高中函数的几种解法
函数定义域值域求法(全十一种)
创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例1 求函数8|3x |15x 2x y 2-+--=的定义域。
解:要使函数有意义,则必须满足⎩⎨⎧≠-+≥--②①8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。
③ 由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x>5。
故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。
例2 求函数2x161x sin y -+=的定义域。
解:要使函数有意义,则必须满足⎩⎨⎧>-≥②①0x 160x sin 2由①解得Z k k 2x k 2∈π+π≤≤π, ③由②解得4x 4<<-④由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。
(1)已知)x (f 的定义域,求)]x (g [f 的定义域。
(2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。
例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。
解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。
(2)已知)]x (g [f 的定义域,求f(x)的定义域。
其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。
有关函数最值问题的十二种解法
本稿件适合高三高考复习用有关函数最值问题 的十二种解题方法与策略贵州省龙里中学高级教师 洪其强(551200)一、消元法:在已知条件等式下,求某些二元函数(,)f x y 的最值时,可利用条件式消去一个参量,从而将二元函数(,)f x y 化为在给定区间上求一元函数的最值问题。
例1、已知x 、y R ∈且223260x y x +-=,求222x y +的值域。
解:由223260x y x +-=得222360y x x =-+≥,即02x ≤≤。
2222392262()22x y x x x +=-+=--+∴当32x =时,222xy +取得最大值92;当0x =时,222x y +取得最小值0。
即222x y +的值域为90,2⎡⎤⎢⎥⎣⎦二、判别式法:对于某些特殊形式的函数的最值问题,经过适当变形后,使函数()f x 出现在一个有实根的一元二次方程的系数中,然后利用一元二次方程有实根的充要条件0∆≥来求出()f x 的最值。
例2、求函数22()1xf x x x =++的最值。
解:由22()1xf x x x =++得 []2()()2()0f x x f x x f x +-+=,因为x R ∈,所以0∆≥,即[]22()24()0f x f x --≥,解得22()3f x -≤≤。
因此()f x 的最大值是23,最小值是-2。
三、配方法:对于涉及到二次函数的最值问题,常用配方法求解。
例3、求2()234x x f x +=-在区间[]1,0-内的最值。
解:配方得 2224()2343(2)33x x x f x +=-=--+[]1,0x ∈- ,所以 1212x ≤≤,从而当223x =即22log 3x =时,()f x 取得最大值43;当21x =即0x =时()f x 取得最小值1。
四、辅助角公式:如果函数经过适当变形化为()sin cos f x a x b x =+(a、b均为常数),则可用辅助角公式sin cos arctan )ba xb x x a+=+来求函数()f x 的最值。
高中数学函数求最值常用方法总结
高中数学中的函数最值求解问题是学习中的难点,在解决函数最值问题的时候要经过全方位的考虑,结合函数的定义域,将各种可能出现的结果进行分析,最终求得准确的计算结果。
在数学学习的过程中活跃的数学思维非常重要,它不仅可以改善学习方法,而且可以帮助学生掌握更多的解题技巧,进而提高解题速度和学习效率。
本文总结了一些求函数最值的常用方法如下:一、利用一次函数的单调性【例题1】 已知 x , y , z 是非负实数,且 x + 3y + 2z = 3 , 3x + 3y + z = 4 ,求函数 w = 2x - 3y + z 的最值 .解:得 y = 5/3 (1 - x), z = 2x - 1∴ w = 9x - 6又 x , y , z 非负,依一次函数 w = 9z - 6 的单调性可知当 x = 1/2 时,Wmin = -3/2 ,当 x= 1 时,Wmax = 3 .注:再求多元函数的条件最值时,通常是根据已知条件消元,转化为一元函数来解决问题.对于一次函数 y = kx + b ( k ≠ 0 ) 的最值,关键是指出自变量的取值范围,即函数的定义域,当一次函数的定义域是闭区间时,其最值在闭区间的端点处取得 .二、利用二次函数的性质【例题2】 设 α , β 是方程 4x^2 - 4kx + k + 2 = 0 的两个实数根,当 k 为何值时 α^2 + β^2 有最小值?解:∵ α , β 为方程的两个实数根,∴ α + β = k , αβ = 1/4 ( k + 2 ) ,令 y = α^2 + β^2 , 则有又由原方程由实数根可知,∴ k ≤ -1 或 k ≥ 2 .而二次函数的顶点 (1/4,-17/16)不在此范围内,根据二次函数的性质知,y 是以 k = 1/4 为对称轴,开口向上的,定义域为 (-∞,-1]∪[2,+∞)的抛物线,比较 k = -1 及 k = 2 时 y 的值知,当 k = -1 时,有 ymin = 1/2 .注:利用二次函数的性质求最值时,不能机械地套用最值在顶点处取得 . 首先要求出函数的定义域,然后在看顶点是否在函数的定义域内,最后再根据函数的单调性来判定 . 【例题3】 如图所示,抛物线 y = 4 - x^2 与直线 y = 3x 交于 A , B 两点,点 P 在抛物线上由 A 运动到 B,求 △APB 的面积最大时点 P 的坐标 .分析:由于 A , B 为定点,所以 AB 长为定值,欲使 △APB 的面积最大,须使 P 到 AB的距离最大 .解:设 P 点坐标为 (x0 , y0),∵ A , B 在直线 y = 3x 上,∴联立抛物线与直线方程,可得xA = -4 , xB = 1 ,∴ -4 ≤ x0 ≤ 1 ,则有∴当 x = -3/2 时,d 取最大值,△APB 面积最大,此时 P 点坐标为 (-3/2 , 7/4).注:在解决实际问题时要注意确定自变量取值范围的方法,本题是由直线与抛物线的交点来确定的,这样才能确定定义域内的最值 .