二次函数在闭区间上的最值例题

合集下载

二次函数相关的定义域与最值问题

二次函数相关的定义域与最值问题

二次函数相关的定义域与最值问题一.定义域为R的含参不等式题型例1.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为( )A.k<0或k>4 B.0≤k<4C.0<k<4 D.k≥4或k≤0变式:函数y=√ax²+ax+2的定义域为R,则实数a的取值范围为练习:1.函数f(x)=1ax2+4ax+3的定义域为R,求实数a的取值范围。

2.不等式ax²-2ax+3≥0的解集为R,求实数a的取值范围。

二.求二次函数在某一闭区间上的最值(定轴定区间型)例2.求函数y=x²-2x-3在x∈[-2,2]上的最大值与最小值。

练习:(1)求函数y=x²-6x+1在[0,4]的最值。

(2)求函数y=-2x²-4x+7在下列范围内的最值①x∈[-3,0]② x∈[0,4]三.含参二次函数在某一闭区间上的最值(动轴定区间型)二次函数随着参数的变化而变化,即其图像是运动的,但定义域区间是固定的,我们称这种情况为“动二次函数在定区间上的最值”例3.求函数f(x)=x²-2a x+3在x∈[0,4]上的最值变式:已知函数f(x)=-x²+2a x+1-a,在x∈[0,1]上的最大值为2,求实数a的值。

练习:求函数f(x)=-2x²+2ax+1在x∈[-1,1]上的最大值四.二次函数在动闭区间上的最值(定轴动区间型)二次函数是确定的,但它的定义域区间是随着参数的变化而变化的,我们称这种情况是“定函数在动区间上的最值”例4.求函数f(x)=x²-2x-5在x∈[t,t+1]上的最小值(其中t为常数)练习:求函数f(x)=x²-2x+3在x∈[a,a+3]上的最值课后练习1.函数f(x)的图象如图,则其最大值、最小值分别为( )A.f32,f −32B.f(0),f32C.f −32,f(0) D.f(0),f(3)2.若函数f(x)=2x+6,x∈[1,2],x+7,x∈[−1,1),则f(x)的最大值为,最小值为.3.若不等式a≤x2-4x对任意x∈[0,4]恒成立,则a的取值范围为.4.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f13=1.(1)求f(1)的值.(2)若存在实数m,使得f(m)=2,求m的值.(3)若f(x-2)>2,求x的取值范围.。

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题一、二次函数的三种形式1、一般式:()()20=++≠f x ax bx c a2、顶点式:若二次函数的顶点为(),h k ,则其解析式为()()()20=-+≠f x a x h k a 3、两根式:若相应一元二次方程20++=ax bx c 的两个根为1x ,2x ,则其解析式为()()()()120=--≠f x a x x x x a二、二次函数在闭区间上的最值二次函数在区间上的最值,核心是函数对称轴与给定区间的相对位置讨论, 一般为:对称轴在区间的左边、中间、右边三种情况.设()()20=++≠f x ax bx c a ,求()f x 在[],∈x m n 上的最大值与最小值。

将()f x 配方,得顶点为24,24⎛⎫-- ⎪⎝⎭b ac b a a ,对称轴为2=-b x a (1)当[],2-∈bm n a时, ()f x 的最小值为2424-⎛⎫-=⎪⎝⎭b ac bf a a , ()f x 的最大值为()f m 与()f n 中的较大值; (2)[],2-∉bm n a时, 若2-<bm a,由()f x 在[],m n 上是增函数,则()f x 的最小值为()f m ,最大值为()f n ;若2->bn a,由()f x 在[],m n 上是减函数,则()f x 的最小值为()f n ,最大值为()f m ;三、二次函数在闭区间上的最值类型1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。

例谈二次函数在闭区间上的最值问题

例谈二次函数在闭区间上的最值问题

例谈二次函数在闭区间上的最值问题作者:何英林来源:《中学教学参考·理科版》2010年第03期二次函数是高中数学中最基本也最重要的内容之一,而二次函数在某一区间上的最值问题,是初中二次函数内容的继续,随着区间的确定或变化,以及系数中参变数的变化,它又成为高考数学的热点.一、求定二次函数在定区间上的最值当二次函数的区间和对称轴都确定时,要将函数式配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值.【例1】已知2x2≤3x,求函数f(x)=x2-x+1的最值.解:由已知2x2≤3x,可得0≤x≤32,即函数f(x)是定义在区间[0,32]上的二次函数,将二次函数配方得f(x)=(x-12)2+34,其图象开口向上,且对称轴方程x=12∈[0,32],故二、求动二次函数在定区间上的最值当二次函数的区间确定而对称轴变化时,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分别讨论,再利用二次函数的示意图,结合其单调性求解.【例2】已知二次函数f(x)=ax2+4ax+a2-1在区间[-4,1]上的最大值是5,求实数a的值.解:将二次函数配方得f(x)=a(x+2)2+a2-4a-1,其对称轴方程为x=-2,顶点坐标为(-2,a2-4a-1),图象开口方向由a决定,很明显,其顶点横坐标在区间[-4,1]上.若a2-4a-1=5,解得a=2-10(a=2+10舍去);若a>0,则函数图象开口向上,当x=1时,函数取得最大值5,即f(1)=5a+a2-1=5,解得a=1(a=-6舍去).综上讨论,函数f(x)在区间[-4,1]上取得最大值5时,a=2-10或a=1.三、求定二次函数在动区间上的最值当二次函数的对称轴确定而区间在变化时,只需对动区间能否包含抛物线的顶点的横坐标进行分类讨论.【例3】已知函数f(x)=-x2+8x,求f(x)在区间[t,t+1]上的最大值g(t).解:函数f(x)=-x2+8x=-(x-4)2+16,其对称轴方程为x=4,顶点坐标为(4,16),其图象开口向下.(1)当顶点横坐标在区间[t,t+1]右侧时,有t+12+8(t+1)=-t2+6t+7.(2)当顶点横坐标在区间[t,t+1]上时,有t≤4≤t+1,即3≤t≤4,当x=4时,g(t)=f(4)=16.(3)当顶点横坐标在区间[t,t+1]左侧时,有t>4,当x=t时,g(t)=f(t)=-t2+8t.综上,g(t)=-t2+6t+7,当t2+8t,当t>4时.四、求动二次函数在动区间上的最值当二次函数的区间和对称轴均在变化时,亦可根据对称轴在区间的左、右两侧及穿过区间三种情况讨论,并结合其图形和单调性处理.【例4】已知y2=4a(x-a)(a>0),且当x≥a时,S=(x-3)2+y2的最小值为4,求参数a的值.解:将y2=4a(x-a)代入S的表达式得S=(x-3)2+4a(x-a)=[x-(3-2a)]2+12a-8a2.S是关于x的二次函数,其定义域为x∈[a,+∞),对称轴方程为x=3-2a,顶点坐标为(3-2a,12a-8a2),图象开口向上.若3-2a≥a,即02=4,此时a=1或a=12.若3-2a1,则当x=a时-(3-2a)]2+12a-8a2=4,此时a=5(a=1舍去).综上讨论,参变数a的取值为a=1或a=12或a=5.(责任编辑金铃)。

最全二次函数区间的最值问题(中考数学必考题型)

最全二次函数区间的最值问题(中考数学必考题型)

二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。

例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

第三讲 二次函数在闭区间上的最值问题 一.知识点介绍1.区间的概念设a 、b 是两个实数,且a<b ,规定:说明:① 对于[a,b],(a,b),[a,b),(a,b]都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;②在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;③实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的全体分别表示为[a,+∞)、(a,+∞)、(-∞,b]、(-∞,b)。

我们把以上区间记为A ,若x 是A 中的一个数,就说x 属于A ,记作x ∈A 。

否则就说x 不属于A ,记作x ∉A 。

2. 二次函数f(x)=ax 2+bx+c(a≠0)在x ∈[α,β]上的最值: 当a>0时,有三种情况:从上述a>0的三种情况可得结论:(1)若[,]2baαβ-∈,则当2b x a =-时,2min4()24b ac b y f a a-=-=,它的最大值为()f α与()f β中较大的一个。

(2) 若[,]2baαβ-∉,则最大值为()f α与()f β中较大的一个,另一个即为最小值。

当a<0可作同样处理。

二.例题讲解:类型一“轴定区间定”例1:已知f(x)=x 2-x+2,当x 在以下区间内取值时,求f(x)的最大值与最小值。

(1) x ∈[-1,0] (2) x ∈[0,1] (3) x ∈[1,2]变式1:求y =的最值。

变式2:已知0≤x≤1,求y =的最值。

变式3:求函数y x =+的最小值。

类型二“轴变区间定”例2:求函数f(x)=2x 2-2ax+3在区间[-1,1]上的最小值。

二次函数在闭区间上的最值(详解)

