上海中考数学公式汇总

合集下载

上海市初三数学圆中考复习

上海市初三数学圆中考复习

B A
C
例3:已知:如图,在⊙O中,弧AB=弧CD, AD、BC 相交于点E, 求证:OE平分∠AEC
B D
E O
A
C
• 例2:已知:如图,AD是⊙O的直径,点B、C分别 在⊙O上,AB=AC.求证:AD⊥BC
A
O B D C
• 例3:在Rt△ABC中,∠ACB=90°,AC=6,AB=10,以 点C为圆心作圆,设圆的半径长为r. • (1)要使点A在圆C的内部,点B在圆C的外部,求r的取 值范围; • (2)要使AB与圆C相切,求r的值; • (3)以点A为圆心,作圆A与题(2)所作出的圆C相切, 求圆A半径的长 A
归纳总结:
C
O E A D B
• 在圆中,对于某一条直线存在 ①经过圆心 ②垂直于弦 ③平分弦 ④ 平分弦所对的弧 的四组关系中,如果有两组关系 成立,那么其余的两组关系也成立。
弓形
由一段弧和其所对的弦组成的封闭图形
弓形高
二、直线和圆的位置关系: 如果⊙O的 半径为r,圆心O到直线l的距离为d,那么: 直线l和⊙O相离
O
C A B

例6:如图,已知A、B、C在⊙O上,AB是⊙O的 内接正十二边形的一边,BC是⊙O的内接正四边形 的一边.求以AC为一边的⊙O的内接正多边形的边 数?
• 如图,在直角坐标系中,⊙P的圆心是P(a,2) (a>0),半径为2;直线y=x被⊙P截得的弦长为2 ,求a的值 .
• 例1:小杰和小丽要测量一个圆形的人工湖的半径, 他们在湖的边沿选取了A、B、C三点并用木柱标记, 而且A、B两点的距离与A、C两点的距离相等.经过 测量,得到BC长为240米,A到BC的距离为5米,画 出的示意图如图,他们能求出湖的半径吗?你来试 一试。

上海初中中考数学知识点总结

上海初中中考数学知识点总结

上海市初中中考数学知识点大全1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

上海初三数学知识点

上海初三数学知识点

上海初三数学知识点上海初三数学知识点概述一、实数1. 有理数和无理数的概念2. 实数的运算法则,包括加法、减法、乘法、除法和乘方3. 绝对值的概念及性质4. 实数的大小比较和不等式5. 二次根式的性质和运算二、代数式1. 单项式和多项式的概念2. 多项式的加减法运算3. 乘法公式,包括平方差、完全平方、立方和与立方差4. 多项式的乘法和除法运算5. 因式分解,包括提取公因式法、配方法、十字相乘法等三、方程与不等式1. 一元一次方程和二元一次方程的解法2. 一元二次方程的解法,包括直接开平方法、配方法、公式法和因式分解法3. 不等式的性质和解集表示4. 一元一次不等式和一元二次不等式的解法5. 系统方程组的解法,包括代入法、消元法等四、平面几何1. 平行线和垂线的性质2. 三角形的基本概念,包括分类、面积计算、内角和外角性质3. 四边形的基本概念和性质,包括平行四边形、矩形、菱形、正方形和梯形4. 圆的基本性质,包括圆心、半径、直径、弦、弧、切线等5. 相似三角形和相似四边形的性质及判定6. 几何图形的平移、旋转和对称性质五、立体几何1. 立体图形的基本概念,包括体积和表面积的计算2. 柱体、锥体和台体的性质3. 球体的性质4. 空间图形的视图和投影六、概率与统计1. 随机事件的概率计算2. 概率分布和期望值3. 统计的基本概念,包括平均数、中位数、众数、方差和标准差4. 数据的收集、整理和图表表示,如条形图、折线图和饼图七、函数1. 函数的概念及表示方法2. 线性函数和二次函数的图像和性质3. 函数的运算,包括加法、减法、乘法和复合函数4. 函数的极值和最值问题5. 反函数的概念和性质八、数列1. 等差数列和等比数列的概念2. 等差数列和等比数列的通项公式和求和公式3. 数列的极限概念和计算九、三角函数1. 三角函数的定义和基本性质2. 三角函数的图像和周期性3. 三角恒等变换4. 解三角形问题,包括正弦定理和余弦定理十、应用题1. 利用所学数学知识解决实际问题2. 数学建模的基本方法3. 分析问题和建立数学关系的能力请注意,以上内容是根据一般的教学大纲和上海地区的初三数学教学要求编写的,具体的教学内容和要求可能会根据不同学校和教师的教学计划有所变化。

