解题秘诀:二次函数最值的4种解法(1)
二次函数求最值的方法
二次函数求最值的方法一提及函数就会让很多人望而生畏,不过也有很多人热衷于探索函数的本质。
函数的概念并不难,尤其是曲线函数。
在曲线函数中,二次函数是一种重要和实际的分析方法。
这篇文章将为你普及,如何利用二次函数来求取最大值和最小值。
首先,我们必须明白函数解析式。
在数学中,函数被定义为:给定一组输入值,每个输入值都有一个对应的输出值,而这种输入和输出定义关系就称为函数。
我们有一个函数 f (x),其中每个值 x应一个值 f (x)。
函数 f (x)阶,决定了函数的特征,其中,二次函数的解析式为:f(x)=ax2+bx+c 。
参数 a、b c为实数,并且 a≠0 。
通常情况下,求函数 f (x)最大值和最小值,只需要分析函数的解析式,就可以计算出最大值与最小值的值。
接下来,我们就来分析一下求二次函数最值的方法:二次函数最大值及最小值解法:(1)首先,求二次函数的极值点,即满足:f′(x)=0则 x= -b/2a(2)其次,求出在 x= -b/2a的函数值,即:f (-b/2a)= (a(-b/2a)2+b(-b/2a)+c)=-b2/4a+c(3)最后,比较 -b2/4a+c f (x)其它 x 上的值,若 -b2/4a+c 于其它 x 上函数值,则 x = -b/2a,函数 f (x)值-b2/4a+c 为最大值;若 -b2/4a+c于其它 x 上函数值,则其它 x 上函数值取最大值。
以上就是求解二次函数最值的方法,总结起来,我们需要做以下几件事:(1)求函数 f′(x)=0解;(2)求函数 f (-b/2a)值;(3)求最大值或最小值时,取最大或最小值。
在实际应用中,我们可以利用上述步骤求解一个二次函数的最值,该方法简单实用,也可以用来解决复杂函数的求解。
从上面可以看出,求解和研究函数可以帮助我们更好地理解数学,进而可以更好地运用它们去求解实际应用的问题。
二次函数求最值的方法正是这种应用的一种实例,不仅可以让我们更好地理解曲线函数,也可以让我们更好地应用它们来求解实际的问题。
二次函数的最值问题求解
二次函数的最值问题求解二次函数是数学中常见的一种函数形式,它的一般形式可以表示成f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。
而二次函数的最值问题是指求解二次函数在给定定义域上的最大值或最小值的过程。
一、二次函数的最值问题一般求解方法要解决二次函数的最值问题,一般可以采用以下几个步骤:1. 确定二次函数的开口方向:根据二次系数a的正负性来确定开口是向上还是向下。
当a > 0时,二次函数开口向上;当a < 0时,二次函数开口向下。
2. 求解二次函数的顶点坐标:顶点坐标可以通过公式x = -b / (2a)求得。
将x = -b / (2a)带入函数表达式中,得到对应的y值。
顶点的坐标表示了二次函数的最值。
3. 判定定义域:根据问题给出的条件或定义域限制,确定二次函数的定义域。
4. 推导最值:根据二次函数的开口方向和定义域,判定二次函数的最值。
当二次函数开口向上时,最值为最小值;当二次函数开口向下时,最值为最大值。
二、举例求解二次函数的最值问题为了更好地理解二次函数的最值问题,以下通过一个具体的例子来进行求解:已知二次函数f(x) = x^2 - 4x + 3,求解其最小值。
1. 确定开口方向:由于二次函数的系数a = 1 > 0,所以函数的开口是向上的。
2. 求解顶点坐标:通过公式x = -b / (2a)求得x的值。
将函数f(x)的系数代入计算,有x = -(-4) / (2*1) = 2。
将x = 2带入函数表达式f(x)中,计算得y = (2)^2 - 4(2) + 3 = -1。
因此,顶点坐标为(2, -1)。
3. 判定定义域:对于该函数来说,定义域是全体实数。
4. 得出最小值:由于二次函数开口向上,所以顶点的y值即为最小值。
因此,该二次函数的最小值为-1。
通过以上的计算,我们成功地求解了二次函数的最值问题。
三、总结在实际问题中,二次函数的最值问题是一类常见且重要的数学问题。
二次函数最大值,最小值,有几种求法?