二次函数在闭区间上的最值(详解)

二次函数在闭区间上的最值(详解)二次函数在闭区间上的最值一、知识要点:一元二次函数在闭区间上的最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为对称轴在区间的左边,中间,右边三种情况。

设函数f(x)=ax^2+bx+c(a≠0),求f(x)在x∈[m,n]上的最大值与最小值。

分析:将f(x)配方,得顶点为(-b/2a,f(-b/2a)),对称轴为x=-b/2a。

当a>0时,它的图像是开口向上的抛物线,数形结合可得在[m,n]上f(x)的最值:1)当-b/2a∈[m,n]时,f(x)的最小值是f(-b/2a),f(x)的最大值是max{f(m),f(n)}。

2)当-b/2a∉[m,n]时,若-b/2a<m,由f(x)在[m,n]上是增函数则f(x)的最小值是f(m),最大值是max{f(-b/2a),f(n)};若n<-b/2a,由f(x)在[m,n]上是减函数则f(x)的最大值是f(m),最小值是min{f(-b/2a),f(n)}。

当a<0时,可类比得结论。

二、例题分析归类:一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1.函数y=-x^2+4x-2在区间[0,3]上的最大值是6,最小值是-2.练.已知函数f(x)=x^2+x+1(x≤3),求函数f(x)的最值。

2、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2.如果函数f(x)=-x^2+2x+t在区间[t+1,t+2]上,求f(x)的最值。

例3.已知f(x)=-x^2-4x+3,当x∈[t,t+1](t∈R)时,求f(x)的最值。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题湖北省荆州中学 鄢先进二次函数在闭区间上的最值问题是高中数学的重点和热点问题,频繁出现在函数试题中,很受命题者亲睐。

影响二次函数在闭区间上最值问题的主要因素是二次函数图像的开口方向与所给区间和对称轴的位置关系。

本文介绍有关二次函数在闭区间上最值问题的常见类型及解题策略,供同学们参考。

类型一 定轴定区间例1.已知函数2()2f x x x =-,求()f x 的最小值. 解:22()2(1)1f x x x x =-=-- 由图像可知,当1x =时,min ()1f x =-变式1.已知函数2()2f x x x =-,[2,4]x ∈,求()f x 的最小值。

分析:由图像可知,函数)(x f 在[2,4]为增函数,min ()(2)0f x f ∴==变式2.已知函数2()2f x x x =-,[0,3]x ∈,求()f x 的最大值.分析:由图像可知函数()f x 在[0,1]上递减,在[1,3]上递增,且3离对称轴的距离大于0离对称轴的距离。

max ()(3)3f x f ∴==例2.已知二次函数f x ax ax a ()=++-2241在区间[]-41,上的最大值为5,求实数a 的值。

解:将二次函数配方得f x a x a a ()()=++--24122,函数图像对称轴方程为x =-2,顶点坐标为()---2412,a a ,图像开口方向由a 决定。

很明显,其顶点横坐标在区间[]-41,内。

x①若a <0,函数图像开口向下,如下图1所示。

当x =-2时,函数()f x 取得最大值5 即f a a ()-=--=24152,解得a =±210 故a a =-=+210210()舍去图1 图2②若a >0,函数图像开口向上,如上图2所示,当x =1时,函数()f x 取得最大值5 即f a a ()15152=+-=,解得a a ==-16或,故a a ==-16()舍去综上可知:函数f x ()在区间[]-41,上取得最大值5时,a a =-=2101或 点拨:求解有关二次函数在闭区间上的最值问题,应先配方,作出函数图像,然后结合其图像研究,要特别注意开口方向、对称轴和区间的相对位置。

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。

一般分为对称轴在区间左侧、中间和右侧三种情况。

例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。

分析:将函数f(x)配方,得到其顶点为(-b/2a。

c - b^2/4a)。

因此,对称轴为x = -b/2a。

当a。

0时,函数f(x)的图像为开口向上的抛物线。

结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。

2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。

当a < 0时,情况类似。

二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。

例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。

t+1]上的最值为f(t)和f(t+1)中的较大者。

二次函数在闭区间上的最值

二次函数在闭区间上的最值

“轴动区间定”的二次函数最值问题也要讨 论,讨论也分动区间在定轴的左、右两侧及 包含定轴(区间中点在轴的左右两侧两种情 况).能合并的情况要合并.
三类题型
分类讨论要注意 “一线三点”
两种数思想方法
思考:二次函数的图象开口 向下,此时又怎样解决?
谢谢!
再见
4--1
(2)若对称轴x=1在区间[t,t+1]上时, 即t≤1≤t+1 0≤t≤1 时。
如图所示
当x=1时, 函数取得最 小值,
即f(x)min=f(1)=1
y
O t
t+1
x
x=1
3--1
(3)若区间[t,t+1] 在对称轴x=1右侧时, 即 t>1时, 如图所示:
当x=t时, f(x)min=f(t) =(t-1)2+1
y 1 x t t+1 O x=1 x y
1 O t t+1 x=1
5--1
t 12 1, t 1 1, 0 t 1 t 2 1, t 0
f x max
5--2
1 2 t 1, t 2 t 12 1, t 1 2
y
y
-1 o
2
x
-1 o
2
x
X=a
X=a
7--1
7--2
2)最大值 (1)当
1 a 2
时,如图8--1所示:
1 a (2)当 2
时,如图8--2所示:
当x=2 时,函数取得最大值, 即f(x)max=f(2)=5-4a
当 x=-1 时,函数取得最大值, 即f(x)max=f(-1)=2+2a

考点08 二次函数在闭区间上的最值(值域)问题的解法(解析版)

考点08  二次函数在闭区间上的最值(值域)问题的解法(解析版)

