高中数学(北师大版)必修五教案:1.2 背景知识:等差数列的前n项和
等差数列前n项和公式说课稿 -李海刚
等差数列前n项和公式说课稿授课教师:李海刚各位评委,大家好:我说课的课题是高中数学(北师大版)必修5第一章等差数列中“等差数列前n项和公式”的第一节内容,我将从教材分析、教法、学法分析、教学过程、板书设计和效果分析五个方面来展开本节的说课内容。
一、教材分析1、“等差数列前n项和公式”是《数列》一章中重要的基础知识,无论在知识,还是在能力上,都是进一步学习其他数列知识的基础。
知识方面:等差数列前n项和公式有广泛的实际应用,是今后继续学习高等数学的基础,能体现解决数列问题的通性通法,并且在推导等差数列前n项和公式中运用的“倒序相加法”是今后数列求和的一种常用的重要方法。
能力方面:可考查学生的运算、推理、及等价转化能力,使学生进一步深入体会学习函数方程、数形结合等重要数学思想方法。
因此等差数列前n项和公式在《数列》一章具有极为重要的地位,也是高考命题的热点。
2、目标分析:根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:A、知识与技能掌握等差数列前n项和公式的推导方法;掌握公式及公式的运用。
B、过程与方法(1)通过公式的探索、发现,在知识发生、发展以及形式过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比导出等差数列的求和公式,培养学生的类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析和解决问题的能力。
C、情感、态度及价值观(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)公式运用的过程中,使学生逐步养成实事求是,扎实严谨的科学态度。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
3、教学重点和难点结合以上教学目标,我制定了下面的教学重点和难点教学重点:等差数列前n 项和公式的推导、掌握及灵活运用。
北师大版高中必修52.2等差数列的前n项和教学设计
北师大版高中必修5 2.2等差数列的前n项和教学设计一、教学目标1.知道等差数列的概念与性质,会判断一个数列是否为等差数列。
2.熟练掌握等差数列的通项公式、前n项和公式和其简单应用。
3.能使用前n项和公式解决等差数列实际问题。
二、教学重难点1.等差数列前n项和公式的理解与应用;2.等差数列的真正意义以及其在实际生活中的应用。
三、教学内容1. 等差数列的概念与性质1.1 等差数列的定义等差数列是指从第二项开始,每项与其前一项的差相等的一种数列,这个差叫做等差数列的公差。
1.2 等差数列的性质•通项公式:a n=a1+(n−1)d•前n项和公式:$S_n=\\frac{(a_1+a_n)n}{2}=\\frac{2a_1+(n-1)d}{2}×n$•等差中项:$a_m=\\frac{a_n+a_1}{2}$2. 等差数列的前n项和公式的应用以数列 $\\{4,7,10,...\\}$ 为例,在确定其为等差数列后,我们可以用前n项和公式计算前10项的和:$S_{10}=\\frac{(4+31)×10}{2}=175$3. 等差数列的实际应用等差数列在实际中的很多场景中都有应用,特别是在数理金融、经济策略等领域。
例如,假设你每个月存款1000元,而存款利息每年15%的情况下,求10年后本金和利息的总和。
数字小说以等差数列 $\\{12000,12600,13200,...\\}$ 来表示10年后每年的本息总和。
因此,我们可以使用前n项和公式来计算该数列的和:$S_{10}=\\frac{(24000+37200)×10}{2}=306000$四、教学过程1. 复习让学生们回顾等差数列的定义和通项公式,在黑板上让学生们做一些简单的题目。
2. 教学1.介绍等差数列的前n项和公式,并给出一个实例来说明该公式的应用;2.引入等差数列的实际场景,并尝试将其转化为等差数列;3.让学生尝试使用前n项和公式来计算等差数列的总和并解决实际问题。
等差数列的前n项和说课稿
等差数列的前n项和说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“等差数列的前 n 项和”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“等差数列的前 n 项和”是高中数学必修五第二章第三节的内容。
等差数列是高中数学中重要的数列类型之一,而前 n 项和则是等差数列中的一个关键知识点。
它不仅在数列的学习中具有重要地位,也为后续学习等比数列的前 n 项和以及数学归纳法等内容奠定了基础。
本节课的主要内容是等差数列前 n 项和公式的推导和应用。
通过本节课的学习,学生将掌握等差数列前 n 项和的两种常见公式,并能够运用这些公式解决相关的数学问题,提高数学运算和逻辑推理能力。
二、学情分析授课对象是高一年级的学生,他们已经掌握了等差数列的通项公式及其基本性质,具备了一定的数学思维能力和运算能力。
但是,对于等差数列前 n 项和公式的推导过程,可能会感到抽象和困难。
因此,在教学过程中,需要通过引导学生观察、思考、讨论等方式,帮助他们理解公式的推导思路,提高他们的学习积极性和主动性。
1、知识与技能目标(1)掌握等差数列前 n 项和公式的推导过程。