上海中考数学公式汇总

上海中考数学公式汇总
③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。
矩形的性质:(除具有平行四边形所有性质外)
①矩形的四个角都是直角;②矩形的对角线相等;
矩形的判定:①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形;
菱形的特征:(除具有平行四边形所有性质外
(2)相交线与平行线
同角或等角的补角相等,同角或等角的余角相等;
对顶角的性质:对顶角相等
垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
②直线外一点有与直线上各点连结的所有线段中,垂线段最短;
线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;
线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;
方程没有实数根;
③一元二次方程根与系数的关系:设 、 是方程 (a≠0)的两个根,那么 + = , = ;
不等式的基本性质:
①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;
②如果三角形的三边长a、b 、c有下面关系 ,那么这个三角形是直角三角形(勾股定理的逆定理)。
(4)四边形
多边形的内角和定理:n边形的内角和等于 (n≥3,n是正整数);
平行四边形的性质:
①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;
上海中考数学公式汇总

上海数学中考知识点

上海数学中考知识点

上海数学中考知识点数学中考是对初中数学知识的一次全面考查,对于上海的考生来说,了解并掌握相关知识点是取得好成绩的关键。

以下将为大家详细梳理上海数学中考的主要知识点。

一、数与代数1、实数包括有理数和无理数。

有理数的运算规则,如加减乘除、乘方等,要熟练掌握。

无理数如根号 2、π 等的概念和基本性质也要清楚。

实数的大小比较、绝对值、相反数等都是常见考点。

2、代数式整式的加减乘除运算,特别是幂的运算规则(同底数幂相乘、幂的乘方、积的乘方等)。

因式分解的方法,如提公因式法、公式法(平方差公式、完全平方公式)。

分式的化简求值,要注意分母不能为零。

3、方程与不等式一元一次方程、二元一次方程组的解法及应用。

一元二次方程的求根公式、根的判别式,以及用配方法、公式法求解。

不等式的性质和解法,一元一次不等式组的解集。

4、函数一次函数的图像与性质,包括斜率、截距的意义,以及用待定系数法求函数解析式。

反比例函数的图像与性质,重点是其对称性和增减性。

二次函数的图像与性质是重点中的重点,包括开口方向、对称轴、顶点坐标、最值等,同时要能根据题目条件灵活运用配方法、公式法求函数解析式。

二、图形与几何1、三角形三角形的基本性质,如内角和定理、外角性质。

全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),相似三角形的判定和性质,包括相似比的应用。

直角三角形的勾股定理及其逆定理。

2、四边形平行四边形、矩形、菱形、正方形的性质和判定定理。

多边形的内角和与外角和公式。

3、圆圆的基本性质,如垂径定理、圆心角定理、圆周角定理。

直线与圆的位置关系(相离、相切、相交),以及切线的性质和判定。

圆与圆的位置关系。

4、图形的变换平移、旋转、轴对称的性质和作图。

三、统计与概率1、数据的收集与整理普查和抽样调查的区别,总体、个体、样本、样本容量的概念。

2、数据的分析平均数、中位数、众数的计算和意义,方差的计算和意义,用于反映数据的集中趋势和离散程度。

