临沂市中考数学题型分析解答题2
2024年临沂市中考数学真题试题及答案
2024年山东省临沂市中考数学真题试卷(枣庄、聊城、临沂、菏泽)一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是( ) A. 3B.12C.1- D. 2-2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( ) A. 30.61910⨯B. 461.910⨯C. 56.1910⨯D. 66.1910⨯4. 下列几何体中,主视图是如图的是( )A. B. C. D.5. 下列运算正确的是( )A. 437a a a +=B. ()2211a a -=- C. ()2332a ba b =D. ()2212a a a a +=+6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A. 200B. 300C. 400D. 5007. 如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A.19B.29C.13D.239. 如图,点E 为ABCD 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A.52B. 3C.72D. 410. 根据以下对话给出下列三个结论①1班学生的最高身高为180cm ①1班学生的最低身高小于150cm ①2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( ) A. ①①B. ①①C. ①①D. ①①①二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________.13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________. 14. 如图,ABC ∆是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.15. 如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM ,AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-⎛⎫--⎪⎝⎭(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =.18. 【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈) 【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号) ①解直角三角形 ①三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤. 下面给出了部分信息8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题 (1)请补全频数分布直方图(2)所抽取学生的模型设计成绩的中位数是________分(3)请估计全校1000名学生的模型设计成绩不低于80分的人数(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩. 某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下通过计算,甲、乙哪位学生的综合成绩更高?20. 列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与ky x=部分自变量与函数值的对应关系(1)求a ,b 的值,并补全表格(2)结合表格,当2y x b =+的图像在ky x=的图像上方时,直接写出x 的取值范围. 21. 如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线 (2)求图中阴影部分面积.(结果保留π)22. 一副三角板分别记作ABC 和DEF ,其中90ABC DEF ∠=∠=︒,45BAC ∠=︒,30EDF ∠=︒,AC DE =.作BM AC ⊥于点M ,EN DF ⊥于点N ,如图1.(1)求证:BM EN =(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF 绕C 按顺时针方向旋转α后,延长BM 交直线DF 于点P . ①当30α=︒时,如图3,求证:四边形CNPM 为正方形①当3060α︒<<︒时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120α︒<<︒时,直接写出线段MP ,DP ,CD 的数量关系.23. 在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =. (1)求m 的值(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.2024年山东省临沂市中考数学真题试卷答案(枣庄、聊城、临沂、菏泽)一、选择题.9. 解:延长DF 和AB ,交于G 点①四边形ABCD 是平行四边形 ①DC AB ∥,DC AB =即DC AG ∥ ①DEC GAE ∽ ①CE DE DCAE GE AG== ①5AC =,1CE =①514AE AC CE =-=-= ①14CE DE DC AE GE AG === 又①EF DE =,14DE DE GE EF FG ==+ ①13EF FG = ①14DC DC AG AB BG ==+,DC AB = ①13DC BG =①13EF DC FG BG == ①34BG FG AG EG == ①AE BF ∥①BGF AGE ∽ ①34BF FG AE EG == ①4AE =①3BF =.故选:B .10. 解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b 根据1班班长的对话,得180x ≤,350x a +=①350x a =-①350180a -≤解得170a ≥故①,①正确根据2班班长的对话,得140b >,290y b +=①290b y =-①290140y ->①150y <故①正确故选:D .二、填空题.11. 【答案】()2xy x +12. 【答案】1-(答案不唯一)【解析】解:21215x x +≥⎧⎨-<⎩①② 由①得:1x ≥-由①得:3x <①不等式组的解集为:13x -≤<①不等式组的一个整数解为:1-故答案为:1-(答案不唯一).13. 【答案】14【解析】解:①关于x 的方程2420x x m -+=有两个相等的实数根①2242444160b ac m m ∆=-=-⨯⨯=-= 解得:14m =. 故答案为:14. 14. 【答案】40︒【解析】解①连接OB①25ACB ∠=︒①250AOB ACB ∠=∠=︒①OA OB = ①()1180652OAB OBA AOB ∠=∠=︒-∠=︒ ①OA CB ∥①25A OAC CB ∠=︒∠=①40CAB OAB OAC ∠=∠-∠=︒故答案为:40︒.15.【解析】解:如图,过F 作FH AC ⊥于H由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AF BF AB === ①67.5PQE ∠=︒①67.5AQF ∠=︒①9067.522.5BAP CAP ∠=∠=︒-︒=︒①45FAH ∠=︒①2AH FH AF ===①F 到AN16. 【答案】()2,1【解析】解:点()1,4经过1次运算后得到点为()131,42⨯+÷,即为()4,2 经过2次运算后得到点为()42,21÷÷,即为()2,1经过3次运算后得到点为()22,131÷⨯+,即为()1,4……发现规律:点()1,4经过3次运算后还是()1,4①202436742÷=①点()1,4经过2024次运算后得到点()2,1故答案为:()2,1.三、解答题.17. 【答案】(1)3 (2)3a - 2-18. 【答案】(1)A ,P 两点间的距离为89.8米;(2)①19. 【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【小问1详解】解:①510%50÷=,而8090x ≤<有20人①7080x ≤<有502051015---=补全图形如下。
2023年山东省临沂市中考数学模拟试卷(二)(含解析)
2023年山东省临沂市中考数学模拟试卷(二)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. −2023的绝对值是( )A. −12023B. −2023C. 12023D. 20232. 下列图形中,不是中心对称图形的是( )A. 平行四边形B. 圆C. 等边三角形D. 正六边形3. 如图,在数轴上,点A 、B 分别表示数a 、b ,且a +b =0.若A 、B 两点间的距离为6,则点A 表示的数为( )A. −6B. 6C. −3D. 34.某几何体的三视图如图所示,这个几何体是( )A.B.C.D.5. 不等式组{2−x >0x−12≥−1的解集在数轴上表示正确的是( )A. B.C. D.6.如图,将直角三角板放置在矩形纸片上,若∠1=48°,则∠2的度数为( )A. 42°B. 48°C. 52°D. 60°7. 下列关于x的一元二次方程没有实数根的是( )A. x2+2x−5=0B. x2−6=xC. 5x2+1=5D. x2−2x+2=08. 已知二元一次方程组{2x−y=5x−2y=1,则x−y的值为( )A. 2B. −2C. 6D. −69. 不透明袋子中装有3个红球和2个白球,这些球除了颜色外都相同.从袋子中随机地摸出2个球,则这两个球都是红球的概率是( )A. 25B. 35C. 23D. 31010.如图,△ABC∽△ADE,S△A B C:S四边形B D E C=1:3,BC=2,则DE的长为( )A. 6B. 22C. 32D. 4211. 某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为( )A. 160x +400(1+20%)x=18 B. 160x+400−160(1+20%)x=18C. 160x +400−16020%x=18 D. 400x+400−160(1+20%)x=1812. 如图,点A,B在反比例函数y=kx(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连接AE.若OE=1,OC=23OD,AC=AE,则k的值为( )A. 2B. 322C. 94D. 2 2二、填空题(本大题共4小题,共12.0分)13. 比较大小: 10232.(填“>”,“<”或“=”)14. 分解因式4x 2−4x +1=______.15.如图,把△ABC 沿AC 方向平移1cm 得到△FDE ,AE =6c m ,则FC 的长是 cm .16.如图,⊙O 是等边△ABC 的外接圆,点D 是弧AC 上一动点(不与A ,C 重合),下列结论:①∠ADB =∠BDC ;②DA =DC ;③当DB 最长时,DB =2DC ;④DA +DC =DB ,其中一定正确的结论有______.(填写结论序号)三、解答题(本大题共7小题,共72.0分。
2020年山东省临沂中考数学试卷(附答案与解析)
4.根据图中三视图可知该几何体是( )
A.三棱锥B.三棱柱C.四棱锥D.四棱柱
5.如图,在 中, , , ,则 ( )
A. B. C. D.
6.计算 的结果是( )
A. B. C. D.
7.设 ,则( )