(2)理解等差数列前 n 项和公式的含义,能够熟练运用公式解决相关问题。
2、过程与方法目标(1)通过公式的推导过程,培养学生的观察、分析、归纳和推理能力。
(2)通过解决实际问题,提高学生的数学应用意识和创新能力。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的信心。
(2)培养学生勇于探索、敢于创新的精神,以及严谨的科学态度。
四、教学重难点1、教学重点等差数列前 n 项和公式的推导和应用。
2、教学难点等差数列前 n 项和公式的推导思路。
1、教法(1)启发式教学法:通过设置问题情境,引导学生思考和探究,激发学生的学习兴趣和主动性。
(2)讲授法:对于公式的推导过程和重点知识,进行详细的讲解和分析,帮助学生理解和掌握。
最新北师大版高中数学必修五等差数列的前n项和教案(精品教学设计)
等差数列的前n 项和一、教学目标1、知识与技能:(1)进一步熟练掌握等差数列的通项公式和前n 项和公式;(2)了解等差数列的一些性质,并会用它们解决一些相关问题;(3)会利用等差数列通项公式与前n 项和的公式研究S n 的最值。
2、过程与方法:(1)经历公式应用的过程,形成认识问题、解决问题的一般思路和方法;(2)学会其常用的数学方法和体现出的数学思想,促进学生的思维水平的发展。
3、情感态度与价值观:通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题。
二、教学重点 熟练掌握等差数列的求和公式.教学难点 灵活应用求和公式解决问题. 三、教学方法:探究归纳,讲练结合四、教学过程(一)、导入新课师 首先回忆一下上一节课所学主要内容.生 我们上一节课学习了等差数列的前n 项和的两个公式: (1)2)(1n n a a n S +=;(2)2)1(1d n n na S n -+=.师 对,我们上一节课学习了等差数列的前n 项和的公式,了解等差数列的一些性质.学会了求和问题的一些方法,本节课我们继续围绕等差数列的前n 项和的公式的内容来进一步学习与探究.(二)、推进新课[合作探究]师 本节课的第一个内容是来研究一下等差数列的前n 项和的公式的函数表示,请同学们将求和公式写成关于n 的函数形式.生 我将等差数列{a n }的前n 项和的公式2)1(1d n n na S n -+=整理、变形得到:)2(212d a n d S n -+=n.(*)师 很好!我们能否说(*)式是关于n 的二次函数呢? 生1 能,(*)式就是关于n 的二次函数.生2 不能,(*)式不一定是关于n 的二次函数.师 为什么?生2 若等差数列的公差为0,即d=0时,(*)式实际是关于n 的一次函数!只有当d ≠0时,(*)式才是关于n 的二次函数.师 说得很好!等差数列{a n }的前n 项和的公式可以是关于n 的一次函数或二次函数.我来问一下:这函数有什么特征? 生 它一定不含常数项,即常数项为0.生 它的二次项系数是公差的一半.……师 对的,等差数列{a n }的前n 项和为不含常数项的一次函数或二次函数.问:若一数列的前n 项和为n 的一次函数或二次函数,则这数列一定是等差数列吗? 生 不一定,还要求不含常数项才能确保是等差数列.师 说的在理.同学们能画出(*)式表示的函数图象或描述一下它的图象特征吗?生 当d=0时,(*)式是关于n 的一次函数,所以它的图象是位于一条直线上的离散的点列,当d ≠0时,(*)式是n 的二次函数,它的图象是在二次函数x d a x d y )2(212-+=的图象上的一群孤立的点.这些点的坐标为(n,S n )(n=1,2,3,…). 师 说得很精辟.[例题剖析]【例】 (课本例4)分析:等差数列{a n }的前n 项和公式可以写成n d a n d S n )2(212-+=,所以S n 可以看成函数x d a x d y )2(212-+= (x∈N *)当x=n 时的函数值.另一方面,容易知道S n 关于n 的图象是一条抛物线上的点.因此我们可以利用二次函数来求n 的值.(解答见课本第52页) 师 我们能否换一个角度再来思考一下这个问题呢?请同学们说出这个数列的首项和公差.生 它的首项为5,公差为75-.师 对,它的首项为正数,公差小于零,因而这个数列是个单调递减数列,当这数列的项出现负数时,则它的前n 项的和一定会开始减小,在这样的情况下,同学们是否会产生新的解题思路呢?生 老师,我有一种解法:先求出它的通项,求得结果是a n =a 1+(n-1)d=74075+-n . 我令74075+=n a n ≤0,得到了n ≥8,这样我就可以知道a 8=0,而a 9<0.从而便可以发现S 7=S 8,从第9项和S n 开始减小,由于a 8=0对数列的和不产生影响,所以就可以说这个等差数列的前7项或8项的和最大.师 说得非常好!这说明我们可以通过研究它的通项取值的正负情况来研究数列的和的变化情况. [方法引导]师 受刚才这位同学的新解法的启发,我们大家一起来归纳一下这种解法的规律①当等差数列{a n }的首项大于零,公差小于零时,它的前n 项的和有怎样的最值?可通过什么来求达到最值时的n 的值? 生S n 有最大值,可通过⎩⎨⎧≤≥+001n n a a 求得n 的值.师 ②当等差数列{a n }的首项不大于零,公差大于零时,它的前n 项的和有怎样的最值?可通过什么来求达到最值时的n 的值?生 S n 有最小值,可以通过⎩⎨⎧≥≤+001n n a a 求得n 的值. [教师精讲]好!