上海中考数学知识点

上海中考数学知识点

上海中考数学知识点上海中考数学知识点概述一、数与代数1. 有理数的混合运算- 绝对值、相反数、有理数的加、减、乘、除运算 - 有理数的乘方、平方根、立方根2. 整式的运算- 单项式与多项式的概念- 整式的加减、乘除运算- 因式分解:提公因式、公式法、分组分解法3. 代数式的化简与求值- 代数式的化简- 代数式的求值4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式及其解集- 一元一次不等式(组)的解法5. 函数的概念与性质- 函数的定义- 函数的表示方法:图像、表格、解析式- 函数的性质:定义域、值域、单调性、特殊点6. 二元一次方程组- 二元一次方程组的解法:代入法、消元法- 线性方程组的应用问题7. 一元二次方程- 一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法- 一元二次方程根的判别式- 一元二次方程的应用问题二、几何1. 平面图形的认识- 点、线、面的基本性质- 角的概念及其分类:邻角、对顶角、同位角、内错角2. 三角形- 三角形的基本性质- 等边三角形、等腰三角形的性质- 三角形的内角和定理- 三角形的外角性质3. 四边形- 平行四边形的性质与判定- 矩形、菱形、正方形的性质与判定- 梯形的性质与判定4. 圆的基本性质- 圆的定义及其性质- 圆的对称性- 圆周角、圆心角、弦、弧的关系5. 圆的位置关系- 点与圆的位置关系- 直线与圆的位置关系- 圆与圆的位置关系6. 面积与体积的计算- 平面图形的面积计算:长方形、正方形、三角形、梯形、圆 - 立体图形的体积计算:长方体、正方体、圆柱、圆锥7. 相似与全等- 全等三角形的判定- 相似三角形的判定与性质- 相似多边形与相似比8. 解析几何- 坐标系中点的位置表示- 平面直角坐标系中直线的方程- 圆的标准方程三、统计与概率1. 统计- 统计调查- 频数与频率- 统计图表的绘制与解读:条形图、折线图、饼图2. 概率- 随机事件的概率- 概率的计算- 简单事件的概率分布四、综合应用题- 结合实际情境,运用所学数学知识解决实际问题- 理解题目要求,分析问题,运用适当的数学工具和方法- 逻辑清晰地表述解题过程和结果请注意,本文仅为上海中考数学知识点的概述,具体的教学大纲和考试要求可能会有所变化。

上海初三数学知识点

上海初三数学知识点

上海初三数学知识点
上海初三数学知识点详解
一、代数与函数
1. 多项式运算
•加减乘除多项式的基本运算法则
•对多项式进行提取公因式和合并同类项的方法2. 一次函数与二次函数
•一次函数的定义及图像特点
•二次函数的定义及图像特点
•二次函数的平移、翻折、缩放等变化规律
3. 函数的性质
•函数的奇偶性及判定方法
•函数的单调性及判定方法
•函数图像的对称性及判定方法
二、几何与三视图
1. 几何图形的运算
•各种几何图形的周长和面积计算方法
•重叠图形的面积计算方法
•平行线、垂直线的性质及判定方法
2. 空间几何与三视图
•空间几何体的计算方法(包括长方体、正方体、圆柱体等)•三视图的绘制方法及用途
•空间位置关系的判定方法(平行、垂直等)
3. 相似与全等
•两个图形相似的判定方法
•相似图形的比例关系及应用
•全等图形的判定方法及应用
三、统计与概率
1. 数据的整理和描述
•数据的整理方法(频数表、频率分布表等)
•数据的描述性统计指标(均值、中位数、众数等)
2. 概率的基本概念
•随机事件的概念及表示方法
•概率的计算方法(频率法、古典概型等)
•互斥事件与独立事件的判定
3. 统计图表的应用
•条形图、折线图、饼图等统计图的绘制方法
•统计图的解读和应用
以上是上海初三数学的相关知识点详解。