专题二函数考点8 二次函数在闭区间上的最值(值域)问题的解法【方法点拨】一、知识梳理二、二次函数在闭区间上的最值(值域)问题的解法【高考模拟】1.已知函数()bf x ax x=+,若存在两相异实数,m n 使()()f m f n c ==,且40a b c ++=,则||m n -的最小值为( )A .22B 3C 2D 3【答案】B 【分析】由题设可得20(0)ax cx b x -+=≠,又()()f m f n c ==即,m n 为方程两个不等的实根,即有,c bm n mn a a+==,结合2||()4m n m n mn -=+-40a b c ++=得2||16()41b bm n a a-=⋅+⋅+.【解析】由题意知:当()bf x ax c x=+=有20(0)ax cx b x -+=≠, ∵()()f m f n c ==知:,m n 是20(0,0,0)ax cx b x a b -+=≠≠≠两个不等的实根.∴,c b m n mn a a +==,而2224||()4c ab m n m n mn a--=+-= ∵40a b c ++=,即4c b a =--,∴||m n -=b t a =,则||m n -==∴当18t =-时,||m n -故选:B 【点睛】关键点点睛:由已知条件将函数转化为一元二次方程的两个不同实根为,m n ,结合韦达定理以及||m n -=.2.已知函数2()f x ax bx c =++,满足(3)(3)f x f x +=-,且(4)(5)f f <,则不等式(1)(1) f x f -<的解集为( )A .(0,)+∞B .(2,)-+∞C .(4,0)-D .(2,4)【答案】C 【分析】由题设知()f x 关于3x =对称且开口向上,根据二次函数的对称性(1)(1)f x f -<有115x <-<,求解集. 【解析】依题意,有二次函数关于3x =对称且开口向上,∴根据二次函数的对称性:若(1)(1)f x f -<,即有115x <-<, ∴40x -<<. 故选:C 【点睛】关键点点睛:由题设可得()f x 关于3x =对称且开口向上,根据对称性求函数不等式的解集即可. 3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .2【答案】A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥, 利用导数判断()g x 的单调性求最小值即可. 【解析】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-,整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.已知函数2()26f x x ax =+--,若存在a R ∈,使得()f x 在[2,]b 上恰有两个零点,则实数b的最小值为( )A .B .4C .2+D .2+【答案】C 【分析】由函数在[2,]b 上恰好有2个零点可得,可得零点必在区间的端点,讨论零点为2和b 时,解得a 的值,将a 的值代入使得函数值f (b )0=求出b 的值即可. 【解析】因为函数2())|2|6f x x ax =+--在[2,]b 上恰有两个零点,所以在2x =与x b =时恰好取到零点的最小值和最大值时,实数b 取最小值, 若2x =,()f x 的零点满足f (2)2|222|60a =+--=,解得2a =,或4a =-,当2a =,2()|22|6f x x x =+--,满足()f x 在[2,]b 上恰好有2个零点,则f (b )2|22|60b b =+--=,且2b >,解得2b =(舍)或4b =-(舍),当4a =-时,2()|42|6f x x x =---且2b >,满足()f x 在[2,]b 上恰好有2个零点, 则f (b )2|42|60b b =---=,2b >,所以2|42|6b b --=,即2426b b --=-整理2440b b -+=,解得2b =(舍),或2480b b --=解得:2b =-(舍)或2b =+综上所述,当2b =+()f x 在[2,]b 上恰好有2个零点.故答案为:2+ 【点睛】本题考查函数的零点和方程根的关系,考查了计算能力,同时考查了转化思想与分类讨论思想的应用,属于难题.5.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则19m n+的最小值为( ) A .145B .114C .83D .103【答案】B【分析】运用数列的递推式和等比数列的定义、通项公式可得2nn a =.求得6m n +=,()19119191066m m n m n n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式,检验等号成立的条件,根据单调性即可得出结果. 【解析】解:22n n S a =-,可得11122a S a ==-,即12a =,2n ≥时,1122n n S a --=-,又22n n S a =-,相减可得1122n n n n n a S S a a =-=-﹣﹣,即12n n a a -=,{}n a 是首项为2,公比为2的等比数列.所以2nn a =.64m n a a =,即2264m n ⋅=,得6m n +=,所以()191191911010666m m n m n m n m n n ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝ 181663=⨯=, 当且仅当9n m m n=时取等号,即为32m =,92n =.因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>, 因为19196m n y m m +=+=-,在30,2⎛⎫⎪⎝⎭上单调递减,在3(,)2+∞上单调递增,所以当2m =,4n =时,19m n+取得最小值为114.故选:B. 【点睛】本题考查数列的通项公式的求法,运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,考查化简运算能力,属于中档题.6.已知函数()11,021,232x x x f x x -⎧-≤≤⎪=⎨⎛⎫<≤⎪ ⎪⎝⎭⎩,若存在实数123,,x x x ,当12303x x x ≤<<≤时,()()()123f x f x f x ==,则()2312x f x x x +的最小值是( ).A .58B .516C .532D .564【答案】C 【分析】作出分段函数的图像,结合图像确定123,,x x x 的范围及等量关系,再将所求式子转化为关于3x 的函数,利用函数的单调性求解最小值. 【解析】 如图:122x x += ,312112x x -⎛⎫-= ⎪⎝⎭即312112x x -⎛⎫=+ ⎪⎝⎭,()33112312111222x x x f x x x --⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=+ 令311,2x t t -⎛⎫=∈ ⎪⎝⎭1142⎡⎫⎪⎢⎣⎭,,则()()2321212x f x t t x x =++ 当14t =时取得最小值532. 故选C【点睛】本题主要考查分段函数图像、函数零点、函数最小值的应用,解题中主要应用了数形结合的思想、换元思想、函数思想,属于中档题;解题的关键有两个:一是准确作出分段函数图像,利用已知条件确定出123,,x x x 范围以及122x x +=;二是将所求式子转化为关于3x 的函数,利用函数的性质求最小值.7.已知实数x 、y 满足{24 2y xx y y ≤+≤≥-,若存在x 、y 满足()()22211(0)x y r r ++-=>,则r 的最小值为( )A .1B .2C .423D .523【答案】B【解析】试题分析:可行域为直线,24,2y x x y y =+==-围成的三角形区域, (),x y 到点()1,1-的距离最小值为2,所以r 的最小值为2考点:线性规划问题8.若实数a 、b 、c +∈R ,且2256ab ac bc a +++=-,则2a b c ++的最小值为( ) A .51- B .51+C .252+D .252-【答案】D 【解析】因为2256ab ac bc a +++=-,所以2ab a ac bc +++()()a a b c a b =+++()()a c a b =++()262551=-=- ,所以()()()()22a b c a c a b a c a b ++=+++≥++=252-,当且仅当()()a c a b +=+时,等号成立. 故选D.点睛:本题主要考查均值不等式的灵活应用,关键是对已知等式分解为()()()2=51a c a b ++-.9.已知圆和两点,若圆上存在点,使得,则的最小值为( )A .B .C .D . 【答案】D 【解析】试题分析:由题意以为直径的圆与圆有公共点,则,解得.所以的最小值为1,故选D .考点:两圆的位置关系.【名师点睛】1.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 10.已知函数()1ln ax f x xe x ax -=--,21,a e ⎛⎤∈-∞- ⎥⎝⎦,函数()f x 的最小值M ,则实数M 的最小值是() A .1- B .1e-C .0D .31e-【答案】C 【分析】求得()()11'1ax f x ax e x -⎛⎫=+- ⎪⎝⎭,先证明110ax e x --≤,可得当10,x a ⎛⎫∈- ⎪⎝⎭时,()f x 单调递减,当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,(),f x 单调递增,则()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭,设(2210,,1ln t e M t e t a -⎤-=∈=-+⎦,()()22ln 10,t h t t t e e=-+<≤可证明()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ≥=,从而可得结果.【解析】 求得()()()1111111'11ax ax ax ax ax f x eaxe a e ax ax e x x x ----+⎛⎫=+--=+-=+- ⎪⎝⎭ 考察11ax y ex -=-是否有零点,令0y =, 可得1ln x a x -=,记()1ln xx xϕ-=,()2ln 2'x x xϕ-=,()x ϕ在()20,e 上递减,在()2,e +∞上递增, 所以()min x ϕ= ()2e ϕ 21e =-,即21ln 1x x e-≥-, 因为21a e ≤-,所以11ln 10ax x a e x x--≤⇔-≤, 故可知,当10,x a ⎛⎫∈-⎪⎝⎭时,()()10,'0,ax f x f x +>≤单调递减, 当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()()10,'0,ax f x f x +<≥单调递增,从而由上知()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭, 设(()222210,,1ln 10t t e M t e t lnt t e a e -⎤-=∈=-+=-+<≤⎦, 记()()()22211ln 10,'0,t h t t t e h t e e t=-+<≤=-≤()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ∴≥=,M ∴的最小值为0.故选C.【点睛】本题主要考查利用导数判断函数的单调性以及函数的最值,属于难题.求函数()f x 最值步骤:(1) 求导数()f x ';(2)判断函数的单调性;(3)若函数单调递增函数或单调递减,利用单调性求最值;(4) 如果只有一个极值点,则在该处即是极值也是最值;(5)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小. 11.已知函数()1f x x a =+,若存在,42ππϕ⎛⎫∈ ⎪⎝⎭,使()()sin cos 0f f ϕϕ+=,则实数a 的取值范围是( )A .1,22⎛⎝⎭B .122⎛⎫-- ⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭【答案】B【解析】 由题意,110sin cos aaφφ+=++ 有解∴sinφ+a+cosφ+a=0∴-(φ+4π) ∵φ∈(4π,2π), ∴φ+4π∈(2π,34π),∴sin (φ+4π)∈(2,1)(φ+4π)∈(1∴-2a ∈(1∴a ∈12⎛⎫- ⎪ ⎪⎝⎭。

含参数二次函数分类讨论的方法总结

含参数二次函数分类讨论的方法总结

二次函数求最值参数分类讨论的方法题型一:“动轴定区间”型的二次函数最值例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。

分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。

解:222()23()3f x x ax x a a =-+=-+-∴此函数图像开口向上,对称轴x=a①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a③、当2≤a<4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=0时,max y =3④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=4时,min y =19-8a ,x=0时,max y =3例2、已知函数2()(21)3f x ax a x =+--在区间3[,2]2-上最大值为1,数a 的值 分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.解:1)若a=0,则f(x)=-x-3,而f(x)在3[,2]2-上取不到最大值为1,∴a ≠0 2)若a ≠0,则2()(21)3f x ax a x =+--的对称轴为0122a x a-=(Ⅰ)若3()12f -=,解得103a =-,此时0233[,2]202x =-∈-a<0, 0()f x 为最大值,但23()120f -≠(Ⅱ) 若(2)1f =解得34a =此时013[,2]32x =-∈-0310,43a x =>=-距右端点2较远,(2)f 最大值符合条件(Ⅲ) 若0()1f x =解得32a -±=当0a =<时034[,2]2x =-∉-当302a --=<时034[,2]2x =∈-综收所述34a =或32a --=评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。