有了这种方法再结合前面的函数性质的方法,我们求等差数列的前n 项的和的最值问题就有法可依了.主要有两种:(1)利用a n 取值的正负情况来研究数列的和的变化情况;(2)利用S n :由n d a n d S n )2(212-+=利用二次函数求得S n 取最值时n 的值. (三)、课堂练习:请同学们做下面的一道练习: 已知:a n =1 024+lg21-n (lg2=0.3 01 0)n ∈*.问多少项之和为最大?前多少项之和的绝对值最小?(让一位学生上黑板去板演)解:1°⎩⎨⎧-=≥-+=+02lg 102402lg )1(10241<n a n a n n 2lg 10242lg 1024≤⇒n <+1⇒3 401<n <3 403.所以n=3 402.2°S n =1 024n+2)1(-n n (-lg2),当S n =0或S n 趋近于0时其和绝对值最小,令S n =0,即1 024+2)1(-n n (-lg2)=0,得n =2lg 2048+1≈6 804.99.因为n ∈N *,所以有n=6 805.(教师可根据学生的解答情况和解题过程中出现的问题进行点评)[合作探究]师 我们大家再一起来看这样一个问题:全体正奇数排成下表:13 57 9 1113 15 17 1921 23 25 27 29…………此表的构成规律是:第n行恰有n个连续奇数;从第二行起,每一行第一个数与上一行最后一个数是相邻奇数,问2 005是第几行的第几个数?师此题是数表问题,近年来这类问题如一颗“明珠”频频出现在数学竞赛和高考中,成为出题专家们的“新宠”,值得我们探索.请同学们根据此表的构成规律,将自己的发现告诉我.生1 我发现这数表n行共有1+2+3+…+n个数,即n行共有2)1(+nn个奇数.师很好!要想知道2 005是第几行的第几个数,必须先研究第n行的构成规律.生2 根据生1的发现,就可得到第n行的最后一个数是2×2)1(+nn-1=n2+n-1.生3 我得到第n行的第一个数是(n2+n-1)-2(n-1)=n2-n+1.师现在我们对第n行已经非常了解了,那么这问题也就好解决了,谁来求求看?生4 我设n2-n+1≤2 005≤n2+n-1,解这不等式组便可求出n=45,n2-n+1=1 981.再设2 005是第45行中的第m个数,则由2 005=1 981+(m-1)×2,解得m=13.因此,2 005是此表中的第45行中的第13个数.师 很好!由这解法可以看出,只要我们研究出了第n 行的构成规律,则可由此展开我们的思路.从整体上把握等差数列的性质,是迅速解答本题的关键.(四)、课堂小结:本节课我们学习并探究了等差数列的前n 项和的哪些内容?生1我们学会了利用等差数列通项公式与前n 项和的公式研究S n 的最值的方法:①利用a n :当a n >0,d <0,前n 项和有最大值.可由a n ≥0,且a n+1≤0,求得n 的值;当a n ≤0,d >0,前n 项和有最小值.可由a n ≤0,且a n+1≥0,求得n 的值.②利用S n :由S n =2d n 2+(a 1-2d )n 利用二次函数求得S n 取最值时n 的值.生2 我们还对等差数列中的数表问题的常规解法作了探究,学习了从整体上把握等差数列的性质来解决问题的数学思想方法.师 本节课我们在熟练掌握等差数列的通项公式和前n 项和公式的基础上,进一步去了解了等差数列的一些性质,并会用它们解决一些相关问题.学会了一些常用的数学方法和数学思想,从而使我们从等差数列的前n 项和公式的结构特征上来更深刻地认识等差数列.(五)、布置作业课本习题1-2 A 组14、15 B 组4预习提纲:①什么是等比数列?②等比数列的通项公式如何求?五、教学反思:。
北师大版高中数学必修5等差数列的前n项和 第1课时
等差数列的前n 项和(第一课时)教学目标:1.掌握等差数列前n 项和公式及其推导方法.2.会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题教学重点:等差数列n 项和公式的推导及应用教学过程一、引言:著名的数学家 高斯(德国 1777-1855)十岁时计算1+2+3+…+100的故事: 高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:“1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050教师问:“你是如何算出答案的?高斯回答说:因为1+100=101;2+99=101;…50+51=101,所以101×50=5050”故事结束:归纳为 1.这是求等差数列1,2,3,…,100前100项和2.高斯的解法是:前100项和2)1001(100100+⨯=S 即2)(1n n a a n S += 二、1.等差数列的前n 项和公式1:2)(1n n a a n S += 证明: n n n a a a a a S +++++=-1321 ①1221a a a a a S n n n n +++++=-- ②①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=--∵ =+=+=+--23121n n n a a a a a a∴)(21n n a a n S += 由此得:2)(1n n a a n S +=2. 