行程-图示解法(柳卡图)

合集下载

小升初数学拔高之行程问题常用思想之图解法、综合分析

小升初数学拔高之行程问题常用思想之图解法、综合分析

知识大总结
1. 多次相遇中的倍比关系 ⑴ 速度不变,路程和扩倍,路程扩倍. ⑵ 技巧,找准路程和,只画一个人的行程.
2. 流水行船、火车过桥 ⑴ 主要:基本公式 ⑵ 火车,速度叠加,两人行程变一人行程。
3. 关于柳卡图 ⑴ 解决,迎面相遇、背后相遇、相遇次数. ⑵ 前提,各自的单程时间
4
【今日讲题】 例2,例4,例6
5
过人,路程=车长 过桥,路程=桥长+车长 过火车,路程=车长+车长 关于速度:同向为减,异向为加.
3
【例5】(★★★☆)
李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢 的货车迎面驶来,当货车车头经过窗口时,他开始计时,直到 最后一节车厢驶过窗口时,所计的时间是18秒.已知货车车厢长 15.8米,车厢间距1.2米,货车车头长10米,问货车行驶的速度 是多少?
规律: 每次相遇, 路程和都是2个全程,每次各自的路 程都相等。
多次相遇 【例1】(★★)
小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地 同时出发,相向而行,两人第一次在距甲地3千米处相遇,第 二次在距甲地6千米处相遇(追上不算作相遇),则甲、乙两地 的距离为_____千米.
1
【巩固】甲乙两车同时从AB两地相对开出.第一次相遇后两车继续行驶,
【讲题心得】 _________________________________________________ _________________________________________________________ ________________________________________________ ________________________________.

行程问题 柳卡图

行程问题 柳卡图

行程问题-柳卡图1、关于柳卡图在十九世纪的一次国际数学会议期间,有一天,正当来自世界各国的许多著名数学家晨宴快要结束的时候,法国数学家柳卡向在场的数学家提出困扰他很久、自认“最困难”的题目:“某轮船公司每天中午都有一艘轮船从哈佛开往纽约,并且每天的同一时刻也有一艘轮船从纽约开往哈佛。

轮船在途中所花的时间来去都是7昼夜,而且都是匀速航行在同一条航线上。

问今天中午从哈佛开出的轮船,在开往纽约的航行过程中,将会遇到几艘同一公司的轮船从对面开来?”此题的叙述如下:每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?他先画了如下一幅图:这是一张运行图.画两条平行线,一条直线表示哈佛,另一条表示纽约.那么,从哈佛或纽约开出的轮船,可用图中的两组平行线簇来表示.图中每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.2、在多次相遇里的行程问题应用多次相遇行程问题的必备工具——柳卡图。

柳卡图,也称为折线图,可以很好的解决复杂的行程问题。

快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

柳卡图解行程问题

柳卡图解行程问题

数学竞赛讲义之行程问题多车相遇例72 、一条电车线路的起点站和终点站分别是甲站和乙站,自隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟,有一个人从乙站出发沿着电车线路骑车前往甲站。

他出发的时侯,恰好有一辆电车到达乙站。

在路上他又遇到到了10辆迎面开来的电车,到达甲站时,恰好又有一辆电车从甲站开出。

问他从乙站到甲站用了多少分钟?解:一辆车走完全程需要15分钟,所以一辆车刚发出时,途中有15÷3-1=2辆车。

所以当人骑车出发时,而甲站车时,在中途有两辆车子,可以相遇,所以共相遇10辆车,于是又发车8辆相遇,恰到达时,又发车,于是发车9辆时,甲到达,即有8个时间间隔,时间为5×8=40分钟。

所以骑车行完全程的时间为40分钟。

例73、某人沿电车路线行走,每隔12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。

假设两个起点站的发车间隔是相同的。

求这个发车间隔。

解:因为两辆电车的间隔目相等,两次相遇期间,共走了[(行人+电车)×4],所以两辆电车的间隔为[(行人+电车)×4],于是两辆车间隔时间为()4+⨯行人电车电车。

两次追及期间,共行走[电车×12],行人行走了[行人×12],所以电车行走了[(电车-行人)×12],两辆电车的间隔为[(电车-行人)×12],于是两辆车的间隔时间为()12⨯电车-行人电车。