二次函数最大值,最小值,有几种求法?
二次函数一般式为y=ax^2+bx+c,求最值问题时一般先看开口方向,再确定最大值或者最小值,可以选择公式法直接求最大值或者最小值,但同时要注意到有时计算过程非常复杂,可以选择代入法求,以上是普通情况.到高中更多的是给定区间求函数最大值或者最小值,此时不可轻易公式法或者代入法去求了,此时要用到数形结合法.更难的要进行分类讨论,才能求到最值.
公式法
二次函数开口向上,则存在最小值;若二次函数开口向下,则存在最大值.
代入法
在公式求解过程中,难免遇到计算比较麻烦的情况,若只想到公式法,可能会在计算上出现错误.为了减小错误发生的机率,我们可以在适当的情况下选择用代放法求最值.
配方法
此方法使用的前提是要会配方法,不懂的还是不要用了.
数形结合与分类讨论法
数形结合可能会在初中涉及一点点,但是讨论对称轴或者区间的可能在高中出现比较多.我直接举两个简单例子说明.
1.数形结合
2.讨论区间
3.讨论对称轴
综上,就是二次函数最值问题的求解方法,最下面两种可以了解一下,初中阶段用得并不多,前面几种用得比较多.我是学霸数学,欢迎关注!。
二次函数求最值的六种考法(含答案)
二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。
二次函数最值问题及解题技巧(个人整理)
一、二次函数线段最值问题之阳早格格创做1、仄止于x轴的线段最值问题1)最先表示出线段二个端面的坐标2)用左侧端面的横坐标减去左侧端面的横坐标3)得到一个线段少闭于自变量的二次函数4)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值2、仄止于y轴的线段最值问题1)最先表示出线段二个端面的坐标2)用上头端面的纵坐标减去底下端面的纵坐标3)得到一个线段少闭于自变量的二次函数剖析式4)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值3、既没有服止于x轴,又没有服止于y轴的线段最值问题1)以此线段为斜边构制一个曲角三角形,并使此曲角三角形的二条曲角边分别仄止于x轴、y轴2)根据线段二个端面的坐标表示出曲角顶面坐标3)根据“上减下,左减左”分别表示出二曲角边少4)根据勾股定理表示出斜边的仄圆(即二曲角边的仄圆战)5)得到一个斜边的仄圆闭于自变量的二次函数6)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值7)根据所供得的斜边仄圆的最值供出斜边的最值即可二、二次函数周少最值问题1、矩形周少最值问题1)普遍会给出一面降正在扔物线上,从那面背二坐标轴引垂线形成一个矩形,供其周少最值2)可先设此面坐标,面p到x轴、y轴的距离战再乘以2,即为周少3)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值2、利用二面之间线段最短供三角形周少最值1)最先推断图形中那些边是定值,哪些边是变量2)利用二次函数轴对于称性及二面之间线段最短找到二条变更的边,并供其战的最小值3)周少最小值即为二条变更的边的战最小值加上没有变的边少三、二次函数里积最值问题1、准则图形里积最值问题(那里准则图形指三角形必有一边仄止于坐标轴,四边形必有一组对于边仄止于坐标轴)1)最先表示出所需的边少及下2)利用供里积公式表示出头积3)得到一个里积闭于自变量的二次函数4)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值2、没有准则图形里积最值问题1)分隔.将已有的没有准则图形通太过隔后得到几个准则图形2)再分别表示出分隔后的几个准则图形里积,供战3)得到一个里积闭于自变量的二次函数4)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值或者1)利用大减小,没有准则图形的里积可由准则的图形里积减去一个或者几个准则小图形的里积去得到2)得到一个里积闭于自变量的二次函数3)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值。
二次函数的最值问题