三、利用二次方程的判别式欲求函数 y = f(x) ( x ∈ R ) 的极值,如果可以把函数式整理成关于 x 的二次方程, 注意到 x 在其定义域内取值,即方程有实根,所以可以通过二次方程的判别式 △ ≥ 0 来探求 y 的极大值与极小值 .【例题4】 已知 0 ≤ x ≤ 1 , 求的最值 .解: 原式可化为∵ x ∈ R ,∴解得 y ≤ 1/4 或 y ≥ 9/16 ,即函数 y 的值域为 y ≤ 1/4 或 y ≥ 9/16 ,∴ y极大 = 1/4,y极小 = 9/16 .当 y = 1/4 时,代入原函数解析式得 x = 1 ∈ [ 0 , 1 ] ;当 y = 9/16 时,代入原函数解析式得 x = -1 [ 0 , 1 ] .又 x = 0 时 , y = 2/3 ,∴ 当 x = 0 时,y 取极大值 2/3 .注:① 由判别式确定的是函数的值域,由值域得到的是函数的极值而不是最值;② 对有些函数来说,极值与最值相同,而有的函数就不一定,如本题中的极大值比极小值还小,这是因为极值是就某局部而言;③ 若要求函数在给定的定义域内的最值,一定要注意极值是否在此定义域内取得, 即要注意验根 .四、利用重要不等式【例题5】 设 x , y , z ∈ R+ , 且 2x + 4y + 9z = 16 .求 6√x + 4√y + 3√z 的最大值 .解:令 u = 6√x + 4√y + 3√z ,∴ u ≤ 4√23 ,( 其中当 9/x = 1/y = 1/9z 时,即当 x = 144/23 , y = 16/23 , z = 16/207 时取等号) 故注:这里是应用柯西不等式,在应用公式时,如何构造出已知条件等式 2x + 4y + 9z = 16,颇具技巧性和解题意义 .五、利用三角函数的有界性对于三角函数的极值,通常是利用三角函数的有界性来求解问题的,如正、余弦函数的最大(小)值很明显:y = asinx + bcosx (a , b ≠ 0)引入辅助角 θ,则其最值也一目了然 . 而对于其它的类型或用同角关系式、或用万能公式、或用正余弦定理作转化,变为二次函数问题来求解 .【例题6】 求的最值 .解法一: (利用降幂公式)解法二: (用判别式法)注: 本例还可以用万能公式等方法来求解 .六、利用参数换元对于有些函数而言,直接求极值比较复杂或不方便,这时可根据题目的特点作变量代换,然后运用前面的几种方法来解决问题.在换元时,一定要注意新的变量的取值范围 . 【例题7】 求函数 y = x + √( 1 - x ) 的极值 .解:原函数变为∵ t = 1/2 ∈ [ 0 , +∞ ) ,∴ 当 t = 1/2 ,即 x = 3/4 时,ymax = 5/4 .注: 这种换元虽然十分简单,但具有代表性 .七、利用复数的性质【例题8】 已知复数 z 满足 | z | = 2 , 求 | 1 + √3 i + z | 的极值 . 解法一:设 z = 2(cosθ + isinθ) (∵ | z | = 2)故 | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .解法二:依据 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | ,有 | 1 + √3 i | - | z | ≤ | 1 + √3 i + z | ≤ | 1 + √3 i | + | z | ,即 2 - 2 ≤ | 1 + √3 i + z | ≤ 2 + 2 ,∴ | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .注:求复数模的最值通常可用代数法,三角法(解法一),复数模的性质及其公式 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | , 此外还有数形结合方法等,但以上两种方法最为简捷.八、利用数形结合有些代数和三角问题,若能借助其几何背景,予以几何直观,这时求其最值常能收到直观、明快,化难为易得功效.【例题9】 求的最值 .解: 将函数式变形为其几何意义是在直角坐标系中,动点 P(cosx , sinx)和定点 A(-2 ,-1)连线的斜率,动点 P 的轨迹为单位圆,如下图所示:知 kAB 最小,kAC 最大,显然 kAB = 0 ,又 tgθ = |OB|/|AB| = 1/2 ,tg∠A = tg2θ = 2tgθ/(1 - tg^2 θ)= 4/3 ,即 kAC = 4/3 ,故 ymin = 0 , ymax = 4/3 .注:形如 [f(x) - a] / [g(x) - b] 的函数式,通常都可视作点 (g(x) ,f(x) ) 与点 (b , a)的连线的斜率 .运用数形结合的思想解题,关键是要进行合理的联想和类比,将代数式通过转化、变形、给予几何解释,通常这种转化与变形的过程常是一种挖掘和发现的过程,如本例需要挖掘 .。
函数定义域值域求法(全十一种)
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x
故
22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。
高考数学_高中数学函数解析式六解法汇总
高考数学_高中数学函数解析式六解法汇总
一、待定系数法:
在已知函数解析式的构造时,可用待定系数法。
例题1、设 f(x)是一次函数,且 f [ f(x)] = 4x + 3 ,求 f(x)的解析式。
解:设 f(x)= ax + b (a ≠ 0),则
∴ f(x)= 2x + 1 或 f(x)= -2x - 3
二、配凑法:
已知复合函数 f [ g(x)] 的表达式,求 f(x)的解析式, f [ g(x)] 的表达式容易配成 g(x)的运算形式时,常用配凑法。
但要注意所求函数 f(x)的定义域不是原复合函数的定义域,而是 g(x)的值域。
例题2、
求 f(x)的解析式。
解:
三、换元法:
已知复合函数 f [ g(x)] 的表达式时,还可以用换元法求 f(x)的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例题3、已知
求 f(x + 1)的解析式。
解:
四、代入法:
求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例题4、已知:函数 y = x^2 + x 与 y = g(x)的图象关于点(-2,3)对称,求 g(x)的解析式。
解:
五、构造方程组法:
若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例题5、
解:
例题6、
解:
六、赋值法:
当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
例题7、
解:。
高中数学解题方法系列:函数求极值问题的6种方法
成一个无盖的方盒,问截去多少方能使盒子容积最大?