等差数列的前n 项和公式2:2)1(1d n n na S n -+= 两个公式都表明要求n S 必须已知n a d a n ,,,1中三个公式二又可化成式子:n )2d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的关于n 的二次式 有关前n 项和得最值问题可由此公式解决三、补充例题:例1:一个堆放铅笔的V 型的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支,这个V 形架上共放着多少支铅笔?解:由题意可知,这个V 形架上共放着120层铅笔,且自下而上各层的铅笔成等差数列,记为{}n a ,其中120,11201==a a ,根据等差数列前n 项和的公式,得72602)1201(120120=+⨯=S 答:V 形架上共放着7260支铅笔。
高三数学必修五教案等差数列优秀4篇
高三数学必修五教案等差数列优秀4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高三数学必修五教案等差数列优秀4篇等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
2017高中数学 等差数列的前n项和一教案 北师大版必修5推荐
第六课时§1.2.3 等差数列的前n项和(一)一、教学目标:1、知识与技能:掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题。
2、过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平。
3、情感态度与价值观:通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
二、教学重点等差数列的前n项和公式的理解、推导及应用。
教学难点灵活应用等差数列前n项和公式解决一些简单的有关问题。
三、教学方法:探究归纳,讲练结合四、教学过程导入新课教师出示投影胶片1:印度泰姬陵( T aj M ahal )是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊斯兰教文化的象征. 陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层(如下图),奢华之程度,可见一斑.你知道这个图案中一共有多少颗宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高斯算法的阶段)生只要计算出1+2+3+…+100的结果就是这些宝石的总数.师对,问题转化为求这100个数的和.怎样求这100个数的和呢?这里还有一段故事.教师出示投影胶片2:高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:1+2+…100=?” 过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:“1+2+3+…+100=5 050.”教师问:“你是如何算出答案的?”高斯回答说:因为1+100=101;2+99=101;…;50+51=101,所以101×50=5 050.师这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢?生高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有50个101,所以1+2+3+…+100=50×101=5 050.师对,高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5 050了. 高斯算法将加法问题转化为乘法运算,迅速准确得到了结果。
高三数学必修五《等差数列的前n项和》教案
【导语】正如你现在根据⾃⼰的爱好想确定某个专业领域的研究,就可以查阅资料哪个⼼仪的⼤学有这样的专业,再查阅该⼤学近⼏年的录取分数线,那就应该你现在就读的学校历年升学情况,估算出应该在年级的排名,这就是你现阶段的⽬标,并争取实现。
⽆忧考⾼三频道为你准备了以下⽂章,在浩瀚的学海⾥,助你⼀臂之⼒!【篇⼀】 教学准备 教学⽬标 掌握等差数列与等⽐数列的性质,并能灵活应⽤等差(⽐)数列的性质解决有关等差(⽐)数列的综合性问题. 教学重难点 掌握等差数列与等⽐数列的性质,并能灵活应⽤等差(⽐)数列的性质解决有关等差(⽐)数列的综合性问题. 教学过程 【⽰范举例】 例1:数列是⾸项为23,公差为整数, 且前6项为正,从第7项开始为负的等差数列 (1)求此数列的公差d; (2)设前n项和为Sn,求Sn的值; (3)当Sn为正数时,求n的值.【篇⼆】 教学准备 教学⽬标 数列求和的综合应⽤ 教学重难点 数列求和的综合应⽤ 教学过程 典例分析 3.数列{an}的前n项和Sn=n2-7n-8, (1)求{an}的通项公式 (2)求{|an|}的前n项和Tn 4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99= 5.已知⽅程(x2-2x+m)(x2-2x+n)=0的四个根组成⼀个⾸项为的等差数列,则|m-n|= 6.数列{an}是等差数列,且a1=2,a1+a2+a3=12 (1)求{an}的通项公式 (2)令bn=anxn,求数列{bn}前n项和公式 7.