二次函数的最值问题二次函数是一种常见的数学函数,其表达式为f(x) = ax^2 + bx + c,其中a、b、c为常数,而x为自变量。
在数学中,我们经常遇到二次函数的最值问题,即求解f(x)的最大值或最小值。
针对二次函数的最值问题,我们可以通过以下步骤进行求解:步骤一:确定二次函数的开口方向首先,我们需要确定二次函数的开口方向,即判断a的正负情况。
当a > 0时,二次函数开口向上;当a < 0时,二次函数开口向下。
步骤二:求解二次函数的顶点坐标二次函数的顶点坐标即为其最值的坐标。
对于开口向上的二次函数,顶点坐标为(-b/2a, f(-b/2a));对于开口向下的二次函数,顶点坐标仍为(-b/2a, f(-b/2a))。
步骤三:判断最值根据步骤二求得的顶点坐标,我们可以进一步判断二次函数的最值。
当二次函数开口向上时,f(x)在顶点处取得最小值;当二次函数开口向下时,f(x)在顶点处取得最大值。
例如,我们考虑一个二次函数f(x) = x^2 - 4x + 5。
首先,我们确定a = 1 > 0,因此二次函数开口向上。
然后,根据顶点公式可得顶点坐标为(-(-4)/2*1, f(-(-4)/2*1)) = (2, 1)。
因为二次函数开口向上,所以f(x)在顶点处取得最小值。
通过以上步骤,我们可以求解二次函数的最值问题。
需要注意的是,有时候我们也需要考虑定义域的限制,以及可能存在的最值点。
在实际应用中,二次函数的最值问题广泛出现于多个领域。
比如在物理学中,我们可以利用二次函数的最值问题来研究抛体运动的最大高度或最远距离;在经济学中,我们可以借助二次函数的最值问题来优化生产成本或最大化利润。
总而言之,二次函数的最值问题是数学中常见的一类问题,通过确定开口方向、求解顶点坐标以及判断最值,我们可以准确求解二次函数的最大值或最小值。
这个问题在实际中有着广泛的应用,是我们学习数学的重要内容之一。
以上为二次函数的最值问题的相关讨论,希望对你有所帮助。
二次函数的最值
二次函数的最值二次函数是一种非常常见和重要的数学函数形式,具有许多应用和特点。
其中一个重要的特点就是它的最值。
本文将介绍二次函数的最值问题,包括如何求解最值以及最值的应用。
一、最值的概念在数学中,最值是指一个函数在给定定义域上取得的最大值或最小值。
二次函数的最值是指二次函数在定义域内取得的最大值或最小值。
二、最值的求解求解二次函数的最值可以通过求导数或者求二次函数对称轴来实现。
1. 求导数法对于一般二次函数y = ax^2 + bx + c,其中a、b、c为常数,我们可以通过求导数来找到最值。
首先,对二次函数求一阶导数,然后令导数等于0,即求解方程ax^2 + bx + c = 0。
这样可以找到二次函数的驻点,将驻点代入二次函数,得到最值。
2. 对称轴法对于一般二次函数y = ax^2 + bx + c,我们可以通过求其对称轴来找到最值。
二次函数的对称轴公式为x = -b / (2a)。
将对称轴的x值代入二次函数,即可得到最值。
三、最值的应用最值问题在实际应用中有着广泛的应用,尤其是二次函数的最值。
1. 经济学应用在经济学中,二次函数的最值问题常用于研究成本、利润或者效益等方面。
通过分析二次函数的最值,可以帮助经济学家做出更合理的决策。
2. 物理学应用在物理学中,二次函数的最值问题常用于研究物体的运动轨迹、能量等方面。
通过分析二次函数的最值,可以帮助物理学家预测和解释实验现象。
3. 工程学应用在工程学中,二次函数的最值问题常用于研究设计优化、材料选取等方面。
通过分析二次函数的最值,可以帮助工程师在设计和实施工程项目时作出最佳决策。
四、例题演示假设有一个二次函数y = -x^2 + 2x + 3,我们来求解它的最值。
1. 求导数法首先,对二次函数求导数,得到y' = -2x + 2。
令导数等于0,即-2x + 2 = 0,解得x = 1。
将x = 1代入二次函数,得到y = 4。
所以,二次函数y = -x^2 + 2x + 3的最值为y = 4。
求二次函数的最值的四种方法
即Y 最 小 值 =m; 当a < 0时 , ) , ≤m( m 为常数 ) , 即
下面分别用这 四种方法求此二次 函数的最
例 求二 次 函数 y :百 1 : +3 + 的最 小
值.