A. B. C. D.
8.一元二次方程 的解是( )
A. , B. ,
C. , D. ,
9.【答案】C
【解析】解:列表得:
马鸣
杨豪
陆畅
江宽
马鸣
---
(马鸣,杨豪)
(马鸣,陆畅)
(马鸣,江宽)
杨豪
(杨豪,马鸣)
---
(杨豪,陆畅)
(杨豪,江宽)
陆畅
(陆畅,马鸣)
(陆畅,杨豪)
---
(陆畅,江宽)
江宽
(江宽,马鸣)
(江宽,杨豪)
(江宽,陆畅)
---
所有等可能的情况有12种,其中恰好抽到马鸣和杨豪的情况有2种,恰好抽到马鸣和杨豪的概率是 ,故选C。
(2)填表如下:
…
3
4
5
6
7
8
9
10
…
…
12
9
7.2
6
4.5
4
3.6
…
函数图像如下:
(3)∵ , ,∴ ,∴ ,即用电器可变电阻应控制在 以上的范围内。
【考点】反比例函数的应用
24.【答案】解:(1)由作图过程可得: ,∴ , , ,而 ,∴ ,即 ,∵ ,∴ ,即 与圆 相切,过点 作 ,交 于点 ,可知四边形 为矩形,∴ ,而圆 的半径为 ,∴点 在圆 上,即 是 的切线;
【考点】圆的新定义问题
临沂市中考数学题型分析
临沂市中考数学题型分析临沂市数学中考试题题型基本固定,有明显的规律可循,复习时要准确把握。
满分120分,考试时间120分钟。
一、选择题(单选题,四选一,共14题,42分,每题3分,占35%,一般难度逐渐增大。
)1、绝对值或相反数、倒数等概念;2、平行线;3、整式的运算(整数指数幂);4、不等式(组);5、三视图;6、概率;7、多边形内角和;8、分式与方程;9、数据分析(众数、中位数);10、圆的性质、面积;11、规律题;12、图形变化(加上一定的条件)13、二次函数:给出数据,画出草图,做出分析(不是用待定系数法);14、反比例函数(交点)。
二、填空题(共5题,15分,每题3分,占12.5%)15、因式分解;16、相似(或成比例线段)17、分式的化简(计算、求值);18、三角函数(相似的延伸),必须构造直角三角形;19、“新定义”问题(高中段的知识,如:增函数等)三、解答题(共7题,共63分,占52.5%)20、计算:主要涉及绝对值、三角函数、二次根式、零指数、负整数指数等;21、数据分析:补全条形图、众数、中位数、方差等应用;22、三角函数的实际应用:作垂线等;23、圆的切线、圆周角、阴影面积等;24、分段函数:一次函数与反比例函数综合;25、(几何图形压轴题)图形的变换的探索与猜想(题目特点是题干长,一般采用截长补短法、测量法等作辅助线,多用于线段的和差倍分等,核心是构造全等三角形);第一问(特殊情况)一般是猜想与判断;第二问一般是在(1)的条件下,变换一个条件,判断是否成立;第三问(一般情况)直接判断是否依然成立;26、(二次函数综合、压轴题)第一问一般是求抛物线解析式;第二问一般是最短路径(最小值)等;第三问多数为动点问题:①由三点构成等腰三角形,②由三点构成直角三角形或相似三角形,③由四点构成平行四边形或矩形等。
山东省临沂市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
山东省临沂市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.分式的加减法(共1小题)1.(2022•临沂)计算:(1)﹣23÷×(﹣);(2)﹣.二.一元一次方程的应用(共1小题)2.(2023•临沂)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金.当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M型平板电脑价值多少元?(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?三.解一元一次不等式(共1小题)3.(2023•临沂)(1)解不等式5﹣2x<,并在数轴上表示解集;(2)下面是某同学计算﹣a﹣1的解题过程:解:﹣a﹣1=﹣…①=…②=…③==1…④上述解题过程从第几步开始出现错误?请写出正确的解题过程.四.反比例函数的性质(共1小题)4.(2021•临沂)已知函数y=(1)画出函数图象;列表:x… …y… .…描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.五.反比例函数的应用(共1小题)5.(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm),确定支点O,并用细麻绳固定,在支点O左侧2cm的A处固定一个金属吊钩,作为秤钩;第二步:取一个质量为0.5kg的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤砣挂在支点O右侧的B处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB的长度随之变化.设重物的质量为xkg,OB的长为ycm.写出y关于x的函数解析式;若0<y<48,求x的取值范围.(2)调换秤砣与重物的位置,把秤砣挂在秤钩上,重物挂在支点O右侧的B处,使秤杆平衡,如图2.设重物的质量为xkg,OB的长为ycm,写出y关于x的函数解析式,完成下表,画出该函数的图象.x/kg……0.250.5124……y/cm…… ……六.二次函数的应用(共1小题)6.(2023•临沂)综合与实践:问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A,B,C,D,E五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:数据整理:(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:售价(元/盆) 日销售量(盆) 模型建立(2)分析数据的变化规律,找出日销售量与售价间的关系.拓广应用(3)根据以上信息,小莹妈妈在销售该种花卉中,①要想每天获得400元的利润,应如何定价?②售价定为多少时,每天能够获得最大利润?七.圆周角定理(共1小题)7.(2021•临沂)如图,已知在⊙O中,==,OC与AD相交于点E.求证:(1)AD∥BC;(2)四边形BCDE为菱形.八.切线的性质(共1小题)8.(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.九.解直角三角形的应用(共1小题)9.(2021•临沂)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•临沂)如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至B处,测得灯塔A在北偏西58°方向上,继续航行6海里后到达C处,测得灯塔A在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625,sin58°≈0.848,cos58°≈0.530,tan58°≈1.6)一十一.众数(共1小题)11.(2021•临沂)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:分组频数0.65≤x<0.7020.70≤x<0.7530.75≤x<0.8010.80≤x<0.85a0.85≤x<0.9040.90≤x<0.9520.95≤x<1.00b统计量平均数中位数众数数值0.84c d(1)表格中:a= ,b= ,c= ,d= ;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.山东省临沂市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.分式的加减法(共1小题)1.(2022•临沂)计算:(1)﹣23÷×(﹣);(2)﹣.【答案】(1)3;(2).【解答】解:(1)原式=﹣8××()=8××=3;(2)原式===.二.一元一次方程的应用(共1小题)2.(2023•临沂)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金.当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M型平板电脑价值多少元?(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?【答案】(1)这台M型平板电脑价值2100元;(2)若工作m天,她应获得的报酬为120m元.【解答】解:(1)设这台M型平板电脑价值x元,根据题意得:(x+1500)=x+300,解得:x=2100,∴这台M型平板电脑价值2100元;(2)由(1)知,一台M型平板电脑价值2100元,∴工作一个月,她应获得的报酬为2100+1500=3600(元),∴若工作m天,她应获得的报酬为=120m(元).三.解一元一次不等式(共1小题)3.(2023•临沂)(1)解不等式5﹣2x<,并在数轴上表示解集;(2)下面是某同学计算﹣a﹣1的解题过程:解:﹣a﹣1=﹣…①=…②=…③==1…④上述解题过程从第几步开始出现错误?请写出正确的解题过程.【答案】(1)x>3,解集在数轴上表示见解答;(2)上述解题过程从第①步开始出现错误,正确的解题过程见解答.【解答】解:(1)5﹣2x<,2(5﹣2x)<1﹣x,10﹣4x<1﹣x,﹣4x+x<1﹣10,﹣3x<﹣9,x>3,该不等式的解集在数轴上表示如图所示:(2)上述解题过程从第①步开始出现错误,正确的解题过程如下:﹣a﹣1=﹣(a+1)===.四.反比例函数的性质(共1小题)4.(2021•临沂)已知函数y=(1)画出函数图象;列表:x… ﹣3 ﹣2 ﹣1 0 1 2 3 4 …y… ﹣1 ﹣3 0 3 1 .…描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.【答案】(1)见解析;(2)有,最大值为3;(3)见解析【解答】解:(1)列表如下:x……﹣3﹣2﹣101234……y……﹣1﹣3031……函数图象如图所示:(2)根据图象可知:当x=1时,函数有最大值3;当x=﹣1时,函数有最小值﹣3.(3)∵(x1,y1),(x2,y2)是函数图象上的点,x1+x2=0,∴x1和x2互为相反数,当﹣1<x1<1时,﹣1<x2<1,∴y1=3x1,y2=3x2,∴y1+y2=3x1+3x2=3(x1+x2)=0;当x1≤﹣1时,x2≥1,则y1+y2==0;同理:当x1≥1时,x2≤﹣1,y1+y2=0,综上:y1+y2=0.五.反比例函数的应用(共1小题)5.(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm),确定支点O,并用细麻绳固定,在支点O左侧2cm的A处固定一个金属吊钩,作为秤钩;第二步:取一个质量为0.5kg的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤砣挂在支点O右侧的B处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB的长度随之变化.设重物的质量为xkg,OB的长为ycm.写出y关于x的函数解析式;若0<y<48,求x的取值范围.(2)调换秤砣与重物的位置,把秤砣挂在秤钩上,重物挂在支点O右侧的B处,使秤杆平衡,如图2.设重物的质量为xkg,OB的长为ycm,写出y关于x的函数解析式,完成下表,画出该函数的图象.x/kg……0.250.5124……y/cm…… 4 2 1 ……【答案】(1)0<x<12;(2)4;2;1;;;【解答】解:(1)∵阻力×阻力臂=动力×动力臂,∴重物重力×OA=秤砣重力×OB,∵OA=2cm,重物的质量为xkg,OB的长为ycm,秤砣为0.5kg,∴2x=0.5y,∴y=4x,∵4>0,∴y随x的增大而增大,∵当y=0时,x=0;当y=48时,x=12,∴0<x<12;(2)∵阻力×阻力臂=动力×动力臂,∴秤砣×OA=重物×OB,∵OA=2cm,重物的质量为xkg,OB的长为ycm,秤砣为0.5kg,∴2×0.5=xy,∴y=,当x=0.25时,y==4;当x=0.5时,y==2;当x=1时,y=1;当x=2时,y=;当x=4时,y=;故答案为:4;2;1;;;作函数图象如图:六.