平抛运动圆周运动及万有引力总复习【精选】
(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第2讲 抛体运动的规律及应用学生用书
第2讲抛体运动的规律及应用一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在________作用下的运动.2.性质:平抛运动是加速度为g的________曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解.(1)水平方向:________直线运动;(2)竖直方向:________运动.4.基本规律:如图所示,以抛出点O为坐标原点,以初速度v0方向(水平方向)为x轴正方向,竖直向下为y轴正方向.(1)位移关系(2)速度关系(3)常用推论:①图中C点为水平位移中点;②tan θ=2tan α.注意θ与α不是2倍关系.二、斜抛运动1.定义:将物体以初速度v0________或斜向下方抛出,物体只在________作用下的运动.如图所示.2.性质:斜抛运动是加速度为g的________曲线运动,运动轨迹是________.3.研究方法:运动的合成与分解(1)水平方向:________直线运动;(2)竖直方向:________直线运动.,生活情境1.一架投放救灾物资的飞机在受灾区域的上空水平地匀速飞行,从飞机上投放的救灾物资在落地前的运动中(不计空气阻力)(1)速度和加速度都在不断改变.( )(2)速度和加速度方向之间的夹角一直减小.( )(3)在相等的时间内速度的改变量相等.( )(4)在相等的时间内速率的改变量相等.( )(5)在相等的时间内动能的改变量相等.( )教材拓展2.(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法中正确的有( )A.两球的质量应相等B.两球应同时落地C.应改变装置的高度,多次实验D.实验也能说明A球在水平方向上做匀速直线运动考点一平抛运动规律的应用用“化曲为直”的思想处理平抛运动中落点在水平面上的问题时,将研究对象抽象为质点平抛运动模型,处理平抛运动的基本方法是运动的分解(化曲为直).即同时又要注意合运动与分运动的独立性、等时性.例1.[2021·河北卷,2]铯原子钟是精确的计时仪器.图1中铯原子从O点以100 m/s 的初速度在真空中做平抛运动,到达竖直平面MN所用时间为t1;图2中铯原子在真空中从P点做竖直上抛运动,到达最高点Q再返回P点,整个过程所用时间为t2.O点到竖直平面MN、P点到Q点的距离均为0.2 m.重力加速度取g=10m.则t1∶t2为( )s2A.100∶1 B.1∶100跟进训练1.在高空中匀速飞行的轰炸机,每隔时间t投放一颗炸弹,若不计空气阻力,则投放的炸弹在空中的位置是选项中的(图中竖直的虚线将各图隔离)( )2.[2022·陕西五校联考]墙网球又叫壁球,场地类似于半个网球场,如图所示,在场地一侧立有一竖直墙壁,墙壁上离地面一定高度的位置画了水平线(发球线),在发球区发出的球必须击中发球线以上位置才有效,假设运动员在某个固定位置将球发出,发球速度(球离开球拍时的速度)方向与水平面的夹角为θ,球击中墙壁位置离地面的高度为h,球每次都以垂直墙壁的速度撞击墙壁,设球撞击墙壁的速度大小为v,球在与墙壁极短时间的撞击过程中无机械能损失,球撞到墙壁反弹后落地点到墙壁的水平距离为x,不计空气阻力,球始终在与墙壁垂直的平面内运动,则下列说法正确的是( )A.h越大,x越大B.v越小,x越大C.h越大,θ越大 D.v越大,h越大考点二平抛运动与各种面结合问题角度1落点在斜面上分解位移,构建位移三例2. [2022·江西八校联考](多选)如图所示,小球A从斜面顶端水平抛出,落在斜面上的Q点,在斜面底端P点正上方水平抛出小球B,小球B也刚好落在斜面上的Q点,B球,A、B 抛出点离斜面底边的高度是斜面高度的一半,Q点到斜面顶端的距离是斜面长度的23两球均可视为质点,不计空气阻力,则A、B两球( )A.平抛运动的时间之比为2∶1B.平抛运动的时间之比为3∶1C.平抛运动的初速度之比为1∶2D.平抛运动的初速度之比为1∶1角度2落点在曲面上例3. [2022·浙江温州一模]如图所示为某种水轮机的示意图,水平管出水口的水流速度恒定为v 0,当水流冲击到水轮机上某挡板时,水流的速度方向刚好与该挡板垂直,该档板的延长线过水轮机的转轴O ,且与水平方向的夹角为30°.当水轮机圆盘稳定转动后,挡板的线速度恰为冲击该挡板的水流速度的一半.忽略挡板的大小,不计空气阻力,若水轮机圆盘的半径为R ,则水轮机圆盘稳定转动的角速度大小为( )A.v 02R B .v0RC .√3v 0RD .2v 0R跟进训练.3 [2022·浙江名校统测]如图所示,水平地面有一个坑,其竖直截面为y =kx 2的抛物线(k =1,单位为m -1),ab 沿水平方向,a 点横坐标为-3s2,在a 点分别以初速度v 0、2v 0(v 0未知)沿ab 方向抛出两个石子并击中坑壁,且以v 0、2v 0抛出的石子做平抛运动的时间相等.设以v 0和2v 0抛出的石子做平抛运动的时间为t ,击中坑壁瞬间的速度分别为v 1和v 2,下落高度为H ,仅s 和重力加速度g 为已知量,不计空气阻力,则(选项中只考虑数值大小,不考虑单位)( )A .不可以求出tB .可求出t 的大小为 √4sg C .可以求出v 1的大小为 √3g+16gs 24D .可求出H 的大小为2s 2考点三 生活中的平抛运动(STSE 问题)素养提升情境1投篮游戏[2021·新疆第二次联考]如图甲所示,投篮游戏是小朋友们最喜欢的项目之一,小朋友站立在水平地面上双手将皮球水平抛出,皮球进入篮筐且不擦到篮筐就能获得一枚小红旗.如图乙所示,篮筐的半径为R,皮球的半径为r,篮筐中心和出手处皮球的中心高度为h1和h2,两中心在水平地面上的投影点O1、O2之间的距离为d.忽略空气的阻力,已知重力加速度为g.设出手速度为v,要使皮球能入筐,则下列说法中正确的是( )A.出手速度大的皮球进筐前运动的时间也长B.速度v只能沿与O1O2连线平行的方向C.速度v的最大值为(d+R-r)√g2(h2−h1)D.速度v的最小值为(d-R+r)√2gh2−h1[思维方法]1.处理平抛运动中的临界问题要抓住两点(1)找出临界状态对应的临界条件;(2)用分解速度或者分解位移的思想分析平抛运动的临界问题.2.平抛运动临界极值问题的分析方法(1)确定研究对象的运动性质;(2)根据题意确定临界状态;(3)确定临界轨迹,画出轨迹示意图;(4)应用平抛运动的规律结合临界条件列方程求解.情境2农林灌溉农林灌溉需要扩大灌溉面积,通常在水管的末端加上一段尖管,示意图如图所示,尖管,尖管水平,不考虑空气阻力的影响,下列说法正确的是( )的直径是水管直径的13A.