解:设截的小正方形边长为 x,则做成方盒容积为 y=(x-2a) x(0≤x≤a/2)
于是问题就归结为求函数在区间内极值问题。运用引理可知在 x=a/6 是盒子容积
最大。
五、利用平面几何图形求最值
例 11 求函数
的最小值。
分析:本题要求无理函数最值。用代数方法比较困难,若将函数表达变形为; 则函数表达式显现为坐标平面上
条件求出自变量的范围,最终将问题为一元二次函数区间内最值问题。但这样解
决此题,计算量较大。我们仔细分析约束条件,将约束条件可以整理为
,它表示以 x、y 为坐标的动点必须在椭圆
内或边界。而函数 f(x、y)=x-3y 可以约束区域内有点在
直线上的情况下,直线系中哪条直线在 y 轴截距最大或最小。显然在与椭圆相切
y x 3
y x3
x o
根据图像我们可以判断:当 x=0,
;当 x=3,
,对此类型问题的
思考:当函数解析式含有较多绝对值符号的时候,如果我们仍然通过做出函数图
像来求解极值,那么过程就非常复杂。那么是否有更简单的方法呢?经过对问题
的分析,我们发现函数的极值点要么出现在函数定义域的端点,要么出在函数图
就转化为在图像上找一点使得该点的横纵坐标之和最大或最小。此后就可采用椭
圆的参数方程解决。 例 5 若 2x+4y=1 求 x2+y2 的最小值 分析 函数 f(x、y)= x2+y2 我们理解为点(x、y)到原点的距离的平方,而
动点(x、y)在直线 2x+4y=1 上移动,那么我们就将问题转化为在直线上找一点,
于:能深刻理解函数解析式的内涵,且计算简单。
高中所有数学公式大全
高中所有数学公式大全以下是一个高中数学公式的大全,包括代数、几何和微积分的公式:代数公式:1. 二次方程的根公式:对于方程 ax^2 + bx + c = 0,其中a ≠ 0,它的根可以通过公式 x = (-b ± √(b^2 - 4ac))/2a 求得。
2. 四则运算规则:加法、减法、乘法和除法的规则,如 a + b = b + a、a - b ≠ b - a、a × b = b × a、a/b ≠ b/a 等。
3. 因式分解公式:如二次三项式的因式分解公式 (a + b)(a - b) = a^2 - b^2。
4. 一次函数方程的解法:ax + b = 0,其中a ≠ 0,解为 x = -b/a。
5. 二元一次方程组的解法:ax + by = c 和 dx + ey = f,其中 a、b、c、d、e、f 都是已知数,解为 x = (ce - bf)/(ae - bd) 和 y = (af - cd)/(ae - bd)。
几何公式:1. 勾股定理:直角三角形的两直角边的平方和等于斜边的平方,即 a^2 + b^2 =c^2。
2. 三角形的面积公式:三角形的面积可以通过两条边和它们夹角的正弦、余弦或正切函数来计算。
3. 圆的面积和周长公式:圆的面积为πr^2,周长为2πr,其中 r 为半径。
4. 平行线与三角形内切圆的性质:平行线割三角形后,三个割线所围的小三角形内切于同一圆。
5. 直线与圆的位置关系公式:直线与圆相交、内切和外切时的位置关系可以由它们方程的解来确定。
微积分公式:1. 导数的定义:函数 y = f(x) 在点 x 处的导数定义为f'(x) = lim(Δx→0) [(f(x+Δx) - f(x))/Δx]。
2. 基本导数法则:对于常见函数,如常数函数、幂函数、指数函数和三角函数,有对应的导数法则,如常数函数的导数为 0、幂函数的导数为 kx^(k-1) 等。
高中数学中的方程组的解法
高中数学中的方程组的解法方程组是高中数学中的重要内容之一,它是由多个方程组成的集合,其中每个方程都包含有未知数。
解方程组意味着找到满足所有方程的未知数的值。
在高中数学中,我们学习了几种常见的解方程组的方法,包括代入法、消元法和矩阵法。
一、代入法代入法是解方程组最直观的方法之一。
它的基本思想是将一个方程的解代入到另一个方程中,从而得到一个只包含一个未知数的方程。
通过逐步代入,我们可以求解出所有的未知数。
例如,考虑以下方程组:2x + y = 7x - 3y = -1我们可以通过代入法来解决这个方程组。
首先,我们可以将第一个方程中的x 表示为y的函数:x = 7 - y。
然后,将这个表达式代入到第二个方程中,得到:7 - y - 3y = -1通过整理,我们可以得到一个只包含y的方程:-4y = -8。
解这个方程可以得到y的值为2。
将y的值代入第一个方程,可以求得x的值为3。
因此,方程组的解为x = 3,y = 2。
二、消元法消元法是解方程组的另一种常见方法。
它的基本思想是通过适当的变换,将方程组中的某个未知数的系数或常数项相互抵消,从而简化方程组的形式。
最终,我们可以得到一个只包含一个未知数的方程,从而求解出这个未知数的值。
考虑以下方程组:2x + y = 74x - 2y = 10我们可以通过消元法来解决这个方程组。
首先,我们可以将第一个方程的两边乘以2,得到:4x + 2y = 14然后,我们将这个方程和第二个方程相减,得到:(4x + 2y) - (4x - 2y) = 14 - 104y = 4通过解这个方程,我们可以得到y的值为1。
将y的值代入第一个方程,可以求得x的值为3。
因此,方程组的解为x = 3,y = 1。
三、矩阵法矩阵法是解方程组的一种更为简洁和高效的方法。
它将方程组表示为一个矩阵方程,并通过矩阵的运算来求解未知数的值。
考虑以下方程组:2x + y = 74x - 2y = 10我们可以将这个方程组表示为矩阵方程:⎡ 2 1 ⎤⎡ x ⎤⎡ 7 ⎤⎣ 4 -2 ⎦ * ⎣ y ⎦ = ⎣ 10 ⎦通过矩阵的逆运算,我们可以求解出未知数的值。
高中数学:求函数值域的方法十三种(二)
高中数学:求函数值域的方法十三种(二)五、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。
(解析式中含有分式和根式。
)【例1】求函数2211x x y x ++=+的值域。
【解析】原函数化为关于x 的一元二次方程,由于x 取一切实数,故有(1)当时,解得:(2)当y=1时,,而故函数的值域为【例2】求函数y x =+的值域。
【解析】两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y 的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
解法二:2(2)1(x 1)y x x x x =+-=+--]2,2[sin 1ππθθ-∈=-x )4sin(21cos sin 1πθθθ++=++=y 4344ππθπ≤+≤-14sin(22≤+≤-πθ原函数的值域为:【例3】已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。
【解析】2221x ax by x ++=+22(2)04(y 2)(y b)0y x ax y b a ⇒--+-=⇒∆=---≥2244(2b)y 8b a 0y -++-≤。
由于222()1x ax bf x x ++=+的值域为[1,3],故上式不等式的解集为{y|1≤y≤3}1221221328234y y b a b ab y y +=+=+⎧=±⎧⎪⇒⇒⎨⎨-===⎩⎪⎩【例4】求函数2212+++=x x x y 的值域。
高中数学常微分方程的解法
高中数学常微分方程的解法数学中,微分方程是研究变量之间关系的方程。
常微分方程是指只涉及一元函数及其导数的微分方程。