二次函数的应用(共1小题)6.(2023•临沂)综合与实践:问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A,B,C,D,E五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:数据整理:(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:售价(元/盆) 18 20 22 26 30 日销售量(盆) 54 50 46 38 30 模型建立(2)分析数据的变化规律,找出日销售量与售价间的关系.拓广应用(3)根据以上信息,小莹妈妈在销售该种花卉中,①要想每天获得400元的利润,应如何定价?②售价定为多少时,每天能够获得最大利润?【答案】(1)18,54;20,50;22,46;26,38;30,30;(2)y=﹣2x+90;(3)①要想每天获得400元的利润,定价为25元或35元;②售价定为30元时,每天能够获得最大利润450元.【解答】解:(1)根据销售单价从小到大排列得下表:售价(元/盆)1820222630日销售量(盆)5450463830故答案为:18,54;20,50;22,46;26,38;30,30;(2)观察表格可知销售量是售价的一次函数;设销售量为y盆,售价为x元,y=kx+b,把(18,54),(20,50)代入得:,解得,∴y=﹣2x+90;(3)①∵每天获得400元的利润,∴(x﹣15)(﹣2x+90)=400,解得x=25或x=35,∴要想每天获得400元的利润,定价为25元或35元;②设每天获得的利润为w元,根据题意得:w=(x﹣15)(﹣2x+90)=﹣2x2+120x﹣1350=﹣2(x﹣30)2+450,∵﹣2<0,∴当x=30时,w取最大值450,∴售价定为30元时,每天能够获得最大利润450元.七.圆周角定理(共1小题)7.(2021•临沂)如图,已知在⊙O中,==,OC与AD相交于点E.求证:(1)AD∥BC;(2)四边形BCDE为菱形.【答案】(1)见解答;(2)见解答【解答】证明:(1)连接BD,∵,∴∠ADB=∠CBD,∴AD∥BC;(2)连接CD,BD,设OC与BD相交于点F,∵AD∥BC,∴∠EDF=∠CBF,∵,∴BC=CD,BF=DF,又∠DFE=∠BFC,∴△DEF≌△BCF(ASA),∴DE=BC,∴四边形BCDE是平行四边形,又BC=CD,∴四边形BCDE是菱形.八.切线的性质(共1小题)8.(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.【答案】(1)证明过程见解析;(2)S=.【解答】(1)证明:连接OB,∵AB是⊙O的切线,∴∠OBE=90°,∴∠E+∠BOE=90°,∵CD为⊙O的直径,∴∠CBD=90°,∴∠D+∠DCB=90°,∵OE∥BC,∴∠BOE=∠OBC,∵OB=OC,∴∠OBC=∠OCB,∴∠BOE=∠OCB,∴∠D=∠E;(2)解:∵F为OE的中点,OB=OF,∴OF=EF=3,∴OE=6,∴BO=OE,∵∠OBE=90°,∴∠E=30°,∴∠BOG=60°,∵OE∥BC,∠DBC=90°,∴∠OGB=90°,∴OG=,BG=,∴S△BOG=OG•BG==,S扇形BOF==π,∴S阴影部分=S扇形BOF﹣S△BOG=.九.解直角三角形的应用(共1小题)9.(2021•临沂)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【答案】约6米.【解答】解:∵CM=3m,OC=5m,∴OM==4(m),∵∠CMO=∠BDO=90°,∠COM=∠BOD,∴△COM∽△BOD,∴,即,∴BD==2.25(m),∴tan∠AOD=tan70°=,即≈2.75,解得:AB=6m,∴汽车从A处前行约6米才能发现C处的儿童.一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•临沂)如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至B处,测得灯塔A在北偏西58°方向上,继续航行6海里后到达C处,测得灯塔A在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625,sin58°≈0.848,cos58°≈0.530,tan58°≈1.6)【答案】如果船不改变航线继续向西航行,没有触礁危险.【解答】解:过点A作AD⊥BC于D,设AD=x海里,由题意得,∠ABD=32°,∠ACD=45°,BC=6海里,在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD=x海里,在Rt△ABD中,tan∠ABD=,∴BD=≈=6+x,解得,x=10,∵10>9,∴如果船不改变航线继续向西航行,没有触礁危险.一十一.众数(共1小题)11.(2021•临沂)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:分组频数0.65≤x<0.7020.70≤x<0.7530.75≤x<0.8010.80≤x<0.85a0.85≤x<0.9040.90≤x<0.9520.95≤x<1.00b统计量平均数中位数众数数值0.84c d(1)表格中:a= 5 ,b= 3 ,c= 0.82 ,d= 0.89 ;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.【答案】(1)5,3,0.82,0.89;(2)估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数有210户;(3)村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭,理由见解析.【解答】解:(1)由统计频数的方法可得,a=5,b=3,将该村家庭收入从小到大排列,处在中间位置的两个数的平均数为(0.81+0.83)÷2=0.82,因此中位数是0.82,即c=0.82,他们一季度家庭人均收入的数据出现最多的是0.89,因此众数是0.89,即d=0.89,故答案为:5,3,0.82,0.89;(2)300×=210(户),答:估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数有210户;(3)该村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭,理由:该村300户家庭一季度家庭人均收入的中位数是0.82,0.83>0.82,所以该村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭.。
山东省临沂市中考数学真题试卷(版+答案+解析)
山东省临沂市中考数学真题试卷(版+答案+解析)山东省临沂市中考数学真题试卷(版本+答案+解析)一、选择题1. 下面哪个数是负数?A) -3 B) 0 C) 2 D) 5答案: A) -3解析: 负数是小于零的数,而选项 A) -3 是一个小于零的数。
2. 下面哪个是一个无理数?A) 2 B) 3 C) √5 D) 1/2答案: C) √5解析: 无理数是不能表示为两个整数的比例形式的数,而选项C) √5 是一个无理数。
3. 一个正三角形的内角大小是多少度?A) 60 B) 90 C) 120 D) 180答案: A) 60解析: 一个正三角形的内角相等,那么每个内角为 180 度除以 3,即60 度。
4. 如果 a + b = 10,且 a - b = 2,那么 a 的值是多少?A) 4 B) 5 C) 6 D) 8答案: C) 6解析: 可以通过联立方程组,将两个方程相加消去b,得到2a = 12,因此 a = 6。
5. 若一个矩形的长为 8cm,宽为 4cm,那么它的周长是多少?A) 8cm B) 12cm C) 16cm D) 24cm答案: D) 24cm解析: 矩形的周长可以通过公式周长 = 2(长 + 宽) 计算,代入数值计算得到 2(8 + 4) = 24。
二、填空题1. 在等差数列 1, 4, 7, 10, ... 中,第 10 项是多少?答案: 28解析: 等差数列的通项公式为 an = a1 + (n-1)d,其中 a1 是首项,d是公差,n 是项数。
在该题中,a1 = 1,d = 4-1 = 3,n = 10,代入公式计算得到 a10 = 1 + (10-1)3 = 1 + 27 = 28。
2. 下列选项中,不是平行四边形的是()。
A) 正方形 B) 长方形 C) 菱形 D) 梯形答案: D) 梯形解析: 平行四边形的定义是两组对边平行的四边形,而梯形的定义是至少有一组对边不平行的四边形。
2023年山东省临沂市中考数学真题(答案解析)
2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。
【真题】临沂市中考数学试卷含答案解析
山东省临沂市中考数学试卷(解析版)一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(山东省临沂市)在实数﹣3,﹣1,0,1中,最小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.【解答】解:∵﹣3<﹣1<0<1,∴最小的是﹣3.故选:A.【点评】此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.2.(山东省临沂市)自10月提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为()A.1.1×103人B.1.1×107人C.1.1×108人D.11×106人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1100万=1.1×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(山东省临沂市)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵AB∥CD,∴∠ABC=∠C=64°,在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,故选:C.【点评】本题考查平行线的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(山东省临沂市)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.5.(山东省临沂市)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(山东省临沂市)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.7.(山东省临沂市)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2B.(12+π)cm2C.6πcm2D.8πcm2【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.(山东省临沂市)某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有的可能,进而利用概率公式取出答案.【解答】解:如图所示:,一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.45000 18000 10000 5500 5000 3400 3300 1000月收入/元人数 1 1 1 3 6 1 11 1能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差【分析】求出数据的众数和中位数,再与25名员工的收入进行比较即可.