b_____0,-b_____0,所以|b|=_____;|-b|=_____;(3)因为1+a_____0,所以|1+a|=_____;(4)因为1-b <_____,所以|1-b|=_____=_____;(5)因为a+b>0,所以|a+b|=_____;(6)因为a-b _____0,所以|a-b|=_____=_____.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.13.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因?14.已知一个两位数,其十位数字是a ,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?专题(二) 整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是( )A.0 B.1 C.7 D.83.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是( )A.1 009+1 010+…+3 026=2 0172B.1 009+1 010+…+3 027=2 0182C.1 010+1 011+…+3 028=2 0192D.1 010+1 011+…+3 029=2 02025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_____.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是_____粒.7.按规律写出空格中的数:-2,4,-8,16,_____,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是_____.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____.11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形中共有_____个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.参考答案专题(一) 整式的化简与求值1.已知有理数a ,b ,c 在数轴上的位置如图所示,化简|a +b|-|c -b|的结果是(A )A .a +cB .c -aC .-a -cD .a +2b -c2.有理数a ,b 在数轴上的位置如图所示,则化简式子|a +b|+a 的结果是-b .3.若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为2. 4.已知xy =-1,x +y =12,那么y -(xy -4x -3y)的值等于3.5.计算:(1)6a 2+4b 2-4b 2-7a 2; 解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)(8a -7b)-(4a -5b); 解:原式=8a -7b -4a +5b =4a -2b.(3)-12(x 2y -2xy 2-x 2)-13(-x 2-x 2y -xy 2);解:原式=-12x 2y +xy 2+12x 2+13x 2+13x 2y +13xy 2=-16x 2y +56x 2+43xy 2.(4)2(x 3-2y 2)-(x -2y)-(x -3y 2+2x 3); 解:原式=2x 3-4y 2-x +2y -x +3y 2-2x 3=-y 2-2x +2y.(5)3x 2-[5x -(12x -3)+3x 2].解:原式=3x 2-(5x -12x +3+3x 2)=3x 2-5x +12x -3-3x 2=-92x -3.6.已知A =x 2-2x +1,B =2x 2-6x +3.求:(1)A +2B ; (2)2A -B.解:(1)A +2B =x 2-2x +1+2(2x 2-6x +3) =x 2-2x +1+4x 2-12x +6 =5x 2-14x +7.(2)2A -B =2(x 2-2x +1)-(2x 2-6x +3) =2x 2-4x +2-2x 2+6x -3 =2x -1.7.先化简,再求值:(1)14(-4x 2+2x -8)-(12x -1),其中x =12; 解:原式=-x 2+12x -2-12x +1=-x 2-1.当x =12时,原式=-(12)2-1=-54.(2)(-2ab +3a)-2(2a -b)+2ab ,其中a =3,b =1;解:原式=-2ab+3a-4a+2b+2ab=-a+2b.当a=3,b=1时,原式=-3+2=-1.(3)(安阳期末)2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=2,|b+1|=0.解:原式=2a2b-2ab2-3a2b+3+2ab2+1=-a2b+4.因为a=2,|b+1|=0,即b=-1,所以原式=-22×(-1)+4=4+4=8.8.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2,3b-1=5.