希望对你的学习有所帮助!。

上海初中数学知识点总结

上海初中数学知识点总结

上海初中数学知识点总结初中数学是学生数学学习的重要阶段,为高中数学的学习打下了坚实的基础。

上海初中数学的知识点涵盖了多个方面,以下是对这些知识点的详细总结。

一、数与代数1、有理数有理数的概念:包括整数(正整数、0、负整数)和分数(正分数、负分数)。

有理数的运算:加、减、乘、除、乘方运算,以及运算律的应用。

2、实数平方根与立方根:了解平方根、算术平方根和立方根的概念及性质。

实数的运算:实数的加、减、乘、除、乘方、开方运算。

3、代数式整式:单项式、多项式的概念,整式的加减运算。

乘法公式:平方差公式和完全平方公式。

因式分解:提公因式法、公式法(平方差公式、完全平方公式)。

4、分式分式的概念:形如 A/B(A、B 是整式,且 B 中含有字母)的式子。

分式的性质:分式的基本性质,约分、通分。

分式的运算:分式的加、减、乘、除运算。

5、方程与不等式一元一次方程:方程的解法和应用。

二元一次方程组:解法(代入消元法、加减消元法)和应用。

一元二次方程:一般形式、解法(配方法、公式法、因式分解法)、根的判别式、根与系数的关系。

不等式与不等式组:不等式的性质,一元一次不等式(组)的解法和应用。

二、图形与几何1、相交线与平行线相交线:对顶角、邻补角的性质,垂线的性质。

平行线:平行线的判定和性质。

2、三角形三角形的相关概念:边、角、中线、高线、角平分线。

三角形的性质:内角和定理、外角性质。

全等三角形:全等三角形的判定(SSS、SAS、ASA、AAS、HL)。

相似三角形:相似三角形的判定和性质。

3、四边形平行四边形:性质和判定。

矩形、菱形、正方形:性质和判定。

4、圆圆的有关概念:圆心、半径、直径、弧、弦、圆心角、圆周角。

圆的性质:垂径定理,圆周角定理。

圆与直线的位置关系:相离、相切、相交。

圆的周长和面积公式。

5、视图与投影三视图:主视图、左视图、俯视图。

投影:平行投影、中心投影。

三、函数1、一次函数一次函数的表达式:y = kx + b(k、b 为常数,k ≠ 0)。

上海初中中考数学知识点总结

上海初中中考数学知识点总结

上海初中中考数学知识点总结一、整数和有理数1.整数概念:正整数、负整数、0。

数轴图示。

2.整数的比较和大小关系。

3.整数的加减运算:同号相加、异号相减。

整数的运算性质。

4.有理数的概念:正有理数、负有理数、0。

5.有理数的比较和大小关系。

6.有理数的加减乘除运算。

二、代数表达式与证明1.代数表达式:由常数、变量和运算符组成的表达式。

2.代数式的运算:加法、减法、乘法、除法、乘方。

3.代数式的化简和拓展。

4.方程与方程的解:一元一次方程、二元一次方程。

三、平面图形与几何体1.平面图形的基本概念:点、线、线段、直线、射线等。

2.角度的概念:锐角、直角、钝角、平角。

3.各种三角形的性质:等腰三角形、等边三角形、直角三角形等。

4.平行四边形的性质:对角线互相平分。

5.直角梯形、矩形、正方形的性质。

6.圆的概念:圆心、半径、直径。

7.圆的周长、面积的计算。

8.圆锥、圆柱、直角锥、直角柱的性质与计算。

四、函数与图像1.函数概念:自变量、因变量。

2.函数的性质:奇函数、偶函数、周期函数。

3.函数图像的绘制:一次函数、二次函数、绝对值函数等。

五、数据与图表1.统计概念:数据、频数、频率、平均数。

2.统计图表的绘制与分析:折线图、柱状图、扇形图等。

六、几何运动1.直角坐标系:坐标、横坐标、纵坐标、坐标轴。

2.图形的平移、旋转、翻折等变换。

3.坐标变换与对称性。

七、概率与统计1.事件与概率:基本事件、必然事件、不可能事件。

2.概率的计算:概率的加法原理、概率的乘法原理。

3.实际问题的概率计算。

4.统计的概念与方法:样本、总数、频数统计等。

总结:上海初中中考数学涵盖了整数和有理数、代数表达式与证明、平面图形与几何体、函数与图像、数据与图表、几何运动、概率与统计等多个知识点。

这些知识点包括整数和有理数的运算、代数表达式的化简和扩展、平面图形和几何体的性质、函数的概念和图像的绘制、统计的概念和方法等。

掌握这些知识点,可以更好地理解数学的基本概念和运算规律,提高解题能力和数学思维。

上海中考数学知识点汇总

上海中考数学知识点汇总

上海中考数学知识点汇总上海中考数学考试的知识点可以分为以下几个方面:整数计算、有理数计算、数据的整理与统计、几何与变换、代数式与因式分解、方程与不等式、比例与相似、数列与数表、函数与图像等。