二次函数在闭区间上的值域

二次函数在闭区间上的值域
3)当x [3,4]时,求f ( x)的值域;y
f ( x)的值域为[23,8]
O 8
34 x
23 x1
例1、f (x) 3x2 6x 1,
4)当x [0,3]时,求f ( x)的值域. y
4 f ( x)的值域为[8,4]
O 8
3 x
x1
二次函数闭区间最值(值域)问题
f (x) 3x2 6x 1,
综上,
1 O 1
x
2 a, a 2
f
( x)min
1
a2 4
,
2
a
2
2 a, a 2
xa 2
例3、f (x) x2 ax 1, x [1,1], 求f (x)的最大值.
y
1 O 1
x
xa 2
例4、二次函数f(x)=x2-2x-3在[-3,a](a>-3)上的 最值是多少?
y
(1)当-3<a<1时:
二次函数在闭区间上的值域
例1、f (x) 3x2 6x 1,
1)当x R时,求f ( x)的值域; y
4 f ( x)的值域为(,4]
O
x
x1
例1、f (x) 3x2 6x 1,
2)当x [2,0]时,求f ( x)的值域;y
f ( x)的值域为[23,1]
1
2
O
x
23
x1
例1、f (x) 3x2 6x 1,
y
2.当 1 a 1,即 2 a 2,
2
a
f ( x)min
f (a) 2
f( ) 2 1 O 1
x
a2 1 .
4
xa 2
例2、f (x) x2 ax 1, x [1,1], 求f (x)的最小值.

二次函数在闭区间上的最值78652

二次函数在闭区间上的最值78652
二次函数在闭区间上的最值
例1、已知函数f(x)= x2–2x –3. (1)若x∈[ –2,0 ], 求函数f(x)的最值;
y
–2 0 1
3
x
例1、已知函数f(x)= x2 –2x – 3. (1)若x∈[ –2,0 ],求函数f(x)的最值; (2)若x∈[ 2,4 ],求函数f(x)的最值;
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
22
y
(4)若x∈[
1
,
3
],求
22
函数f(x)的最值;
(5)若 x∈[t,t+2]时, 求函数f(x)的最值.
t
t +2
–1 0 1 2 3 4 x
者是最大值,较小者是最小值.
练习1已知x2+2x+a≥4在x∈ [0,2]上
恒成立,求a的值。
y
解:令f(x)=x2+2x+a
它的对称轴为x=-1, ∴f(x)在[0,2]上单 调递增,
∴f(x)的最小值为 f(0)=a,即a≥ 4
-1 O 2 x
练习2已知函数f(x)ax22ax1在区间[ 3, 2 ]
求函数f(x)的最值.
t
t +2
–1 0 1 2 3 4 x
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
22
(4)若x∈[

微专题31 闭区间上二次函数的最值问题

微专题31 闭区间上二次函数的最值问题

f (x)max =
解法 2 函数 f 求最小值.
2 a a 2 x - (x)=x2-ax+1= - +1,对称轴为 2 4
a x=2,先
a ①当2<-1 时,即 a<-2 时,f (x)在[-1,1]上单调递增,f (x)min =f (-1)=2+a; a ②当-1≤2≤1 时,即-2≤a≤2 时,f (x)min=f
解析:f
2 2 (2 a - 1) 2 a - 1 (x)=a - 3 ,对称轴为 x+ - 4a 2a
2 a -1 x=- 2a ,
(1)当 a>0 时, 2a-1 1 2 ①当- 2a ≤4,即 a≥5时,f (x)max=f (2)=8a-5;
2 a a =1- ; 4 2
a ③当2≥1 时,即 a≥2 时,f (x)在[-1,1]上单调递减,f (x)min=f (1) =2-a. 再求最大值,因为抛物线开口向上,则最高点必为曲线一端点,所 以
2-a,a<0, f (x)max=max{f (-1),f (1)}= 2+a,a≥0.
=g(-1)=-3,则 a≥-3. 1 1 ②当 x=-2时,0≤4+2 恒成立,则 a∈R.
2 2 x + 2 x +2 1 ③当-2<x≤1 时,不等式化为 a≤ ,令 g(x)= ,则 g′(x) 2x+1 2x+1 x2+2 2(x2+x-2) 1 = ′= 2 <0,g(x)在- ,1上单调递减,所以 g(x)min= 2 2 x + 1 (2x+1)
a x=2,
a ①当2<-1 时,即 a<-2 时,f (x)在[-1,1]上单调递增,f (x)min =f (-1)=2+a,f (x)max=f (1)=2-a;

复合函数定义域、二次函数在闭区间上的最值

复合函数定义域、二次函数在闭区间上的最值

(对称轴固定,定义域
解析: 因为函数 f(x)=x2-2x-3=(x-1)2-4的对称 轴为 x=1 固定不变,要求函数的最值,
即要看区间[t,t+2]与对称轴 x=1的位
置,则从以下几个方面解决如图:
t
t+2
X=1
则由上图知解为: 当t+2≤1(t≤-1)时 f(x)max=f(t)=t2-2t-3 f(x)min=f(t+2)=t2+2t+3 当 t<1 < t+2 时 f(x)max=max{f(t),f(t+2)} (-1 <t<1) f(x)min=f(1)=-4 当t ≥1 时 f(x) max=f(t+2)=t2+2t+3 f(x) min=f(t)=t2-2t-3
复合函数定义域
例1. 设函数 f ( x )的定义域为 [ 0 ,1 ] ,则 (1)函数 f ( x 2 ) 的定义域为________ (2)函数 f ( x 2 ) 的定义域为__________
归纳:已知 f ( x ) 的定义域,求 f [ g ( x )] 的定义域
f [ g ( x )] 中 其解法是:若 f ( x )的定义域为 a x b ,则
(5)若x∈[t,t+2]时, 求函数f(x)的最值.
t
–1 0 1
t +2 2 3 4
x
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值; (2)若x∈[ 2,4],求函数f(x)的最值; 1 5 (3)若x∈[ , ],求函数f(x)的最值; 2 2 y 1 3 (4)若x∈[ , ],求 2 2 函数f(x)的最值;

二次函数在闭区间上的最值78352

二次函数在闭区间上的最值78352

函数f(x)的最值;
(5)若x∈[t,t+2]时,
求函数f(x)的最值.
t
t +2
–1 0 1 2 3 4 x
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
22
y
(4)若x∈[
1
,
3
],求
22
函数f(x)的最值;
(5)若 x∈[t,t+2]时, 求函数f(x)的最值.
t
t +2
–1 0 1 2 3 4 x
高中数学
二次函数在闭区间上的最值
例1、已知函数f(x)= x2–2x –3. (1)若x∈[ –2,0 ], 求函数f(x)的最值;
y
–2 0 1
3
x
例1、已知函数f(x)= x2 –2x – 3. (1)若x∈[ –2,0 ],求函数f(x)的最值; (2)若x∈[ 2,4 ],求函数f(x)的最值;
y
–1 0
1 2x
例3、已知函数f(x)=x2+ax+b,x∈[0,1], 试确定a、b,使f(x)的值域是[0,1].
y
–1 0
1 2x
总结:求二次函数f(x)=ax2+bx+c在[m,n]上 的最值或值域的一般方法是:
(1)检查x0=