解得a=-1,b=2.原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.解:原式=-3a2+8ab-3b2=-3(a2+b2)+8ab,因为a2+b2=6,ab=-2,所以原式=-3×6+8×(-2)=-34.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.解:由数轴知,a<b<0<c,且|b|<|c|,所以b+c>0,a-c<0,a+b<0.所以原式=2(b+c)-[-3(a-c)]-[-4(a+b)]=2b+2c+3(a-c)+4(a+b)=2b+2c+3a-3c+4a+4b=6a+6b-c.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.解:2mx2-x2+5x+8-(7x2-3y+5x)=2mx2-x2+5x+8-7x2+3y-5x=(2m-8)x2+3y+8.因为此多项式的值与x无关,所以2m-8=0,解得m=4.m2-[2m2-(5m-4)+m]=m2-(2m2-5m+4+m)=-m2+4m-4,当m=4时,原式=-42+4×4-4=-4.13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中x=2 020.”小明做题时把“x=2 020”错抄成了“x=-2 020”.但他计算的结果却是正确的,请你说明这是什么原因?解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3=17x2-8x2-5x-4x2-x+3+5x2+6x-1-3=10x2-1.因为当x=2 020和x=-2 020时,x2的值不变,所以他计算的结果是正确的.14.已知一个两位数,其十位数字是a ,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a +b.(2)(10a +b)+(10b +a)=11a +11b =11(a +b),因为a ,b 都是整数,所以a +b 也是整数.所以这两个数的和能被11整除.(10a +b)-(10b +a)=10a +b -10b -a =9a -9b =9(a -b),(10b +a)-(10a +b)=10b +a -10a -b =9b -9a =9(b -a),因为a ,b 都是整数,所以a -b ,b -a 也是整数.所以这两个数的差一定是9的倍数.专题(二) 整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .83.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为(D )A .3nB .6nC .3n +6D .3n +34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是(C ) A .1 009+1 010+…+3 026=2 0172 B .1 009+1 010+…+3 027=2 0182 C .1 010+1 011+…+3 028=2 0192 D .1 010+1 011+…+3 029=2 02025.归纳“T ”字形,用棋子摆成的“T ”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n 个“T ”字形需要的棋子个数为3n +2.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是(2n+1)粒.7.按规律写出空格中的数:-2,4,-8,16,-32,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形中共有6058个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2 019个单项式是-4 037x2 019,第2020个单项式是4 039x2 020.。
第3章 整式的加减数学七年级上册-单元测试卷-华师大版(含答案)
第3章整式的加减数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、已知,则a+b的值为( )A.1B.2C.3D.42、如果a、b互为相反数,c、d互为倒数,x的绝对值为1,那么代数式+x2-cd的值等于()A.0B.1C.2D.33、当x=2时,代数式ax3+bx+1的值为3,那么当x=-2时,代数式ax3+bx+1的值是()A.1B.-1C.3D.24、下列各对数中互为相反数的是()A.﹣(+5)和+(﹣5)B.﹣(﹣5)和+(﹣5)C.﹣(+5)和﹣5D.+(﹣5)和﹣55、若x+3y=5,则代数式2x+6y﹣3的值是()A.9B.10C.7D.156、观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…通过观察,用你所发现的规律确定32000的末位数字是 ( )A.3B.9C.7D.17、下列每组中的两个代数式,属于同类项的是()A.3m 3n 2和﹣3m 2n 3B.xy与2xyC.5 3与a 3D.7x与7y8、观察如图所示的数字排列表,按此规律,第673行的最后一个数应是()A.2015B.2016C.2017D.20189、下列运算正确的是()A.a 3•a 4=a 12B.m 3+m 4=m 7C.