【解答】解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为5000元;由于在25名员工中在此数据及以上的有12人,所以中位数也能够反映该公司全体员工月收入水平;故选:C.【点评】此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.10.(山东省临沂市)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.= B.=C.= D.=【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得:=,故选:A.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.11.(山东省临沂市)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.12.(山东省临沂市)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是()A.x<﹣1或x>1 B.﹣1<x<0或x>1C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l【分析】直接利用正比例函数的性质得出B点横坐标,再利用函数图象得出x的取值范围.【解答】解:∵正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.∴B点的横坐标为:﹣1,故当y1<y2时,x的取值范围是:x<﹣1或0<x<l.故选:D.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出B点横坐标是解题关键.13.(山东省临沂市)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.4【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.【点评】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.14.(山东省临沂市)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,A正确.当y=21时,﹣=21解得a1=30,a2=70,则C错误.故选:D.【点评】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.二、填空题(本大题共5小题,每小题3分,共15分)15.(山东省临沂市)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.【点评】本题考查了实数的性质,是基础题,主要利用了绝对值的性质.16.(山东省临沂市)已知m+n=mn,则(m﹣1)(n﹣1)=1.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.【点评】本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.17.(山东省临沂市)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=4.【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=D,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点评】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.18.(山东省临沂市)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.【分析】根据题意作出合适的辅助线,然后根据圆的相关知识即可求得△ABC外接圆的直径,本题得以解决.【解答】解:设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆,∵在△ABC中,∠A=60°,BC=5cm,∴∠BOC=120°,作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,∴BD=,∠OBD=30°,∴OB=,得OB=,∴2OB=,即△ABC外接圆的直径是cm,故答案为:.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.19.(山东省临沂市)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.【分析】设0.=x,则36.=100x,二者做差后可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共63分)20.(山东省临沂市)计算:(﹣).【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:原式=[﹣]•=•=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.(山东省临沂市)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.【分析】(1)根据数据采用唱票法记录即可得;(2)由以上所得表格补全图形即可;(3)根据频数分布表或频数分布直方图给出合理结论即可得.【解答】解:(1)补充表格如下:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图如下:(3)由频数分布直方图知,17≤x<22时天数最多,有9天.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(山东省临沂市)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?【分析】过B作BD⊥AC于D,解直角三角形求出AD=xm,CD=BD=xm,得出方程,求出方程的解即可.【解答】解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.【点评】本题考查了解直角三角形,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.23.(山东省临沂市)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.【解答】(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.24.(山东省临沂市)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.【分析】(1)两人相向而行,当相遇时y=0本题可解;(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到B用小时,乙走这段路程用1小时,依此可列方程.【解答】解:(1)设PQ解析式为y=kx+b把已知点P(0,10),(,)代入得解得:∴y=﹣10x+10当y=0时,x=1∴点Q的坐标为(1,0)点Q的意义是:甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为akm/h,乙的速度为bkm/h由已知第小时时,甲到B地,则乙走1小时路程,甲走﹣1=小时∴∴∴甲、乙的速度分别为6km/h、4km/h【点评】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段的路程关系,并列出方程.25.(山东省临沂市)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】(1)先运用SAS判定△AEG≌Rt△FDG,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠GDE=90°=∠AEB+∠DEG,∴∠EDG=∠DEG,∴DG=EG,∴FG=AG,又∵∠DGF=∠EGA,∴△AEG≌Rt△FDG(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点评】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.26.(1山东省临沂市)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=﹣2x+2,根据PD⊥x轴,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【解答】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【点评】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度及勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.。
临沂中考数学真题及答案解析
临沂中考数学真题及答案解析随着中考的临近,考生们都对于各科目的真题和答案解析格外关注,希望能够更好地备考和提高分数。
在中考当中,数学科目一直是考生们最头疼的一门科目。
因此,本文将带您一起解析临沂中考数学真题,并给出答案解析,希望对广大考生有所帮助。
一、选择题1. 一元二次方程f(x)=x²-3x+2=0的一个解是x=________。
A. 1B. 2C. 3D. 4解析:对于一元二次方程,可以使用因式分解法或者配方法。
首先,我们尝试使用因式分解法。
由于方程f(x)=x²-3x+2=0,可看出其表达式可以分解为(x-1)(x-2)=0。
因此,方程的解为x=1或x=2。
答案是A和B。
2. 一列等差数列的前5项和为35,平均数为7。
最后一项等于________。
A. 12B. 14C. 16D. 18解析:首先,我们可以根据等差数列的平均数公式得到前n项和与平均数的关系:Sn=na+(n(n-1)d)/2,其中n为项数,a为首项,d 为公差。
根据题目给出的信息,我们得到5a+10d=35和5a=7。
将5a=7代入到第一个公式中,得到35+10d=35,即10d=0.所以,a=7/5=1.4。
最后一项等于a+(n-1)d=1.4+(5-1)d=1.4+4d。
将a=1.4代入到第一个公式中,得到5*1.4+10d=35,即7+10d=35。
解这个方程可以得到d=2。
最后一项等于1.4+4*2=1.4+8=9.4。
答案是A。
二、填空题3. 已知函数f(x)=(5x-1)/(3x+2),那么f(2)的值是_______。
解析:将x=2代入到f(x)的表达式中,得到f(2)=(5*2-1)/(3*2+2)=9/8。
答案是9/8。
4. 若函数g(x)=3x-4k是奇函数,则k的值是______。
解析:根据奇函数的定义,对于任意的x,g(-x)=-g(x)。
将g(x)的表达式代入到这个等式中,得到3(-x)-4k=-(3x-4k),即-3x-4k=-3x+4k。
临沂市数学中考试题分析(近三年)
临沂市数学中考试题分析(近三年)一、题型和分值分析:临沂市中考数学试题共有26题,满分120分。
第一卷有14道选择题,第二卷由5道填空题和7道解答题两部分组成。
其中选择题占42分,填空题占15分,解答题共63分。
考查内容大致分为以下四块:数与代数(数与式,方程与不等式,函数),空间与图形(图形的认识,图形与变换,图形与坐标,图形与证明),统计与概率,综合应用。
其中数与代数约占46%,空间与图形占43%,概率与统计11%。
二、知识点分布及分值分析现在从试题考查的知识领域、认知水平层次及主要学科能力与思想方法,数学思考、问题解决能力的实现情况,从知识点领域和能力要求两个方面作了统计,对近三年数学中考试题进行了分析。