由于增加尖管,单位时间的出水量增加2倍B.由于增加尖管,水平射程增加3倍C.增加尖管前后,空中水的质量不变D.由于增加尖管,水落地时的速度大小增加8倍情境3海鸥捕食[2021·山东卷,16] 海鸥捕到外壳坚硬的鸟蛤(贝类动物)后,有时会飞到空中将它丢下,利用地面的冲击打碎硬壳.一只海鸥叼着质量m=0.1 kg的鸟蛤,在H=20 m的高度、,以v0=15 m/s的水平速度飞行时,松开嘴巴让鸟蛤落到水平地面上.取重力加速度g=10ms2忽略空气阻力.(1)若鸟蛤与地面的碰撞时间Δt =0.005 s ,弹起速度可忽略,求碰撞过程中鸟蛤受到的平均作用力的大小F ;(碰撞过程中不计重力)(2)在海鸥飞行方向正下方的地面上,有一与地面平齐、长度L =6 m 的岩石,以岩石左端为坐标原点,建立如图所示坐标系.若海鸥水平飞行的高度仍为20 m ,速度大小在15~17 m/s 之间,为保证鸟蛤一定能落到岩石上,求释放鸟蛤位置的x 坐标范围.第2讲 抛体运动的规律及应用必备知识·自主排查一、 1.重力 2.匀变速3.(1)匀速 (2)自由落体 4.(1)12gt 2√x 2+y 2yx(2)√v x 2+v y 2 v y v x二、1.斜向上方 重力 2.匀变速 抛物线 3.(1)匀速 (2)匀变速生活情境1.(1)× (2)√ (3)√ (4)× (5)× 教材拓展2.解析:根据合运动与分运动的等时性和独立性特点可知,两球应同时落地,为减小实验误差,应改变装置的高度,多次做实验,选项B 、C 正确;平抛运动的实验与小球的质量无关,选项A 错误;此实验只能说明A 球在竖直方向做自由落体运动,选项D 错误.答案:BC关键能力·分层突破例1 解析:设距离d =0.2 m ,铯原子做平抛运动时有d =v 0t 1,做竖直上抛运动时有d =12g (t 22)2,解得t 1t 2=1200.故A 、B 、D 错误,C 正确.答案:C1.解析:由题意可知,炸弹被投放后做平抛运动,它在水平方向上做匀速直线运动,与飞机速度相等,所以所有离开飞机的炸弹与飞机应在同一条竖直线上,故A 、C 错误;炸弹在竖直方向上做自由落体运动,从上至下,炸弹间的距离越来越大.故B 正确,D 错误.答案:B 2.解析:将球离开球拍后撞向墙壁的运动反向视为平抛运动,该平抛运动的初速度大小为v ,反弹后球做平抛运动的初速度大小也为v ,两运动的轨迹有一部分重合,运动员在某个固定位置发球,因此不同的发球速度对应击中墙壁的不同高度h ,但所有轨迹均经过发球点,如图所示,h 越大,球从发球点运动到击墙位置的运动时间越长,墙壁到发球点的水平位移x ′相同,则v 越小,由图可知,反弹后球做平抛运动的水平位移x 越小,选项A 、B 、D 错误;设球击中墙壁的位置到发球点的高度为h ′,由平抛运动的推论可知2h ′x ′=tan θ,则h ′越大,即h 越大,θ越大,选项C 正确.答案:C例2 解析:依题意及几何关系可知,小球A 下落的高度为斜面高度的23,小球B 下落高度为斜面高度的12再减去斜面高度的13,则根据公式h =12gt 2,可知A 、B 两球平抛运动时间之比为tA tB =2,选项A 正确,B 错误;两小球在水平方向做匀速直线运动,有x =v 0t ,小球A水平分位移为斜面宽度的23,小球B 水平分位移为斜面宽度的13,代入上式联立可得v 0A v 0B=1,选项C 错误,D 正确.答案:AD 例3 解析:由几何关系可知,水流冲击挡板时,水流的速度方向与水平方向成60°角,则有vy v 0=tan 60°,所以水流速度为v =√v 02+v y2 =2v 0,根据题意知被冲击后的挡板的线速度为v ′=12v =v 0,所以水轮机圆盘稳定转动的角速度大小为ω=v ′R=v0R,选项B 正确.答案:B3.解析:由题可知,两个石子做平抛运动,运动时间一样,则下落的高度H 一样,又因为落在抛物线上,a 、b 是关于y 轴对称的点,可得如下关系3s 2-v 0t =2v 0t -3s2,可得v 0t =s ,可分别得出落在坑壁上两个石子的横坐标分别为-s 2和s2,由y =kx 2,可得初始高度为9s 24,可求得此时高度为s 24,所以利用高度值差可求得H =2s 2,由H =12gt 2可求出平抛运动的运动时间t = √2Hg =2s √1g ,故选项D 正确,A 、B 错误;由前面可求出v 0=st =√g2,竖直方向上的速度v y =gt =2s √g ,由运动的合成可得v 1=√v 02+v y2 =√g+16gs 24,故选项C 错误.答案:D情境1 解析:本题考查平抛,属于应用性题.平抛运动的时间由下落的高度决定,则进筐的皮球运动时间相同,A 错误;与O 1O 2连线方向成一个合适的角度投出的皮球也可能进筐,B 错误;皮球沿与O 1O 2连线平行的方向投出,下落的高度为h 2-h 1,水平射程临界分别为d +R -r 和d +r -R ,则投射的最大速度为v max =√2(h 2−h 1)g=(d +R -r ) √g2(h 2−h 1)最小速度为v min =√2(h 2−h 1)g=(d -R +r ) √g2(h 2−h 1)C 正确,D 错误. 答案:C情境2 解析:单位时间的出水量与单位时间输入水管的量有关,与是否增加尖管无关,选项A 错误;设尖管中水的流速为v 0,水管中水的流速为v ,水管的半径为r ,根据相同时间Δt 内水的流量相同可得,π(r3)2v 0Δt =πr 2v Δt ,得水管、尖管中水的流速之比为v v 0=19,根据平抛运动规律,有h =12gt 2,增加尖管后水平射程x 0=v 0t =v 0√2hg ,不加尖管时水平射程x =vt =v √2hg,可得xx 0=19,Δx =x 0-x =8x ,故由于增加尖管,水平射程增加8倍,选项B 错误;不加尖管时,空中水的质量m =ρπr 2x ,加尖管时空中水的质量为m 0=ρ·π(r 3)2·x 0=πρr 2x ,则m =m 0,选项C 正确;由动能定理有mgh =12mv 12-12mv 2、m 0gh =12m 0v −2212m 0v 02,解得增加尖管前后水落地时的速度分别为v1=√2g ℎ+v 2、v2=√2g ℎ+v 02 ,v 2−v 1v 1≠8,选项D 错误.答案:C情境3 解析:(1)设平抛运动的时间为t,鸟蛤落地前瞬间的速度大小为v.竖直方向gt2,v y=gt,v=√v02+v y2.分速度大小为v y,根据运动的合成与分解得H=12在碰撞过程中,以鸟蛤为研究对象,取速度v的方向为正方向,由动量定理得-FΔt =0-mv联立并代入数据得F=500 N(2)若释放鸟蛤的初速度为v1=15 m/s,设击中岩石左端时,释放点的x坐标为x1,击中岩石右端时,释放点的x坐标为x2,则有x1=v1t,x2=x1+L联立并代入数据得x1=30 m,x2=36 m若释放鸟蛤时的初速度为v2=17 m/s,设击中岩石左端时,释放点的x坐标为x′1,击中岩石右端时,释放点的x坐标为x′2,则有x′1=v2t,x′2=x′1+L联立并代入数据得x′1=34 m,x′2=40 m综上得x坐标范围为[34 m,36 m].。