于是有()()124+⨯=⨯电车-行人行人电车电车电车,所以3×(电车-行人)=电车+行人,即有:电车=2×行人。

所以()()=124=6+⨯=⨯电车-行人行人电车间隔电车电车分钟。

例74、从电车总站每隔一定时间开出辆电车,甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上一辆迎面开来的电车,那么电车总站每隔多少分钟开出一辆电车?假设甲、乙、电车共同相遇在A 点,甲、电车下一次相遇在C 点,乙、电车相遇在B 点。

柳卡图解行程问题

柳卡图解行程问题

数学竞赛讲义之行程问题多车相遇例72 、一条电车线路的起点站和终点站分别是甲站和乙站,自隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟,有一个人从乙站出发沿着电车线路骑车前往甲站。

他出发的时侯,恰好有一辆电车到达乙站。

在路上他又遇到到了10辆迎面开来的电车,到达甲站时,恰好又有一辆电车从甲站开出。

问他从乙站到甲站用了多少分钟?解:一辆车走完全程需要15分钟,所以一辆车刚发出时,途中有15÷3-1=2辆车。

所以当人骑车出发时,而甲站车时,在中途有两辆车子,可以相遇,所以共相遇10辆车,于是又发车8辆相遇,恰到达时,又发车,于是发车9辆时,甲到达,即有8个时间间隔,时间为5×8=40分钟。

所以骑车行完全程的时间为40分钟。

例73、某人沿电车路线行走,每隔12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。

假设两个起点站的发车间隔是相同的。

求这个发车间隔。

解:因为两辆电车的间隔目相等,两次相遇期间,共走了[(行人+电车)×4],所以两辆电车的间隔为[(行人+电车)×4],于是两辆车间隔时间为()4+⨯行人电车电车。

两次追及期间,共行走[电车×12],行人行走了[行人×12],所以电车行走了[(电车-行人)×12],两辆电车的间隔为[(电车-行人)×12],于是两辆车的间隔时间为()12⨯电车-行人电车。

于是有()()124+⨯=⨯电车-行人行人电车电车电车,所以3×(电车-行人)=电车+行人,即有:电车=2×行人。

所以()()=124=6+⨯=⨯电车-行人行人电车间隔电车电车分钟。

例74、从电车总站每隔一定时间开出辆电车,甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上一辆迎面开来的电车,那么电车总站每隔多少分钟开出一辆电车?假设甲、乙、电车共同相遇在A 点,甲、电车下一次相遇在C 点,乙、电车相遇在B 点。

学而思奥数模块三解多次相遇问题的工具柳卡

学而思奥数模块三解多次相遇问题的工具柳卡

学而思奥数模块三解多次相遇问题的工具柳卡集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]学而思奥数模块之行程问题模块三解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船【解析】这就是着名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例 2】 甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次【解析】 采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130÷=(秒),乙跑一个全程需300.650÷=(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420⨯=(次)【例 3】 (2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速一个周期内共有5次相遇,其中第度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒.【解析】 本题采用折线图来分析较为简便.如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.【例1】 甲、乙两人在一条90米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。

柳卡图解行程问题

柳卡图解行程问题

数学竞赛讲义之行程问题多车相遇例72 、一条电车线路的起点站和终点站分别是甲站和乙站,自隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟,有一个人从乙站出发沿着电车线路骑车前往甲站。

他出发的时侯,恰好有一辆电车到达乙站。

在路上他又遇到到了10辆迎面开来的电车,到达甲站时,恰好又有一辆电车从甲站开出。

问他从乙站到甲站用了多少分钟?解:一辆车走完全程需要15分钟,所以一辆车刚发出时,途中有15÷3-1=2辆车。

所以当人骑车出发时,而甲站车时,在中途有两辆车子,可以相遇,所以共相遇10辆车,于是又发车8辆相遇,恰到达时,又发车,于是发车9辆时,甲到达,即有8个时间间隔,时间为5×8=40分钟。

所以骑车行完全程的时间为40分钟。

例73、某人沿电车路线行走,每隔12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。

假设两个起点站的发车间隔是相同的。

求这个发车间隔。

解:因为两辆电车的间隔目相等,两次相遇期间,共走了[(行人+电车)×4],所以两辆电车的间隔为[(行人+电车)×4],于是两辆车间隔时间为()4+⨯行人电车电车。

