2018年七年级数学寒假辅导 第6天 第6章 实数复习讲稿 精

合集下载

七年级数学下册第6章实数复习教案1(新版)新人教版

七年级数学下册第6章实数复习教案1(新版)新人教版

第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

(老师读,学生读,加深理解。

)3、书写教学“杏花春雨江南”6个字。

初一数学第六章实数知识点归纳(K12教育文档)

初一数学第六章实数知识点归纳(K12教育文档)

初一数学第六章实数知识点归纳(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初一数学第六章实数知识点归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初一数学第六章实数知识点归纳(word版可编辑修改)的全部内容。

第六章 实数 知识点归纳一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。

正整数又叫自然数.正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定结构的数,如0.1010010001…等;(3)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;3。

实数与数轴上点的关系:实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大二、实数的倒数、相反数和绝对值 (3分)1、相反数从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立.2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,若|a|=a,则a≥0;若|a|=—a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

人教版七年级数学下册第六章实数复习说课稿

人教版七年级数学下册第六章实数复习说课稿
1.通过生活中的实例引入实数的概念,让学生感受到数学与生活的紧密联系,提高他们的学习兴趣。
2.设计有趣的数学游戏,如数轴游戏,让学生在游戏中理解和掌握实数与数轴的关系。
3.采用小组合作学习的方式,让学生在讨论和交流中解决问题,增强他们的合作意识和团队精神。
4.提供丰富的练习题,让学生在实践中巩固知识,提高他们的实际应用能力。
(二)学习障碍
在学习本节课之前,学生需要具备有理数、无理数等基本概念,以及简单的数学运算能力。可能存在的学习障碍主要是对实数概念的理解,尤其是无理数的概念和性质,以及实数与数轴的关系。此外,部分学生可能对数轴的理解存在困难,无法直观地理解数轴上点的坐标与实数的关系。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生回顾所学知识,总结实数的定义、分类、性质以及实数与数轴的关系。然后,我会鼓励学生反思自己的学习过程,找出自己的不足和需要改进的地方。最后,我会根据学生的表现和反馈,给予他们个性化的建议和指导,帮助他们进一步提高。
(二)教学目标
1.知识与技能:使学生掌握实数的定义、分类、性质,能够正确理解和运用实数的相关知识。
2.过程与方法:通过复习,使学生能够运用实数的性质和概念,解决实际问题,提高学生的数学应用能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神,使学生认识到数学在生活中的重要性。
5.对学习有困难的学生给予个别辅导,鼓励他们克服困难,增强他们的自信心。
三、教学方法究式教学法。情境教学法通过生活实例引入实数概念,让学生感受到数学与生活的紧密联系,提高他们的学习兴趣。探究式教学法鼓励学生主动参与,自主探究,培养他们的独立思考能力和问题解决能力。这两种方法的理论依据是建构主义学习理论,即学习者通过主动建构知识,形成自己的认知结构。

第六章 实数(复习课件)七年级数学下册(人教版)

第六章 实数(复习课件)七年级数学下册(人教版)

举一反三
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
解:不能.理由如下:因为大正方形纸片的面
积为( 18)2+( 18)2=36(cm2) ,
高频考点
高频考点七 实数的综合运用
(3)如果2+ 5的整数部分是a,小数部分是b,求出a-b的值.
(3)因为 4< 5< 9,即2< 5<3,
所以4<2+ 5<5,
所以2+ 5的整数部分为4,小数部分为2+ 5-4= 5-2,即a=4,b= 5-2,
所以a-b=4-( 5-2)= 6- 5.
举一反三
【7-1】若 2的整数部分为x,小数部分为y,则 2x-y的值是( C )
A.2 2-2
B.2
C.1
D. 2
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
0
一个,为负数
3
a
可以为任何数
知识梳理
四、实数及其运算
有理数包括整数和分数,它们都可以写成有限小数或者无限循环小数的形
式.
5 3 27 11 9
, , , , .
2 5 4 9 11
5
2.5
2
3
0.6
5
27
6.75
4
.
11