四数中前三个数成等⽐数列,后三个数成等差数列,⾸末两项之和为21,中间两项之和为18,求此四个数 8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有值,并求出它的值 .已知数列{an},an∈N*,Sn=(an+2)2 (1)求证{an}是等差数列 (2)若bn=an-30,求数列{bn}前n项的最⼩值 0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N*) (1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列 (2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn. 11.购买⼀件售价为5000元的商品,采⽤分期付款的办法,每期付款数相同,购买后1个⽉第1次付款,再过1个⽉第2次付款,如此下去,共付款5次后还清,如果按⽉利率0.8%,每⽉利息按复利计算(上⽉利息要计⼊下⽉本⾦),那么每期应付款多少?(精确到1元) 12.某商品在最近100天内的价格f(t)与时间t的 函数关系式是f(t)= 销售量g(t)与时间t的函数关系是 g(t)=-t/3+109/3(0≤t≤100) 求这种商品的⽇销售额的值 注:对于分段函数型的应⽤题,应注意对变量x的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过⽐较,确定值。
北师大版高中数学必修五学案等差数列的前n项和
等差数列前n 项和【学习目标】1、知识与技能: 掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题2、经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思【课前预习案】一、【知识储备】1.等差数列的定义: __________________________________________________________2.等差数列的通项公式:_______________________________________________________3.几种计算公差d 的方法:___________________________________________________4.等差中项:________________________________5.等差数列的性质: ________________________________________________________二、【自主学习】1、学习等差数列{}n a 前n 项和n S 公式推导过程。
2、等差数列{}n a 的公差为d ,首项为1a ,前n 项和n S 公式(1)=n S 公式(2)=n S 。
三、【小试身手】1 等差数列{}a n 中, (1)已知150a 3,101a == 则50s =__________________(2)已知1a 3=,12d =则10s =___________________2等差数列{}a n 中,已知12d =,3a 2n =,152n s =- 则1a =______及n=_____________ 3、等差数列{}n a 中,若232n S n n =+,则公差d =___________.【课内探究案】例1 在等差数列{a n }中,(1)已知a 15=10,a 45=90,求60s(2)已知S 12=84,S 20=460,求S 28;(3)已知a 6=10,S 5=5,求a 8和S 8.例2 等差数列-10,-6,-2,2,...前多少项和是54?例3 一个堆放铅笔的V 形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支。
2022-2021学年高二数学北师大版必修5学案:1.2.2 等差数列的前n项和(一)
2.2 等差数列的前n 项和(一)明目标、知重点 1.把握等差数列前n 项和公式及其猎取思路.2.经受公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的争辩方法,学会观看、归纳、反思.3.娴熟把握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个.1.数列的前n 项和设S n 为数列{a n }的前n 项和,即S n =a 1+a 2+a 3+…+a n ,则S n -1=a 1+a 2+a 3+…+a n -1. 2.等差数列的前n 项和公式已知量 首项、末项与项数 首项、公差与项数 选用公式S n =n (a 1+a n )2S n =na 1+n (n -1)2d3.等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .(3)设两个等差数列{a n }、{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.[情境导学]“数学王子”高斯是德国数学家.在高斯10岁时,老师出的一道数学题为1到100的全部整数的和为多少?很快高斯便得出答案为5 050.老师大吃一惊,而更使人吃惊的是高斯的算法,高斯的算法是老师未曾教过的方法,那么这是一个什么样的方法呢?它用于解决什么类型的问题呢?