两次追及期间,共行走[电车×12],行人行走了[行人×12],所以电车行走了[(电车-行人)×12],两辆电车的间隔为[(电车-行人)×12],于是两辆车的间隔时间为()12⨯电车-行人电车。

于是有()()124+⨯=⨯电车-行人行人电车电车电车,所以3×(电车-行人)=电车+行人,即有:电车=2×行人。

所以()()=124=6+⨯=⨯电车-行人行人电车间隔电车电车分钟。

例74、从电车总站每隔一定时间开出辆电车,甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上一辆迎面开来的电车,那么电车总站每隔多少分钟开出一辆电车?假设甲、乙、电车共同相遇在A 点,甲、电车下一次相遇在C 点,乙、电车相遇在B 点。

学而思奥数模块三__解多次相遇问题的工具柳卡

学而思奥数模块三__解多次相遇问题的工具柳卡

学而思奥数模块之行程问题模块三解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】 每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【解析】 这就是着名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况. 从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例 2】 甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?【解析】 采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130÷=(秒),乙跑一个全程需300.650÷=(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420⨯=(次)【例 3】 (2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是米/秒.【解析】 本题采用折线图来分析较为简便.如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.【例1】??甲、乙两人在一条90米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。

行程-图示解法(柳卡图)

行程-图示解法(柳卡图)

行程问题中的图示解法一、S-T图竖轴表示路程,一般为出发后的每一时刻离出发的距离,出发时此距离为0。

横轴表示时间,一般从出发开始计时,出发点处时间为0。

图形中的每个点均表示在某一时刻时的位置。

如下图,小明从家出发去上学,家和学校的距离为2千米。

规定竖轴为离家的距离,横轴为出发的时间。

其中A点表示出发5分钟后小明在离家1千米的位置,B点表示出发10分钟后小明在离家2千米的位置,即到达学校。

可以看到B点之后,随着时间的改变小明的位置并未发生改变,即这个阶段小明均在学校里,距离家都是2千米。

在S-T图中,每个点的路程数值和时间数值的比值即为速度。

图中OB为一条直线,由三角形相似的知识我们可以知道,此直线上的任意一点的路程与时间的比值都相等,即由O到B这个阶段速度是不变的。

我们可以用OB上任意一点的数据求出速度,如看A点,路程为1千米,时间为5分钟,速度为1÷5=0.2千米/分钟。

二、柳卡图法国数学家柳卡·施斗姆生于瑞士,因数学上的成就,于1836年当选为法国科学院院士。

在十九世纪的一次国际数学会议期间,有一天,正当来自世界各国的许多著名数学家晨宴快要结束的时候,法国数学家柳卡向在场的数学家提出困扰他很久、自认“最困难”的题目:“某轮船公司每天中午都有一艘轮船从哈佛开往纽约,并且每天的同一时刻也有一艘轮船从纽约开往哈佛。

轮船在途中所花的时间来去都是七昼夜,而且都是匀速航行在同一条航线上。

问今天中午从哈佛开出的轮船,在开往纽约的航行过程中,将会遇到几艘同一公司的轮船从对面开来?”(此即著名的“柳卡趣题”)【分析】法一:推理从哈佛开出的轮船遇到的纽约开来的轮船有两类,一类是该船出发前已从纽约发出且尚未到达哈佛的轮船,即该船出发前7天内纽约发出的轮船,除出发时纽约刚到达伦敦的一艘船外途中共遇到6艘。

另一类是该船出发后从纽约发出的轮船,即该船出发后7天内纽约发出的轮船,除到达伦敦时刚发出的船外途中共遇到7艘。

学而思奥数模块三解多次相遇问题的工具柳卡

学而思奥数模块三解多次相遇问题的工具柳卡

学而思奥数模块三解多次相遇问题的工具柳卡集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]学而思奥数模块之行程问题模块三解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船【解析】这就是着名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例 2】 甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次【解析】 采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130÷=(秒),乙跑一个全程需300.650÷=(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420⨯=(次)【例 3】 (2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速一个周期内共有5次相遇,其中第度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒.【解析】 本题采用折线图来分析较为简便.如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.【例1】 甲、乙两人在一条90米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。