考点03 平抛运动与圆周运动-2021年高考物理核心考点总动员(原卷版)【高考物理专题】
2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。
【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。
【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。
竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。
单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。
平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。
圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。
【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。
抛体运动和圆周运动
物理知识点复习提纲(二)(人教版必修2适用)专题四:抛体运动和圆周运动【知识要点】1、运动的合成与分解(A级)(1)运动的合成与分解指的是位移、速度、加速度的合成与分解。
由于它们都是矢量,所以遵循平行四边形定则。
(2)合运动与分运动具有等时性、独立性。
(3)合运动的性质讨论:两个匀速直线运动的合运动一定是匀速直线运动;匀速直线运动和匀变速直线运动的合运动可能是匀变速直线运动或匀变速曲线运动。
2、平抛运动的规律(B级)(1)定义:将物体以一定初速度水平抛出去,物体只在重力作用下的运动叫平抛运动,其轨迹是抛物线的一部分。
(2)平抛运动是匀变速曲线运动,在任何相等的时间内速度变化大小相等,方向相同。
(3 )对平抛运动的处理办法:先进行运动的分解再进行运动的合成。
Vx=V0Vy=gt V= V02+(gt)2,tanθ=Vy/Vx=gt/V0X=V0·t Y=1/2gt2 S= X2+Y2 ,tanα=Y/X= gt/2V0a x =0 a y=g a=0(4)物体做平抛运动的时间由决定;物体做平抛运动的水平射程由和决定。
【例题分析】例1、在高空匀加速水平飞行的飞机上自由释放一物,若空气阻力不计,飞机上人看物体的运动轨迹是( A )A.倾斜的直线B.竖直的直线C.不规则曲线D.抛物线例2、如图所示,在高度分别为h A、h B(h A>h B)两处以v A、v B相向水平抛出A、B两个小物体,不计空气阻力,已知它们的轨迹交于C点,若使A、B两物能在C处相遇,应该是( B) 必须大于v BA。
.vB。
A物必须先抛C。
v B必须大于v AD。
A、B必须同时抛3、匀速圆周运动(A 级)(1)定义:物体做圆周运动,在任意相等的时间内里通过的弧长均相等的运动。
(2)特点:速度大不变,方向时刻在变化,故不是匀变速曲线运动。
(3)描述匀速圆周运动的物理量:线速度:描述质点沿圆弧运动的快慢,V=S/t=2πR/T=R·w角速度:描述质点绕圆心转动的快慢,w=θ/t=2π/T周期:质点绕圆周运动一圈所用时间.国际单位s,T越小,运动越快.T=1/f向心加速度:只改变速度的大小,而不改变速度的方向。
高中物理复习书稿:第五章万有引力定律
第五章万有引力定律高考要求:内容要求说明万有引力定律Ⅱ万有引力定律的应用、人造地球卫星的运动( 限于圆轨道 ) Ⅱ宇宙速度Ⅰ本章特色:牛顿运动定律与天体运动的的联合在近几年高考取还是热门,因为它切合科技发展的认识需要,万有引力定律的考点有三个(见上表),波及并用于议论天体运动的知识点是高考的重点内容,近几年高考取出现率达100% ,可能会是一道选择题,也可能是一道中等难度的计算题,近几年高考对万有引力定律的观察主要表此刻两个方面:一是重申基础的同时加大与其余部分的综合,如在其余星球上做自由落体、平抛、竖直上抛、单摆,近似地球上的实验,与g 有关的知识,与天体有关的地理知识等;二是应用万有引力定律解决实质问题,固然考点不多,但需要利用这个定律解决的习题题型多,综合性强,波及到的题型以天体运动为中心,如估量天体质量或均匀密度问题,变轨问题,能量问题,中心是:( 1 )行星绕恒星的圆周运动,二者之间的万有引力供应向心力;( 2 )星球表面重力在忽视星球自转的状况低等于万有引力,即可推出常用的黄金代换:2 GMgR近几年高考取出题的特色是以近几年中国及世界上空间技术的飞快发展为背景的天体问题,一方面能够使学生认识近几年这方面的大事,如:火星、土星探测,“神五”“神六”发射与回收,“金星快车”的发射,人类撞击彗星等,另一方面还能够观察学生从资料信息中获得“有效信息”的能力,第一单元万有引力定律知识重点一、万有引力定律1 .内容 : 宇宙间全部物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2.公式: F G m1 m2其G = 6.67 ×10-11222N·m /kg r3.合用条件:公式只合用于质点间的互相作用.当两个物体间的距离远远大于物体自己大小时公式也近似合用,但此时它们间距离r 应为两物体质心间距离.均匀的球体可视为质点,r 是两球心间的距离.4 .注意:公式中 F 是两物体间的引力, F 与两物体质量乘积成正比与两物体间距离的平方成反比,不要理解成 F 与两物体质量分别成正比、与距离成反比.二、划分万有引力和重力1.因为地球的吸引而使物体遇到的力称为重力,但重力不是万有引力,不过万有引力的一个分力,另一个分力是物体随处球自转而绕地轴做匀速圆周运动所需要的向心力 f , 如下图,因为纬度的变化,物体做圆周运动的向心力 f 不停变化, 所以地球表面物体的重力随纬度的变化而变化,即重力加快度g 随纬度变化而变化,从赤道到两极渐渐增大。
(完整版)万有引力与航天重点知识归纳
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析