在这里,我们将对这些知识点进行简洁的汇总。

整数计算:1.整数的概念及性质:正整数、负整数、零,数轴表示等。

2.四则运算:加法、减法、乘法、除法的运算法则。

3.整数的混合运算:带括号的计算,变号与不变号的计算。

4.整数的大小比较:用大小关系符号(大于、小于、等于)比较大小。

有理数计算:1.有理数的概念及性质:正有理数、负有理数、零,数轴表示等。

2.四则运算:加法、减法、乘法、除法的运算法则。

3.有理数的混合运算:带括号的计算,变号与不变号的计算。

4.有理数的大小比较:用大小关系符号(大于、小于、等于)比较大小。

数据的整理与统计:1.数据的统计:频数、频率、众数、中数、平均数的计算与应用。

2.数据的图表表示:条形图、折线图、饼图的绘制与解读。

几何与变换:1.几何图形的性质:平行线、垂直线、直角、等边、等角等。

2.基本几何图形的面积与周长:矩形、正方形、三角形、圆形等的计算与应用。

3.平面图形的平移、旋转、对称等的认识与应用。

代数式与因式分解:1.代数式的概念:字母表示数,用代数式表示算式。

2.代数式的运算:加法、减法、乘法、除法的运算法则。

3.因式分解:提取公因式,分解平方差、平方和等。

方程与不等式:1.一元一次方程:一元一次方程的解的求法与应用。

2.一元一次不等式:一元一次不等式的解的求法与应用。

3.一元二次方程:一元二次方程的解的求法与应用。

比例与相似:1.比例的概念:比的定义,比例的性质及应用。

2.身高、体重、价格等的比较与计算。

3.图形的相似:相似的判断与确定。

数列与数表:1.数列的概念:数字的有序排列。

2.等差数列:公差、通项公式的求法与应用。

3.等比数列:公比、通项公式的求法与应用。

函数与图像:1.函数的概念:自变量与函数值的关系。

中考数学必备公式大全

中考数学必备公式大全

中考数学必备公式大全一、代数公式1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^n−1b^1+C(n,2)a^n−2b^2+…+C(n,n−1)a^1b^(n −1)+C(n,n)a^0b^n2.因式分解公式:a^2−b^2=(a+b)(a−b)a^2+2ab+b^2=(a+b)^2a^2−2ab+b^2=(a−b)^2a^3+b^3=(a+b)(a^2−ab+b^2)a^3−b^3=(a−b)(a^2+ab+b^2)3.分式相关公式:倒数的倒数=本身 eg. a/b 的倒数的倒数 = b/a分式相乘,分子与分母相乘eg. (a/b) × (c/d) = (a×c) / (b×d)分式相除,分子与分母互换并相乘eg. (a/b) ÷ (c/d) = (a×d) / (b×c)相等分式的分子与分母对应相等,且不为0 eg. (a/b) = (c/d),a:c=b:d,ab≠0,cd≠04.求根公式:一元二次方程 ax^2 + bx + c = 0 的根公式为 x = (−b ±√(b^2−4ac)) / 2a二、几何公式1.三角形公式:(1)三角形的面积公式:S=1/2×底×高(2)三角形的海伦公式:c=a+b+c/2,S=√(c×(c−a)×(c−b)×(c−c))(3)三角形内角和公式:三角形内角之和等于180°(4)三角形的斜边关系:a^2+b^2=c^2(直角三角形)(5)正弦定理:a/sinA = b/sinB = c/sinC = 2R(R为外接圆半径)(6)余弦定理:c^2 = a^2 + b^2 - 2abcosC2.平面图形面积公式:(1)矩形的面积公式:S=长×宽(2)正方形的面积公式:S=边长×边长(3)平行四边形的面积公式:S=底×高(4)梯形的面积公式:S=(上底+下底)×高/2(5)圆的面积公式:S=πr^2(r为半径)3.立体图形体积公式:(1)长方体的体积公式:V=长×宽×高(2)正方体的体积公式:V=边长×边长×边长(3)圆柱体的体积公式:V=πr^2×h(r为底面半径,h为高)(4)圆锥体的体积公式:V=1/3×πr^2×h(r为底面半径,h为高)三、概率与统计公式1.事件概率公式:(1)事件的概率:P(A)=n(A)/n(S)(A为事件,n(A)为事件A包含的样本点数,n(S)为样本空间中的样本点数)2.统计指标公式:(1)平均数:平均值=总和/样本个数(2)中位数:奇数个数字的中位数为中间那个数,偶数个数字的中位数为中间两个数之和的一半(3)众数:出现频率最高的数(4)范围:样本最大值减去样本最小值(5)方差:每个数与平均数之差的平方和除以样本个数(6)标准差:方差的平方根(7)百分位数:P%的百分位数是这样一个数值,它将数据分成两部分,较小部分中至少有P%的数据以上是中考数学必备公式的大致集合,希望对你的备考有所帮助。