学而思奥数模块三__解多次相遇问题的工具柳卡

学而思奥数模块三__解多次相遇问题的工具柳卡

学而思奥数模块三__解多次相遇问题的工具柳卡(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除学而思奥数模块之行程问题模块三 解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】 每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【解析】 这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例 2】 甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?【例 3】【解析】 采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130÷=(秒),乙跑一个全程需300.650÷=(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420⨯=(次)【例 4】 (2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒.【解析】 本题采用折线图来分析较为简便.NM如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.一个周期内共有5次相遇,其中第1,2,4,5次是迎面相遇,而第3次是追及相遇.【例1】甲、乙两人在一条90米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。

学而思奥数模块三解多次相遇问题的工具柳卡

学而思奥数模块三解多次相遇问题的工具柳卡

学而思奥数模块之行程问题模块三解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船【解析】这就是着名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例 2】 甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次【解析】 采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130÷=(秒),乙跑一个全程需300.650÷=(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420⨯=(次)【例 3】 (2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如一个周期内共有5次相遇,其中第1,果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒.【解析】 本题采用折线图来分析较为简便.如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.【例1】 甲、乙两人在一条90米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。

超难奥数题之行程专题柳卡图应用

超难奥数题之行程专题柳卡图应用

超难奥数题之行程专题柳卡图应用柳卡图应用【例1】从花城到太阳城的公路长12公里。

在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的。

还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯。

小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯。

已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要分钟。

【例2】男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。

两人同时从A点停地往返奔跑。

已知男运动员上坡速度是每秒3米,下坡速度是每秒5出发,在 AB之间不米,女运动员上坡速度是每秒2米,下坡速度是每秒3米(那么两人第二次迎面相遇的地点离A点多少米,【例3】甲、乙两名运动员分别从 A、B同时出发,在AB 间练习往返跑;甲有一只小狗,与甲同时从A出发,它总是朝甲所在的地方跑去。

当乙第5次和这只小狗相遇后3秒,甲和乙又一次相遇。

若甲、乙、小狗每秒分别跑6米、5米、2米,且AB 之间的距离大于20米,则AB间的距离是多少,(本题中,只要在同一地点同时出现就视为相遇)1【例4】小张、小李和小王于某日上午分别步行、骑自行车和开汽车从A地出发沿公路向B地匀速前进。

已知小李比小张晚1小时出发,小王比小李晚45分钟出发。

他们三人恰在中途某地相遇。

若小李比小张早到达B地24分钟,则小王比小张早多少分钟到达,【例5】A、B两地相距1000米,甲从A地、乙从B地同时出发,在A、B两地间往返锻炼。

乙跑步每分钟行150米,甲步行每分钟行60米。

在30分钟内,甲、乙两人第几次相遇时距B地最近(从后面追上也算作相遇),最近距离是多少,2。

奥数模块三解多次相遇问题的工具——柳卡

奥数模块三解多次相遇问题的工具——柳卡

学而思奥数模块之行程问题模块三解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【解析】这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【例2】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?【解析】采用运行图来解决本题相当精彩!首先,甲跑一个全程需30130(秒),乙跑一个全程需300.650(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇了5420(次)【例3】(2009年迎春杯复赛高年级组)A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是米/秒.【解析】本题采用折线图来分析较为简便.NMFED C B A 如图,箭头表示水流方向,A CE 表示甲船的路线,B DF 表示乙船一个周期内共有5次相遇,其中第1,2,4,5次是迎面相遇,的路线,两个交点M、N就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC和DE的长度相同,AD和CF的长度相同.那么根据对称性可以知道,M点距BC的距离与N点距DE的距离相等,也就是说两次相遇地点与A、B两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了10020240千米和1004060千米,可得两船的顺水速度和逆水速度之比为60:403:2.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为432312米/秒,那么两船在静水中的速度为12210米/秒.。

行程之间隔发车与柳卡图

行程之间隔发车与柳卡图

行程之间隔发车与柳卡图2013睿源小升初行程之间隔发车与柳卡图问题(一)发车间隔问题【知识点分析】发车问题是行程问题里面一种很常见的题型,解决发车问题需要一定的策略和技巧。