在高中数学中,常微分方程是一个重要的内容,其解法可通过多种方法来求解。
一、分离变量法分离变量法是常微分方程的常用解法之一。
首先,将微分方程中的变量分离到等式的两边,得到形如dy/dx = f(x)g(y)的方程。
接下来,将等式两边分别用dx和dy除以g(y)和f(x),并进行积分,得到∫1/g(y)dy = ∫f(x)dx。
最后,对两边的积分结果进行求解,得到y的表达式。
二、齐次方程法齐次方程法适用于形如dy/dx = f(y/x)的方程。
首先,令y = vx,将微分方程转化为关于v和x的方程。
然后,将dy/dx用v和x表示,并进行变量分离,得到dv/v = f(v-1)dx。
接下来,对等式两边进行积分,得到∫dv/v = ∫f(v-1)dx。
最后,再对两边的积分结果进行求解,得到v的表达式。
将v代回到y = vx中,即可得到y的函数表达式。
三、一阶线性微分方程法一阶线性微分方程的一般形式为dy/dx + P(x)y = Q(x),其中P(x)和Q(x)是已知函数。
解此类方程可使用一阶线性微分方程法。
首先,将方程重写为dy/dx = -P(x)y + Q(x)。
然后,利用积分因子e^∫-P(x)dx对方程两边进行乘法,得到e^∫-P(x)dy/dx + e^∫-P(x)Q(x) = 0。
接下来,对等式两边进行积分,得到∫e^∫(-P(x))dy = ∫(-e^∫P(x))Q(x)dx。
最后,再对两边的积分结果进行求解,并代回到y的表达式中,即可得到y的解。
四、变量替换法有些微分方程形式复杂,难以进行直接求解,此时可采用变量替换法。
通过合理选择新的变量,使得方程转化为更为简单的形式,然后再进行求解。
变量替换法的关键在于选取合适的变换形式,以简化微分方程的形式和求解过程。
五、常系数齐次线性微分方程法常系数齐次线性微分方程的一般形式为ay'' + by' + cy = 0,其中a、b、c为常数。
函数的12种解法
∴函数y的值域为y≠3的一切实数。点评:
对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。
练习:
求函数y=(x2-1)/(x-1)(x≠1)的值域。(
答案:
y≠2)
十二.不等式法
例6求函数Y=3x/(3x+1)的值域。
点拨:
先求出原函数的反函数,根据自变量的取值范围,构造不等式。
通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
解:
设t=√2x+1(t≥0),则。
于是≥
所以,原函数的值域为{y|y≥-}。
点评:
将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。
练习:
已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(
答案:
{f(x,y)|f(x,y)≥1})
十一.利用多项式的除法
例5求函数y=(3x+2)/(x+1)的值域。
点拨:
将原分式函数,利用长除法转化为一个整式与一个分式之和。
解:
y=(3x+2)/(x+1)=3-1/(x+1)。
点拨:
根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
解:
∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤
高中数学:求函数值域的方法十三种
高中数学:求函数值域的十三种方法一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性八、函数单调性法(☆)九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、一一映射法 十三、 多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。
【例1】求函数1y x =+的值域。
【解析】∵0x ≥,∴11x +≥, ∴函数1y x =+的值域为[1,)+∞。
【例2】求函数x 1y =的值域。
【解析】∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。
【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。
二. 配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
【例1】 求函数225,[1,2]y x x x =-+∈-的值域。
【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时, 故函数的值域是:[4,8]【变式】已知,求函数的最值。
【解析】由已知,可得,即函数是定义在区间上的二次函数。
将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数的最小值为,最大值为。
图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t(2)当∈t [-3,-2]时,求g(t)的最值。
高中数学函数与方程的解法
高中数学函数与方程的解法高中数学是学生们在学习过程中最常接触到的科目之一。
其中,函数与方程的解法是数学学习中的重要内容。
本文将探讨高中数学中函数与方程的解法,包括一元一次方程、一元二次方程、指数函数和对数函数等。
一、一元一次方程的解法一元一次方程是高中数学中最基础的方程类型之一。
解一元一次方程的方法有多种,其中最常用的是等式两边加减法、等式两边乘除法和消元法。
首先,等式两边加减法是最简单的解法之一。
我们可以通过将等式两边加减同一个数,使得方程的某一边消去某个项,从而求得未知数的值。
其次,等式两边乘除法也是常用的解法之一。
我们可以通过将等式两边乘以或除以同一个数,使得方程的某一边消去某个系数,从而求得未知数的值。
最后,消元法是一种更复杂但更灵活的解法。
通过将方程中的某个未知数消去,得到只含有一个未知数的方程,然后再用其他方法解这个方程,最终求得未知数的值。
二、一元二次方程的解法一元二次方程是高中数学中较为复杂的方程类型之一。
解一元二次方程的方法有多种,其中最常用的是配方法、因式分解法和求根公式法。
首先,配方法是解一元二次方程的基本方法之一。
通过将方程进行配方,将二次项拆分成两个一次项的和或差,从而将一元二次方程转化为一元一次方程或两个一元一次方程。
其次,因式分解法也是常用的解法之一。
我们可以通过将一元二次方程进行因式分解,找到方程的根,从而求得未知数的值。
最后,求根公式法是解一元二次方程的一种通用方法。
通过利用求根公式,即一元二次方程的根的公式表达式,我们可以直接求得方程的根。
三、指数函数的解法指数函数是高中数学中重要的函数类型之一。
解指数函数的方法有多种,其中最常用的是对数函数法和换底公式法。
首先,对数函数法是解指数函数的基本方法之一。
通过将指数函数转化为对数函数,我们可以利用对数函数的性质来求解指数函数的解。
其次,换底公式法也是常用的解法之一。
通过利用换底公式,即将指数函数的底换成其他底的对数函数,我们可以简化指数函数的计算,从而求得解。
函数方程的几种解法
函数方程的几种解法
函数方程是数学中的一种基本概念,它指的是一种表达式,可以用来描述特定数学关系的函数。
函数方程通常用来解决数学中的特定问题,它可以用来计算变量之间的关系,从而得出最终的结果。