(a+b)2=a 2+b 2D.n 6÷n 3=n 310、用代数式表示“的两倍与平方的差”,正确的是 ( )A. B. C. D.11、下列各式中,运算错误的是()A.5x-2x=3xB.5ab-5ba=0C.4x 2y-5xy 2=-x 2yD.3x 2+2x 2=5x 212、下列运算正确的是()A. B. C. D.13、如果代数式a+b=3,ab=﹣4,那么代数式3ab﹣2b﹣2(ab+a)+1的值等于()A.-9B.-13C.-21D.-2514、下列代数式的书写最规范的是()A.1a 2bB.x•2C.0.5mD.15、x=1时,多项式ax2+bx+1的值为3,则多项式2(3a-b)-(5a-3b)值的值等于( )A.0B.1C.2D.-2二、填空题(共10题,共计30分)16、一个正整数N的各位数字不全相等,且都个为0,现要将N的各位数字重新排列,必可得到一个最大数和一个最小数,此最大数与最小数的和记为N的“和数”,例如,245的“和数”为:542+245=787,一个三位数M,其中百位数字为a,十位数字为1,个位数字为b(且a≥1,b≥1)若它的“和数”是686,则三位数M是________17、按一定规律排列的一列数依次为:,,,,…(a≠0),按此规律排列下去,这列数中的第n个数是________.(n为正整数)18、如图,两个形状、大小完全相同的大长方形内放入四个如图③的小长方形后分别得到如图①、图②、已知大长方形的长为a,则图②阴影部分周长与图①阴影部分周长的差是________.19、若a-2b=3,则9-2a+4b的值为 ________.20、若﹣3xy2m与5x2n﹣3y8的和是单项式,则m-n的值是________21、观察下列单项式:a,-2a2, 4a3,-8a4, 16a5,….按此规律,第7个单项式是________.22、当x=2时,多项式ax3+bx+3的值为5,则当x=-2时,ax3+bx+3的值为________.23、关于x的多项式(m-1)x3-2x n+3x的次数是2,那么m=________ ,n=________ .24、用16米长的篱笆围成长方形的生物园饲养小兔,如果生物园的宽为a米,则这个生物园的面积为________平方米.25、已知a2+3ab+b2=0(a≠0,b≠0),则代数式的值等于________.三、解答题(共5题,共计25分)26、①化简:(8a2b﹣5ab2)﹣2(3a2b﹣4ab2)②先化简,再求值:3x2+(2x2﹣3x)﹣(5x2﹣4x+1),其中x=﹣1.27、计算:①已知:a+ =1+ ,求a2+ 的值.②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积。
华师大版七年级数学上册第三章整式加减单元测试【精品4套】
第3章 整式加减单元测试(A)(满分100分,时间60分钟) 班级 姓名 得分___________ 一、填空题(每题4分,共32分) (1)单项式z y x n 123-是关于x 、y 、z 的五次单项式,则n ;(2)关于x 的多项式b x x x a b -+--3)4(是二次三项式,则a= ,b= ;(3)请任意写出3231yz x 的两个同类项: , ; (4)已知x+y=3,则7-2x-2y 的值为 ; (5)当x=2时,多项式535-++cx bx ax 的值为7,则当x=-2时,这个多项式的值为 ;(6)(m+n )-( )=2m-p ;(7)(a+b+c+d )(a-b+c-d )=[(a+c )+( )][(a+c )-( )](8)已知A 是十位数字为x 、个位数字为y 的两位数,B 是十位数字为y 、个位数字为x 的两位数,那么A-B= .(用含x 、y 的代数式表示)二、选择题:(每题4分,共16分)1.下列代数式中,书写规范的是( )。
A .3⨯a ;B .a 30⋅;C .2312a ; D .()a 47÷ 2.下列说法中正确的是( )。
A .2t 不是整式; B . y x 33-的次数是4; C .ab 4与xy 4是同类项; D .y1是单项式 3.ab 减去22b ab a +-等于 ( )。
A.222b ab a ++;B.222b ab a +--;C.222b ab a -+-;D.222b ab a ++-4.当2=x 与2-=x 时,代数式3224+-x x 的两个值 ( )。