为便于叙述,现将发车问题进行一般化处理:某人以匀速行走在一条公交车线路上,线路的起点站和终点站均每隔相等的时间发一次车。

他发现从背后每隔a 分钟驶过一辆公交车,而从迎面每隔b分钟就有一辆公交车驶来。

问:公交车站每隔多少时间发一辆车,(假如公交车的速度不变,而且中间站停车的时间也忽略不计。

)1、原型因为车站每隔相等的时间发一次车,而且车速不变,所以同向的、前后的两辆公交车间的距离相等。

这个相等的距离也是公交车在发车间隔时间内行驶的路程。

所以对于紧挨着的两辆车,有以下关系式:两车间隔距离(发车间隔),发车时间间隔×车速2、背后追上,追及问题由图可以知道,人车行驶方向相同,人所在的位置与前一辆车相同,和下一辆车的距离就是发车间隔,下一辆车想追上人,那么就要比人多走这个发车间隔。

所以,根据“同向追及”,追及路程,发车间隔,(车速,人速)×追及时间,我们知道:公交车与行人a分钟111所走的路程差是1,即公交车比行人每分钟多走,就是公交车与行人的速度差。

即:(车速,人速),。

aaa3、迎面开来,相遇问题由图可以知道,人车行驶方向相反,人所在的位置与前一辆车相同,和下一辆车的距离就是发车间隔,下一辆车和人相遇,那么人车的路程和就是这个发车间隔。

所以,根据“相向相遇”,路程和,发车间隔,(车速,人速)×相遇时间,我们知道:公交车与行人b分钟所111走的路程和是1,即公交车与行人每分钟一共走,就是公交车与行人的速度和。

即:(车速,人速),。

bbb这样,我们把发车问题化归成了“和差问题”。

根据“和差问题”的解法:大数,(和,差)?2,小数,(和,1111ab,ab,差)?2,可以很容易地求出车速是:(,)?2,,人速是:(,)?2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题中的图示解法一、S-T图竖轴表示路程,一般为出发后的每一时刻离出发的距离,出发时此距离为0。

横轴表示时间,一般从出发开始计时,出发点处时间为0。

图形中的每个点均表示在某一时刻时的位置。

如下图,小明从家出发去上学,家和学校的距离为2千米。

规定竖轴为离家的距离,横轴为出发的时间。

其中A点表示出发5分钟后小明在离家1千米的位置,B点表示出发10分钟后小明在离家2千米的位置,即到达学校。

可以看到B点之后,随着时间的改变小明的位置并未发生改变,即这个阶段小明均在学校里,距离家都是2千米。

在S-T图中,每个点的路程数值和时间数值的比值即为速度。

图中OB为一条直线,由三角形相似的知识我们可以知道,此直线上的任意一点的路程与时间的比值都相等,即由O到B这个阶段速度是不变的。

我们可以用OB上任意一点的数据求出速度,如看A点,路程为1千米,时间为5分钟,速度为1÷5=0.2千米/分钟。

二、柳卡图法国数学家柳卡·施斗姆生于瑞士,因数学上的成就,于1836年当选为法国科学院院士。

在十九世纪的一次国际数学会议期间,有一天,正当来自世界各国的许多著名数学家晨宴快要结束的时候,法国数学家柳卡向在场的数学家提出困扰他很久、自认“最困难”的题目:“某轮船公司每天中午都有一艘轮船从哈佛开往纽约,并且每天的同一时刻也有一艘轮船从纽约开往哈佛。

轮船在途中所花的时间来去都是七昼夜,而且都是匀速航行在同一条航线上。

问今天中午从哈佛开出的轮船,在开往纽约的航行过程中,将会遇到几艘同一公司的轮船从对面开来?”(此即著名的“柳卡趣题”)【分析】法一:推理从哈佛开出的轮船遇到的纽约开来的轮船有两类,一类是该船出发前已从纽约发出且尚未到达哈佛的轮船,即该船出发前7天内纽约发出的轮船,除出发时纽约刚到达伦敦的一艘船外途中共遇到6艘。