高考必备物理万有引力定律的应用技巧全解及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间t,又已知该星球的半径为 R,己知万有引力常量为G,求:(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2因此该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞翔轨道近似为圆形,距月球表面高度为H,飞翔周期为T,月球的半径为R,引力常量为G.求:(1)嫦“娥一号”绕月飞翔时的线速度大小;(2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运转的线速度应为多大.【答案】(1)2R H(2)42R H32RHRH( 3)T GT2T R【分析】( 1) “嫦娥一号 ”绕月飞翔时的线速度大小2π(R H )v 1.T( 2 )设月球质量为M . “嫦娥一号 ”的质量为 m .Mm2H )依据牛二定律得Gm 4π (RH )2T 2(R23解得 M4π (R H ) .GT 2( 3)设绕月飞船运转的线速度为 V,飞船质量为Mm 0V 2又m 0 ,则 Gm 023M4π (R H ) .GT 2联立得 V2π RHRHT R3. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为 求:(1) 行星的质量 M ;(2) 行星表面的重力加快度g ; (3) 行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【分析】【详解】(1)设宇宙飞船的质量为 m ,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.万有引力定律揭露了天体运动规律与地上物体运动规律拥有内在的一致性.(1)用弹簧测力计称量一个相关于地球静止的物体的重力,随称量地点的变化可能会有不 同结果.已知地球质量为M ,自转周期为 T ,引力常量为 G .将地球视为半径为R 、质量分布平均的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0.① 若在北极上空超出地面h 处称量,弹簧测力计读数为 F 1,求比值 的表达式,并就h=1.0%R 的情况算出详细数值(计算结果保存两位有效数字); ② 若在赤道表面称量,弹簧测力计读数为F 2 ,求比值的表达式.( 2)假想地球绕太阳公转的圆周轨道半径为 r 、太阳半径为 R s 和地球的半径 R 三者均减小为此刻的 1 .0%,而太阳和地球的密度平均且不变.仅考虑太阳与地球之间的互相作用, 以现实地球的 1 年为标准,计算 “假想地球 ”的 1 年将变成多长?2 3【答案】( 1) ① 0.98,②F 214R2F 0GMT( 2) “假想地球 ”的 1 年与现实地球的 1 年时间同样【分析】试题剖析:( 1)依据万有引力等于重力得出比值的表达式,并求出详细的数值.在赤道,因为万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力,依据该规律求出比值的表达式( 2)依据万有引力供给向心力得出周期与轨道半径以及太阳半径的关系,进而进行判断.解:( 1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式 ①② 能够得出:=0.98.③由① 和③ 可得:(2)依据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为此刻的 1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍旧为 1 年.【评论】解决此题的重点知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力.5.天文学家将相距较近、仅在相互的引力作用下运转的两颗恒星称为双星.双星系统在银河系中很广泛.利用双星系统中两颗恒星的运动特点可计算出它们的总质量.已知某双星系统中两颗恒星环绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试计算这个双星系统的总质量.(引力常量为G)【答案】【分析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w1,w 2.依据题意有w1=w2①(1分)r1+r2=r② (1分)依据万有引力定律和牛顿定律,有G③(3分)G④(3分)联立以上各式解得⑤ (2分)依据解速度与周期的关系知⑥ (2分)联立 ③⑤⑥ 式解得(3 分)此题考察天体运动中的双星问题,两星球间的互相作使劲供给向心力,周期和角速度同样,由万有引力供给向心力列式求解6. 假定在半径为 R 的某天体上发射一颗该天体的卫星 ,若这颗卫星在距该天体表面高度为 h 的轨道做匀速圆周运动 ,周期为 T ,已知万有引力常量为 G ,求 : (1)该天体的质量是多少 ? (2)该天体的密度是多少 ?(3)该天体表面的重力加快度是多少? (4)该天体的第一宇宙速度是多少 ?【答案】 (1)4 2 (R h)3;3 (R h) 34 2 (R h)3;4 2 (R h)3GT(2)2R 3; (3)(4)RT 22GT R 2T2【分析】【剖析】( 1)卫星做匀速圆周运动,万有引力供给向心力,依据牛顿第二定律列式求解; ( 2)依据密度的定义求解天体密度;( 3)在天体表面,重力等于万有引力,列式求解;( 4)该天体的第一宇宙速度是近地卫星的环绕速度.【详解】(1)卫星做匀速圆周运动 ,万有引力供给向心力 ,依据牛顿第二定律有 :Mm22G( R h)2 =m T(R+h)解得 : M= 4 2 (R h)3①GT 2(2)天体的密度 :42(R h)3 3M GT 2 3 ( R h)ρ= =4=GT 2R 3 .V3R3(3)在天体表面 ,重力等于万有引力,故 :Mm ②mg=GR 2联立①②解得 : g=4 2 (R h)3③R 2T 2(4)该天体的第一宇宙速度是近地卫星的环绕速度 ,依据牛顿第二定律 ,有:mg=m④联立③④解得 : v= gR = 4 2( R h)3.RT 2【点睛】此题重点是明确卫星做圆周运动时,万有引力供给向心力,而地面邻近重力又等于万有引力,基础问题.v 2R24-1122,一7.地球的质量 M=5.98 × 10kg ,地球半径 R=6370km ,引力常量 G=6.67 × 10 N ·m /kg 颗绕地做圆周运动的卫星环绕速度为 v=2100m/s ,求:(1)用题中的已知量表示此卫星距地面高度 h 的表达式(2)此高度的数值为多少?(保存3 位有效数字)【答案】( 1 ) GM 7hR ( 2) h=8.41 × 10mv 2【分析】试题剖析:( 1 )万有引力供给向心力,则GM解得:hv 2R×7( 2)将( 1)中结果代入数占有 h=8.41 10m 考点:考察了万有引力定律的应用8.