表一:数与代数部分试题分值分布表表二:概率与统计部分试题分值分布表表三:空间与图形部分试题分值分布表三、复习建议1、抓纲靠本,夯实基础(1)抓住基础概念,作为技巧突破口数学试题中的所谓解题技巧其实并不是什么高深莫测的东西,它来源于最基础的知识或概念,是掌握到一定程度时的灵光一现!(2)抓住基本题型,寻找差异因为做了大量雷同的练习,所以容易造成学生对相近试题的判断失误,这是非常危险的,是第二轮复习时要格外注意的地方。
(3)抓住常用公式,理解来龙去脉对经常使用的数学公式,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。
这样做,学生一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。
(4)抓住中考动向,勤练解题规范要把握好目前的中考动向,特别是近年来上海的中考越来越注重解题过程的规范和解答过程的完整。
在此特别指出的是:有很多学生认为只要解出题目的答案就万事大吉了,其实只要是有过程的解答题,过程分比最后的答案要重要得多。
(5)抓住数学思想,总结解题方法梳理考试中经常出现的数学思想方法,例如分类讨论法、面积法,特值法、数形结合法等等,并在自己的脑海中对每一种方法记忆一道对应的典型试题。
山东省临沂市2022年中考:数学考试真题与答案解析
山东省临沂市2022年中考:数学考试真题与答案解析一、选择题本大题共12小题,每小题3分,共36分。
在每小题所给出的四个选项中,只有一项是符合题目要求的.1.﹣2的相反数是( )A.±2B.﹣C.2D.2.剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.计算a(a+1)﹣a的结果是( )A.1B.a2C.a2+2a D.a2﹣a+14.如图,A,B位于数轴上原点两侧,且OB=2OA.若点B表示的数是6,则点A表示的数是( )A.﹣2B.﹣3C.﹣4D.﹣55.如图所示的三棱柱的展开图不可能是( )6.如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是( )A.900°B.720°C.540°D.360°7.满足m>|﹣1|的整数m的值可能是( )A.3B.2C.1D.08.方程x2﹣2x﹣24=0的根是( )A.x1=6,x2=4B.x1=6,x2=﹣4C.x1=﹣6,x2=4D.x1=﹣6,x2=﹣49.为做好疫情防控工作,某学校门口设置了A,B两条体温快速检测通道,该校同学王明和李强均从A通道入校的概率是( )A.B.C.D.10.如图,在△ABC中,DE∥BC,=,若AC=6,则EC=( )A.B.C.D.11.将5kg浓度为98%的酒精.稀释为75%的酒精.设需要加水xkg,根据题意可列方程为( )A.0.98×5=0.75x B.=0.75C.0.75×5=0.98x D.=0.9812.甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是( )A.甲车行驶到距A城240km处,被乙车追上B.A城与B城的距离是300kmC.乙车的平均速度是80km/h D.甲车比乙车早到B城二、填空题本大题共4小题,每小题3分,共12分。
2023年山东省临沂市初三毕业中考数学真题试卷含详解
试卷类型:A2023年临沂市初中学业水平考试试卷数学注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第I 卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.计算(7)(5)---的结果是()A.12- B.12C.2- D.22.下图中用量角器测得ABC ∠的度数是()A.50︒B.80︒C.130︒D.150︒3.下图是我国某一古建筑的主视图,最符合视图特点的建筑物的图片是()A. B. C. D.4.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A ,B 两处桂花的位置关于小路对称,在分别以两条小路为x ,y 轴的平面直角坐标系内,若点A 的坐标为(6,2)-,则点B 的坐标为()A.(6,2)B.(6,2)--C.(2,6)D.(2,6)-5.在同一平面内,过直线l 外一点P 作l 的垂线m ,再过P 作m 的垂线n ,则直线l 与n 的位置关系是()A.相交B.相交且垂直C.平行D.不能确定6.下列运算正确的是()A.321a a -=B.222()a b a b -=-C.()257a a = D.325326a a a ⋅=.7.将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是()A .60°B.90°C.180°D.360°8.设15455m =,则实数m 所在的范围是()A.5m <- B.54m -<<- C.43m -<<- D.3m >-9.在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.2310.正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为5310m ,设土石方日平均运送量为V (单位:3m /天),完成运送任务所需要的时间为t (单位:天),则V 与t 满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系11.对于某个一次函数(0)y kx b k =+≠,根据两位同学的对话得出的结论,错误的是()A .k > B.0kb < C.0k b +> D.12k b =-12.在实数, , a b c 中,若0,0a b b c c a +=->->,则下列结论:①|a |>|b |,②0a >,③0b <,④0c <,正确的个数有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题共84分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共4小题,每小题3分,共12分)13.已知菱形的两条对角线长分别为6和8,则它的面积为______.14.观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,____________2n =.15.如图,三角形纸片ABC 中,69AC BC ==,,分别沿与BC AC ,平行的方向,从靠近A 的AB 边的三等分点剪去两个角,得到的平行四边形纸片的周长是____________.16.小明利用学习函数获得的经验研究函数22y x x=+的性质,得到如下结论:①当1x <-时,x 越小,函数值越小;②当10x -<<时,x 越大,函数值越小;③当01x <<时,x 越小,函数值越大;④当1x >时,x 越大,函数值越大.其中正确的是_____________(只填写序号).三、解答题(本大题共7小题,共72分)17.(1)解不等式1522xx --<,并在数轴上表示解集.(2)下面是某同学计算211a a a ---的解题过程:解:211a a a ---22(1)11a a a a -=---①22(1)1a a a --=-②2211a a a a -+-=-③111a a -==-④上述解题过程从第几步开始出现错误?请写出正确的解题过程.18.某中学九年级共有600名学生,从中随机抽取了20名学生进行信息技术操作测试,测试成绩(单位:分)如下:81908289999591839293879294889287100868596(1)请按组距为5将数据分组,列出频数分布表,画出频数分布直方图;(2)①这组数据的中位数是_____________;②分析数据分布的情况(写出一条即可)_____________;(3)若85分以上(不含85分)成绩为优秀等次,请预估该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数.19.如图,灯塔A 周围9海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A 在北偏西58°方向上,继续航行6海里后到达C 处,测得灯塔A 在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin 320.530,cos320.848,tan 320.625;sin 580.848,︒︒︒︒≈≈≈≈cos580.530tan58 1.6︒≈︒≈,)20.大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?21.如图,O 是ABC 的外接圆,BD 是O 的直径,,AB AC AE BC =∥,E 为BD 的延长线与AE 的交点.(1)求证:AE 是O 的切线;(2)若75,2ABC BC ∠=︒=,求 CD的长.22.如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E ,使CE BC =,延长DC 到F ,使CF DC =,连接EF .求证:EF AB ⊥.(3)在(2)的条件下,作ACE ∠的平分线,交AF 于点H ,求证:AH FH =.23.综合与实践问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A ,B ,C ,D ,E 五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:售价(元/盆)日销售量(盆)A2050B3030C1854D2246E2638数据整理(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:售价(元/盆)日销售量(盆)模型建立(2)分析数据的变化规律,找出日销售量与售价间的关系;拓广应用(3)根据以上信息,小莹妈妈在销售该种花卉中,①要想每天获得400元的利润,应如何定价?②售价定为多少时,每天能够获得最大利润?试卷类型:A2023年临沂市初中学业水平考试试卷数学注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第I 卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.计算(7)(5)---的结果是()A.12-B.12C.2- D.2【答案】C【分析】直接利用有理数的减法法则进行计算即可.【详解】解:2(7)(5)()57=----+=-;故选C .【点睛】本题考查有理数的减法,熟练掌握减一个负数等于加上它的相反数,是解题的关键.2.下图中用量角器测得ABC ∠的度数是()A.50︒B.80︒C.130︒D.150︒【答案】C【分析】由图形可直接得出.【详解】解:由题意,可得130ABC ∠=︒,故选:C .【点睛】本题考查角的度量,量角器的使用方法,正确使用量角器是解题的关键.3.下图是我国某一古建筑的主视图,最符合视图特点的建筑物的图片是()A.B. C. D.【答案】B【分析】依次观察各建筑物的图片即可作出判断,注意所有的看到的棱都应表现在主视图中.【详解】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A ,B 两处桂花的位置关于小路对称,在分别以两条小路为x ,y 轴的平面直角坐标系内,若点A 的坐标为(6,2)-,则点B 的坐标为()A.(6,2)B.(6,2)--C.(2,6)D.(2,6)-【答案】A【分析】根据关于y 轴对称的点的特点:纵坐标不变,横坐标互为相反数,进行求解即可.【详解】解:由题意,得:点B 的坐标为(6,2);故选A .【点睛】本题考查坐标与轴对称.熟练掌握关于y 轴对称的点的特点:纵坐标不变,横坐标互为相反数,是解题的关键.5.在同一平面内,过直线l 外一点P 作l 的垂线m ,再过P 作m 的垂线n ,则直线l 与n 的位置关系是()A.相交B.相交且垂直C.平行D.不能确定【答案】C【分析】根据“在同一平面内,垂直于同一直线的两直线互相平行”即可作出判断.