这种方法叫倒序相加法,是等差数列求和的一种重要方法,本节我们就来争辩它. 探究点一 等差数列前n 项和公式思考1 高斯是用怎样的方法快速求出1+2+3+…+100=? 答 高斯的算法是S 100=1+2+3+4+…+98+99+100=100+99+98+97+…+3+2+1, 这两个等式上、下对应项的和均为101, 所以2S 100=101×100=10 100,即S 100=5 050.思考2 人们从“高斯的算法”受到启示,制造了“倒序相加法”,即设S =1+2+3+…+99+100,把加数倒序写一遍:S =100+99+98+…+2+1.两式相加有2S =(1+100)+(2+99)+…+(99+2)+(100+1)=100×101, ∴S =50×101=5 050.你能利用此种方法求1+2+3+…+n 等于多少吗? 答 设S n =1+2+3+…+(n -1)+n , 又S n =n +(n -1)+(n -2)+…+2+1,∴2S n =(1+n )+[2+(n -1)]+…+[(n -1)+2]+(n +1), ∴2S n =n (n +1),∴S n =n (n +1)2.思考3 如何用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢?答 S n =a 1+a 2+a 3+…+a n -1+a n=a 1+(a 1+d )+(a 1+2d )+…+[a 1+(n -2)d ]+[a 1+(n -1)d ]; S n =a n +a n -1+a n -2+…+a 2+a 1=a n +(a n -d )+(a n -2d )+…+[a n -(n -2)d ]+[a n -(n -1)d ]. 两式相加,得2S n =(a 1+a n )×n ,由此可得等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2.依据等差数列的通项公式a n =a 1+(n -1)d , 代入上式可得S n =na 1+n (n -1)2d .小结 (1)我们称a 1+a 2+a 3+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+a 3+…+a n .(2)等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .例1 在我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含很多与9相关的设计.例如,北京天坛圆丘的地面由扇环形的石板铺成(如图所示),最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从其次圈开头,每一圈比前一圈多9块,共有9圈.请问: (1)第9圈共有多少块石板? (2)前9圈一共有多少块石板?解 (1)设从第1圈到第9圈石板数所成数列为{a n }, 由题意可知{a n }是等差数列,其中a 1=9,d =9,n =9. 由等差数列的通项公式,得第9圈有石板 a 9=a 1+(9-1)d =9+(9-1)×9=81(块).(2)由等差数列前n 项和公式,得前9圈一共有石板 S 9=9a 1+9(9-1)2d =9×9+9×82×9=405(块).答 第9圈有81块石板,前9圈一共有405块石板.反思与感悟 建立等差数列的模型时,要依据题意找准首项、公差和项数或者首项、末项和项数.本题是依据首项和公差选择前n 项和公式进行求解.易错方面:把前n 项和与最终一项混淆,遗忘答或写单位. 跟踪训练1 在新城大道一侧A 处,运来20棵新树苗.一名工人从A 处起沿大道一侧路边每隔10 m 栽一棵树苗,这名工人每次只能运一棵.要栽完这20棵树苗,并返回A 处,植树工人共走了多少路程?解 植树工人每种一棵树并返回A 处所要走的路程(单位:m)组成了一个数列:0,20,40,60,…,380,这是首项为0,公差为20,项数为20的等差数列,其和 S =20×(20-1)2×20=3 800(m).答 植树工人共走了3 800 m 的路程.例2 九江抗洪指挥部接到预报,24 h 后有一洪峰到达,为确保平安,指挥部打算在洪峰到来之前临时筑一道堤坝作为其次道防线.经计算,除现有的参战军民连续奋战外,还需调用20台同型号翻斗车,平均每辆车工作24 h .但目前只有一辆投入施工,其余的需从昌九高速大路沿线抽调,每隔20 min 能有一辆翻斗车到达,指挥部最多可调集25辆车,那么在24 h 内能否构筑成其次道防线?解 从第一辆车投入工作算起各车工作时间(单位:h)依次设为a 1,a 2,…,a 25, 由题意可知,此数列为等差数列,且a 1=24,公差d =-13.25辆翻斗车完成的工作量为a 1+a 2+…+a 25=25×24+25×242×⎝⎛⎭⎫-13=500,而需要完成的工作量为24×20=480. 因此,在24 h 内能构筑成其次道防线.反思与感悟 解决实际问题首先要审清题意,明确条件与问题之间的数量关系,然后建立相应的数学模型.本题就是建立了等差数列的前n 项和这一数学模型,以方程为工具解决问题的.跟踪训练2 若只有25辆车可以抽调,则最长每隔多少分钟就有一辆车投入工作才能在24小时内完成任务? 解 从第一辆车投入工作算起各车工作时间(单位:小时)依次设为a 1,a 2,…,a 25. 由题意可知,此数列为等差数列,且a 1=24. 由例题的解答可知,需要完成的工作量为480.