“嫦娥一号 ”探月卫星在空中的运动可简化为如图 5 所示的过程,卫星由地面发射后,经过发射轨道进入停靠轨道,在停靠轨道经过调速后进入地月转移轨道,再次调速后进入工 作轨道 .已知卫星在停靠轨道和工作轨道运转的半径分别为R 和 R 1,地球半径为 r ,月球半径为 r 1,地球表面重力加快度为g ,月球表面重力加快度为 .求:(1)卫星在停靠轨道上运转的线速度大小;(2)卫星在工作轨道上运转的周期.【答案】 (1) (2)【分析】(1)卫星停靠轨道是绕地球运转时,依据万有引力供给向心力:解得:卫星在停靠轨道上运转的线速度;物体在地球表面上,有,获得黄金代换 ,代入解得 ;(2)卫星在工作轨道是绕月球运转,依据万有引力供给向心力有,在月球表面上,有,得 ,联立解得:卫星在工作轨道上运转的周期.9. 侦探卫星在经过地球两极上空的圆轨道上运转,它的运转轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的状况所有都拍摄下来 ,卫星在经过赤道上空时,卫星上的拍照像机起码应拍地面上赤道圆周的弧长是多少?设地球半径为,R 地面处的重力加快度为 g,地球自转的周期为 T .4 2 ( h R) 3【答案】 lgT【分析】 【剖析】【详解】设卫星周期为 T 1 ,那么 :Mm 4 2m( R h), ①G2T 12( R h)又MmG R 2mg , ②由①②得T 12 ( h R) 3R.g设卫星上的摄像机起码能拍摄地面上赤道圆周的弧长为 l ,地球自转周期为 T ,要使卫星在一天(地球自转周期 )的时间内将赤道各处的状况全都拍摄下来,则Tl 2 R .T 1因此2 RT 14 2 (h R)3lT.Tg【点睛】摄像机只需将地球的赤道拍摄全,便能将地面各处所有拍摄下来;依据万有引力供给向心力和万有引力等于重力争出卫星周期 ;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再依据弧长与圆心角的关系求解.10. 今年 6 月 13 日,我国首颗地球同步轨道高分辨率对地观察卫星高分四号正式投入使 用,这也是世界上地球同步轨道分辨率最高的对地观察卫星.如下图,卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加快度为A 是地球的同步g,求:( 1)同步卫星离地面高度 h( 2)地球的密度 ρ(已知引力常量为 G)2 23g【答案】( 1) 3gR TR (2)4 24 GR【分析】【剖析】【详解】( 1)设地球质量为 M ,卫星质量为 m ,地球同步卫星到地面的高度为 h ,同步卫星所受万有引力等于向心力为G mM4 2 R hm( R h)2T2在地球表面上引力等于重力为MmGR2mg故地球同步卫星离地面的高度为h3gR 2T242R(2)依据在地球表面上引力等于重力MmGR2mg联合密度公式为gR 2MG3gV4R 3 4GR3。
圆周运动总结知识要点
圆周运动问题是高考考查的热点,物体在竖直面内的圆周运动中临界条件的考查在高考中多有出现圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。
另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。
(一)匀速圆周运动1. 定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2. 运动学特征:v 大小不变,T 不变,ω不变,向a 大小不变;v 和向a 的方向时刻在变,匀速圆周运动是加速度不断改变的变速运动。
3. 动力学特征:合外力大小恒定,方向始终指向圆心。
(二)描述圆周运动的物理量 1. 线速度(1)物理意义:描述质点沿圆周运动的快慢。
(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。
(3)大小:(s 是t 时间内通过的弧长)。
2. 角速度 (1)物理意义:描述质点绕圆心转动的快慢。
(s /rad ),ϕ是连接质点(2)大小:和圆心的半径在t 时间内转过的角度。
3. 周期T ,频率f 做匀速圆周运动的物体运动一周所用的时间叫做周期。
做匀速圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。
4. v 、ω、T 、f 的关系f 1T =f 2T 2π=π=ωω=π=r r T 2v5. 向心加速度(1)物理意义:描述线速度方向改变的快慢。
(2)大小:=a 0222222v r T 4r f 4r r v ω=π=π=ω=(3)方向:总是指向圆心(三)向心力向F1. 作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,但不改变速度的大小。
2. 大小:rm r mv F 22ω==向3. 来源:向心力是按效果命名的力,可以由某个力提供,也可以由几个力的合力提供或由某个力的分力提供,如同步卫星的向心力由万有引力提供,圆锥摆摆球所受向心力由重力和绳上的拉力的合力提供4. 匀速圆周运动中向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的一个分力,合外力的另一个分力沿切线方向,用来改变线速度的大小。
平抛运动、圆周运动及万有引力
圆周运动是常见的运动形式之一,其运动轨迹是一个圆或椭 圆。物体做圆周运动时,其速度方向始终与运动轨迹相切, 而加速度方向始终指向圆心。
圆周运动的公式和定理
总结词 圆周运动的公式和定理包括周期、 转速、向心加速度、线速度等。
3. 线速度 线速度的大小为 v = 2πr/T,方 向始终沿着圆周运动的切线方向。
详细描述
万有引力公式是描述两物体之间相互吸引的力的数学表达式。这个公式表明,两 个物体之间的万有引力与它们的质量成正比,与它们之间的距离的平方成反比。 这个公式是牛顿万有引力定律的基础。
万有引力的实例和应用
总结词
万有引力的实例包括地球对物体的吸引力、 行星之间的相互吸引以及黑洞之间的相互作 用等。万有引力在科学研究、天文学、航天 工程等领域有着广泛的应用。
04
3. 离心机
离心机利用离心力的原理,将物体从 旋转轴上分离出来。在机械制造、制 药等领域中广泛应用。
06
5. 洗衣机
洗衣机中的脱水机利用圆周运动原理,通过快 速旋转将衣物中的水分甩出。
03 万有引力
万有引力的定义
总结词
万有引力是指任何两个物体之间相互吸引的力,其大小与两个物体的质量成正比,与物体之间的距离的平方成反 比。
平抛运动与万有引力的关系
平抛运动
物体在不受其他外力的作用下, 以一定的初速度沿水平方向抛出,
仅受重力作用而做的曲线运动。
万有引力