【详解】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .【点睛】本题考查平行线的判定.掌握平行线判定的方法是解题的关键.6.下列运算正确的是()A.321a a -=B.222()a b a b -=-C.()257a a = D.325326a a a ⋅=.【答案】D【分析】根据合并同类项,完全平方公式,幂的乘方,单项式乘单项式法则,进行计算后判断即可.【详解】解:A 、32a a a -=,故选项错误,不符合题意;B 、222()2a b a ab b -=-+,故选项错误,不符合题意;C 、()2510a a =,故选项错误,不符合题意;D 、325326a a a ⋅=,故选项正确,符合题意;故选D .【点睛】本题考查整式的运算,熟练掌握相关运算法则,是解题的关键.7.将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是()A.60°B.90°C.180°D.360°【答案】B【分析】根据旋转的性质,以及正多边形的中心角的度数,进行判断即可.【详解】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .【点睛】本题考查旋转图形,正多边形的中心角.熟练掌握旋转的性质,正多边形的中心角的度数的求法,是解题的关键.8.设m =,则实数m 所在的范围是()A.5m <-B.54m -<<- C.43m -<<- D.3m >-【答案】B【分析】根据二次根式的加减运算进行计算,然后估算即可求解.【详解】解:m ===-=-∵=<<∴54-<-<-,即54m -<<-,故选:B .【点睛】本题考查了二次根式的加减运算,无理数的估算,正确的计算是解题的关键.9.在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.23【答案】D【分析】画树状图得出所有等可能的结果数和抽取的两名同学恰好是一名男生和一名女生的结果数,再利用概率公式可得出答案.【详解】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .【点睛】本题考查列表法或树状图法求概率,解题时要注意是放回试验还是不放回试验;概率等于所求情况数与总情况数之比.用列表法或画树状图法不重复不遗漏的列出所有可能的结果是解题的关键.10.正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为5310m ,设土石方日平均运送量为V (单位:3m /天),完成运送任务所需要的时间为t (单位:天),则V 与t 满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系【答案】A【分析】根据题意,列出函数关系式,进行作答即可.【详解】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .【点睛】本题考查反比例函数的实际应用.读懂题意,正确的列出函数关系式,是解题的关键.11.对于某个一次函数(0)y kx b k =+≠,根据两位同学的对话得出的结论,错误的是()A .0k > B.0kb < C.0k b +> D.12k b =-【答案】C【分析】首先根据一次函数的性质确定k ,b 的符号,再确定一次函数(0)y kx bk =+≠系数的符号,判断出函数图象所经过的象限.【详解】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k 、b 的正负.12.在实数, , a b c 中,若0,0a b b c c a +=->->,则下列结论:①|a |>|b |,②0a >,③0b <,④0c <,正确的个数有()A.1个B.2个C.3个D.4个【答案】A【分析】根据相反数的性质即可判断①,根据已知条件得出b c a >>,即可判断②③,根据=-b a ,代入已知条件得出0c <,即可判断④,即可求解.【详解】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a-->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .【点睛】本题考查了不等式的性质,实数的大小比较,借助数轴比较是解题的关键.第Ⅱ卷(非选择题共84分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共4小题,每小题3分,共12分)13.已知菱形的两条对角线长分别为6和8,则它的面积为______.【答案】24【分析】根据菱形面积等于两条对角线乘积的一半进行计算即可.【详解】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.【点睛】本题考查了菱形的性质,解答本题的关键是掌握菱形面积等于两条对角线乘积的一半.14.观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,____________2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.15.如图,三角形纸片ABC 中,69AC BC ==,,分别沿与BC AC ,平行的方向,从靠近A 的AB 边的三等分点剪去两个角,得到的平行四边形纸片的周长是____________.【答案】14【分析】由平行四边形的性质推出DF BC ∥,DE AC ∥,得到 ∽ADF ABC ,BDE BAC ∽△△,利用相似三角形的性质求解即可.【详解】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.16.小明利用学习函数获得的经验研究函数22y x x =+的性质,得到如下结论:①当1x <-时,x 越小,函数值越小;②当10x -<<时,x 越大,函数值越小;③当01x <<时,x 越小,函数值越大;④当1x >时,x 越大,函数值越大.其中正确的是_____________(只填写序号).【答案】②③④【分析】列表,描点、连线,画出图象,根据图象回答即可.【详解】解:列表,xL 2.5-2-1-0.5-0.512L y L 5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.【点睛】本题考查二次函数、反比例函数与不等式等知识,解题的关键是理解题意,学会画出函数图象,利用图象解决问题,属于中考常考题型.三、解答题(本大题共7小题,共72分)17.(1)解不等式1522x x --<,并在数轴上表示解集.(2)下面是某同学计算211a a a ---的解题过程:解:211a a a ---22(1)11a a a a -=---①22(1)1a a a --=-②2211a a a a -+-=-③111a a -==-④上述解题过程从第几步开始出现错误?请写出正确的解题过程.【答案】(1)3x >(2)从第①步开始出错,过程见解析【分析】(1)根据解不等式的步骤,解不等式即可;(2)根据分式的运算法则,进行计算即可.【详解】解:(1)1522x x --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.【点睛】本题考查解一元一次不等式,分式的加减运算.熟练掌握解不等式的步骤,分式的运算法则,是解题的关键.18.某中学九年级共有600名学生,从中随机抽取了20名学生进行信息技术操作测试,测试成绩(单位:分)如下:81908289999591839293879294889287100868596(1)请按组距为5将数据分组,列出频数分布表,画出频数分布直方图;(2)①这组数据的中位数是_____________;②分析数据分布的情况(写出一条即可)_____________;(3)若85分以上(不含85分)成绩为优秀等次,请预估该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【分析】(1)根据极差和组距,可以判断组数,确定分点后,列频数分布表进行统计即可;再将频数分布表中的数据用频数分布直方图表示出来,最后从图表中观察整体的情况,得出结论;(2)①根据中位数的定义求解即可;②根据频数分布直方图即可解答;(3)用样本估计总体即可求解.【小问1详解】解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;【小问2详解】解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);【小问3详解】解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.如图,灯塔A 周围9海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A 在北偏西58°方向上,继续航行6海里后到达C 处,测得灯塔A 在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin 320.530,cos320.848,tan 320.625;sin 580.848,︒︒︒︒≈≈≈≈cos580.530tan58 1.6︒≈︒≈,)【答案】渔船没有触礁的危险【分析】过点A 作AD BC ⊥,分别解Rt ADC 和Rt ADB ,求出AD 的长,即可得出结论.【详解】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD x ABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.【点睛】本题考查解直角三角形的应用—方向角问题.解题的关键是添加辅助线,构造直角三角形.20.大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【分析】(1)设这台M 型平板电脑的价值为x 元,根据题意,列出方程进行求解即可;(2)根据题意,列出代数式即可.【小问1详解】解:设这台M 型平板电脑的价值为x 元,由题意,得:150********x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;【小问2详解】解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.21.如图,O 是ABC 的外接圆,BD 是O 的直径,,AB AC AE BC =∥,E 为BD 的延长线与AE 的交点.(1)求证:AE 是O 的切线;(2)若75,2ABC BC ∠=︒=,求 CD的长.【答案】(1)见解析(2)43π【分析】(1)连接AO 并延长交BC 于点F ,根据O 是ABC 的外接圆,得到AO BC ⊥,由平行线的性质,得到AO AE ⊥,即可得证.(2)连接OC ,等边对等角,求出BAC ∠的度数,圆周角定理求出BOC ∠度数,得到BOC 为等边三角形,求出半径和COD ∠的度数,利用弧长公式进行计算即可.【小问1详解】证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;【小问2详解】解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD 的长为120241803ππ⨯=.【点睛】本题考查切线的判定,圆周角定理,求弧长,等腰三角形的性质,等边三角形的判定和性质.熟练掌握相关知识点,并灵活运用,是解题的关键.22.如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E ,使CE BC =,延长DC 到F ,使CF DC =,连接EF .求证:EF AB ⊥.(3)在(2)的条件下,作ACE ∠的平分线,交AF 于点H ,求证:AH FH =.