值.
分析 : 求二 次 函数 y = +b x +c ( a ≠0)
的最值 , 一般有以下 四种方法. ( 1 ) 配方 法 : 将y : +b x +c ( a ≠0) 通
江西省 宜黄县神 岗 中学 许生友
一
题 多解 , 可 以发 挥 例 题 潜 在 的 多 种 价 值 ,
( 4) 判别式法 : 对 于 Y=毗。 - 4 - b x+c( 0≠
, 可变 形 为 z A - b x - 4 - ( C -y) =0 . 因 为 为 使 同学们 能灵活运用所 学知识 解决问题 ,也 能 0) 所 以A >0 i . 当a > 0时 , ≥m( m 为常数 ) , 使 同学们 温故知新 , 拓展 思维. 下面 以求 二次 函 实数 , 数最值 问题为例进行说 明.
解法一 : ( 配方法 ) y = 1( + ) + 1=
过 配 方 , 化 成Y = 。 ( + b) + 笼 . 当
0 > 0时 , Y最 小 值 =
.
{ ( 4 - 6 x + 3 。 一 9 ) + = 吉 ( + 3 ) 。 一 4 .
%
4×
2
b ( - 去) + c =
;
解 法三 : ( 直接法 )此题 中 , 口 = , b =3 ,
( 3 ) 直接法 : 对于 y =a x +b x +c ( a #0 ) ,
丢, 。 . ‘ 口 = 专 > o . , , 有 最 小 值 .
初中数学:二次函数面积最值问题的4种解法.doc
初中数学:二次函数面积最值问题的4种解法原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC 的面积最大值,若没有,请说明理由。
考试题型,大多类似于此。
求面积最大值的动点坐标,并求出面积最大值。
一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。
通过公式计算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。
方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。
请看解题步骤。
解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。
这是三角形面积表达方法的一种非常重要的定理。
铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。
因为,铅锤定理,在很多地方都用的到。
这里,也有铅锤定理的简单推导,建议大家认真体会。
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。
设动点P的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的计算公式,得出二次函数,必有最大值。
解法三:切线法。
这其实属于高中内容。
但是,基础好的同学也很容易理解,可以看看,提前了解一下。
解法四:三角函数法。
请大家认真看上面的解题步骤。
总之,从以上的四种解法可以得出一个规律。
过点P做辅助线,然后利用相关性质,找出各元素之间的关系。
设动点P的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点式,求出三角形面积的最大值。
对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题中,求三角形面积最大值问题,就非常简单了。
“二次函数最值”4种解法
“二次函数最值”4种解法
二次函数作为初中函数知识板块中最复杂的函数,无论是平常的考试中,还是中考中都占据非常重要的位置。
作为初三数学学习中的一个重点,也是难点,在平常的考试,乃至中考中占有很大的比重,尤其是在大型考试的最后三题中,必有一题是二次函数的综合题。
在学习二次函数过程中,我们时常会碰见一类题目,试图让你求竖直线段最大值,抑或三角形面积最大值,我们常用的解题伎俩是几何问题代数化,从而将问题得到完美的转化,只不过在求解的过程中,对于逻辑性不是很好的同学思考路程难免有些长!