人教版七年级数学下册第6章实数(教案)

人教版七年级数学下册第6章实数(教案)
-突破方法:通过大量练习和错例分析,帮助学生掌握运算顺序和规则。
-平方根与立方根的求解:学生可能不熟悉平方根和立方根的求解方法,特别是对于复杂实数。
-突破方法:通过图形和数轴的辅助,直观展示平方根和立方根的概念,并提供多样的练习题。
-实数与数轴的应用:将实数与数轴结合解决实际问题时,学生可能不知道如何操作。
2.提升学生的逻辑思维与推理能力:在学习实数的性质与运算过程中,培养学生逻辑思维和推理能力,使他们能够运用所学知识解决问题。
3.增强学生的空间观念与数形结合思想:通。
4.培养学生的数据分析与实际问题解决能力:在学习实数在实际问题中的应用时,培养学生数据分析能力,使他们能够运用所学知识解决生活中的数学问题。
人教版七年级数学下册第6章实数(教案)
一、教学内容
人教版七年级数学下册第6章“实数”主要围绕以下内容展开:
1.实数的概念与分类:理解实数的定义,掌握实数的分类(有理数、无理数)。
2.实数的性质:探讨实数的性质,如符号、绝对值、相反数、倒数等。
3.实数的运算:掌握实数的加减乘除运算,以及混合运算的法则和技巧。
3.重点难点解析:在讲授过程中,我会特别强调实数的分类和运算这两个重点。对于难点部分,如无理数的理解,我会通过具体例子和数轴上的表示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如计算圆的周长。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠纸片来估算无理数√2的值。
回顾整个教学过程,我认为以下几个方面需要改进:
1.对于无理数的讲解,我应该准备更多生动的例子和实际操作,以帮助学生更好地理解这一概念。
2.在实践活动和小组讨论中,要关注学生的个体差异,鼓励他们独立思考,提高解决问题的能力。

(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)

(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)

6.1平方根(第1课时)邓伶亚赤壁市实验中学一、内容和内容解析1.内容《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围.2.内容解析教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根.算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用.第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。

教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指出53,等也是无限不循环小数,为后面学习无理数概念打下基础.第三,会用根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累.对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼.本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。

因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难.第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根.而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面.对算术平方根是非负的理解,学生会有些困难.第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根到底有多大,对学生来说是一个新问题.基于以上分析,可以确定本节课的重点是:了解算术平方根的意义和性质.二、目标和目标解析1.目标(1)通过实际问题生成算术平方根的概念,了解平方与开平方互为逆运算,会用符号表示数的算术平方根.(2)通过互动游戏,巩固算术平方根的概念,并归纳出算术平方根的性质.(3)通过探究2的大小,了解2是无限不循环小数.2.目标解析目标(1)解析:学生经历由实际问题逐步抽象为数学问题的过程,建立初步的数感和符号感,发展抽象思维;在探索算术平方根概念的过程中,经历由具体到抽象、由特殊到一般的数学思想过程;通过对实际生活中问题的解决,体验数学来源于生活.目标(2)解析:学生在积极参与游戏的过程中,巩固算术平方根的概念;在师生问答互动的过程中,辨析概念,培养学生的推理、归纳能力.目标(3)解析:通过探究2的大小,培养估算意识,了解两个方向无限逼近的数学思想。