【高中数学过关练习】过关练13-二次函数在闭区间上的最值问题

【高中数学过关练习】过关练13-二次函数在闭区间上的最值问题

过关练13 二次函数在闭区间上的最值问题一、单选题1.(2022·山西运城·高一期末)已知二次函数()()2f x ax x c x =-+∈R 的值域为[)0,∞+,则41a c+的最小值为( ) A .16 B .12 C .10 D .8【解析】由题意知0a >,140ac ∆=-=, ∴14ac =且0c >, ∴4148a c ac+≥=, 当且仅当41a c=,即1a =,14c =时取等号.故选:D.2.(2022·全国·高一期末)若不等式220ax bx ++>的解集为{}21x x -<<,则二次函数224y bx x a =++在区间[]0,3上的最大值、最小值分别为( )A .-1,-7B .0,-8C .1,-1D .1,-7【解析】220ax bx ++>的解集为{}21x x -<<, 2∴-,1是方程220ax bx ++=的根,且0a <,∴21221b a a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,1a ∴=-,1b =-,则二次函数2224241y bx x a x x =++=-+-开口向下,对称轴1x =,在区间[]0,3上,当1x =时,函数取得最大值1,当3x =时,函数取得最小值7- 故选:D .3.(2022·河南·信阳高中高一期末(理))函数()(||1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .522+C .32D .2【解析】当x ≥0时,()()221111()244f x x x x x x ==-=--≥-﹣, 当x <0时,()()22111()24f x x x x x x =-=--=-++,作出函数()f x 的图象如图:当0x ≥时,由()f x =22x x -=,解得x =2. 当12x =时,()1124f =-.当x <0时,由21()4f x x x =--=-,即24410x x +=﹣,解得x 2444443244212-±+⨯-±-±-±===∴此时x 12-- ∵[,m n ]上的最小值为14-,最大值为2,∴n =21212m --≤≤, ∴n m -的最大值为1252222--=+, 故选:B .4.(2022·重庆巫山·高一期末)若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围是( ) A .(]0,4 B .3,42⎡⎤⎢⎥⎣⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,2⎡⎫+∞⎪⎢⎣⎭【解析】234y x x =--为开口方向向上,对称轴为32x =的二次函数 min 99254424y ∴=--=- 令2344x x --=-,解得:10x =,23x = 332m ∴≤≤即实数m 的取值范围为3,32⎡⎤⎢⎥⎣⎦故选:C5.(2022·浙江台州·高一期末)已知函数()22f x ax x =+的定义域为区间[m ,n ],其中,,a m n R ∈,若f (x )的值域为[-4,4],则n m -的取值范围是( )A .[4,42]B .[22,82]C .[4,82]D .[42,8]【解析】若0a =,()2f x x =,函数为增函数,[,]x m n ∈时,则()24,()24f m m f n n ==-==,所以2(2)4n m -=--=, 当0a >时,作图如下,为使n m -取最大,应使n 尽量大,m 尽量小,此时14a =, 由22()424()424f n am m f m an n =⎧+=⎧⇒⎨⎨=+=⎩⎩,即2240ax x +-=, 所以24,m n mn a a+=-=-,所以()22416482n m m n mn a a-=+-=+=82n m -≤ 当14a -<-时,即104a <<时,此时,m n 在对称轴同侧时n m -最小,由抛物线的对称性,不妨设,n m 都在对称轴右侧,则由22()24,()24f n an n f m am m =+==+=-, 解得24162416a an m -++-+-==416416141441414141422a a a a n m a aa a+--+--∴-===++-++-, 当且仅当1414a a +=- ,即0a =时取等号,但0a >,等号取不到,4n m ∴->,0a <时,同理,当14a =-时,max ()82n m -=14a >-时,()min 4n m ->, 综上,n m -的取值范围是[4,82], 故选:C6.(2022·广东茂名·高一期末)已知函数2,02()34,23x x f x x x ⎧≤≤=⎨-<≤⎩,若存在实数1x ,2x (12x x <)满足12()()f x f x =,则21x x -的最小值为( ) A .712B .22C .23D .1【解析】当0≤x ≤2时,0≤x 2≤4,当2<x ≤3时,2<3x -4≤5, 则[0,4]∩(2,5]=(2,4],令12()()f x f x ==t ∈(2,4], 则1x t 243t x +=, ∴2214143333t x x t tt -==, 32t ,即94t =时,21x x -有最小值712,故选:A.二、多选题7.(2022·新疆巴音郭楞·高一期末)定义在R 上的奇函数()f x 在(),0∞-上的解析式()()1f x x x =+,则()f x 在[)0,∞+上正确的结论是( )A .()00f =B .()10f =C .最大值14D .最小值14-【解析】由题可知,函数()f x 为定义在R 上的奇函数,则()()f x f x -=-, 已知()f x 在(),0∞-上的解析式()()1f x x x =+, 则当0x >时,0x -<,则()()()1f x x x f x -=--=-,所以当[)0,x ∈+∞时,()()2211124f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,可知()00f =,()10f =,且最大值为14,无最小值,所以()f x 在[)0,∞+上正确的结论是ABC. 故选:ABC.8.(2022·贵州遵义·高一期末)设函数()21,21,ax x a f x x ax x a -<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( )A .2B .-1C .0D .1【解析】当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.三、填空题9.(2022·广西南宁·高一期末)已知函数2()25,[1,5]f x x x x =-+∈-.则函数的最大值和最小值之积为______【解析】因为22()25(1)4f x x x x =-+=-+,所以当1x =时,min ()(1)4f x f ==,当5x =时,2max ()(5)(51)420f x f ==-+=,所以最大值和最小值之积为42080⨯=.故答案为:8010.(2022·广东汕头·高一期末)函数()()()2f x x a bx a =++是偶函数,且它的值域为(],2-∞,则2a b +=__________.【解析】()()()()22222f x x a bx a bx a ab x a =++=+++为偶函数,所以20a ab +=,即0a =或2b =-,当0a =时,()2f x bx =值域不符合(],2-∞,所以0a =不成立;当2b =-时,()2222f x x a =-+,若值域为(],2-∞,则21a =,所以21a b +=-.故答案为:1-.11.(2022·广东·华南师大附中高一期末)对x ∀∈R ,不等式2430mx x m ++->恒成立,则m 的取值范围是___________;若2430mx x m ++->在()1,1-上有解,则m 的取值范围是___________.【解析】(1)关于x 的不等式函数2430mx x m ++->对于任意实数x 恒成立,则()204430m m m >⎧⎨∆=--<⎩,解得m 的取值范围是()4,+∞.(2)若2430mx x m ++->在()1,1-上有解, 则2341x m x ->+在()1,1-上有解,易知当314x -<≤时23401xx -≥+, 当314x <<时23401x x -<+,此时记34t x =-, 则104t <<,()244253311624t g t t t t --==⎛⎫++++ ⎪⎝⎭,在10,4⎛⎫ ⎪⎝⎭上单调递减,故()12g t >-, 综上可知,234112x x ->-+,故m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭.故答案为:()4,+∞;1,2⎛⎫-+∞ ⎪⎝⎭四、解答题12.(2022·河南安阳·高一期末(文))已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式; (2)求()f x 在区间[]1,2-上的值域. 【解析】(1)解:由()02f =可得2c =,()()()()221112f x a x b x c ax a b x a b c +=++++=+++++,由()()121f x f x x +-=-得221ax a b x ++=-,所以221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()222f x x x =-+.(2)解:由(1)可得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =,()11f =, 又因为()15f -=,()22f =,所以,()f x 在区间[]1,2-上的值域为[]1,5.13.(2022·广东潮州·高一期末)()2f x x bx c =++,不等式()0f x ≤的解集为[]1,3.(1)求实数b ,c 的值;(2)[]0,3x ∈时,求()f x 的值域.【解析】(1)解:由题意,1和3是方程20x bx c ++=的两根,所以1313b c +=-⎧⎨⨯=⎩,解得4,3b c =-=;(2)解:由(1)知,22()43(2)1f x x x x =-+=--,所以当[]0,2x ∈时,()f x 单调递减,当[]2,3x ∈时,()f x 单调递增, 所以min ()(2)1f x f ==-,max ()(0)3f x f ==, 所以()f x 的值域为[1,3]-.14.(2022·广东湛江·高一期末)已知函数()223f x x ax =++,[]4,6x ∈-.(1)当2a =-时,求()f x 的最值;(2)若()f x 在区间[]4,6-上是单调函数,求实数a 的取值范围. 【解析】(1)当2a =-时,()()224321f x x x x =-+=--, ∴()f x 在[]4,2-上单凋递减,在2,6上单调递增,∴()()min 21f x f ==-,()()()()2max 4444335f x f =-=--⨯-+=.(2)()()222233f x x ax x a a =++=++-,∴要使()f x 在[]4,6-上为单调函数,只需4a -≤-或6a -≥,解得4a ≥或6a ≤-. ∴实数a 的取值范围为(][),64,-∞-+∞.15.