A.相等; B.互为倒数;C.互为相反数;D.既不相等也不互为相反数三、化简(每题5分,共20分)(1)()()233233543x x xx +---+ (2)()133211+---+-++n n n n x x x x(3)(3x 2-xy -2y 2)—2(x 2+xy —2y 2) (4)()()()()()b a b a b a b a +-++-+-+32224123四、 化简,再求值,已知a=1,b=—1,求多项式()()3222332b ab b a ab b a--⎪⎭⎫ ⎝⎛-+-2122的值.(本题6分)五、 一个多项式加上2352-+x x 的2倍得x x +-231,求这个多项式.(本题6分)六、探索规律:(本题10分)(1)计算并观察下列每组算式:⎩⎨⎧=⨯=⨯9788 ,⎩⎨⎧=⨯=⨯6455 ,⎩⎨⎧=⨯=⨯13111212 ; (2)已知25×25=625,那么24×26= ;(3)从以上的过程中,你发现了什么规律?你能用语言叙述这个规律吗?请用代数式把这个规律表示出来.七、 本题10分)某市出租车收费标准是:起步价10元,3千米后每千米2元,某乘客乘坐了x 千米(x >5)(1) 请用含x 的代数式表示出他应该支付的车费;(2) 若该乘客乘坐了20千米,那他应该支付多少钱?(3) 如果他支付了34元,你能算出他乘坐的里程吗?第3章 单元测试(A )1.(1)n=3; (2)a=4,b=2; (3)如5x 2yz 3、12x 2yz 3; (4)1; (5)-17; (6)-m +n+p ;(7)b+d ,b+d ; (8)9x-9y2.(1)763+-x ; (2)6451-+-+n n xx ; (3)()()b a b a +-+219432 3.104.55132+--x x ;5.(1)64,63,25,24,144,143; (2)624; (3)n 2 =(n+1)×(n-1)+16.(1)2x+4; (2)44元; (3)15千米.第3章 单 元 测 试(B )(满分100分,时间60分钟)班级 姓名 得分___________1. 选择题(每题5分,共30分)(1)下列各式中与a-b-c 的值不相等的是( )A .a-(b+c ) B.a-(b-c ) C.(a-b )+(-c ) D.(-c )-(b-a )(2)如果a 2+ab=8,ab+b 2=9,那么a 2-b 2的值是( )A .-1 B.1 C.17 D.不确定(3)五个连续奇数,中间的一个是2n+1(n 为整数),那么这五个数的和是( )A .10n+10 B.10n+5 C.5n+5 D.5n-5(4)用代数式表示:每间上衣a 元,降价10%以后的售价是( )A .a ·10% B.a (1+10%) C.a (1-10%) D.a (1+90%)(5)下列说法中正确的是( )A .2t 不是整式 B.y x 33-的次数是4 C .4ab 与4xy 是同类项 D.y 1是单项式 (6)当x=2与x=-2时,代数式3224+-x x 的两个值( )A .相等 B.互为倒数 C.互为相反数 D.既不相等也不互为相反数2. 填空题(每题5分,共30分)(1)一个正方形的边长为a 厘米,把它的边长增加2厘米,得到的新正方形的周长是 ;(2)如果m b a 2232与4223b a n 是同类项,那么m= ;n= ; (3)ab-(a 2-ab+b 2)= ;(4)如果5324331+-k ab b a 是五次多项式,那么k= ; (5)当2y –x=5时,()()6023252-+---y x y x = ;(6)一个多项式加上-3+x-2x 2 得到x 2-1,那么这个多项式为 ;3. 计算(每题8分,共16分)(1)()[]873248222-------m m m m m(2)先化间,再计算: )32(35)23(61)32(21)32(31y x x y y x y x --+---++--,其中x=2,y=14. 已知m 、x 、y 满足:(1)0)5(2=+-m x , (2)12+-y ab与34ab 是同类项.求代数式:)93()632(2222y xy x m y xy x +--+-的值.(本题12分)5. (本题12分)为节约用水,某市规定三口之家每月标准用水量为15立方米,超过部分加价收费,假设不超过部分水费为1.5元/立方米,超过部分水费为3元/立方米.(1) 请用代数式分别表示这家按标准用水和超出标准用水各应缴纳的水费;(2) 如果这家某月用水20立方米,那么该月应交多少水费?第3章 单元测试(B )1.B 、A 、B 、C 、B 、A2.(1)4a+8; (2)m=2,n=1; (3)-a 2+2ab-b 2; (4)k=4; (5)45;(6)3x 2-x+23.(1)-7m 2-m+1; (2)化简得 )32(y x --,当x=2,y=1时,原式= -14.x =5,y =2,m=0;原式= 445.(1)标准用水水费为:1.5a (0<a ≤15);超标用水水费:3a-22.5 (a >15)(2)37.5单元检测题(A 卷) 时量:45分钟一.判断题1.代数式12--x 在1-=x 时的值为零。
华师大版七年级上册数学第3章 整式的加减 含答案