上海数学中考知识点

上海数学中考知识点

上海数学中考知识点上海数学中考知识点概述一、代数知识1. 整数与有理数- 整数: 正整数、负整数、零- 有理数: 分数、小数、比例- 有理数的四则运算- 绝对值与有理数的比较2. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘除运算- 因式分解3. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式及其解集- 线性不等式的解法4. 二元一次方程组- 代入法与消元法- 方程组的解集- 线性方程组的应用问题二、几何知识1. 平面几何- 点、线、面的基本性质- 角的概念及分类- 三角形的性质- 四边形的性质- 圆的性质2. 空间几何- 空间图形的认识- 立体图形的表面积与体积计算 - 空间图形的位置关系3. 坐标几何- 平面直角坐标系- 点的坐标表示- 线段、射线、直线的方程- 距离公式与斜率概念三、数列与函数1. 数列- 等差数列与等比数列- 数列的通项公式与前n项和 - 数列的实际应用2. 函数- 函数的概念与表示方法- 线性函数与二次函数- 函数的图像与性质- 函数的应用问题四、概率与统计1. 概率- 随机事件的概率- 概率的计算- 条件概率与独立事件2. 统计- 数据的收集与整理- 统计量的概念与计算(平均数、中位数、众数等) - 统计图表的绘制与解读五、解题技巧与策略1. 题目分析- 理解题意与要求- 提取关键信息2. 解题方法- 选择适当的解题途径- 运用数学公式与定理3. 答题规范- 答题的格式与步骤- 检查与验算六、历年真题分析1. 真题回顾- 分析历年中考数学试题- 归纳常见题型与考点2. 模拟练习- 根据真题进行模拟练习- 针对薄弱环节进行强化训练请注意,以上内容仅为上海数学中考知识点的概述,具体的学习与复习应结合教材和教师的指导进行。

同时,考生应关注最新的考试大纲和相关信息,以确保所学内容与考试要求相符。

中考数学常用公式及性质(沪科版)

中考数学常用公式及性质(沪科版)
③以a和b为根的一元二次方程是x2-(a+b)x+ab=0。
4.二次函数
几种特殊的二次函数的图像特征如下:
函数解析式
开口方向
对称轴
顶点坐标
当 时
开口向上
当 时
开口向下
( 轴)
(0,0)
( 轴)
(0, )
( ,0)
( , )
( )
5.多边形内角和公式
多边形内角和公式:n边形的内角和等于(n-2)180o(n≥3,n是正整数),外角和等于360o
初中数学知识专栏
1.乘法与因式分解
平方差公式:①(a+b)(a-b)=a2-b2;
完全平方公式:②(a±b)2=a2±2ab+b2;
2.幂的运算性质
①am×an=am+n;②am÷an=am-n;③(am)n=amn;④(ab)n=anbn;⑤( )n= ;
⑥a-n= ,特别:( )-n=( )n;⑦a0=1(a≠0)。
3.一元二次方程对于方程:ax2+bx+c=0:
①求根公式是x= ,其中△=b2-4ac叫做根的判别式。
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根;
当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。
7.特殊角的三角函数值
值角
函数

30°
45°
60°
90°
sin
cos
tan
0
不存在
6.面积公式
①S正△= ×(边长)2.
②S平行四边形=底×高.
③S菱形=底×高= ×(对角线的积),

上海市中考数学知识点总结

上海市中考数学知识点总结

一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

上海中考数学公式汇总

上海中考数学公式汇总

数学定理 公式汇编一、数与代数1. 数与式(1)实数 性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

(2)二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0); b a b a =(a ≥0,b >0);②二次根式的性质: ⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式 ①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m aa a +=⋅(m 、n 为正整数); ②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m aa a -=÷(a ≠0,m 、n 为正整数,m 〉n); ③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n nb a ab =)((n 为正整数);④零指数:10=a (a ≠0); ⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个 数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;(3)分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即mb m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数);⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bc cd ab b d c a ±=±; 2. 方程与不等式①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b a ac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式: ⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =ab -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。