(2022·北京通州·高一期末)已知二次函数2()21f x ax ax =-+. (1)求()f x 的对称轴;(2)若(1)7f -=,求a 的值及()f x 的最值.【解析】(1)解:因为二次函数2()21f x ax ax =-+, 所以对称轴212ax a-=-=. (2)解:因为(1)7f -=,所以217a a ++=. 所以2a =.所以2()241f x x x =-+. 因为20a =>, 所以()f x 开口向上,又2()241f x x x =-+对称轴为1x =,所以最小值为(1)1f =-,无最大值. 16.(2022·陕西·长安一中高一期末)函数2()22f x x x =-- (1)当[2,2]x ∈-时,求函数()f x 的值域; (2)当[,1]x t t ∈+时,求函数()f x 的最小值.【解析】(1)解:由题意,函数()22()2213f x x x x =--=--,可得函数()f x 在[]2,1-上单调递减,在[]12,上单调递增,所以函数()f x 在区间[]22-,上的最大值为(2)6f -=,最小值为(1)3f -=-, 综上函数()f x 在上的值域为[]3,6-.(2)解:①当0t ≤时,函数在区间[],1t t +上单调递减,最小值为2(1)3f t t +=-; ②当01t <<时,函数在区间[],1t 上单调递减, 在区间[]1,+1t 上单调递增,最小值为(1)3f =-;③当1t ≥时,函数在区间[],1t t +上单调递增,最小值为2()22f t t t =--,综上可得:当0t ≤时,函数()f x 的最小值为23t -;当01t <<,函数()f x 的最小值为3-;当1t ≥时,函数()f x 的最小值为222t t --.17.(2022·福建泉州·高一期末)已知函数2()4(0)f x ax ax b a =-+>在[0,3]上的最大值为3,最小值为1-. (1)求()f x 的解析式;(2)若(1,)∃∈+∞x ,使得()f x mx <,求实数m 的取值范围. 【解析】(1)()f x 的开口向上,对称轴为2x =, 所以在区间[]0,3上有:()()()()min max 2,0f x f f x f ==,即481133a a b a b b -+=-=⎧⎧⇒⎨⎨==⎩⎩,所以()243f x x x =-+.(2)依题意(1,)∃∈+∞x ,使得()f x mx <,即2343,4x x mx m x x-+<>+-, 由于1x >,33424234x x x x+-≥⋅=, 当且仅当33x x x=⇒=. 所以234m >.18.(2022·吉林·梅河口市第五中学高一期末)已知函数()()220f x mx mx n m =-+<在区间[]0,3上的最大值为5,最小值为1.(1)求m ,n 的值;(2)若正实数a ,b 满足2na mb -=,求114a b+的最小值.【解析】(1)由()()220f x mx mx n m =-+<,可得其对称轴方程为212mx m-=-=,所以由题意有(1)25(3)961f m m n f m m n =-+=⎧⎨=-+=⎩,解得1,4m n =-=.(2)由(1)2na mb -=为42a b +=,则111111171171725()()()(2)14242424848b a b a a b a b a b a b a b +=++=++≥+⨯=+=, (当且仅当25a b ==时等号成立). 所以114a b +的最小值为258.19.(2022·山东日照·高一期末)已知函数()223f x x ax =--.(1)若1a =,求不等式()0f x ≥的解集;(2)已知()f x 在[)3,+∞上单调递增,求a 的取值范围; (3)求()f x 在[]1,2-上的最小值.【解析】(1)当1a =时,函数()223f x x x =--,不等式()0f x ≥,即223(1)(3)0x x x x --=+-≥,解得1x ≤-或3x ≥, 即不等式()0f x ≥的解集为(,1][3,)-∞-+∞.(2)由函数()223f x x ax =--,可得()f x 的图象开口向上,且对称轴为x a =,要使得()f x 在[)3,+∞上单调递增,则满足3a ≤, 所以a 的取值范围为(,3]-∞.(3)由函数()223f x x ax =--,可得()f x 的图象开口向上,且对称轴为x a =,当1a <-时,函数()f x 在[]1,2-上单调递增,所以()f x 最小值为()122f a -=-; 当12a -≤≤时,函数()f x 在[]1,a -递减,在[],2a 上递增,所以()f x 最小值为()23f a a =--;当2a >时,函数()f x 在[]1,2-上单调递减,所以()f x 最小值为()214f a =-, 综上可得,()f x 在[]1,2-上的最小值为()2min22,13,1214,2a a f x a a a a -<-⎧⎪=---≤≤⎨⎪->⎩. 20.(2022·江苏苏州·高一期末)已知函数f (x )=x |x ﹣m |+n . (1)当f (x )为奇函数,求实数m 的值;(2)当m =1,n >1时,求函数y =f (x )在[0,n ]上的最大值. 【解析】(1)因为f (x )为奇函数,所以f (﹣0)=﹣f (0), 所以f (0)=0,即n =0,所以f (x )=x |x ﹣m |, 又f (﹣1)=﹣f (1),所以|1﹣m |=|1+m |,解得m =0,此时f (x )=x |x |,对∀x ∈R ,f (﹣x )=﹣x |x |=﹣f (x ), 所以f (x )为奇函数,故m =0.(2)f (x )=x |x ﹣1|+n =22,1,1x x n x x x n x ⎧-++⎨-+>⎩所以f (x )在10,2⎡⎤⎢⎥⎣⎦和[1,n ]上单调递增,在1,12⎡⎤⎢⎥⎣⎦上单调递减,其中211(),()24f n f n n =+=,2111212()()()24f n f n n n n +--=--=,令214n n >+得,12n +>12n +>1()()2f n f >,2max ()f x n =.121n +<≤时1()()2f n f ≤,所以max 1()4f x n =+,因此y =f (x )在[0,n ]上的最大值为2112,14212,n n n n ⎧++⎪⎪⎨+⎪⎪⎩. 21.(2022·天津市武清区杨村第一中学高一期末)已知函数()22f x x mx n =++的图象过点()1,1-,且满足()()23f f -=.(1)求函数()f x 的解析式:(2)求函数()f x 在[],2a a +上的最小值;(3)若0x 满足()00f x x =,则称0x 为函数()y f x =的不动点,函数()()g x f x tx t =-+有两个不相等且正的不动点,求t 的取值范围. 【解析】(1)∵()f x 的图象过点()1,1-, ∴21m n ++=-① 又()()23f f -=, ∴82183m n m n -+=++② 由①②解2m =-,1n =-,∴()2221f x x x =--;(2)()2213221222f x x x x ⎛⎫=--=-- ⎪⎝⎭,[],2x a a ∈+,当122a +≤,即32a ≤-时,函数()f x 在[],2a a +上单调递减,∴()()2min 2263f x f a a a ⎡⎤=+=++⎣⎦;当122a a <<+,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,∴()min1322f x f ⎛⎫⎡⎤==- ⎪⎣⎦⎝⎭; 当12a ≥时,函数()f x 在[],2a a +上单调递增, ∴()()2min 221f x f a a a ⎡⎤==--⎣⎦.综上,()2min23263,,2331,,2221221,2a a a f x a a a a ⎧++≤-⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩.(3)设()()g x f x tx t =-+有两个不相等的不动点1x 、2x ,且1>0x ,20x >,∴()g x x =,即方程()22310x t x t -++-=有两个不相等的正实根1x 、2x .∴()()21212Δ3810,30,2102t t t x x t x x ⎧⎪=+-->⎪+⎪+=>⎨⎪-⎪=>⎪⎩,解得1t >. 22.(2022·安徽合肥·高一期末)已知函数()22f x x mx =--.(1)若0m >且()f x 的最小值为3-,求不等式()1f x <的解集; (2)若当21x ≤时,不等式()20f x x -<恒成立,求实数m 的取值范围. 【解析】(1)解:()f x 的图象是对称轴为2mx =,开口向上的抛物线,所以,()222min2232424m m mm f x f ⎛⎫==--=--=- ⎪⎝⎭,因为0m >,解得2m =,由()1f x <得2230x x --<,即()()310x x -+<,得13x ,因此,不等式()1f x <的解集为()1,3-.(2)解:由21x ≤得11x -≤≤,设函数()()()2222g x f x x x m x =-=-+-,因为函数()g x 的图象是开口向上的抛物线,要使当21x ≤时,不等式()20f x x -<恒成立,即()0g x <在[]1,1-上恒成立,则()()1010g g⎧<⎪⎨-<⎪⎩,可得122010m m ---<⎧⎨+<⎩,解得3<1m -<-. 23.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值.【解析】(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.24.(2022·贵州·赫章县教育研究室高一期末)已知函数()2623f x ax x b =+-+(,a b 为常数),在1x =时取得最大值2. (1)求()f x 的解析式; (2)求函数()f x 在3,2上的单调区间和最小值.【解析】(1)由题意知6126232a ab ⎧-=⎪⎨⎪+-+=⎩,∴32a b =-⎧⎨=⎩ , ∴ ()2361f x x x =-+-.(2)∵()()()22321312f x x x x =---=--+,∴当[]3,2x ∈-时,()f x 的单调增区间为[]3,1-,单调减区间为[]1,2,又()()32718146,2121211f f -=---=-=-+-=-, ∴ ()f x 最小值为46-.25.(2022·广东·化州市第三中学高一期末)已知函数()22f x x mx =-+.(1)若()f x 在区间(],1-∞上有最小值为1-,求实数m 的值;(2)若4m ≥时,对任意的12,1,12m x x ⎡⎤∈+⎢⎥⎣⎦,总有()()21244mf x f x -≤-,求实数m 的取值范围.【解析】(1)可知()f x 的对称轴为2m,开口向上, 当12m ≤,即2m ≤时,()2min 2124m m f x f ⎛⎫==-=- ⎪⎝⎭, 解得23m =-23,∴23m =- 当12m>,即2m >时,()()min 131f x f m ==-=-, 解得4m =,∴4m =. 综上,23m =-4m =.(2)由题意得,对1,12m x ⎡⎤∈+⎢⎥⎣⎦,()()2max min 44m f x f x -≤-. ∵1,122m m ⎡⎤∈+⎢⎥⎣⎦,11222m m m⎛⎫-≥+- ⎪⎝⎭,∴()2min224m m f x f ⎛⎫==- ⎪⎝⎭,()()max 13f x f m ==-.