任何两个物体间都存在相互吸引的 力,这种力与两个物体的质量成正 比,与它们之间的距离的平方成反 比。
总结
平抛运动中,物体受到的重力(即 万有引力)使物体沿着抛物线的轨 迹运动。
三者之间的关系表明,万有引力是物体运动的基本规律之一,它决定了物体的运动轨迹和状 态。无论是平抛运动、圆周运动还是其他形式的运动,都受到万有引力的影响和制约。
物理万有引力知识点
物理万有引力知识点物理万有引力知识点在学习中,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
还在苦恼没有知识点总结吗?下面是店铺为大家整理的物理万有引力知识点,希望能够帮助到大家。
物理万有引力知识点篇11、参考系:运动是绝对的,静止是相对的。
一个物体是运动的还是静止的,都是相对于参考系在而言的。
通常以地面为参考系。
2、质点:(1)定义:用来代替物体的有质量的点。
质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。
且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能、当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
【注】质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;路程是质点运动轨迹的长度,是标量。
5、速度:用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的方向相同。
平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。
瞬时速度的大小简称速率,它是一个标量。
物理万有引力知识点篇2一、知识点(一)行星的运动1、地心说、日心说:内容区别、正误判断2、开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律1、万有引力定律:内容、表达式、适用范围2、万有引力定律的科学成就(1)计算中心天体质量(2)发现未知天体(海王星、冥王星)(三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、环绕速度;脱离地球引力绕太阳运动;脱离太阳系)(四)经典力学的局限性:宏观(相对普朗克常量)低速(相对光速)二、重点考察内容、要求及方式1、地心说、日心说:了解内容及其区别,能够判断其科学性(选择)2、开普勒定律:熟知其内容,第三定律考察尤多;适用范围(选择)3、万有引力定律的科学成就:计算中心天体质量、发现未知天体(选择)4、计算中心天体质量、密度:重力等于万有引力或者万有引力提供向心力、万有引力的表达式、向心力的几种表达式(选择、填空、计算)5、宇宙速度:第一、二、三宇宙速度的数值、物理意义(选择、填空);计算第一宇宙速度:万有引力等于向心力或重力提供向心力(计算)6、计算重力加速度:匀速圆周运动与航天结合(或求周期)、平抛运动与航天结合(或求高度、时间)、受力分析(计算)7、经典力学的局限性:了解其局限性所在,适用范围(选择)物理学专业介绍物理学是研究物质运动最一般规律和物质基本结构的学科,它揭示物质产生、演化、转化和相互作用等方面的基本规律,涉及从微观、宏观到宇观,从少体到多体,从简单到复杂的各种系统,是自然科学的核心和工程技术的基础,并与社会学科具有很强的交叉性;本专业旨在培养掌握坚实的、系统的物理学基础理论及较广泛的物理学基本知识和基本实验方法,具有一定的基础科学研究能力和应用开发能力,能发展成为在物理学及其相关交叉学科的不同专业领域继续深造或在相应的科学技术领域中从事科研、教学、技术、应用和管理等方面的创新性人才。
抛体运动 圆周运动 万有引力知识总结
x 抛体运动 圆周运动和万有引力总结一、曲线运动知识结构1. 知识结构2. 说明:(1)曲线运动中物体的速度方向一定变化, 所以物体一定有加速度, 物体受的合力一定不为零, 但合力和加速度可以是变化的, 也可以是恒定的,即曲线运动可以是匀变速运动。
(2)求解平抛运动的线索:合成与分解,两个分运动的联系时时间;求时间可以通过竖直分速度,也可以通过竖直位移求解;用好速度三角形和位移三角形。
在已知位移S 和方向角θ和速度v 及方向角φ怎样求时间? (3)平抛运动实验: 测初速度的方法 ①已知抛出点和轨迹时求测初速度 ②不知道抛出点,知道竖直(或水平)方向和一段轨迹时 ③不知道抛出点,知道Y 轴和一段轨迹时(3)向心力公式F 向=m2vr对变速圆周也适用;变速圆周运动的合力和加速度不在是指向圆心的。
(4)匀速圆周运动的两个实例:①圆锥摆运动:会求角速度、周期和细绳的拉力②车转弯问题:知道水平路面转弯时是什么力提供向心力;会求倾斜路面转弯时,只靠重力和路面的支持力提供向心力时速度,会判断火车何时对内外轨道有侧向压力 (5)竖直面内圆周运动的三个模型和在圆周轨道上运动的条件 ⑿会求高点时的最小速度(或最大速度)①细绳固定的小球:求高点的最小速度和最小加速度②轻杆固定的小球:完成圆周运动的条件是高点时的速度大于等于零;求杆不受力的条件、以及受拉力和压力条件,并会求杆的作用力③物体沿竖直外轨道运动:求高点的最大速度 (6)求解圆周运动的思路步骤(7)抛体与圆周运动的综合题,注意多解题(圆周运动的周期性)二、万有引力和天体运动1. 知识点(1)开普勒定律,行星的运动 (2)万有引力定律 (3) 引力加速度(4)宇宙速度:求第一宇宙速度 (5)人造卫星:2. 说明:(1)求解天体运动的思路线索:看成是匀速圆周运动,中心天体的引力提供向心力,列万有引力公式、向心力公式、引力加速度公式联立求解 (2)求测天体的质量和密度,通常用天体的卫星 (3)第一宇宙速度的定义,列方程求解(4)天体表面的引力加速度可以从在表面的抛体的运动求解(如上抛、自由落体、平抛) (5)区别发射速度和环绕速度,第一宇宙速度(7.9km/s )是卫星匀速圆周运动的最大速度,是发射卫星的最小速度 (6)注意卫星的轨道形状(7)同步卫星:知道几个确定量;会求同步卫星的高度;知道发射变轨情况,知道速度变化情况;三颗卫星可是实现全球通讯覆盖。
匀变速直线运动公式、圆周运动、万有引力总结
1.自由落体运动
①末速度: ②下落高度:
③下落时间:
2.竖直下抛运动
①末速度: ②下落高度:
3.竖直上抛运动
①末速度: ②下落高度:
③上升时间: ④总时间:
⑤最大高度:
曲线运动
(1)①条件:v0与 不共线②速度方向:切线方向
③弯曲方向:总是从v0的方向转向 的方向
7.平抛运动
②合速度:
(1)在连续相等的时间间隔(T)内的位移之差等于一个恒量,即Δs=aT2⑤
(2)某段时间内中间时刻的瞬时速度等于这段时间内的平均速度,即: ⑥