人教版七年级数学下册第六章《实数》小结与复习说课稿

人教版七年级数学下册第六章《实数》小结与复习说课稿
3.数学游戏:设计实数运算相关的数学游戏,让学生在游戏中运用所学知识,提高学习兴趣;
4.生活实践:让学生收集生活中的实数问题,进行分析和解决,培养学生的数学应用意识。
(四)总结反馈
在总结反馈阶段,我将采取以下措施引导学生自我评价,并提供有效的反馈和建议:
1.让学生总结本节课所学知识,分享自己的学习心得;
(2)掌握实数运算的顺序和法则;
(3)解决实数混合运算中的实际问题。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经掌握了基本的算术运算,具备了一定的数学逻辑思维能力。然而,由于年龄和经验的限制,他们对实数概念的理解可能还不够深入,对实数运算的掌握也可能不够熟练。
2.互动教学:设计课堂提问、小组讨论等活动,引导学生积极参与,提高他们的学习主动性;
3.激励评价:对学生在课堂上的表现给予积极的评价和鼓励,增强他们的自信心;
4.举一反三:通过典型例题的讲解,引导学生发现解题规律,提高他们解决问题的能力;
5.数学游戏:设计一些与实数相关的数学游戏,让学生在游戏中学习,提高他们的学习兴趣。
板书在教学过程中的作用是帮助学生构建知识框架,直观展示教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将采取以下措施:
1.提前规划板书内容,确保知识点完整、系统;
2.使用不同颜色的粉笔,区分重点、难点和关键点;
3.板书过程中,适时引导学生关注,解释板书中的逻辑关系;
4.在适当位置留下空白,用于记录学生的疑问和课堂生成性内容。
2.提高练习:设计一些综合性较强的实数题目,培养学生的解题能力和思维能力;

数学人教版七年级下册第六章 实数复习课 (说课稿)

数学人教版七年级下册第六章  实数复习课 (说课稿)

第六章《实数》复习课说课稿双堂中学刘进枫一、本章教材分析1、主要内容《实数》是人教版数学七年级下册第六章,主要有算术平方根,平方根,立方根以及实数的有关概念、运算和实数在数轴上的表示等内容。

2、地位与作用本章之前数及其运算的内容都是在有理数范围进行,学习本章之后,将在实数范围内研究数及其运算问题,虽然本章内容不多,篇幅不大,但在中学数学中占有重要地位和作用,本章内容不仅是初中阶段学习二次根式、一元二次方程以及解三角形等知识的基础,也是学习高中数学中函数、不等式等知识的基础。

二、学情分析从知识储备上看,学生学过平方,立方,乘方运算,数的认识已扩充到有理数范围,并且知道有理数能用数轴上的点表示。

从能力而言,七年级学生思维正处于从以具体形象思维为主向以抽象逻辑思维成分为主的转折期,教材内容的呈现必须注意具体性,形象性,同时还要有适当的抽象概况要求,从而既适应这一时期的能力发展水平,又能促进他们的思维向高一阶段的发展。

在学习认识态度上,由于各种原因,学生畏惧数学,对数学不感兴趣,相当多的学生以完成作业和参加考试为学习数学的方法和目的,忽视自己内在思维能力的成长。

独立思考,自主探究,合作交流这一数学学习的基本过程没有形成学习常态。

三、本章的教学目标及重难点重点:1、了解算术平方根,平方根,立方根的概念,会用根号表示数的算术平方根、平方根、立方根。

2、了解开方与乘方互为逆运算,会用乘方运算求百以内整数的平方根,(对应的负整数)的立方根,会用计算器求平方根和立方根。

3、了解无理数和实数的概念,知道实数与数轴一一对应的关系,能求实数的相反数和绝对值。

4、能用有理数估计一个无理数的大致范围。

《数学课程标准》中要求数学有助于学生获得必须的知识和必要的技能,并初步发展数感,学会推理,突出探究性活动,使学生经历“做数学”的学习方式,加强合情推理,强化理性精神。

确定重点:算术平方根,平方根的概念和求法以及实数的概念,因为他们是理解立方根的概念和求法,实数的有关概念和运算的基础。

【新】人教版七年级数学下册第六章《实数复习》公开课课件 (4).ppt

【新】人教版七年级数学下册第六章《实数复习》公开课课件 (4).ppt
课件说明知识梳理把握重点知识梳理把握重点知识梳理把握重点知识梳理把握重点知识梳理把握重点数的范围是怎样从正整数逐步扩充到实数的
第六章 小结与复习
课件说明
由于数的扩充的一致性,本章很多内容可以类比 有理数的有关内容得出.因此,应该通过本节课的教 学,让学生进一步体会数系扩充的一致性和发展性.
课件说明
4
典型分析,强调方法
例3 下列各数分别介于哪两个相邻 的整数之间: (1) 2 6 ; (2)3 8 8 .
答案:(1) 2 6 介于5和6之间; (2)3 8 8 介于4和5之间.
典型分析,强调方法
例4 比较下列各组数的大小:
(1)3, 1 0 ;
(2)
5 2
1
,1