华师大版七年级上册数学第3章整式的加减含答案一、单选题(共15题,共计45分)1、下列运算结果正确是( )A.a 2+a 3=a 5B.a 3÷a 2=aC.a 2•a 3=a 6D.(a 2) 3=a 52、下列运算结果正确的是( )A. B. C. D.3、若3x2-5x+1=0,则5x(3x-2)-(3x+1)(3x-1)=()A.-1B.0C.1D.-24、已知,用含的式子表示下列正确的是()A. B. C. D.5、下列计算,正确的是()A.a 6÷a 2=a 3B.3a 2×2a 2=6a 2C.(ab 2)2=a 2b4 D.5a+3a=8a 26、下列运算中,计算正确的是()A.a 2+a 3=a 5B.(3a 2)3=27a 6C.a 6÷a 2=a 3D.(a +b)2=a 2+b 27、下列计算正确的是()A.3m﹣m=2B.m 4÷m 3=mC.(﹣m 2)3=m 6D.﹣(m﹣n)=m+n8、下列式子中是同类项的是( )A. 和B. 和C. 和D. 和9、一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是()A.12a+16bB.6a+8bC.3a+8bD.6a+4b10、已知两数在数轴上的位置如图所示,则化简代数式的结果是()A.1B.C.2b+3D.-111、下列计算正确的是()A.3a+4b=7abB.3a-2a=1C.D.12、下列运算正确的是()A. B. C. D.13、已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99B.101C.﹣99D.﹣10114、古巴比伦的记数法是六十进制的,用表示1,用表示10,这两种符号能表示一直到59的数字,例如,32可以用表示。
从60起,开始使用符号组,从右往左依次是个位、六十位、三千六百位……(每一位的数值都是上一位的60倍),例如,的个位表示23个1,六十位表示2个60,所以这个符号表示143。
华师大版七年级上册数学第3章 整式的加减 含答案
华师大版七年级上册数学第3章整式的加减含答案一、单选题(共15题,共计45分)1、如果,则等于( )A. B. xy C.4 D.2、如果单项式3x m y3和﹣5xy n是同类项,则m和n的值是()A.﹣1,3B.3,1C.1,3D.1,﹣33、下列运算正确的是()A.(a+b)2=a 2+b 2B.a 3a 2=a 5C.a 6÷a 3=a2 D.2a+3b=5ab4、下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣cB.x 2﹣[﹣(﹣x+y)]=x 2﹣x+yC.m﹣2(p﹣q)=m﹣2p+qD.a+(b﹣c﹣2d)=a+b﹣c+2d5、已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a–4ab)的值为()A.49B.59C.77D.1396、下列运算正确的是()A. B.C. D.7、下列计算正确的是( )A.x 2+x 2=x 4B.x 2+x 3=2x 5C.3x-2x=1D.x 2y-2x 2y=-x 2y8、下列各式中,与2a是同类项的是()A.3aB.2abC.D.a 2b9、已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7B.9C.12D.1810、下列代数式 a,﹣2ab,x+y,x2+y2,﹣1,ab2c3 中,单项式共有()A.6个B.5 个C.4 个D.3个11、已知a-2b=-2,则4-2a+4b的值是( )A.0B.2C.4D.812、下列式子:2a2b, 3xy﹣2y2,,4,﹣m,,,其中是单项式的有()A.2个B.3个C.4个D.5个13、已知x﹣y=3,y﹣z=2,x+z=4,则代数式x2﹣z2的值是()A.9B.18C.20D.2414、如果2x3y n+(m-2)x是关于x、y的五次二项式,则m、n的值为()A.m=3,n=2B.m≠2,n=2C.m为任意数,n=2D.m≠2,n=315、若是方程的一组解,则()A.-1B.1C.3D.5二、填空题(共10题,共计30分)16、化简求值:(a﹣2)•=________ ,当a=﹣2时,该代数式的值为________17、按一定规律排列的一列数依次为:,,,,…(a≠0),按此规律排列下去,这列数中的第n个数是________.(n为正整数)18、已知x=,代数式x2﹣4x﹣6的值为________ .19、有一数值转换机,原理如图所示,若输入的x的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,…,请你探索第2016次输出的结果是________.20、若有理数a、b、c在数轴上的对应点的位置如下图所示,则化简式子|2a-b|-|a+b|-|c-a|的结果为________.21、如图,是一个大正方形,分成四部分,其面积分别为,,,.那么,原大正方形的边长为________.22、若的值为,则________.23、当2y-x=5时,5(x-2y)2+3x-6y-60=________.24、有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是________25、若的值为7,则的值为________.三、解答题(共5题,共计25分)26、已知(a﹣3)2+|b﹣2|=0,c和d互为倒数,m与n互为相反数,y为最大的负整数,求(y+b)2+m(a+cd)+nb2.27、甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为,求a2017+(﹣b)2的值.28、某人读一本名著,第一次读了它的一半少1页,第二次读了剩下的一半多1页,设这本书有m页,则还剩下多少页没有阅读?29、已知|a|=1,,a+b<0,求2a-b的值.30、已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a 等于多少;②在①的基础上化简:B﹣2A.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、B5、B6、C7、D8、A9、C10、C11、D12、C13、C14、B15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