(3)某段位移内中间位置的瞬时速度v中与这段位移初、末速度v0和vt关系: ⑦
注意:无论匀加速还是匀减速总有 = = < =
4、初速度为零的匀加速直线运动的一些特殊比例式(从t=0开始),设T为时间单位,则有:
20.中心天体质量:
21.中心天体密度:
22.卫星的运行速度:
23.地球表面的重力加速度:
24.第一宇宙速度(环绕速度):
第二宇宙速度(脱离速度):11.2km/s
第三宇宙速度(逃逸速度):16.7km/s
③速度方向:
⑤位移方向:
⑥飞行时间: ,与v0无关
8.斜抛运动
③飞行时间:
④射程: ⑤射高:
圆周运动
1.线速度: 2.角速度:
3.线速度与角速度的关系:
4.周期与频率的关系: 5.转速与频率的关系:
6.向心力:7.向心Fra bibliotek速度:8.竖直平面内圆周运动最高点的临界速度:
万有引力
18.开普勒第三定律:
19.万有引力定律: ,G=6.67×10-11
依题意可得:vt=0,t=3s,a=-6m/s2
2025版高考物理一轮总复习知识梳理第4章抛体运动与圆周运动实验5探究平抛运动的特点
试验五探究平抛运动的特点一、试验思路用描迹法逐点画出小钢球做平抛运动的轨迹,推断轨迹是否为抛物线,并求出小钢球的初速度。
二、试验器材末端水平的斜槽、背板、挡板、复写纸、白纸、钢球、刻度尺、铅垂线、三角板、铅笔等。
三、试验过程1.安装、调整背板:将白纸放在复写纸下面,然后固定在装置背板上,并用铅垂线检查背板是否竖直。
2.安装、调整斜槽:将固定有斜槽的木板放在试验桌上,用平衡法检查斜槽末端是否水平,也就是将小球放在斜槽末端直轨道上,小球若能静止在轨道上的随意位置,则表明斜槽末端已调水平,如图。
3.描绘运动轨迹:让小球在斜槽的某一固定位置由静止滚下,并从斜槽末端飞出起先做平抛运动,小球落到倾斜的挡板上,会挤压复写纸,在白纸上留下印迹。
取下白纸用平滑的曲线把这些印迹连接起来,就得到小球做平抛运动的轨迹。
4.确定坐标原点及坐标轴:选定斜槽末端处小球球心在白纸上的投影的点为坐标原点O,从坐标原点O画出竖直向下的y轴和水平向右的x轴。
四、数据处理1.推断平抛运动的轨迹是不是抛物线(1)原理:若平抛运动的轨迹是抛物线,则应以抛出点为坐标原点建立直角坐标系,且轨迹上各点的坐标满足y=ax2的关系,且同一运动轨迹上a是一个特定的值。
(2)验证方法方法一:代入法用刻度尺测量几个点的x、y坐标,分别代入y=ax2中求出常数a,推断a值在误差允许的范围内是否为一常数。
方法二:图像法建立y-x2坐标系,依据所测量的各个点的x、y坐标值分别计算出对应y值的x2值,在y -x 2坐标系中描点,连接各点看是否在一条直线上,并求出该直线的斜率即为a 的值。
2.计算平抛运动的初速度(1)平抛运动轨迹完整(即含有抛出点)在轨迹上任取一点,测出该点离原点的水平位移x 及竖直位移y ,就可求出初速度v 0。
因x =v 0t ,y =12gt 2,故v 0= x g 2y。
(2)平抛运动轨迹残缺(即无抛出点)如图所示,在轨迹上任取三点A 、B 、C ,使A 、B 间及B 、C 间的水平距离相等,由平抛运动的规律可知,A 、B 间与B 、C 间所用时间相等,设为t ,则Δh =h BC -h AB =gt 2,所以t =h BC -h AB g ,初速度v 0=x t =x g h BC -h AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、常见计算方式:字母推导,比值关系
北
西
东
练习1—0—全能P·64·(2) 南
在地球赤道上的A处静止放置一个小物体,现在假设地球 对小物体的万有引力突然消失,则在数小时内小物体相对地 面A处来说,将( B )
A、原地不动,物体对地面的压力消失;
B、
向上并逐渐向西飞去;
C、向上并逐渐向东飞去; D、
练习3
北
西
东
南
下列说法中正确的是( C )
A.物体在恒力作用下,不可能做曲线运动
B.物体受恒力作用下,一定做匀变速直线运动
C.当物体所受合外力的方向与速度的方向有 夹角时,一定做曲线运动
D.当物体所受合外力的方向不断变化时,一定 做曲线运动
北
讨论3
西
东
南
——对圆周运动的几个概念理解
1、v、ω 、T、f、r的关系如何?
A、在北纬79°由东向西飞行
B、在北纬79°由西向东飞行
C、在北纬11°由东向西飞行
D、在北纬11°由西向东飞行
练习7
北
西
东
南
在日落以后,我们常能看到高空中明亮的人 造卫星。现有一颗在地球赤道上空飞行的人造卫 星,在日落后两小时恰在赤道上某观察者的正上 方,则该卫星距地球的表面高度至少有多少Km? (已知地球的半径为R=6.4×103Km)
v=rω =2π r/T ω =2π /T=2π f
2、区分ω 与n的关系
ω :rad/s n :r/s ω =2π n
3、向心力和向心加速度的理解
①大小:Fa向 向心心==
mv2/r = mrω 2=mvω v2/r=rω 2=vω
②方向:指向圆心
③物理意义或作用效果:只改变速度的方向
典型问题1
练习8 ——向心力的计算
北
西
东
南
如图所示,水平转台上放着A、B、C三物,质量 分别为2m、m、m,离转轴距离分别为R、R、2R,
与转台动摩擦因数相同,转台旋转时,下列说法正
确的是:(
AD)
A.若三物均未滑动,C物向心加速度最大
B.若三物均未滑动,B物受摩擦力最大
C.转速增加,A物比B物先滑动
D.转速增加,C物先滑动
非匀变速曲线运动 F合=变量 a=变量
匀速圆周运动
变速圆周运动
知识结构网络:
北
西
东
南
线速度大小不变 v=s/t=rω
匀
描述的 物理量
角速度不变 ω =Φ /t=2π /T
速
周期和频率不变 T=1/f
圆
受
周 运
力
F合大小不变
特
方向: 始终指向圆心
F合=F向心=mv2/r=mrω 2
a向心= v2/r=rω 2
面的重力加速度为B(
)
A、400g B、g/400 C、20g
D、g/20
析:表面 mg=GMm/r2 → GM=gr2
又 M=ρ V=4π ρ r3/3
练习12
北
西
东
南
(2000年春季招生)地核的体积约为整个地球 体积的16%,地核的质量约为地球质量的34%,经 估算地核的平均密度为多少?(结果取两位有效数字, G=6.7×10-11Nm2/kg,R=6.4×106m)
典型问题5
北
西
东
南
——匀速圆周运动中的 临界问题: 1、全能P·62·例2 2、练习:全能P·63·(5)、(8)
北
典型问题6
西
东
南
——对万有引力定律的理解
1、公式:F万=Gm1m2/r2
万有引力常数:G=6.67×10-11N·m2/kg2
2、适用对象:两质点间的相互作用 (均匀球体可视为质量集中在球心的质点)
2、做曲线运动的物体,其所受合
外力指向何方?