函数方程的解法有多种,下面将介绍几种比较常见的解法:
一、图形解法。
图形解法是一种最简单的解法,它可以通过绘制函数图形来解决函数方程。
首先,根据函数方程中的变量和参数,画出函数图形,然后根据图形的形状和特征,可以解决函数方程。
二、分段函数解法。
分段函数解法是一种比较常用的解法,它可以将复杂的函数方程分解为若干个简单的子函数,每个子函数有不同的解法。
然后,根据子函数的解法,可以解出整个函数方程的解。
三、代数解法。
代数解法是一种比较传统的解法,它可以通过使用代数方法来解决函数方程。
这种方法通常要求解决者掌握一定的代数技巧,以便有效地解决函数方程。
四、数值解法。
数值解法是一种比较新的解法,它可以通过迭代法等方法,使用计算机来计算函数方程的解。
这种方法具有计算速度快,解法准确等优点,在解决复杂函数方程中有着巨大的优势。
以上就是函数方程的几种解法,它们各有优劣,在解决不同的函数方程时,需要根据实际情况来选择最合适的解法。
在使用上,要充分利用各种解法的优势,在正确理解函数方程的基础上,有效地解决数学问题。
高中函数解法
抽象函数问题有关解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 拼凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
解函数方程的几种方法
绪论在数学研究的许多领域中如代数学、几何学、概率论等都涉及函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型.函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题.由于函数方程形式多样,涉及面广,难度大,需要大量的数学基础知识.尤其是在中学数学教学中,函数方程是最基本、最易出现的问题,也是历年高考的重点.在中学教学和国内外数学竞赛中,经常遇到函数方程问题.这类题目一般是求解某一给定的函数方程,而数学上尚无一般方法可循.当然,较大一部分中学生在遇到这类问题时,常常没有比较清晰的解题思路.本文就着重以函数与方程的性质来讨论函数方程在中学数学中的应用,及解决问题的途径,并通过实际问题的求解过程来阐述.首先,我们会给出函数方程的相关概念包括函数方程的定义、函数方程的解以及解函数方程.其次,利用函数与方程的基本性质,就中学数学中常出现的方法进行归纳并结合相应的例题解析.当然由于中学数学中考查点的不同,我们的讨论也有所侧重.对常见的方法包括换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法等均会加重笔墨,尤其会给出一些较为典型的例题分析以及巧解的方法,而对于不常用的方法本文也会提到,以让读者了解到比较前全面的函数方程问题的解题策略.最后,就种种方法进行总结归纳.“法无定法”,关键在于人们对问题的观察、分析,进而选择最优的方法来解决问题.很多情况下,由于解决的途径并不唯一,所以在解决问题的时候一般采用多种方法同步求解,以达到简化求解过程的目的.1函数方程的一些相关概念1.1函数方程的定义含有未知函数的等式叫做函数方程.如()()f x f x-=,=-,()()f x f x+=等,其中()f x即是未知函数.f x f x(1)()1.2函数方程的解设某一函数()f x对自变量在其定义域内的所有值均满足某已知方程,那么把()f x就叫做函数方程f x就叫做已知函数方程的解.即能使函数方程成立的()的解.函数方程的解可能是一个函数,也可能是若干个函数或无穷多个函数或无解.如偶函数、奇函数、()1=-分别是上述各方程的解.f x x1.3解函数方程求函数方程的解或证明函数方程无解的过程就称为解函数方程.即指的是在不给出具体函数形式,只给出函数的一些性质和一些关系式而要确定这个函数,或求出某些函数值,或证明这个函数所具有的其他性质.2函数方程的常见解法由于函数与方程的性质极多,解题的方法也形式多样,出现较为频繁的有换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法、数学归纳法等等.2.1换元法(代换法)换元法又叫代换法或引进辅助未知数法或定义法.将函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数的定义域不发生变化),得到一个新的较为简单的函数方程,然后直接求解未知函数.但值得注意的是,某些换元会导致函数的定义域发生变化,这时就需要进行验证换元的可行性.例 2.1已知2-=,求()f x x(1cos)sinf x.分析此题是一个最基本的函数方程问题,要求解函数()f x的表达式,就需要将1cos xsin x进行转化.当然,我们可以先用换元法把x,y用t代替,消+和2去x,y,就得到一个关于t的解析式,再用x替代t,于是得解.但这里我们还给出了另外的解法,就是用()=的参数表达式进行求解.y f x解法一令1cos x t-=,所以c o s1=-,x t因为-≤≤,1cos1x所以x≤-≤,01cos2即t≤≤.02又因为22-==-,f x x x(1cos)sin1cos所以22=--=-+,(02)f t t t t()1(1)2t≤≤,故2=-+,(02)f x x x()2≤≤.x解法二设所求函数()=的参数表达式y f x=-,x t1c o s2y t=,sin即得=-,(1)c o s1t x2s i n t y=. (2)2+,消去参数t,得(1)(2)2-+=,(1)1x y整理,得22y x x =-+,[0x ∈,2],即2()2f x x x =-+,[0x ∈,2].在本题中,由于三角函数可以相互转化,很容易看出1cos x -与2sin x 之间的联系,然后直接利用换元法进行转化,但考虑到x (或t )的定义域,这个环节一般容易出错.故一般采用后面介绍的参数法相对来说也就简单多了.2.2 赋值法赋值和代换是确定适合函数方程的函数性质的基本方法,根据所给条件,在函数定义域内赋与变量一个或几个特殊值,使方程化繁为简,从而使问题获解.例 2.2.1 函数:f N N +→(N +为非负整数),满足:(i ) 对任意非负整数n ,有(1)()f n f n +>;(ii ) 对任意,m n N +∈,有(())()1f n f m f n m +=++.求(2001)f 的值.分析 本题欲求(2001)f 的值,则须了解()f n 有什么性质.由条件(i )、(ii )可以联想到(0)f 的取值是本题的关键,而分别利用条件(i )、(ii )进行推导,并结合反证法推出矛盾,得到(0)f 的唯一值,进而得解.解 令(0)f k =,其中k 为非负整数.由(ii)得()()1f n k f n +=+. (1)若0k =,则()()1f n f n =+,矛盾.故0k ≠,由(i )有(1)()()1f n k f n k f n +-<+=+. (2) 若1k >,则11n k n +-≥+,于是由(i ),得(1)(1)()1f n k f n f n +-≥+≥+, (3) 但(2)与(3)矛盾,故1k =是惟一解.当1k =时,式(1)为(1)()1f n f n +=+,此函数满足条件(i )、(ii ),所以得惟一解(2001)2002f =.例 2.2.2 解函数方程()()2()cos f x y f x y f x y ++-=.分析 此题是函数方程里较为典型的一个问题,在很多文章中都有提到.