上海初中中考数学知识点总结

上海初中中考数学知识点总结

上海市初中中考数学知识点大全1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

上海中考数学知识点总结新

上海中考数学知识点总结新

上海中考数学知识点总结新一、数与式1.整数、有理数、无理数、实数的概念及它们之间的关系。

2.实数的近似数及其应用。

3.代数式:含有字母的算式。

4.代数式的化简、展开和因式分解。

5.二次根式的化简与近似计算。

二、方程与不等式1.一元一次方程及其应用。

2.一元二次方程及其应用。

3.一元一次不等式及其应用。

4.一元二次不等式及其应用。

三、函数1.函数的概念及表示法。

2.线性函数的性质及图象。

3.一次函数、二次函数及其图象。

4.反比例函数及其图象。

5.导数的概念及计算。

四、图形的性质1.点、线、面、角的概念。

2.直线与平面的位置关系。

3.平行线与垂直线的性质。

4.同位角与内错角的性质。

5.平行四边形与特殊四边形的性质。

6.三角形的基本性质。

7.三角形的分类及其性质。

8.圆的相关概念及性质。

五、空间与图形运动1.空间坐标系的建立及应用。

2.直线与平面的位置关系。

3.空间中的图形运动。

4.图形的平移、旋转、对称等变换。

六、数据与统计1.统计中的基本概念。

2.统计中的图表和图形。

3.列数据的分组、统计和分析。

4.事件的概念与性质。

七、几何证明1.几何证明的基本思想与方法。

2.证明方法的灵活运用。

3.利用已知条件论证结论的正确性。

4.聪明构造和直观推理的应用。

以上是上海中考数学的主要知识点总结,包含了数与式、方程与不等式、函数、图形的性质、空间与图形运动、数据与统计以及几何证明等内容。

熟练掌握这些知识点,可以帮助学生更好地应对中考数学考试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学定理 公式汇编一、数与代数1. 数与式(1)实数 性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

(2)二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0); b a b a =(a ≥0,b >0);②二次根式的性质: ⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式 ①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m aa a +=⋅(m 、n 为正整数); ②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m aa a -=÷(a ≠0,m 、n 为正整数,m>n ); ③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n nb a ab =)((n 为正整数);④零指数:10=a (a ≠0); ⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个 数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;(3)分式 ①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数);⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bc cd ab b d c a ±=±; 2. 方程与不等式①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b a ac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式: ⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =ab -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。

正比例函数的性质:设)0(≠=k kx y ,则: ①当k>0时,y 随x 的增大而增大;②当k<0时,y 随x 的增大而减小; 反比例函数的图象:函数x k y =(k ≠0)是双曲线; 反比例函数性质:设xk y =(k ≠0),如果k>0,则当x>0时或x<0时,y 分别随x 的增大而减小;如果k<0,则当x>0时或x<0时,y 分别随x 的增大而增大; 二次函数的图象:函数)0(2≠++=a c bx ax y 的图象是对称轴平行于y 轴的抛物线;①开口方向:当a>0时,抛物线开口向上,当a<0时,抛物线开口向下; ②对称轴:直线ab x 2-=; ③顶点坐标()44,22ab ac a b --; ④增减性:当a>0时,如果a b x 2-≤,则y 随x 的增大而减小,如果ab x 2->,则y 随x 的增大而增大;当a<0时,如果a b x 2-≤,则y 随x 的增大而增大,如果a b x 2->,则y 随x 的增大而减小; 二、空间与图形1. 图形的认识(1)角 角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。

(2)相交线与平行线同角或等角的补角相等,同角或等角的余角相等;对顶角的性质:对顶角相等垂线的性质:①过一点有且只有一条直线与已知直线垂直;②直线外一点有与直线上各点连结的所有线段中,垂线段最短;线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;平行线的定义:在同一平面内不相交的两条直线叫做平行线;平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;平行线的特征:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补;平行公理:经过直线外一点有且只有一条直线平行于已知直线。

(3)三角形三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;三角形的内角和定理:三角形的三个内角的和等于︒180;三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;三角形的三条角平分线交于一点(内心);三角形的三边的垂直平分线交于一点(外心);三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;全等三角形的判定:①边角边公理(SAS ) ②角边角公理(ASA ) ③角角边定理(AAS ) ④边边边公理(SSS )⑤斜边、直角边公理(HL ) 等腰三角形的性质:①等腰三角形的两个底角相等;②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)等腰三角形的判定:有两个角相等的三角形是等腰三角形;直角三角形的性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);④直角三角形中︒30角所对的直角边等于斜边的一半;直角三角形的判定:①有两个角互余的三角形是直角三角形;②如果三角形的三边长a 、b 、c 有下面关系222c b a =+,那么这个三角形是直角三角形(勾股定理的逆定理)。