另一类是该船出发后从纽约发出的轮船,即该船出发后7天内纽约发出的轮船,除到达伦敦时刚发出的船外途中共遇到7艘。

即从哈佛开出的轮船在到达纽约前,途中能遇上6+7=13艘从纽约开来的轮船。

法二:柳卡图哈佛出发的轮船行全程的时间:7天,纽约出发的轮船行全程的时间:7天。

横轴:时间(单位:1天) 纵轴:路程红线:哈佛出发的船蓝线:纽约发出的船交点:相遇点由图可知:从哈佛开出的轮船在到达纽约前,途中能遇上13艘从纽约开来的轮船.柳卡图,不用基本公式解决,用数形结合的思想,结合时间-距离图快速解题。

画图步骤如下:第一步:确定两个方向行驶全程的时间,从而确定时间单位,即时间轴上最小的一格所代表的时间。

第二步:根据往返时间确定每次往返两地的时刻,画上往返两地的线段。

其中交点表示同一时间出现在同一位置,即“相遇”了,那么“相遇的次数”,“相遇的地点”均可求出。

若结合几何相似模型,还可以求出相遇点距离起点和终点等的实际距离。

三、柳卡图应用(1) 适用题目类型:多次往返相遇问题、固定点(端点等)变速问题(2) 快速化柳卡图方法:先确定来和回的时间或时间份数(3) 用柳卡图求路程:结合沙漏、燕尾等四、柳卡图解决多次往返相遇问题【例题】如图,甲、乙两人在相距70米的甲乙两端同时出发来回步行,甲的速度和乙的速度之比为3:4,他们相遇的地点分别用A、B、……、G表示,问:(1) A点到甲地的距离为_______米;(2) B点到甲地的距离为_______米,到乙地的距离为_______米;(3) C点到乙地的距离为_______米;(4) F点到G点的距离为_______米(提示:F点到甲地距离减去G点到甲地的距离)。

【答案】(1) 30;(2) 50,20;(3) 60;(4) 20【分析】甲乙速度比3:4,则二人走一个全程需时间比为4:3,设甲走1个全程的时间为4t,乙走1个全程的时间为3t。

横轴:时间(单位:t) 纵轴:路程(单位:m) 红线:甲蓝线:乙交点:相遇点结合几何相似模型“沙漏”中相似三角形对应边成比例,如图:可分别求出:(1) A点距甲地30米(2) B点距甲地50米,距乙地20米(3) F点距甲地50米,G点距甲地30米,F点到G点的距离为50-30=20米。

复习题一、S-T图1.一个人开车从甲地到乙地,到乙地立即返回。

甲乙相距15千米,他去的时候用了40分钟,回来的时候用了60分钟,在下面的图中画出他的行程过程。

2.聪聪在乙地休息了60分钟后又返回了甲地,根据图中信息,求聪聪去时的速度和回来时候的速度,看看他什么时候开得快。

3.一个人步行从A地到B地,再从B地返回A地。

根据下图所示信息,求出他的平均速度。

4.一个人步行返于AB之间。

根据下图所示信息,求出他的平均速度。

5.龟兔从同一起点进行200米赛跑,兔子在途中睡觉休息,直到乌龟从身边跑过一段时间后,兔子醒来再起身向前跑去。

根据图中的信息可知,则兔子醒来再起身以每分钟_______米的速度才能和乌龟同时到达终点.6.龟兔从同一起点起跑,快跑的兔子在途中睡觉休息,直到乌龟从身边跑过一段时间后,兔子醒来再起身向前跑去。

根据图中的信息可知,若兔子能在到达终点之前赶上乌龟,则比赛的路程至少应为______米。

7.甲乙两人都从A地去往B地,甲先出发1小时后乙再出发。

结果乙比甲提前1小时到达B地,问:乙在什么地方追上甲?二、发车间隔问题8.一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?9.AB是公共汽车的两个车站,从A站到B站是上坡路。

每天上午8点到11点从A,B两站每隔30分同时相向发出一辆公共汽车。

已知从A站到B站单程需105分,从B站到A站单程需80分。

问:(1)8:30、9:00从A站发车的司机分别能看到几辆从B站开来的汽车?(2)从A站发车的司机最少能看到几辆从B站开来的汽车?10.每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?11.甲乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。