答案:(1)3 10 ;
学习目标: (1)梳理本章的相关概念,通过回顾平方根、立方根、 实数及有关的概念,强化概念之间的联系. (2)会进行开平方和开立方运算.
学习重点: (1)进一步加强学生对平方根、立方根以及实数概念 的认识. (2)进一步强化平方根、立方根的联系,有理数与实 数运算的联系.
知识梳理,把握重点
平方根的概念是什么?算术平 方根的概念是什么?这两个概 念的区别与联系是什么?
典型分析,强调方法
例1 求下列各数的算术平方根及 平方根: (1)64; (2)0.25; (3)1 0 4 .
答案:(1)8, 8 ;(2)0.5, 0 .5 ; (3)1 0 2 , 1 0 2.
典型分析,强调方法
例2 求下列各数的立方根:
(1)
1 64

(2) 3 6

答案:(1) 1 ;(2)3 2 .

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/102021/1/102021/1/102021/1/10

数学沪科版七年级下册教案第6章实数复习

数学沪科版七年级下册教案第6章实数复习

根据新课标理念,课堂教学规律、课堂教学评价体系,教学反思可以从以下六个方面着手:
1、教学内容方面:教材处理的合理性;导入、结课的激励性;深层意义的规律有否揭示与发掘。

2、教学过程方面:教学程序安排的合理性;教学设计的科学性;媒体运用的适切性;反馈评价的准确性。

3、从课堂管理方面进行反思:班级成员涉及面的广泛性;全班同学学习的积极性;学法指导的经常性;处理偶发事件的应变性。

4、时间安排方面:时间分布的合理性;课内时间的可压缩性。

5、学生活动方面:学生活动的能动性;交往状态的合理性;学生心智活动的发展性。

6、目标达成方面:学生知识、技能的落实性;学生学会学习的水平性;教师课内教学监控的有效性。

撰写教后录的切入点
1、成功点:主要是指课堂教学中的闪光点。

如课堂上一个恰当的比喻,教学难点的顺利突破,引人入胜的教学方法。

又如一些难忘的教学艺术镜头:新颖精彩的导语,成功的临场发挥,扭转僵局的策略措施
2、失败点:主要是指课堂教学中的砸锅点。

如教学目标定位不准,造成的“吃不了”或“吃不饱”之现象;教学引导的度把握不适,造成的“一问三不知”的僵局;教学方法选择不当,造成的低效等。

3、遗漏点:主要是指课堂教学设计中遗漏的一些环节或知识点。

如教学衔接必需的知识点,帮助学生理解课文的背景材料,拓展延伸的内容等。

4、改进点:主要是指课堂教学中经过微调可以追求更高效益的那些点。

如更合理的分配讲与练的时间,更恰当的选择例题,更完美的板书设计,更科学的媒体选用等。

七年级数学寒假辅导 第6天 第6章 实数复习讲稿(无答案)

七年级数学寒假辅导 第6天 第6章 实数复习讲稿(无答案)

第6天 第六章 实数讲稿一、知识结构:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0二、数的开方主要知识点:【1】平方根:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的 ;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:________=x 。

因此:当a=0时,它的平方根只有 个,也就是 本身;当a >0时,也就是a 为正数时,它有 个平方根,且它们是互为 ,通常记做:a x ±=。

当a <0时,也即a 为 时,它不存在平方根。

例1. (1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。

(3)若x 的平方根是±2,则x=;的平方根是(4)当x 时,3x -有意义。

(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?【2】算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“________”,读作,“根号a”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为 。

(2)算术平方根的性质:具有双重非负性,即:(a 0)(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