(4)四边形多边形的内角和定理:n 边形的内角和等于︒⋅-180)2(n (n ≥3,n 是正整数);平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。

矩形的性质:(除具有平行四边形所有性质外)①矩形的四个角都是直角;②矩形的对角线相等;矩形的判定:①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形;菱形的特征:(除具有平行四边形所有性质外①菱形的四边相等;②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;菱形的判定:四边相等的四边形是菱形;正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

等腰梯形的特征:①等腰梯形同一底边上的两个内角相等 ②等腰梯形的两条对角线相等。

等腰梯形的判定:①同一底边上的两个内角相等的梯形是等腰梯形;②两条对角线相等的梯形是等腰梯形。

平面图形的镶嵌:任意一个三角形、四边形或正六边形可以镶嵌平面;(5)圆点与圆的位置关系(设圆的半径为r ,点P 到圆心O 的距离为d ):①点P 在圆上,则d=r ,反之也成立; ②点P 在圆内,则d<r ,反之也成立;③点P 在圆外,则d>r ,反之也成立;圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可得到另外两组也相等 圆的确定:不在一直线上的三个点确定一个圆;垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧;平行弦夹等弧:圆的两条平行弦所夹的弧相等;圆心角定理:圆心角的度数等于它所对弧的度数;圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等;推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等;圆周角定理:圆周角的度数等于它所对的弧的度数的一半;圆周角定理的推论:直径所对的圆周角是直角,反过来,︒90的圆周角所对的弦是直径;切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;切线的性质定理:圆的切线垂直于过切点的半径;切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角; 弧长计算公式:180R n l π=(R 为圆的半径,n 是弧所对的圆心角的度数,l 为弧长) 扇形面积:2360R n S π=扇形或lR S 21=扇形(R 为半径,n 是扇形所对的圆心角的度数,l 为扇形的弧长) 弓形面积∆±=S S S 扇形弓形(6)尺规作图(基本作图、利用基本图形作三角形和圆)作一条线段等于已知线段,作一个角等于已知角;作已知角的平分线;作线段的垂直平分线;过一点作已知直线垂线;(7)视图与投影画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图);基本几何体的展开图(除球外)、根据展开图判断和设别立体模型;2.图形与变换图形的轴对称 轴对称的基本性质:对应点所连的线段被对称轴平分;等腰三角形、矩形、菱形、等腰梯形、正多边形、圆是轴对称图形;图形的平移 图形平移的基本性质:对应点的连线平行且相等;图形的旋转图形旋转的基本性质:对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;平行四边形、矩形、菱形、正多边形(边数是偶数)、圆是中心对称图形;图形的相似比例的基本性质:如果d c b a =,则bc ad =,如果bc ad =,则)0,0(≠≠=d b dc b a 相似三角形的设别方法:①两组角对应相等;②两边对应成比例且夹角对应相等;③三边对应成比例相似三角形的性质:①相似三角形的对应角相等;②相似三角形的对应边成比例;③相似三角形的周长之比等于相似比;④相似三角形的面积比等于相似比的平方;相似多边形的性质:①相似多边形的对应角相等;②相似多边形的对应边成比例;③相似多边形的面积之比等于相似比的平方;图形的位似与图形相似的关系:两个图形相似不一定是位似图形,两个位似图形一定是相似图形;三角函数Rt △ABC 中,∠C=︒90,SinA=斜边的对边A ∠,cosA=斜边的邻边A ∠, tanA=的邻边的对边A A ∠∠,CotA=的对边的邻边A A ∠∠ 特殊角的三角函数值: ︒30 ︒45︒60 Sin α 21 22 23 Cos α 23 22 21 tan α 33 1 3 Cot α 3 1 33三、概率与统计1.统计数据收集方法、数据的表示方法(统计表和扇形统计图、折线统计图、条形统计图)(1)总体与样本所要考察对象的全体叫做总体,其中每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体数目叫做样本的容量。

相关文档
最新文档