本题中方程含有,x y 两个未知数,对于一个方程,首先想到的就是消元,考虑到三角函数cos y 的特殊性质,可用一些比较特殊的值分别去代换,x y ,再求得()f x 的表达式.解 在原方程中令0x =,y t =得()()2(0)cos f t f t f t +-=, (1) 再令2x t π=+,2y π=得()()0f t f t π++=, (2) 又再令2x π=,2y t π=+得()()2()sin 2f t f t f t ππ++-=-, (3) (1)+(2)-(3)得()(0)cos ()sin 2f t f t f t π=+. 令(0)a f =,()2b f π=并将t 换成x 得 ()cos sin f x a x b x =+,(a ,b 均为任意常数).代入(1)式验证()()f x y f x y ++-cos()sin()cos()sin()a x y b x y a x y b x y =++++-+-2cos cos 2sin cos a x y b x y =+2cos (cos sin )y a x b x =+2()cos f x y =.所以()f x 是函数方程(1)的解.赋值法是很特殊的一种方法,首先它考验人们的“眼力”,即根据所给出的式子找出其规律;其次,就是“笔力”即计算方面的能力,所赋的值即某些特殊值要有助于解题;最后,不难看出赋值法其实就是与代换法、消元法等方法相结合的一种方法.如例2.2.1就是赋值法与反证法相结合,例2.2.2是赋值法、代换法、消元法结合的典型.2.3迭代周期法(递推法)函数迭代是一类特殊的函数复合形式.一般由函数方程找出函数值之间的关系,通过n 次迭代得到函数方程的解法.例 2.3.1 对任意正整数k ,令()f k 定义为k 的各位数字和的平方,求2001(11)f .分析 本题是迭代的简单运用题,由“()f k 定义为k 的各位数字和的平方”入手,可以找出11与函数方程以及函数值之间的关系,结合数列相关知识通过n 次迭代从而求解.解 由已知有 12(11)(11)4f =+=,2(11)((11))(4)16f f f f ===,322(11)((11))(16)(16)49f f f f ===+=,432(11)((11))(49)(49)169f f f f ===+=,542(11)((11))(169)(169)256f f f f ===++=,652(11)((11))(256)(256)169f f f f ===++=,…从而当n 为大于3的奇数时,(11)256n f =,当n 为大于3的偶数时,(11)169n f =,故2001(11)256f =.例 2.3.2 设()f x 定义在自然数集N 上,且对任意,x y N ∈,都满足(1)1f =,()()()f x y f x f y xy +=++,求()f x . 解 令1y =,得(1)()1f x f x x +=++,再依次令1x =,2…, 1n -,有(2)(1)2f f =+,(3)(2)3f f =+,…(1)(2)(1f n f n n -=-+-,()(1)f n f nn =-+, 依次代入,得()(1)23f n f =+++…(1)(1)2n n n n ++-+=, 所以(1)()2x x f x +=,()x N +∈. 前面的例2.3.1仅是迭代的入门题,可以直接根据函数方程找出函数值之间的关系,然后通过n 次迭代进行求解.而在迭代问题中,很大一部分题目并不是仅借助迭代的思想来解决的,而是综合所学知识进行求解.如例4.2就是赋予一些特殊值,再利用递推法简化问题,从而求解.2.4待定系数法待定系数法适用于所求函数是多项式的情形,且已知所求函数解析式的类型,可先设出一个含有特定系数的代数式,然后利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)而求出待定系数的值,或者消除这些待定系数,使问题得以解决.例 2.4.1 已知()f x 是一次函数,且[()]41f f x x =-,求()f x .解 因为()f x 是一次函数,不妨设()(0)f x ax b a =+≠,又因为[()]41f f x x =-,所以()()41f ax b a ax b b x +=++=-,即241a x ab b x ++=-,于是有24a =,1a b b +=-. 解这个方程组得2a =,或者 2a =-,13b =-, 1b =. 所以1()23f x x =-或()21f x x =-+. 本题考虑到()f x 是一次函数,故可设出()f x 的一般形式,再由条件[()]41f f x x =-代入()f x 进而对应求出a ,b .这属于较简单的待定系数法应用,而对于关系f 有很多次的就另当别论了.例 2.4.2 已知()f x 是一次函数,且10次迭代{[(f f f …())]}10241023f x x =+,求()f x .分析 观察本题,()f x 是一次函数且函数方程是一个10次迭代的方程,要怎样进行思考呢?只能依据题中最基本的条件进行解决,故而给出如下解法:解 设()(0)f x ax b a =+≠,则(2)2()[()]()()(1)f x f f x f ax b a ax b b a x a b ==+=++=++,(3)(2)232()(()){[()]}[(1)](1)f x f f x f f f x f a x a b a x a a b ===++=+++, …(9)1098(())(f f x a x a a =+++…1)a b ++.因为(10)()10241023f x x =+,所以10101024(2)a ==±,98(a a ++…1011)10231a a b b a -++==-. 解方程组得2a =,1b =或2a =-,3b =-.故所求的一次函数为()21f x x =+或()23f x x =--.观察题中条件,问题的难度比例2.4.1的增加了许多,这又怎么做呢?万变不离其宗,仍采用待定系数法进而找出规律,并结合等比数列相关性质而求得a ,b ,但要注意解决这类问题时千万不要漏根.2.5 数学归纳法数学归纳法主要适用于定义域是正整数的函数方程,其解题方法是通过对(1)f ,(2)f ,(3)f ,…的具体计算,加以概括抽象,提出对()f n 的解析式的一个猜想,然后用数学归纳法对猜想进行证明.根据已知条件,首先运用赋值法求出函数()f x 在某些点的特殊值,再猜想()f x 的表达式,最后用数学归纳法证明此猜想.例 2.5.1 函数()f n 的定义域为正整数集,值域为非负整数集,所有正整数m ,n 满足()()()0f m n f m f n +--=或1; (2)0f =,(3)0f >,(9999)3333f = ,求(1982)f .解 由(11)(1)(1)0f f f +--=或1,而0(2)2(1)f f =≥,所以(1)0f =,由(21)(2)(1)0f f f +--=或1,得(3)0f =或1,因为(3)0f >,所以(3)1f =,同理,可推得(32)2f ⨯≥,(33)3f ⨯≥…已知(9999)(33333)3333f f =⨯=,猜想(3)f k k ≥,(3333)k <.下面用数学归纳法证明.(1)由上可知,1k =,2,3时,结论成立.(2)假设对小于k 的一切自然数,结论成立.