人教版初中七年级(下册)数学《第六章实数复习课》ppt课件

人教版初中七年级(下册)数学《第六章实数复习课》ppt课件
C) 的 值 是 ( ( A )1 ( B )5
( C )2 5
( D )不 能 确 定
三、知识点应用
选择题:
2 2 3 、 已 知 x 2 y 80 , 则 x 2 x y y
的 值 是 ( C)
( A )6 ( C )1 0
( B ) 1 0 ( D )不 能 确 定

4、下列运算正确的是( A )
唯一对应
数轴上一个点
性质:在数轴上,右边的点表示的数比左边的点表示
的数大.
二、知识点分解--实数的性质
在实数范围内,相反数、倒数、绝对值的 意义和有理数的相反数、倒数、绝对值的意义 完全一样。即
a a
相反数 倒数
a
1 (a 0) a , a0 a | a | 0 , a0 a , a0
(× 10)任何数都有平方根
( 11 ) a 一定没有平方根 ×
2
三、知识点应用
填空:将下列各数分别填入下列的集合括号中
3
9,
1 , 4
7,
4 , 9
3
5 , 7
2,
1 , 3
16 ,

1 , 3 1 , 4
3
8 ,
0 .
…}
,
9,
5, 5,
4 , 9
无理数集合:{
7,
16 ,
3
2 , ,
三、知识点应用
1、a、b互为相反数,c与d互为倒数,则a+1+b+cd
= 2 。
2、实数a,b,c,d在数轴上的对应点如图所示,则 (1)它们从小到大的顺序是 ( 2 ) a b a +b c<d<b<a 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6天 第六章 实数讲稿一、知识结构:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0二、数的开方主要知识点:【1】平方根:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的 ;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:________=x 。

因此:当a=0时,它的平方根只有 个,也就是 本身;当a >0时,也就是a 为正数时,它有 个平方根,且它们是互为 ,通常记做:a x ±=。

当a <0时,也即a 为 时,它不存在平方根。

例1. (1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。

(3)若x 的平方根是±2,则x=;的平方根是(4)当x 时,3x -有意义。

(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?【2】算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“________”,读作,“根号a”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为 。

(2)算术平方根的性质:具有双重非负性,即:(a 0)(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=;(C )、81的平方根是3±; (D )、0没有平方根;(2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=-(3)2)3(-的算术平方根是 。

(4)若x x -+有意义,则=+1x ___________。

(4)(提高题)如果x 、y 分别是4- 3 的整数部分和小数部分。

求x - y 的值.【3】立方根(1)如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。

记做: ,读作,3次根号a 。

注意:这里的3表示的是开根的次数。

一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略。

(2)平方根与立方根:每个数都有立方根,并且一个数只有 个立方根;但是,并不是每个数都有平方根,只有 数才能有平方根。

例3.(1)64的立方根是_____;64的立方根是 ;81的平方根是 ;18的立方根是(3)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。

其中正确的有 ( )A 、1个B 、2个C 、3个D 、4个【4】立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有 根,正数的平方根有 个,并且互为 数,0的平方根只有一个且为 规律总结:1、平方根是其本身的数是 ;算术平方根是其本身的数是 和 ;立方根是其本身的数是 和 。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是 平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数 。

30有意义的条件是 。

4、公式:⑴2= (a ≥0)= (a 取任何数)。

5、区分2=a (a ≥0),与 2a =6.非负数的重要性质:若几个非负数之和 ,则每一个非负数都为0(此性质应用很广,务必掌握)。

【5】无理数(1) 小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。

在初中阶段,无理数的表现形式主要包含下列几种:(2) a.特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(3) b.开方开不尽的数,如:39,5,2等;(4) c.特殊结构的数:如:2.010 010 001 000 01…(两个1之间依次多1个0)等。

(5) 应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π(6) 有理数与无理数的区别: 1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数; 2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

例 4.(1)下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。

(填序号)(2)有五个数:0.125125…,0.1010010001…,-π,4,32其中无理数有 ( )个A 2B 3C 4D 5【6】实数(1)实数的定义: _____和_____统称实数。