华师大版七年级上册数学第3章 整式的加减 含答案
华师大版七年级上册数学第3章整式的加减含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A. πx 2的系数是B. b 2的次数为2次C.x的系数为0 D.0也单项式2、下列计算正确的是A.2x+3y=5xyB.x•x 4=x 4C.x 8÷x 2=x 4D.(x 2y)3=x 6y 33、下列各式中,正确的是()A.x 2y﹣2x 2y=﹣x 2yB.2a+3b=5abC.7ab﹣3ab=4D.a 3+a2=a 54、下列说法正确的是().A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项式D.是单项式5、已知,,则的值为().A. B. C. D.6、如果a、b互为相反数,x、y互为倒数,则(a+b)+xy的值是()A.2B.3C.3.5D.47、下列计算正确的是().A. B.-2 2=4 C.-3-4=-1 D.8、单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.5C.4D.39、已知代数式x2-2x-1的值等于4,则代数式3x2-6x-2的值()A.11B.12C.13D.1510、若与是同类项,则的值为A.8B.-8C.9D.-611、x是一个三位数,现把4放在它的右边组成一个新的四位数是()A.10x+4B.100x+4C.1000x+4D.x+412、已知12m x和是同类项,则|2﹣4x|+|4x﹣1|的值为()A.1B.3C.13D.8x﹣313、代数式的值是6,则的值是().A. B. C. D.14、3x2可以表示为()A.9xB.x 2•x 2•x 2C.3x•3xD.x 2+x 2+x 215、在下列运算中,计算正确的是()A.m 2+m 2=m 4B.(m+1)2=m 2+1C.(3mn 2)2=6m 2n4 D.2m 2n÷(﹣mn)=﹣2m二、填空题(共10题,共计30分)16、若,则=________.17、已知a,b满足方程组,则3a+b的值为________;18、有若干个数,第一个数记为a1,第二个记为a2,第三个记为a 3,…,第n个记为an,若 a1= —,从第二个数起,每个数都等于“1与它前面的数的差的倒数”,试计算a2=________,a2011=________ .19、如图,在平面直角坐标系中,四边形是正方形,点的坐标为,弧是以点为圆心,为半径的圆弧;弧是以点为圆心,为半径的圆弧,弧是以点为圆心,为半径的圆弧,弧是以点为圆心,为半径的圆弧.继续以点,,,为圆心按上述作法得到的曲线…称为正方形的“渐开线”,则点的坐标是________.20、下面一组按规律排列的数,2,4,8,16,32,……则第2020个数是________.21、观察分析下列数据,按规律填空:1, 2,,,…,第n(n为正整数)个数可以表示为________ .22、如图所示,数轴上点A,点B,点C分别表示有理数a,b,c,O为原点,化简:________.23、如图,其中大圆半径为R,小圆半径为r,阴影部分的面积________.(结果保留π)24、4x2y+5x3y2﹣7xy3﹣1是________次________ 项式,四次项是________.25、定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{1,﹣3}=1,则max{x2+2x+3,﹣2x+8}的最小值是________.三、解答题(共5题,共计25分)26、计算与化简:(1)-3 + 6(2)(3)(4)(5)(6)27、化简:a2﹣2ab+b2﹣2a2+2ab﹣4b2.28、先化简,再求值:,其中.29、代数式与多项式之差的取值与字母的取值无关,求的值.30、已知:(x﹣1)(x+3)=ax2+bx+c,求代数式9a﹣3b+c的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、A4、B5、A6、C7、D8、B9、C10、B11、A12、C13、B14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学整式的加减测试试卷(满分100分,时间为100分钟)
一. 选择题(每小题3分,共30分)
1、1.小明身上带着a元去商店里买学习用品,付给服务员b元,找回c元,
小明身上还有 ( )
A.c元 B.(a+c)元 C.(a-b+c)元 D.(a-b)元.