有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?12.—辆公共汽车12:00开始从A车站出发,往返于AB两个公交车站之间,若从A→B用3个小时,从B→A用4个小时。

有一个行人13:00时从B车站步行去A车站,已知他花了8个小时到达A车站,问,途中,他遇到几次这辆公共汽车?三、多次往返相遇问题13.两名游泳运动员在长30米的游泳池里来回游泳,甲的速度是每秒1米,乙的速度是每秒0.6米,他们同时从游泳池的一端出发,来回一共游了21分钟,他们一共遇上(迎面或同向)几次?14.甲、乙二人同时从A地出发同向而行去往B地,甲的速度是每小时30千米,乙的速度是每小时20千米,甲、乙到B地后立即返回A地.已知二人第二次相遇的地点距第一次相遇的地点20千米(两人相遇指迎面相遇),那么,A、B两地相距________干米.15.A、B两地相距950米,甲、乙两人同时由A地出发,在A、B两地往返锻炼。

甲步行每分钟40米,乙跑步每分钟150米,40分钟后停止运动。

甲、乙两人第几次迎面相遇相距B地最近?最近距离是多少米?16.一条大河,水由A港流向B港,流速4千米/时,甲、乙两船同时由A向B行驶,各自不停的在A、B之间往返航行,甲船在静水中的速度是28千米/时,乙船在静水中的速度是20千米/时,已知两船第二次迎面相遇的地点与两船第五次相遇的地点相距50千米,那么A、B两港相距________千米.17.兔、龟在甲、乙两地之间做往返跑,兔的速度是龟的3倍,它们分别在甲、乙两地同时相对起跑,当它们在途中相遇了12次时,龟正在跑第________个单程.(2006年·《小学数学ABC》精选题)18.甲乙二人在相距180米的直路两端同时出发来回散步,甲每秒走2米,乙每秒走2.5米。

每人都走了6.5分钟,那么在这段时间内他们共相遇了次。

19.甲乙二人同时从A地出发同向而行去往B地,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲、乙到B地后立即返回A地。

已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A、B两地相距多少千米?详解1.【解析】如图,以20分钟为基本单位画时间轴。

从出发开始离出地(甲地)越来越远,直到到达15千米的位置(乙地) ,用时40分钟,这一阶段为一条向上的直线。

从乙地返回时,始离出地(甲地)越来越近,直到到达0千米的位置(甲地) ,用时60分钟,这一阶段为一条向下的直线。

2.【解析】如图可知去时从O点到A点,路程为45千米,用时30分钟,速度为45÷30=1.5千米/分钟回时从B点到C点,路程为45千米,用时140-90=50分钟,速度为45÷50=0.9千米/分钟。

可知去时开得快。

3.【解析】如图可知,从O点到C点表示这个人步行从A地出发到达B地的过程,此时离出发点(A地)越来越远直到达到80千米,此时到达B地。

CD段地点没有变化,即停留在B地。

从D到E点表示这个人步行从B地出发到达A地的过程,此时离出发点(A地)越来越近直到达到0千米,此时返回A地。

总路程:80×2=160千米总时间:160分钟平均速度:160÷160=1千米/分钟。

4.【解析】如图可知,从O到C:由A地到B地;从C到D:由B地到A地;从D到E:由A地到B地;从E到F:停留在B地;从F到G:由B地到A地。

总路程:90×4=360千米总时间:360分钟平均速度:360÷360=1千米/分钟。

5.【解析】由图可知,乌龟30分钟行程150米,速度为150÷30=5米/分钟,到达终点需200÷5 = 40分钟.兔子醒来时已过了39分钟,距离终点200-150=50米.故兔子的速度为50÷(40-39)=50米/分钟时才能和乌龟同时到达终点.6.【解析】由图可知,乌龟30分钟行程150米,速度为150÷30=5米/分钟。

兔子5分钟跑了150米,兔子的速度时150÷5=30米/分钟。

兔子睡觉的时间乌龟跑了5×(40-30)=50米,到达终点需200÷5 = 40分钟.兔子要想赶上乌龟至少需要50÷(30-5)=2分钟,即兔子醒后至少要跑30×2=60米才能追上乌龟。

相关文档
最新文档