但就近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合,一般作为中考的压轴题存在。
可在实际的学习中,无数学生一提到二次函数,都会异口同声的说二次函数太难了!在考试里一做到二次函数的压轴题就一脸茫然,怀疑自己到底有没有学过二次函数。
针对这一现状,今天,老师就特地为大家整理了一份“二次函数最值”4种解法,并附有例题+解析,介绍几种不同的解题方法,供同学们参考,都掌握了之后一定会在压轴题上有一个大的提升。
此外,如需更多完整版学习资料,都可以通过文末方式找我免
费领取!。
二次函数求最值方法总结
二次函数求最值方法总结二次函数是高中数学中一个非常重要的概念,它的图像非常常见且有着广泛的应用。
对于一个二次函数,我们常常需要求解其最值,即求出函数的最大值或最小值点。
在解决这类问题时,我们可以采用以下几种方法。
一、图像法图像法是最直观也是最常用的求解二次函数最值的方法之一、我们可以通过观察二次函数的图像来判断最值的位置。
1. 对于一般形式的二次函数$y=ax^2+bx+c$,若$a>0$,则抛物线开口朝上,最值为最小值;若$a<0$,则抛物线开口朝下,最值为最大值。
因此,我们只需判断二次函数的a值的正负即可。
2. 另外,对于一般形式的二次函数$y=ax^2+bx+c$,我们可以求出它的顶点坐标。
二次函数的顶点坐标为$(x,y)$,其中$x=-\frac{b}{2a}$,$y=f(x)=f\left(-\frac{b}{2a}\right)=c-\frac{b^2}{4a}$。
当x为顶点时,y为函数的最值。
二、完全平方式完全平方式是通过将二次函数进行平方式来求解最值。
这个方法主要基于二次函数的完全平方式。
1. 对于一般形式的二次函数$y=ax^2+bx+c$,我们可以通过完全平方方式将其转化为$y=a(x-h)^2+k$的形式。
其中,h为$x=-\frac{b}{2a}$时的x值,k为$f(-\frac{b}{2a})$的值。
此时,最值点为$(h,k)$。
2. 对于二次函数的完全平方法,我们可以用符合二次差法,即$(p+q)^2=p^2+2pq+q^2$(p、q为实数)来得到完全平方式的表达式。
具体步骤如下:a. 首先,将二次函数转化为$y=ax^2+bx$的形式。
即去掉常数项,将$c$设为0。
b. 将二次函数中的二次项系数和一次项系数进行平均分解,得到$a(x+\frac{b}{2a})^2-\frac{b^2}{4a}$。
c. 进一步化简,得到$a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$。
二次函数最值问题解题技巧
二次函数最值问题解题技巧二次函数最值问题是高中数学中常见的一类问题,也是中考、高考中经常出现的题型之一。
解题时需要掌握一些解题技巧,下面就介绍一些二次函数最值问题的解题技巧。
1. 求最值的方法二次函数的最值可以通过求解二次函数的顶点来得到,顶点即为最值点。
二次函数的顶点公式为:(-b/2a , f(-b/2a))。
其中,a、b、c分别为二次函数的系数,f(x)表示函数值。
2. 求最值的条件要求二次函数的最值,必须先要满足二次函数的a值不为0,否则该函数就不是二次函数。
其次,需要根据二次函数的符号来判断最值,当a>0时,函数的最小值为f(-b/2a),当a<0时,函数的最大值为f(-b/2a)。
3. 求最值的步骤求解二次函数的最值,一般可以分为以下几个步骤:(1)将二次函数化简为标准形式:y=ax+bx+c。
(2)求出二次函数的顶点坐标:(-b/2a , f(-b/2a))。
(3)判断二次函数的最值:当a>0时,函数的最小值为f(-b/2a);当a<0时,函数的最大值为f(-b/2a)。
(4)用最值来解题:根据题目要求,将二次函数的x值代入函数中求出对应的y值,从而得到函数的最值。
4. 拓展除了方法和步骤外,还有一些需要注意的点:(1)二次函数最值问题常常伴随着图像问题,需要将函数的图像画出来,从而更直观地理解问题。
(2)对于一些复杂的二次函数,可以借助计算器等工具来求解,但需要掌握求解方法和步骤。
(3)对于二次函数最值问题的解题,需要练习多种不同类型的题目,从而提高解题能力。
总之,掌握二次函数最值问题的解题技巧,需要学生在学习中不断积累,多加练习,从而提高数学解题能力。
二次函数最值问题及其解决方法
二次函数最值问题是指在二次函数的曲线上,找出曲线的最大值或最小值。
一般来说,二次函数的曲线具有一个最高点或最低点,其最值是曲线上的极值,它与曲线的拐点有关。
解决二次函数最值问题的方法有以下几种:
(1)求导法。
这是解决二次函数最值问题的最常用方法。
二次函数的最值可以通过求其一阶导数的根来求解。
如果一阶导数的根不存在,则表明曲线没有极值;如果一阶导数的根存在,则表明曲线有极值,在此点处求出二次函数的值,即可得出该曲线的最值处。
(2)图像法。
这是一种比较直观的方法,可以通过绘制出曲线的图像,从中找出曲线的极值处,从而解决二次函数最值问题。
(3)坐标变换法。
如果曲线图中有极值,可以通过把二次函数转换成新的函数,再从新函数中找出极值点,从而解决二次函数最值问题。
(4)数值计算法。
通过计算曲线上一系列点的函数值,然后比较这些点的函数值大小。
初中数学二次函数最值的4种解法,看完不惧压轴题!