∴()()22max min1444m m f x f x m -=-+≤-, 解得5m ≥,∴5m ≥.26.(2022·黑龙江·鹤岗一中高一期末)已知二次函数()f x 满足()()12f x f x x +-=,且()01f =.(1)求函数()f x 在区间[]1,1-上的值域;(2)当x ∈R 时,函数y a =-与()3y f x x =-的图像没有公共点,求实数a 的取值范围.【解析】(1)解:设()()20f x ax bx c a =++≠、∴()1()22f x f x ax a b x +-=++=,∴220a a b =⎧⎨+=⎩,∴1a =,1b =-,又()01f =,∴1c =,∴()21f x x x =-+.∵对称轴为直线12x =,11x -≤≤,1324f ⎛⎫= ⎪⎝⎭,()13f -=, ∴函数的值域3,34⎡⎤⎢⎥⎣⎦.(2)解:由(1)可得:()2341y f x x x x =-=-+∵直线y a =-与函数()3y f x x =-的图像没有公共点∴()2min 41a x x -<-+, 当2x =时,()2min 41=3x x -+-∴3a -<-,∴3a >.27.(2022·陕西安康·高一期末)已知二次函数()[]21,1,2f x x ax x =++∈-.(1)当1a =时,求()f x 的最大值和最小值,并指出此时x 的取值; (2)求()f x 的最小值,并表示为关于a 的函数()H a .【解析】(1)当1a =时,()21f x x x =++,对称轴为12x =-,开口向上,所以()f x 在11,2⎡⎤--⎢⎥⎣⎦上单调递减,在1,22⎡⎤-⎢⎥⎣⎦上单调递增,()2min111312224f x f ⎛⎫⎛⎫⎛⎫=-=-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()2max 22217f x f ==++=.所以当12x =-时,()f x 的最小值为34,当2x =时()f x 的最大值为7.(2)()21f x x ax =++的对称轴为2a x =-,开口向上,当12a-≤-即2a ≥时,()21f x x ax =++在[]1,2-上单调递增, ()()()2min 1112f x f a a =-=--+=-,当122a -<-<即42a -<<时,()21f x x ax =++在1,2a ⎡⎤--⎢⎥⎣⎦上单调递减,在,22a ⎡⎤-⎢⎥⎣⎦上单调递增,此时()22min 112224a a a a f x f a ⎛⎫⎛⎫⎛⎫=-=-+⋅-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当22a-≥即4a ≤-时,()21f x x ax =++在[]1,2-上单调递减, ()()2min 222152f x f a a ==++=+,所以252,4()1,4242,2a a a H a a a a +≤-⎧⎪⎪=--<<⎨⎪-≥⎪⎩.28.(2022·北京平谷·高一期末)已知二次函数()()211f x ax a x =-++.(1)当对称轴为1x =-时, (i )求实数a 的值;(ii )求f (x )在区间[]22-,上的值域. (2)解不等式()0f x ≥. 【解析】(1)解:(i )由题得(1)(1)11,12,223a a a a a a a -++-==-∴+=-∴=-; (ii )()212133f x x x =--+,对称轴为1x =-, 所以当[]2,2x ∈-时,max 124()(1)1333f x f =-=-++=.min 445()(2)1333f x f ==--+=-.所以f (x )在区间[]22-,上的值域为54[,]33-. (2)解:()2110ax a x -++≥,当0a =时,10,1x x -+≥∴≤;当0a >时,121(1)(1)0,0,1ax x x x a--≥∴=>=, 当01a <<时,不等式的解集为1{|x x a≥或1}x ≤; 当1a =时,不等式的解集为R ;当1a >时,不等式的解集为{|1x x ≥或1}x a≤;当0a <时,121(1)(1)0,0,1ax x x x a--+≤∴=<=, 所以不等式的解集为1{|1}x x a≤≤. 综上,当0a =时,不等式的解集为{|1}x x ≤; 当01a <<时,不等式的解集为1{|x x a≥或1}x ≤; 当1a =时,不等式的解集为R ;当1a >时,不等式的解集为{|1x x ≥或1}x a≤;当0a <时, 不等式的解集为1{|1}x x a≤≤. 29.(2022·重庆·高一期末)已知函数()29f x x ax a =-+-,a R ∈.(1)若()f x 在[]0,1上的值域为[]4,6,求a 的值;(2)若关于x 的不等式()0f x <只有一个正整数解,求a 的取值范围. 【解析】(1)解:因为函数()29f x x ax a =-+-,a R ∈,对称轴2ax =,且()09f a =-,()1102f a =-,21924a f a a ⎛⎫=--+ ⎪⎝⎭,当02a<时,函数()f x 在0,1上单调递增,所以 ()()0416f f ⎧=⎪⎨=⎪⎩,即941026a a -=⎧⎨-=⎩,此时无解; 当>12a时,函数()f x 在0,1上单调递减,所以 ()()0614f f ⎧=⎪⎨=⎪⎩,即961024a a -=⎧⎨-=⎩,解得3a =; 当012a ≤≤,即02a ≤≤时,函数()f x 在2a x =取得最小值,所以42a f ⎛⎫= ⎪⎝⎭,即21944a a --+=,方程在02a ≤≤上无解, 综上得:3a =;(2)解:关于x 的不等式()0f x <只有一个正整数解,等价于2+9>+1x a x 只有一个正整数解,令()2+9+1x g x x =,则()()()2+91010+1+22+12102+1+1+1g x x x x x x x ==-≥⋅=,当且仅当10+1+1x x =,即101x =, ()2+9+1x g x x =在(101⎤-⎦,上递减,在)101,⎡+∞⎣递增, 而21013<,()21+9151+1g ==,()29g =,()2+913222+13g ==,()2+999133,5>>3+12233g ==,当a 13932⎛⎤∈ ⎥⎝⎦,不等式只有一个正整数解2x =,所以a 的取值范围为13932⎛⎤⎥⎝⎦,.30.(2022·河北秦皇岛·高一期末)已知函数()1f x x x=+,()21g x x ax a =-+-. (1)若()g x 的值域为[)0,∞+,求a 的值.(2)证明:对任意[]11,2x ∈,总存在[]21,3x ∈-,使得()()12f x g x =成立.【解析】(1)解:因为()g x 的值域为[)0,∞+,所以()()222414420a a a a a ∆=--=-+=-=,解得2a =.(2)证明:由题意,根据对勾函数的单调性可得()1111f x x x =+在[]1,2上单调递增,所以()152,2f x ⎡⎤∈⎢⎥⎣⎦.设()21g x x ax a =-+-在[]1,3-上的值域为M ,当12a≤-,即2a -时,()g x 在[1,3]-上单调递增,因为max ()(3)8212g x g a =-=,min ()(1)24g x g a -==-,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当32a,即6a 时,()g x 在[1,3]-上单调递减,因为max ()(1)212g x g a -==,min ()(3) 824g x g a =--=,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当132a -<<,即26a -<<时,22min 11()1(2)(4,0]244a g x g a a a ⎛⎫==-+-=--∈- ⎪⎝⎭,max ()max{2, 82}[4,12)g x a a =-∈,所以52,2M ⎡⎤⊆⎢⎥⎣⎦;综上,52,2M ⎡⎤⊆⎢⎥⎣⎦恒成立,即()f x 在[1,2]上的值域是()g x 在[1,3]-上值域的子集恒成立,所以对任意1[1,2]x ∈总存在2[1,3]x ∈-,使得()()12f x g x =成立.31.(2022·内蒙古赤峰·高一期末)已知函数2()21f x ax x a =-+-(a 为实常数). (1)若0a >,设()f x 在区间[1,2]的最小值为()g a ,求()g a 的表达式: (2)设()()f x h x x=,若函数()h x 在区间[1,2]上是增函数,求实数a 的取值范围. 【解析】(1)由于0a >,当[1,2]x ∈时,2211()212124f x ax x a a x a a a ⎛⎫=-+-=-+-- ⎪⎝⎭①若1012a <<,即12a >,则()f x 在[1,2]为增函数 ,()(1)32g a f a ==-; ②若1122a ≤≤,即1142a ≤≤时,11()2124g a f a a a ⎛⎫==-- ⎪⎝⎭;③若122a >,即104a <<时,()f x 在[1,2]上是减函数,()(2)63g a f a ==-; 综上可得163,04111()21,442132,2a a g a a a a a a ⎧-<<⎪⎪⎪=--≤≤⎨⎪⎪->⎪⎩; (2)21()1a h x ax x-=+-在区间[1,2]上任取1212x x ≤<≤, ()()()212121211221212111a a a h x h x ax ax x x a x x x x ⎛⎫⎛⎫⎛⎫----=+--+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭[]211212(21)x x ax x a x x -=--(*) ()h x 在[1,2]上是增函数 ()()210h x h x ∴->∴(*)可转化为12(21)0ax x a -->对任意12,[1,2]x x ∈且12x x <都成立,即1221ax x a >- ①当0a =时,上式显然成立 ②12210,a a x x a ->>,由1214x x <<得211a a-≤,解得01a <≤; ③12210,a a x x a-<<,由1214x x <<得,214a a -≥,得102a -≤<, 所以实数a 的取值范围是1,02⎡⎫-⎪⎢⎣⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数在闭区间上的最值问题的解法一、知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设f x a x b xc a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b aa cb a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:(1)当[]-∈bam n 2,时,f x ()的最小值是f b a a c b af x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-∉bam n 2,时 若-<bam 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n ba<-2,由f x ()在[]m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。