(2)实数的分类:①按定义分:________________________;②按性质分:________________________。

(3)实数与数轴上的点的对应关系:__实数___与数轴上的点是_____对应的。

(4)有关概念:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的意义_____。

【7】实数的运算:(1)实数的加、减、乘、除、乘方运算和___有理数____一样,而且有理数的运算律对__________仍然适用。

(2)数a 的相反数是 。

一个正实数的绝对值是 。

一个负实数的绝对值是 。

0的绝对值是 。

例5.(1)下列说法正确的有 .(填序号)①无限小数都是无理数;②带根号的数是无理数;③有理数都是有限小数;④实数不是有理数就是无理数;⑤两个无理数的和与积都是无理数;⑥有理数与无理数分别平方后不可能相同.(2)52-的相反数是 ,绝对值是 . 3—π的绝对值是 .(3)若1-a +b a +=0,则b a 20182017+的值为 . 17在两个相邻的整数 和 之间.(4)下列各组数中互为相反数的是( )A .-2与(-2)2B .-2与3-8C .2与(-2)2D .|-2|与 2 第六章 实数同步练习题 一、选择题1.下列运算正确的是( ) A .4=±2 B .21()2=-4 C .38-=-2 D .-2-=22.在实数32-,0, 3,-3.14,2π, 4,-0.1010010001…(每两个1之间依次多1个0), 722,这8个实数中,无理数有 ( ) A.1个 B.2个 C.3个 D.4个3.2的相反数是( )A .-2 B .2 C .-22 D .22 4、下列各式没有意义的是( )A 、5- B 、()32- C 、0 D 、4-5、下列计算或判断:①±3都是27a =24=±,其中正确的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个6、在下列各式子中,正确的是( )2=0.4=-2=±; D.23(0+=7、下列说法错误的是 ( )A.1)1(2=- B.()1133-=- C.2的平方根是2± D.()232)3(-⨯-=-⨯-8、一个数的算术平方根是a ,则比这个数大8数是( ) A .a +8 B .a -4 C .a 2-8D .a 2+8 9、下列各式计算正确的是( )A 、±=9 3B 、24=--C 、()32-=-3 D 、981±±=10.在-2,4,2,3.14这4个数中,无理数是( )A .-2 B. 4 C. 2 D .3.14二、填空题1、3表示3的____算术平方根_______________;3±表示3的_______________2.16的平方根是 ; 的平方根是7±;若2a =25,b =3,则a+b=3、5的算术平方根是_ ,根是_ _;、-64的立方根是_ 。

4、如果一个数的平方根是X+1与X-3,则这个数是 ; 的立方根是-2.5、如果一个数的算术平方根是5,则这个数是 ,它的平方根是6、 -27 的平方根之和是7、已知一个正数的两个平方根分别是2a ﹣2和a ﹣4,则a 的值是8、若m 、n 互为相反数,则n m +-5=_________;ππ-+-43= ___________9、一个正数x 的两个平方根分别是a+2和a-4,则a=__ ___,x=___ __。

10、25的算术平方根是 ;3的平方根是 ;16的平方根是 .11、-27的立方根与16的平方根之和是 ;若 a a -=2,则a______0 12.16的平方根是 ;式子x -有意义,x 的取值范围三、解答题1.把下列各数分别填在相应的集合中.-π3,-2213,7,3-27,0.324 371,0.5,39,-0.4,16,0.808 008 000 8….(1)无理数集合:{ };(2)有理数集合:{ };(3)分数集合:{ };(4)负无理数集合:{ }.2.将下列各数填入相应的集合内.-7,0.32,12,0,8,12 ,-364,π,0.303 003….(1)有理数集合:{ …};(2)无理数集合:{ …};(3)负实数集合:{ …}.3、求下列各式X 的值(1)2425x = (2)()214x +=(3)25(x -1)2=49 (4)64(x+1)2﹣25=0.。

相关文档
最新文档