初中数学二次函数最值的4种解法,看完不惧压轴题!从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合。
在这里以一道中考题为例,介绍几种不同的解题方法,供同学们参考,都掌握了之后一定会在压轴题上有一个大的提升。
ps.因格式问题,部分上标未能正常显示,望知悉。
1题目如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点。
(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由。
解答:(1)抛物线解析式为y=-x2-2x+3;(2)Q(-1,2);下面着重探讨求第(3)小题中面积最大值的几种方法.解法1补形、割形法几何图形中常见的处理方式有分割、补形等,此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形。
方法一如图3,设P点(x,-x2-2x+3)(-3<x<0).方法二如图4,设P点(x,-x2-2x+3)(-3<x<0).(下略.)解法2“铅垂高,水平宽”面积法如图5,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S△ABC=1/2ah,即三角形面积等于水平宽与铅垂高乘积的一半。
根据上述方法,本题解答如下:解如图6,作PE⊥x轴于点E,交BC于点F.设P点(x,-x2-2x+3)(-3<x<0).∴点P坐标为(-3/2,15/4)解法3切线法若要使△PBC的面积最大,只需使BC上的高最大.过点P作BC 的平行线l,当直线l与抛物线有唯一交点(即点P)时,BC上的高最大,此时△PBC的面积最大,于是,得到下面的切线法。
初中数学二次函数面积最值问题的4种解法…掌握不再惧怕压轴题
初中数学二次函数面积最值问题的4种解法…掌握不再惧怕压轴题初中数学二次函数面积最值问题一般是指给出一个二次函数,要求求出其在一定范围内的面积最大值或最小值。
这类问题可以通过四种不同的解法来求解,分别是代数解法、几何解法、导数解法和平移法。
下面我来详细介绍这四种解法。
1.代数解法:代数解法是通过代数方法来解决问题。
对于给定的二次函数,首先根据题目要求找出变量的限制条件,然后可以利用一些代数的技巧,如配方法、因式分解等,将问题转化为求最值的问题。
通过求取顶点,得到函数的极值点,进而求得面积的最值。
代数解法的优点是原理简单,容易理解和掌握;缺点是计算量大,需要一些代数技巧和计算能力。
2.几何解法:几何解法是通过几何图形的性质和关系来解决问题。
对于给定的二次函数,可以画出函数的图像,然后根据几何图形的性质,找出切线、直线和坐标轴的交点,进而得到问题的解。
几何解法的优点是直观简单,理论基础较弱;缺点是需要具备较好的几何直观和空间想象能力。
3.导数解法:导数解法是通过求函数的导数,对函数的变化情况进行分析,进而求出极值点。
对于给定的二次函数,可以求出其导数,并令导数为零,求得顶点的横坐标,再代入函数中求得纵坐标,从而得到问题的解。
导数解法的优点是简单快捷,通用性强;缺点是需要一些微分的知识和运算能力。
4.平移法:平移法是通过对函数进行平移变换,将求最值的问题转化为求一些形状固定的函数的最值问题。
对于给定的二次函数,可以通过平移到一些特定位置,使得问题的解变为该函数的最值。
平移法的优点是逻辑清晰,简单明了;缺点是需要一些平移变换的知识和运算能力。
这四种解法各有特点,可以根据具体情况选择合适的方法。
在解决二次函数面积最值问题时,可以结合代数、几何、导数和平移四种解法,综合运用,可以更快更准确地解决问题。
掌握了这些解法,就不再害怕压轴题了。
二次函数最值问题及解题技巧(个人整理)
一、二次函数线段最值问题1、平行于x轴的线段最值问题1)首先表示出线段两个端点的坐标2)用右侧端点的横坐标减去左侧端点的横坐标3)得到一个线段长关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、平行于y轴的线段最值问题1)首先表示出线段两个端点的坐标2)用上面端点的纵坐标减去下面端点的纵坐标3)得到一个线段长关于自变量的二次函数解析式4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值3、既不平行于x轴,又不平行于y轴的线段最值问题1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴2)根据线段两个端点的坐