则(3)[3(1)3]f k f k k =-+[3(1)](3)f k f ≥-+11k ≥-+k =,即(3)(3333)f k k k ≥<,如果(3)1f k k ≥+,则(9999)(99993)(3)f f k f k ≥-+33331k k ≥-++3333>,与题设矛盾,所以(3)f k k =,显然,有660(1982)661f ≤≤.若(1982)661f =,则(9999)(5198289)f f =⨯+5(1982)(89)f f ≥+5661(89)f ≥⨯+330529≥+3333>,与题设矛盾.所以(1982)660f =.例 2.5.2 已知2()2f x x x =+,求()n f x .解 由2()(1)1f x x =+-,因此有22242()(())((1)1)(1)1(1)1f x f f x f x x x ==+-=+-=+-,233222()(())((1)1)(1)1f x f f x f x x ==+-=+-, 猜想2()(1)1nn f x x =+-.下面用归纳法证明.(1)显然2n =时,猜想成立.(2)假设对n 成立,即 2()(1)1nn f x x =+-,则 (1)()(())n n f x f f x +=2((1)1)n f x =+- 22((1)11)1n x =+-+-12(1)n x +=+.综合(1)、(2),对任意n N ∈,有2()(1)1n n f x x =+-.数学归纳法一般适用于证明题,但有时候不排除这类找规律、猜想进而证明猜想的问题.遇到这种问题的时候,首先要找准规律,证明起来也就会很轻松了.2.6数列法利用等比、等差数列相关知识(通项公式、求和求积公式),求定义在N 上的函数()f x .例 2.6 已知(1)1f =,且对任意正整数n 都有(1)3()2f n f n +=+,求()f n . 解 在已知等式两边都加上1,得(1)12f +=,(1)13()213[()1]f n f n f n ++=++=+,所以(1)13()1f n f n ++=+. 因此,数列{()1}f n +是首项为(1)12f +=,公比为3的等比数列,它的第n 项为1()123n f n -+=⋅,故1()231n f n -=⋅-.熟悉等差、等比数列的相关性质如公差(比)、求和公式等,运用起来解决本题就会感到得心应手.2.7 反证法反证法在数学上使用得相当普遍,即一些问题从正面直接证明有困难,而它的结论的相反结论比原结论更具体,更明确,易于导出矛盾,这时一般采用反证法.先从已知条件中得出满足函数方程的一些特殊解,然后再用反证法证明除了这些解以外无其他解.例 2.7 设f :(0,)(0+∞→,)+∞是连续函数,若对x ∀,(0y ∈,)+∞,有 ()(())f x f xf y y=. (1) 证明此函数方程无解.证明 在(1)中取1x y ==,得((1))(1)f f f =, 取(1)y f =,得()(((1)))(1)f x f xf f f =, 再取1y =,得((1))()f xf f x =.从而有()()((1))(((1)))(1)f x f x f xf f xf f f ===, 即(1)1f =.在(1)中取1x =,得(1)1(())f f f y y y==, 联立(1)推出()((()))()()f x x f xf f y f f y y==,即()()()x f x f y f y=. 取x st =,y t =,s ∀,(0t ∈,)+∞,有()()()f s t f t f s =,s ∀,(0t ∈,)+∞, (2) 我们知道满足上面函数方程的连续函数为()a f x x =,(ln ())a f e =. 由1(())f f y y=,知 21a y y -=,即21a =-.矛盾,所以(1)没有连续解. 2.8不等式法在推导过程中,主要利用不等式02a b a +≥≥,0)b ≥的等式成立的充要条件a b =.例 2.8 设()f x 的定义域为(0,1),且()(1)2()(1)f x f x f y f y -+=-,x ∀,(0y ∈,1). (1) 若()0f x >,(0x ∀∈,1)且1()12f =,求f x (). 分析 本题给出了函数()f x 的一系列成立的条件,只要依据条件进行思考就很容易解决了.首先我们知道函数()f x 有一个特殊值1()12f =,而函数方程(1)中有,x y 两个未知量,故而解决问题时考虑到消元,并尽量结合1()2f 的值来使问题简化.解 在(1)式中取12y =,得 ()(1)2()(1)11()(1)22f x f x f x f x f f -=+=+--, (2) 再在(1)式中取12x =,y x =得11()()11222()(1)()(1)f f f x f x f x f x =+=+--, (3) 把(2)和(3)相加得 411()(1)()(1)f x f x f x f x =++-+-≥4=, 所以1()()f x f x =, 即2(())1f x =,因为()f x 是正的,故()1f x ≡,(0x ∀∈,1).3 其它方法前面介绍的几种方法在中学数学中比较常见,应用起来也得心应手.但初等问题何其繁多,解决的途径也就形式多样.还有很多其它的方式,由于本文篇幅有限,在此仅给出方法及其概念.如:参数法、配凑法、通解问题、多项式法以及柯西法等.参数法即先设参数再消去参数得出函数的对应关系,而求出()f x .前面在例2.1.1的解法二已经就参数法进行作答,在此我们就不再讲解了.配凑法是根据函数的概念、对应法则并结合配方法求解函数方程的一种基本方法.当我们不能利用设元法求解时,配凑法不失为一种有效的方法,也是应用定义的一种方法.前面已经介绍了很多求解函数方程的方法.然而,求一个或若干个解也许容易,如果要求出一个函数方程的所有解常常遇到困难.这时就是所谓的通解问题.我们知道,只要给出函数在一个周期内的函数值,则需要将定义域延拓到整个实数域R 上,从而求得的()f x 就是相应函数方程的解.例如函数方程()()f x T f x +=,x R ∈,对以[0,]T 为定义域的任意函数()g x ,都可以得到函数方程的解()g x , 当0x T ≤≤时;()f x =()g x nT -, 当(1)nT x n T ≤≤+时.其中n为整数.当函数方程中的未知函数是多项式时,就称为多项式函数方程.这是函数方程中较为常见、也较简单的一类.多项式法就是利用多项式相等的原理,通过比较等式两边的次数、系数,或通过比较方程的根的个数来求出多项式函数方程的解的方法.方程()()()+=称之为Cauchy方程,是法国数学家Cauchy最早研f x y f x f y究并解决的.他的解法是一种逐步扩充其定义域的推理方法,即先在自然数集上,求其函数方程应具有的形式,然后逐步证明这种解的定义域可扩充到整数、有理数、无理数直到实数.这种解题方法后人称之为Cauchy方法.在()f x单调(或连续)的条件下,先将自变量考虑成自然数求出函数方的解,然后证明该解的表达式当其自变量取成整数、有理数及实数时仍然满足该函数方程,从而获得函数方程的解.但它受函数连续性要求的限制.柯西法在高等数学中的使用频率极高,故在中学里只需了解就可.结论由于函数方程的形式相当多,解决的方式也就相对的丰富.尤其是在高等数学中,运用微积分解决函数方程问题就显得非常简单了;但在初等解法里,方式方法丰富多样:换元法(代换法)、赋值法、待定系数法、迭代周期法(迭代法)、数学归纳法、数列法、反证法及不等式法等,都是常见而且易懂的初等解法.