2、下列说法中正确的是 ( )
A 、x -的次数为0,
B 、x π-的系数为1-,
C 、-5是一次单项式,
D 、b a 25-的次数是3次
3、多项式x x -227是 ( )
A 、一次二项式
B 、二次二项式
C 、四次二项式
D 、五次二项式
4、下列各组式子中,是同类项的是 ( )
A. 3
2b a 与b a 2 B.y x 23与23xy C.a 与1 D. bc 2与abc 2 5、下列计算正确的是 ( )
A.x x x =-45
B.2x x x =+
C.85332x x x =+
D.33323x x x =+-
6、某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,
加价1.5元,现在某人乘出租车行驶P 千米的路程(P >7)所需费用是 ( )
A 、5+1.5P
B 、5+1.5
C 、5-1.5P
D 、5+1.5(P -7)
7、代数式y
x y x -+中的y x ,都扩大10倍,则代数式的值 ( ) A 、扩大10倍, B 、缩小, C 、扩大11倍, D 、不变
8、一个两位数,十位上的数字是个位上的数字的3倍,如果十位上的数是x ,
则这个两位数是 ( )
A 、x x 31+
B 、x x +⋅310
C 、310x x +
D 、3x x ⋅
9、某人以每小时3千米的速度登山,下山以每小时6千米的速度返回原地,
则来回的平均速度为 ( )
A 、4千米/小时
B 、4.5千米/小时
C 、5千米/小时
D 、5.5千米/小时
10、观察下列等式:819=-;12416=-;25-9=16;36-16=20;……
设n 表示正整数,下面符合上述规律的等式是 ( )
A 、)1(4)2(22+=-+n n n
B 、2224)1()1(n n n =--+
C 、14)2(22+=-+n n n
D 、)1(2)2(22+=-+n n n
二、 填空题(每小题3分,共30分)
11、某次数学测试,全班男生m 人,平均分数是80分,女生n 人,平均分数是85分,则全
班的平均分数是 。
12、若3b ma n 是关于a 、b 的五次单项式,且系数是3-,则=mn 。
13、多项式424325x xy y y x -+-是 次 项式,按x 的升幂排列
为 。
14、一个三位数,百位数字是3,十位数字和个位数字组成的两位数字是b,用代数式表示这个
三位数是
15、如果()()602325,522
----=+-y x y x y x 则= 。
16、如果=++=--=+=+2222222_______,,1,2y xy x y x y xy xy x 则 。
17、两个单项式2212m a b 与412
n a b -的和是一个单项式,那么m = ,n = 。
18、已知关于x 的多项式ax bx +合并后结果为0,则a 与b 的关系是 。
19.当21-=x 时,243222-++-x x x x =__________. 20、如图是某月份的月历,用正方形圈出9个数,设最中间一个
是x,则用x表示这9个数的和是
三、解答题(共40分)
21、当2
1-
=x 时,求代数式73223+--x x x 的值.(5分)
22、已知a 、b 互为倒数,c 、d 互为相反数,且m 的绝对值为1,求:
m
d c m ab 53322+--的值。
(5分)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 19题
23、已知:12)2(+-m b a m 是关a 、b 的五次单项式,求下列代数式的值,
并比较(1)、(2)两题结果:(1)122+-m m , (2)()21-m (6分)
24、如图,边长为a 、b 的两个正方形拼在一起,试写出阴影部分的面积,并求出当a=5cm ,
b=3cm 时,阴影部分的面积。
(6分)
25、巴中市出租车的收费标准是:3千米内(含3千米)起步价为5元,3千米外每千米收费为
1.5元。
某乘客坐出租车x 千米。
(8分)
(1) 试用关于x 的代数式分情况表示该乘客的付费。
(2) 如果该乘客坐了10千米,应付费多少元?
26、已知x=3y ,z=7x (x ≠0),求代数式
z
y x z y x -+++32的值。
(10分)。