标表示出直角顶点坐标3)根据“上减下,右减左”分别表示出两直角边长4)根据勾股定理表示出斜边的平方(即两直角边的平方和)5)得到一个斜边的平方关于自变量的二次函数6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值7)根据所求得的斜边平方的最值求出斜边的最值即可二、二次函数周长最值问题1、矩形周长最值问题1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、利用两点之间线段最短求三角形周长最值1)首先判断图形中那些边是定值,哪些边是变量2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长三、二次函数面积最值问题1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴)1)首先表示出所需的边长及高2)利用求面积公式表示出面积3)得到一个面积关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、不规则图形面积最值问题1)分割。
二次函数面积最值问题的4种解法
微信公众号
从小学数学-------------------------------------------------
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。 设动点 P 的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的 计算公式,得出二次函数,必有最大值。
微信公众号
从小学数学-------------------------------------------------
原 题 :在( 1)中 的 抛 物 线 上 的 第 二 象 限 是 否 存 在 一 点 P,使 △PBC 的 面 积 最 大 ? 若 存 在 , 求出 P 点的坐标及△PBC 的面积最大值,若没有,请说明理由。 考试题型,大多类似于此。求面积最大值的动点坐标,并求出面积最大值。 一般解题思路和步骤是,设动点 P 的坐标,然后用代数式表达各线段的长。通过公式计 算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。方法要点是,把所求图像的面积适当的割补,转化成有利于面 积表达的常规几何图形。请看解题步骤。
微信众号
从小学数学-------------------------------------------------
解 法 二 : 铅 锤 定 理 , 面 积 =铅 锤 高 度 ×水 平 宽 度 ÷2。 这 是 三 角 形 面 积 表 达 方 法 的 一 种 非 常 重要的定理。 铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。因为, 铅 锤 定 理 ,在 很 多 地 方 都 用 的 到 。这 里 ,也 有 铅 锤 定 理 的 简 单 推 导 ,建 议 大 家 认 真 体 会 。
解法四:三角函数法。请大家认真看上面的解题步骤。 总之,从以上的四种解法可以得出一个规律。过点 P 做辅助线,然后利用相关性质,找 出各元素之间的关系。 设动点 P 的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点 式,求出三角形面积的最大值。 对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题 中,求三角形面积最大值问题,就非常简单了。
二次函数最值问题解题技巧
二次函数最值问题解题技巧介绍二次函数是高中数学中重要的内容之一,而求二次函数的最值问题在解题过程中也是非常常见的。
本文将介绍解决二次函数最值问题的一些技巧和方法,帮助读者更好地理解和应用。
1. 二次函数的基本形式二次函数一般可以写成如下形式:f(x)=ax2+bx+c,其中a、b、c为常数。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
先来看一个具体的例子:例子1:设f(x)=2x2−4x+1,求函数f(x)的最值。
2. 求二次函数的顶点求解二次函数的最值问题,首先需要求出函数的顶点。
二次函数f(x)=ax2+bx+c的顶点坐标可以通过以下公式得到:x=−b2a例子1:设f(x)=2x2−4x+1,求函数f(x)的顶点坐标。