但在解决很多问题时,不仅仅使用一种方法,也有几种方式相结合而进行的,如:例2.2.2就是换元法与赋值法的结合,例2.7是赋值法与反证法的结合.在求解某些问题时,通过构造函数方程,也可以将问题转化为函数方程分解,从而使问题比较简化、明了.参考文献[1] 张伟年、杨地莲、邓圣福.函数方程[M].成都:四川教育出版社,2002,36-72.[2] 陈刚、陈凌云.函数方程的初等解法[J].绥化师专学报.1996,第1期:120.[3] 黄洪琴.函数方程[J].成都教育学院报.2005,第19卷(6):117-118.[4] 毕唐书.全线突破.高考总复习·数学(理科版)[M].北京:中国社会出版社,2005,13.[5] 陈传理、张同君.竞赛数学教程[M].第2版.北京:高等教育出版社,2005,170-170.[6] 聂锡军.函数方程的解法及应用[J].丹东师专学报.1997,总第68期:20.[7] 姚开成.函数方程的几种解法[J].新疆石油教育学院学报.2000,第5卷(5):46-47.[8] 张同君、陈传理.竞赛数学解题研究[M].北京:高等教育出版社,2000(2005重印),72-75.[9] 余元希.初等代数研究(下册)[M].北京:高等教育出版社,1988(2004重印),344-345.[10] 蒋国宝.函数方程的解法[J].宁德师专学报(自然科学版).1998,第10卷(1):37-38.[11] 赵伟.解函数方程的若干初等方法[J].中学数学月刊.2004,第6期:30-31.致谢在本篇论文的选题,以及写作过程中,承蒙指导教师代泽明副教授的悉心指导,多次修改终于完成了本篇论文.在此我向代老师致以诚挚的感谢:通过这次论文的编写我感受到了学术编写的困难和乐趣,深省数学知识在各学科中的重要作用.同时,也感谢同组的所有同学,他们在我写作此篇论文的过程中也给予了我很多帮助.大学四年转瞬即逝,作为一名即将毕业的学生,我感谢绵阳师范学院的所有老师,感谢你们在这四年里对我的谆谆教导;感谢你们在这四年里对我的培养;感谢你们在这四年里对我的关怀;感谢你们为祖国培养了一批又一批优秀的人民教师.最后祝愿绵阳师范学院的明天更美好!祝愿数学与信息科学系前程似锦!祝愿所有老师身体健康,工作顺利!范臣菊 2007年5月30日。
高中数学函数题的解题技巧
高中数学函数题的解题技能高中数学中的函数是非常难的,很多同学在函数部分都会丢分,那么高中数学函数题型及解题技能是什么?下面是作者为大家整理的关于高中数学函数题的解题技能,期望对您有所帮助!高中数学函数解题思路方法一视察法1.视察函数中的特别函数;2.利用这些特别函数的有界性,结合不等式推导出函数的值域方法二分离常数法1.视察函数类型,型如;2.对函数变形成情势;3.求出函数在定义域范畴内的值域,进而求函数的值域方法三配方法1.将二次函数配方成;2.根据二次函数的图像和性质即可求出函数的值域方法四反函数法1.求已知函数的反函数;2.求反函数的定义域;3.利用反函数的定义域是原函数的值域的关系即可求出原函数的值域方法五换元法1.第一步视察函数解析式的情势,函数变量较多且相互关联;2.另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域数学函数题解题技能1.函数值域常见求法和解题技能函数的值域与最值是两个不同的概念,一样说来,求出了一个函数的最值,未必能肯定该函数的值域,反之,一个函数的值域被肯定,这个函数也未必有最大值或最小值.但是,在许多常见的函数中,函数的值域与最值的求法是相通的、类似的.关于求函数值域与最值的方法也是多种多样的,但是有许多方法是类似的,归纳起来常用的方法有:视察法、配方法、换元法、反函数法、判别式法、不等式法、利用函数的单调性、利用三角函数的有界性、数形结合法等,在挑选方法时,要注意所给函数表达式的结构,不同的结构挑选不同的解法。
2.函数奇偶性的判定方法及解题策略肯定函数的奇偶性,一样先考核函数的定义域是否关于原点对称,然后判定与的关系,常用方法有:①利用奇偶性定义判定;②利用图象进行判定,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以免对自变量的繁琐的分类讨论。
高中数学重点公式归纳总结
高中数学重点公式归纳总结以下是高中数学中一些重点公式的归纳总结:1. 二次方程的解法:- 一般形式:ax^2 + bx + c = 0,其中a≠0,解为x = (-b ±√(b^2 - 4ac)) / (2a) - 完全平方式:(a±√a)^2 = a^2 ± 2a√a + a- 最值相关:若a>0,则x^2与0的距离最小值为0,最大值为+∞;若a<0,则x^2与0的距离最小值为0,最大值为-a/42. 数列的通项公式:- 等差数列:a_n = a_1 + (n-1)d,其中a_n为第n项,a_1为首项,d为公差- 等比数列:a_n = a_1 * r^(n-1),其中a_n为第n项,a_1为首项,r为公比3. 求和公式:- 等差数列的前n项和:S_n = (a_1 + a_n) * n / 2- 等比数列的前n项和:S_n = a_1 * (1 - r^n) / (1 - r),其中r≠14. 三角函数相关公式:- 正弦函数:sin(A ± B) = sin A cos B ± cos A sin B;sin2A = 2sinAcosA- 余弦函数:cos(A ± B) = cos A cos B - sin A sin B;cos2A = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A- 正切函数:tan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B);tan2A = (2tanA) / (1 - tan^2 A)5. 平面几何公式:- 直角三角形:勾股定理 a^2 + b^2 = c^2- 三角形面积公式:S = 1/2 * a * b * sin C,其中a、b为两边,C为夹角- 直线斜率公式:m = (y_2 - y_1) / (x_2 - x_1),其中(x_1, y_1)、(x_2, y_2)为直线上两点的坐标- 两直线垂直:m_1 * m_2 = -1,其中m_1、m_2为直线斜率这些是高中数学中的一些重点公式归纳总结,希望对你有帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中函数的几种解法
长乐高级中学叶周
一.观察法
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
二.反函数法
当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
四.若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
五.最值法
对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。
点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
六.图象法
通过观察函数的图象,运用数形结合的方法得到函数的值域。
例6求函数y=∣x+1∣+√(x-2)2 的值域。
点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。
以上几种方法希望对各位有所帮助.。