【答案】(1))1AB BD -=,(2)见解析(3)见解析【分析】(1)勾股定理求得BC =,结合已知条件即可求解;(2)根据题意画出图形,证明CBD CEF ≌,得出=45E DBC ∠=∠︒,则EF BD ∥,即可得证;(3)延长,BA EF 交于点M ,延长CH 交ME 于点G ,根据角平分线以及平行线的性质证明EG EC =,进而证明()AAS AHC FHG ≌,即可得证.【小问1详解】解:∵90,A AB AC∠=︒=∴BC =,∵BC AB BD=+AB BD=+即)1AB BD =;【小问2详解】证明:如图所示,∴90,A AB AC∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC=∴CBD CEF≌∴=45E DBC ∠=∠︒∴EF BD∥∴AB EF⊥【小问3详解】证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG∠=∠∴EG EC=∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AH HF=【点睛】本题考查了全等三角形的与判定,等腰三角形的性质与判定,勾股定理,平行线的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.23.综合与实践问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A ,B ,C ,D ,E 五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:售价(元/盆)日销售量(盆)A2050B3030C1854D2246E2638数据整理(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:售价(元/盆)日销售量(盆)模型建立(2)分析数据的变化规律,找出日销售量与售价间的关系;拓广应用(3)根据以上信息,小莹妈妈在销售该种花卉中,①要想每天获得400元的利润,应如何定价?②售价定为多少时,每天能够获得最大利润?【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【分析】(1)按照从小到大的顺序进行排列即可;(2)根据表格数据,进行求解即可;(3)①设定价应为x元,根据题意,列出一元二次方程,进行求解即可;②设每天的利润为w,列出二次函数表示式,利用二次函数的性质,进行求解即可.【小问1详解】解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;【小问3详解】①设:定价应为x元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.【点睛】本题考查一元二次方程和二次函数的实际应用.从表格中有效的获取信息,正确的列出方程和二次函数,是解题的关键.。
山东省临沂市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
山东省临沂市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.实数大小比较(共2小题)1.(2022•临沂)比较大小: (填“>”,“<”或“=”).2.(2021•临沂)比较大小:2 5(选填“>”、“=”、“<”).二.规律型:数字的变化类(共1小题)3.(2023•临沂)观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…按照上述规律, =n2.三.提公因式法与公式法的综合运用(共2小题)4.(2022•临沂)因式分解:2x2﹣4x+2= .5.(2021•临沂)分解因式:2a3﹣8a= .四.函数值(共1小题)6.(2023•临沂)小明利用学习函数获得的经验研究函数y=x2+的性质,得到如下结论:①当x<﹣1时,x越小,函数值越小;②当﹣1<x<0时,x越大,函数值越小;③当0<x<1时,x越小,函数值越大;④当x>1时,x越大,函数值越大.其中正确的是 (只填写序号).五.平行四边形的判定(共1小题)7.(2022•临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是 (填上所有符合要求的条件的序号).六.菱形的性质(共2小题)8.(2023•临沂)若菱形的两条对角线长分别为6和8,则该菱形的面积为 .9.(2021•临沂)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是 (只填写序号).①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆是中心对称图形”;③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;④地板砖可以做成矩形,应用了“矩形对边相等”.七.剪纸问题(共1小题)10.(2023•临沂)如图,三角形纸片ABC中,AC=6,BC=9,分别沿与BC,AC平行的方向,从靠近A的AB边的三等分点剪去两个角,得到的平行四边形纸片的周长是 .八.坐标与图形变化-平移(共1小题)11.(2022•临沂)如图,在平面直角坐标系中,△ABC的顶点A,B的坐标分别是A(0,2),B(2,﹣1).平移△ABC得到△A'B'C',若点A的对应点A'的坐标为(﹣1,0),则点B的对应点B'的坐标是 .九.中心对称(共1小题)12.(2021•临沂)在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是 .一十.条形统计图(共1小题)13.(2021•临沂)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 .山东省临沂市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.实数大小比较(共2小题)1.(2022•临沂)比较大小: < (填“>”,“<”或“=”).【答案】<.【解答】解:∵()2=,()2=,<,∴<,故答案为:<.2.(2021•临沂)比较大小:2 < 5(选填“>”、“=”、“<”).【答案】见试题解答内容【解答】解:∵2=,5=,而24<25,∴2<5.故填空答案:<.二.规律型:数字的变化类(共1小题)3.(2023•临沂)观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…按照上述规律, (n﹣1)(n+1)+1 =n2.【答案】(n﹣1)(n+1)+1.【解答】解:观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…;按照上述规律,(n﹣1)(n+1)+1=n2.故答案为:(n﹣1)(n+1)+1.三.提公因式法与公式法的综合运用(共2小题)4.(2022•临沂)因式分解:2x2﹣4x+2= 2(x﹣1)2 .【答案】2(x﹣1)2.【解答】解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2故答案为2(x﹣1)2.5.(2021•临沂)分解因式:2a3﹣8a= 2a(a+2)(a﹣2) .【答案】见试题解答内容【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),故答案为:2a(a+2)(a﹣2)四.函数值(共1小题)6.(2023•临沂)小明利用学习函数获得的经验研究函数y=x2+的性质,得到如下结论:①当x<﹣1时,x越小,函数值越小;②当﹣1<x<0时,x越大,函数值越小;③当0<x<1时,x越小,函数值越大;④当x>1时,x越大,函数值越大.其中正确的是 ②③④ (只填写序号).【答案】②③④.【解答】解:如图所示,∴当x<﹣1时,x越小,函数值越大,故①错误.当﹣1<x<0时,x越大,函数值越小,故②正确.当0<x<1时,x越小,函数值越大,故③正确.当x>1时,x越大,函数值越大,故④正确.故答案为:②③④.五.平行四边形的判定(共1小题)7.(2022•临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是 ①②④ (填上所有符合要求的条件的序号).【答案】①②④.【解答】解:①连接AD,交BE于点O,∵正六边形ABCDEF中,∠BAO=∠ABO=∠OED=∠ODE=60°,∴△AOB和△DOE是等边三角形,∴OA=OD,OB=OE,又∵BM=EN,∴OM=ON,∴四边形AMDN是平行四边形,故①符合题意;②∵∠FAN=∠CDM,∠CDA=∠DAF,∴∠OAN=∠ODM,∴AN∥DM,又∵∠AON=∠DOM,OA=OD,∴△AON≌△DOM(ASA),∴AN=DM,∴四边形AMDN是平行四边形,故②符合题意;③∵AM=DN,AB=DE,∠ABM=∠DEN,∴△ABM与△DEN不一定全等,不能得出四边形AMDN是平行四边形,故③不符合题意;④∵∠AMB=∠DNE,∠ABM=∠DEN,AB=DE,∴△ABM≌△DEN(AAS),∴AM=DN,∵∠AMB+∠AMN=180°,∠DNM+∠DNE=180°,∴∠AMN=∠DNM,∴AM∥DN,∴四边形AMDN是平行四边形,故④符合题意.故答案为:①②④.六.菱形的性质(共2小题)8.(2023•临沂)若菱形的两条对角线长分别为6和8,则该菱形的面积为 24 .【答案】24.【解答】解:如图:菱形ABCD中AC=8,BD=6,∵四边形ABCD是菱形,∴AC⊥BD,∴△DAC的面积=AC•OD,△BAC的面积=AC•OB,∴菱形ABCD的面积=△DAC的面积+△BAC的面积=AC•(OD+OB)=AC•BD=×8×6=24.故答案为:24.9.(2021•临沂)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是 ① (只填写序号).①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆是中心对称图形”;③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;④地板砖可以做成矩形,应用了“矩形对边相等”.【答案】①.【解答】解:①在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,应用了“两点确定一条直线”,故符合题意.②因为圆上各点到圆心的距离相等,所以车轮中心与地面的距离保持不变,坐车的人感到非常平稳,故不符合题意.③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形四边相等和平行四边形的不稳定性”,故不符合题意;④地板砖可以做成矩形,应用了“矩形四个内角都是直角”的性质,故不符合题意.故答案是:①.七.剪纸问题(共1小题)10.(2023•临沂)如图,三角形纸片ABC中,AC=6,BC=9,分别沿与BC,AC平行的方向,从靠近A的AB边的三等分点剪去两个角,得到的平行四边形纸片的周长是 14 .【答案】14.【解答】解:如图,∵DE∥BC,DF∥AC,∴四边形DECF为平行四边形,△ADE∽△ABC,△BDF∽△BAC,∴==,==,∵AC=6,BC=9,∴DE=3,DF=4,∴平行四边形纸片的周长是2×(3+4)=14.故答案为:14.八.坐标与图形变化-平移(共1小题)11.(2022•临沂)如图,在平面直角坐标系中,△ABC的顶点A,B的坐标分别是A(0,2),B(2,﹣1).平移△ABC得到△A'B'C',若点A的对应点A'的坐标为(﹣1,0),则点B的对应点B'的坐标是 (1,﹣3) .【答案】(1,﹣3).【解答】解:由题意知,点A从(0,2)平移至(﹣1,0),可看作是△ABC先向下平移2个单位,再向左平移1个单位(或者先向左平移1个单位,再向下平移2个单位),即B点(2,﹣1),平移后的对应点为B'(1,﹣3),故答案为:(1,﹣3).九.中心对称(共1小题)12.(2021•临沂)在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是 (4,﹣1) .【答案】(4,﹣1).【解答】解:∵平行四边形ABCD的对称中心是坐标原点,∴点A,点C关于原点对称,∵A(﹣1,1),∴C(1,﹣1),∴将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是(4,﹣1),故答案为:(4,﹣1).一十.条形统计图(共1小题)13.(2021•临沂)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 95.5 .【答案】见试题解答内容【解答】解:由统计图可知四个成绩的人数分别为3,2,5,10,∴,故答案为95.5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20XX年临沂市中考数学题型分析(解答题)1.混合运算与化简求值。