解:根据公式x=−b2a ,代入a=2和b=−4,可以得到x=−−42×2=1。
将x=1代入原函数f(x),可以计算出对应的y值:f(1)=2×12−4×1+1=−1。
所以函数f(x)的顶点坐标为(1,−1)。
3. 确定开口方向在求得顶点后,我们还需要确定二次函数的开口方向,以便进一步确定最值的位置。
在一般情况下,当二次函数的系数a为正时,抛物线开口向上;当a为负时,抛物线开口向下。
在已知顶点的情况下,通过判断a的正负即可确定开口方向。
例子1:设f(x)=2x2−4x+1,求函数f(x)的开口方向。
解:由于a=2为正数,所以二次函数f(x)的抛物线开口向上。
4. 求解最值根据顶点坐标和开口方向,我们可以得出二次函数的最值。
当二次函数开口向上时,最小值就是函数的顶点值;当二次函数开口向下时,最大值就是函数的顶点值。
例子1:设f(x)=2x2−4x+1,求函数f(x)的最小值。
解:由于函数f(x)是向上的抛物线,最小值就是顶点坐标的纵坐标。
所以函数f(x)的最小值为−1。
5. 问题求解的一般步骤在解决二次函数最值问题时,我们可以总结出一般的步骤如下:1.将二次函数写成标准形式:f(x)=ax2+bx+c;2.使用公式x=−b求得顶点坐标(x,y);2a3.判断抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;4.根据开口方向,并结合顶点坐标,得出最值结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数最值的4种解法,看完不惧压轴题!
从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次
函数相结合。
在这里以一道中考题为例,介绍几种不同的解题方法,供同学们参考,都掌握了之后一定
会在压轴题上有一个大的提升。
ps.因格式问题,部分上标未能正常显示,望知悉。
高途课堂整理
1、如图1,抛物线y=-x2+bx+c 与x 轴交于A(1,0),B(-3,0)两点。
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的
周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由;
(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC 的面积最大?若存
在,求出点P 的坐标及△PBC 的面积最大值;若没有,请说明理由。
解答:
(1)抛物线解析式为y=-x2-2x+3;
(2)Q(-1,2);
下面着重探讨求第(3)小题中面积最大值的几种方法.
解法1:补形、割形法
高途课堂整理几何图形中常见的处理方式有分割、补形等,此类方法的要点在于把所求图形的面积进行
适当的补或割,变成有利于表示面积的图形。
方法一
如图3,设P 点(x,-x2-2x+3)(-3<x<0).
高途课堂整理
高途课堂整理方法二如图4,设P 点(x,-x2-2x+3)(-3<x<0).
(下略.)
高途课堂整理解法2:“铅垂高,水平宽”面积法
如图5,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离
叫△ABC 的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h)”,
我们可得出一种计算三角形面积的另一种方法:S△ABC=1/2ah,即三角形面积等于水平宽
与铅垂高乘积的一半。
根据上述方法,本题解答如下:
解如图6,作PE x 轴于点E,交BC 于点F.
高途课堂整理设P 点(x,-x2-2x+3)(-3<x<0).
高途课堂整理∴点P 坐标为(-3/2,15/4)
解法3:切线法
若要使△PBC 的面积最大,只需使BC 上的高最大.过点P 作BC 的平行线l,当直线l 与
抛物线有唯一交点(即点P)时,BC 上的高最大,此时△PBC 的面积最大,于是,得到下面的
切线法。
解如图7,直线BC 的解析式是y=x+3,过点P 作BC 的平行线l,从而可设直线l 的
解析式为:y=x+b.
高途课堂整理 =27/8
解法4:三角函数法
本题也可直接利用三角函数法求得.
解如图8,作PE x 轴交于点E,交BC 于点F,作PM BC 于点M.
高途课堂整理
设P 点(x,-x2-2x+3)(-3<x<0),则
F(x,x+3).
高途课堂整理
从以上四种解法可以看到,本题解题思路都是过点P 作辅助线,然后利用相关性质找出各
元素之间的关系进行求解。