二、例题分析归类: (一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。

解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上, 如图1所示。

函数的最大值为f ()22=,最小值为f ()02=-。

图1练习. 已知232x x ≤,求函数f x x x ()=++21的最值。

解:由已知232x x ≤,可得032≤≤x ,即函数f x ()是定义在区间032,⎡⎣⎢⎤⎦⎥上的二次函数。

将二次函数配方得f x x ()=+⎛⎝ ⎫⎭⎪+12342,其对称轴方程x =-12,顶点坐标-⎛⎝ ⎫⎭⎪1234,,且图象开口向上。

显然其顶点横坐标不在区间032,⎡⎣⎢⎤⎦⎥内,如图2所示。

函数f x ()的最小值为f ()01=,最大值为f 32194⎛⎝ ⎫⎭⎪=。

图22、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2. 如果函数f x x ()()=-+112定义在区间[]t t ,+1上,求f x ()的最小值。

解:函数f x x ()()=-+112,其对称轴方程为x =1,顶点坐标为(1,1),图象开口向上。

如图1所示,若顶点横坐标在区间[]t t ,+1左侧时,有1<t ,此时,当xt =时,函数取得最小值fx ft t ()()()m i n==-+112。

图1如图2所示,若顶点横坐标在区间[]t t ,+1上时,有t t ≤≤+11,即01≤≤t 。

当x =1时,函数取得最小值f x f ()()m i n==11。

图2如图3所示,若顶点横坐标在区间[]t t ,+1右侧时,有t +<11,即t <0。

当x t =+1时,函数取得最小值fx ft t ()()m i n=+=+112综上讨论,⎪⎩⎪⎨⎧<+≤≤>+-=0110,11,1)1()(22mint t t t t x f图8例3. 已知2()23f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值.解:由已知可求对称轴为1x =.(1)当1t >时,2min max ()()23()(1)2f x f t t t f x f t t ∴==-+=+=+,. (2)当11t t +≤≤,即01t ≤≤时,. 根据对称性,若2121≤++t t 即102t ≤≤时,2max ()()23f x f t t t ==-+.若2121>++t t 即112t <≤时,2max ()(1)2f x f t t =+=+. (3)当11t +<即0t <时,2max ()()23f x f t t t ==-+.综上,⎪⎪⎩⎪⎪⎨⎧≤+->+=21,3221,2)(22maxt t t t t x f 观察前两题的解法,为什么最值有时候分两种情况讨论,而有时候又分三种情况讨论呢?这些问题其实仔细思考就很容易解决。

不难观察:二次函数在闭区间上的的最值总是在闭区间的端点或二次函数的顶点取到。

第一个例题中,这个二次函数是开口向上的,在闭区间上,它的最小值在区间的两个端点或二次函数的顶点都有可能取到,有三种可能,所以分三种情况讨论;而它的最大值不可能是二次函数的顶点,只可能是闭区间的两个端点,哪个端点距离对称轴远就在哪个端点取到,当然也就根据区间中点与左右端点的远近分两种情况讨论。

根据这个理解,不难解释第二个例题为什么这样讨论。

对二次函数的区间最值结合函数图象总结如下:当a >0时⎪⎪⎩⎪⎪⎨⎧+<-+≥-=))((212)())((212)()(21max如图如图,,n m a b n f n m a b m f x f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<-≤-≤->-=)(2)()(2)2()(2)()(543min如图如图如图,,,m a b m f n a b m a b f n a b n f x f当a <0时⎪⎪⎪⎩⎪⎪⎪⎨⎧<-≤-≤->-=)(2)()(2)2()(2)()(876max如图如图如图,,,m a b m f n a b m a b f n a b n f x f f x f m b a m n f n b a m n ()()()()()()()min =-≥+-<+⎧⎨⎪⎪⎩⎪⎪,,如图如图2122129103、轴变区间定二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。

例4. 已知x 21≤,且a -≥20,求函数f x x a x ()=++23的最值。

解:由已知有-≤≤≥112x a ,,于是函数f x ()是定义在区间[]-11,上的二次函数,将f x ()配方得:f x x a a ()=+⎛⎝ ⎫⎭⎪+-23422二次函数f x ()的对称轴方程是x a =-2顶点坐标为--⎛⎝ ⎫⎭⎪a a 2342,,图象开口向上由a ≥2可得x a=-≤-21,显然其顶点横坐标在区间[]-11,的左侧或左端点上。

函数的最小值是f a ()-=-14,最大值是f a()14=+。

图3例5. (1) 求2f (x )x 2ax 1=++在区间[-1,2]上的最大值。

(2) 求函数)(a x x y --=在]1,1[-∈x 上的最大值。

解:(1)二次函数的对称轴方程为x a =-, 当1a 2-<即1a 2>-时,max f (x )f (2)4a 5==+; 当1a 2-≥即1a 2≤-时,max f (x )f (1)2a 2=-=+。

综上所述:max12a 2,a 2f (x )14a 5,a 2⎧-+≤-⎪⎪=⎨⎪+>-⎪⎩。

(2)函数4)2(22a a x y +--=图象的对称轴方程为2a x =,应分121≤≤-a ,12-<a ,12>a 即22≤≤-a ,2-<a 和2>a 这三种情形讨论,下列三图分别为(1)2-<a ;由图可知max ()(1)f x f =- (2)a ≤-22≤;由图可知max ()()2af x f =(3) 2>a 时;由图可知max ()(1)f x f =∴⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=2,)1(22,)2(2,)1(a f a a f a f y 最大;即⎪⎪⎩⎪⎪⎨⎧>-≤≤--<+-=2,122,42,)1(2a a a a a a y 最大4. 轴变区间变二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”。

例6. 已知24()(0),y a x a a =->,求22(3)u x y =-+的最小值。

解:将24()y a x a =-代入u 中,得①,即时,②,即时,所以(二)、逆向型是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。

例7. 已知函数2()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。

解:2()(1)1,[3,2]f x a x a x =++-∈-(1)若0,()1,a f x ==,不符合题意。

(2)若0,a >则max ()(2)81f x f a ==+ 由814a +=,得38a =(3)若0a <时,则max ()(1)1f x f a =-=- 由14a -=,得3a =- 综上知38a =或3a =- 例8.已知函数2()2x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。

解法1:讨论对称轴中1与,,2m nm n +的位置关系。

①若,则max min()()3()()3f x f n n f x f m m ==⎧⎨==⎩解得②若12m nn +≤<,则max min ()(1)3()()3f x f n f x f m m==⎧⎨==⎩,无解 ③若12m nm +≤<,则max min()(1)3()()3f x f n f x f n m ==⎧⎨==⎩,无解 ④若,则max min ()()3()()3f x f m nf x f n m==⎧⎨==⎩,无解综上,4,0m n =-= 解析2:由211()(1)22f x x =--+,知113,,26n n ≤≤,则[,](,1]m n ⊆-∞, 又∵在[,]m n 上当x 增大时)(x f 也增大所以max min()()3()()3f x f n nf x f m m ==⎧⎨==⎩解得4,0m n =-=评注:解法2利用闭区间上的最值不超过整个定义域上的最值,缩小了m ,n 的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。

相关文档
最新文档