20.(2016•临沂)计算:|﹣3|+tan30°﹣﹣(2016﹣π)0.20.(本小题满分7分)(2015•临沂)计算:1)20.(7分)(2014•临沂)计算:﹣sin60°+×.二次根式的混合运算中,要掌握好运算顺序及各运算律.2、数据的收集整理与描述(第10章)条形统计图;扇形统计图;加权平均数;众数。
21.(2016•临沂)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表身高分组频数百分比x<155 5 10%155≤x<160 a 20%160≤x<165 15 30%165≤x<170 14 bx≥170 6 12%总计100%(1)填空:a=,b=;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?21.(本小题满分7分)(2015•临沂)“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了20XX 年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题: (1)补全条形统计图;(2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数; (3)计算随机选取这一年内的某一天,空气质量是“优”的概率.21.(7分)(2014•临沂)随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你认为对老年代步车最有效的管理措施”随机对某社区部分居民进行了问卷调查,其中调查问卷设置以下选项(只选一项): A :加强交通法规学习; B :实行牌照管理;C :加大交通违法处罚力度;D :纳入机动车管理;E :分时间分路段限行调查数据的部分统计结果如下表: 管理措施 回答人数 百分比 A 25 5% B 100 m C 75 15% D n 35% E 125 25%合计a 100% (1)根据上述统计表中的数据可得m= 20% ,n= 175 ,a= 500 ; (2)在答题卡中,补全条形统计图;(3)该社区有居民2600人,根据上述调查结果,请你估计选择“D :纳入机动车管理”的居民约有多少人?20.(7分)(2013•临沂)20XX 年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A :从不闯红灯;B :偶尔闯红灯;C :经常闯红某市若干天空气质量情况扇形统计图轻微污染轻度污染中度污染 重度污染良优5%某市若干天空气质量情况条形统计量类别 污染 污染 污染 污染灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取80名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?20.(2012临沂)“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?2.列方程(组)(解应用题)21.(7分)(2013•临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?21.(2012临沂)某工厂加工某种产品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍,求手工每小时加工产品的数量.5.几何图形22.(2016•临沂)一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?22.(本小题满分7分)(2015•临沂)小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m ,这栋楼有多高?23.(9分)(2014•临沂)对一张矩形纸片ABCD 进行折叠,具体操作如下: 第一步:先对折,使AD 与BC 重合,得到折痕MN ,展开;第二步:再一次折叠,使点A 落在MN 上的点A ′处,并使折痕经过点B ,得到折痕BE ,同时,得到线段BA ′,EA ′,展开,如图1;第三步:再沿EA ′所在的直线折叠,点B 落在AD 上的点B ′处,得到折痕EF ,同时得到线段B ′F ,展开,如图2. (1)证明:∠ABE=30°;(2)证明:四边形BFB ′E 为菱形.22.(7分)(2013•临沂)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.C(第22题图)22.(2012临沂)如图,点A .F 、C .D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形,(2)若∠ABC =90°,AB =4,BC =3,当AF 为何值时,四边形BCEF 是菱形 6. 圆的切线:23.(2016•临沂)如图,A ,P ,B ,C 是圆上的四个点,∠APC=∠CPB=60°,AP ,CB 的延长线相交于点D . (1)求证:△ABC 是等边三角形; (2)若∠PAC=90°,AB=2,求PD 的长.23.(本小题满分9分)(2015•临沂)如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与BC 切于点D ,与AC 交于点E ,连接AD . (1)求证:AD 平分∠BAC ;(2)若∠BAC =60°,OA =2,求阴影部分的面积(结果保留 )22.(7分)(2014•临沂)如图,已知等腰三角形ABC 的底角为30°,以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE ⊥AC ,垂足为E . (1)证明:DE 为⊙O 的切线;(2)连接OE ,若BC=4,求△OEC 的面积.BCA(第23题图)23.(9分)(2013•临沂)如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O 相切于点D,连接CD,若BE=OE=2.(1)求证:∠A=2∠DCB;(2)求图中阴影部分的面积(结果保留π和根号).23.(2012临沂)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.7. 函数应用24.(2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?24.(本小题满分9分)(2015•临沂)新农村社区改造中,有一部分楼盘要对外销售. 某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.24.(9分)(2014•临沂)某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)24.(9分)(2013•临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)10 20 30y(单位:万元∕台)60 55 50(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)24.(2012临沂)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示8. 图形旋转变换过程中寻找不变规律,变与不变量,体现对探究能力的考查。
25.(2016•临沂)如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC . (1)请判断:FG 与CE 的数量关系是,位置关系是;(2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.25.(2015•临沂)(本小题满分11分)如图1,在正方形ABCD 的外侧,作两个等边三角形ADE 和DCF ,连接AF ,BE . (1)请判断:AF 与BE 的数量关系是,位置关系是;(2)如图2,若将条件“两个等边三角形ADE 和DCF ”变为“两个等腰三角形ADE 和DCF ,且EA=ED=FD=FC ”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;(3)若三角形ADE 和DCF 为一般三角形,且AE=DF ,ED=FC ,第(1)问中的结论都能成立吗?请直接写出你的判断.25.(11分)(2014•临沂)【问题情境】如图1,四边形ABCD 是正方形,M 是BC 边上的一点,E 是CD 边的中点,AE 平分∠DAM . 【探究展示】(第25题图)BAECD图1备用图BACD图2 BAECDF(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.25.(11分)(2013•临沂)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.(1)当PE⊥AB,PF⊥BC时,如图1,则的值为;(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.25.(2012临沂)已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.9. 抛物线:(1)求解析式;(2)点的存在问题,求点的坐标26.(2016•临沂)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA=QA ?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.26.(2015•临沂)(本小题满分13分)在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B , 点B 关于原点的对称点为点C .(1)求过A ,B ,C 三点的抛物线的解析式; (2)P 为抛物线上一点,它关于原点的对称点为Q .①当四边形PBQC 为菱形时,求点P 的坐标; ②若点P 的横坐标为t (-1<t <1),当t 为何值时,四边形PBQC 面积最大,并说明理由.26.(13分)(2014•临沂)如图,在平面直角坐标系中,抛物线与x 轴交于点A (﹣1,0)和点B (1,0),直线y=2x﹣1与y 轴交于点C ,与抛物线交于点C 、D . (1)求抛物线的解析式; (2)求点A 到直线CD 的距离; (3)平移抛物线,使抛物线的顶点P 在直线CD 上,抛物线与直线CD 的另一个交点为Q ,点G 在y 轴正半轴上,当以G 、P 、Q 三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G 点的坐标.(第26题图)x26.(13分)(2013•临沂)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.26.(2012临沂)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A.O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.。