FB
B
(指向弯曲的内侧)
A
FA
北
讨论2 西
东
——两直线运动的合成问题 南
1、两互成角度的匀速直线运动的合成
(一定是匀速直线运动)
2、两互成角度的初速为零的匀加速直 线运动的合成 (一定是匀加速直线运动)
3、两互成角度的初速不为零的匀加速 直线运动的合成
(匀变速直线运动或匀变速曲线运动)
征
动
天体运动
典型实例
电磁场中带电粒子的运动
知识结构网络:
线速度 大小变化
角速度 变化
周期和频率 变化
描变 述速 的圆 物周 理运 量动
北
西
东
南
受合 向 力外 心 特力 力 征
切向力
典
型
竖直圆轨
问
道问题
题
北
讨论1 西
东
——对曲线运动的理解 南
1、变速运动一定是曲线运动吗?
(不一定,但曲线运动一定是变速运动。)
M=4π 2r3/GT2 ρ = 3π r3/GT2R3
2、运行周期T的计算: 练习
3、人造卫星问题: 人造卫星
练习14
北
西
东
南
(2001年全国理综)为了研究太阳演化进 程,需知道目前太阳的质量,已知地球的半径 R=6.4×106m,地球质量m=6.0×1024kg,日地中心 距离r=1.5×1011m,地球表面处的重力加速度 g=10m/s2,1年约为3.2×107s,试估算目前太阳的 质量M。(估算结果只保留一位有效数字)
析:卫星 GMm/r2 =4π 2mr/T2 → GM=4π 2r3/T2
表面 mg=GMm/r02 → GM=gr02
结论
v
v2 0
v12
8 2hr3
T 2r02
v02
常见的天体问题
北
西
东
南
1、天体质量M、密度ρ 的计算: 练习
已知卫星绕天体作匀速圆周运动的 半径r和周期T,天体的半径R
从北极上空看
洛杉矶
反思
1、熟练掌握匀速圆周运动 的规律及地球自转的相关知识
2、空间想象能力: 空间问题 平面问题
O
F心 v1 v2
上海
F向心= G-FN = mv2/r
分析
北
西
东
南
练习:全能P·60· (5)——(10)
典型问题4
——变速竖直圆周运动 中的临界问题:
模型1:绳子
V0
O
受力分析
变化
北
高考预测
西
东
南
从近年高考看本章主要考查考生 准确理解向心力公式,万有引力定 律;要求加深理解向心力公式、万 有引力定律,熟悉掌握其应用,尤 其是对天体运动的分析;本章考查 的重点是圆周运动与天体运动、电 场、磁场的结合。
知识结构网络:
北
西
东
南
特例一
平抛运动
曲
线
运
动
特例二
圆周运动
特点 变速运动
匀变速曲线运动 F合=恒量 a=恒量
②其他问题:《练习:全能P·56·(5)、(8)、(9)》
练习4
北
西
东
南
甲、乙、丙三个物体,甲放在广州,乙放 在上海,丙放在北京,当它们随地球一起转动 时,则( D )
A.甲的角速度最大,乙的线速度最小
B.丙的角速度最小,甲的线速度最大
C.三个物体的角速度、周期、和线速度都相等
D.三个物体的角速度、周期一样,丙的线速度 都最小
4、一个匀速直线运动和一个匀加速直线 运动的合成
(匀变速直线运动或匀变速曲线运动)
练习1
北
西
东
南
一质点在某段时间内做曲线运动,则在这 段时间内( B )
A.速度一定在不断地改变,加速度也一定不断 地改变
B.速度一定在不断地改变,加速度可以不变
C.速度可以不变,加速度一定不断地改变
D.速度可以不变,加速度也可以不变
北
分析:
西
东
南
东升西落
东升西落 V飞<V地 进入黑暗
V飞>V地 东
日出
西 d
西
c
a
西
西升东落
V飞>V地
b
东
日落
进入黑暗
进入黑暗
V飞<V地
练习6
北
西
东
南
飞机以320km/h的速度在地球表面附近飞行,下
面哪种情况飞机上的旅客可在较长时间内看到太阳停
在空中不动( A)
(已知地球半径R=6400km,
cos11° =0.98,cos79° =0.19)
《练习:全能P·56·(7)》 A
从北极上空看:
太
B
阳
的
平 行
O R 30°A1
光
AC
日落
讨论4
北
西
东
南
做圆周运动的物体所受合外力 一定指向圆心吗?其所受的向心力 如何产生?
练习:全能P·57·(1)、 (2)、(3)、(5)
典型问题3
——向心力的加深理解
北
西
东
南
1、向心力是按效果命名的力。 2、向心力可以由某一个力提供,也可以 由几个力的合力提供,还可以由某一个力 的分力提供。
一直垂直向上飞去.
A O A/
东
西
B
平
O
面
图
A
A/
北
典型问题7
西
东
南
——万有引力定律与天体的结合
处理的基本方法:天体运动看成匀 速圆周运动,万有引力提供向心力。
F合=F引=F心 =GMm/r2
F=ma
a= v2/r=ω2r=ω v a=(2π/T)2r a=(2πf)2r