即25辆翻斗车完成的工作量需满足条件 a 1+a 2+…+a 25=25×24+25×242×d ≥480, 解得d ≥-25.所以最长每隔24分钟就有一辆车投入工作才能在24小时内完成任务. 探究点二 等差数列前n 项和的性质思考1 设{a n }是等差数列,公差为d ,S n 是前n 项和,那么S m ,S 2m -S m ,S 3m -S 2m 也成等差数列吗?假如是,它们的公差是多少?答 由S m =a 1+a 2+…+a m ,S 2m -S m =a m +1+a m +2+…+a 2m =a 1+md +a 2+md +…+a m +md =S m +m 2d . 同理S 3m -S 2m =a 2m +1+a 2m +2+…+a 3m =S 2m -S m +m 2d . 所以S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,并且公差为m 2d .思考2 设S n 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,那么a n b n 与S 2n -1T 2n -1有怎样的关系?请证明之.答a nb n =S 2n -1T 2n -1. 证明:∵S 2n -1=12(2n -1)(a 1+a 2n -1)=2n -12·2a n =(2n -1)a n ;同理T 2n -1=(2n -1)b n ; ∴S 2n -1T 2n -1=(2n -1)a n (2n -1)b n =a nb n. 即a n b n =S 2n -1T 2n -1. 例3 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.解 (1)方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列. ∴30,70,S 3m -100成等差数列. ∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列,∴2S 2m 2m =S m m +S 3m3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210.(2)a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512. 反思与感悟 等差数列前n 项和S n 的有关性质在解题过程中,假如运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练3 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解 设等差数列{a n }的公差为d , 则S n =na 1+12n (n -1)d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =715a 1+105d =75, 即⎩⎪⎨⎪⎧ a 1+3d =1a 1+7d =5, 解得⎩⎪⎨⎪⎧a 1=-2d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1)=12n -52, ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n (n -1)2×12=14n 2-94n .1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( ) A .12 B .24 C .36 D .48 答案 B解析 由S 10=10(a 1+a 10)2,得a 1+a 10=S 105=1205=24.2.记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A .2 B .3 C .6 D .7 答案 B解析 方法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4S 4=4a 1+6d =20,解得d =3.方法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 3.在一个等差数列中,已知a 10=10,则S 19=________. 答案 190解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190.4.已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)∵S n =n ·32+(-12)×n (n -1)2=-15,整理得n 2-7n -60=0,解之得n =12或n =-5(舍去), a 12=32+(12-1)×(-12)=-4.(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解之得d =-171. [呈重点、现规律]1.推导等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量,在利用求和公式时,要留意整体思想的应用,留意下面结论的运用:若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N +);若m +n =2p ,则a n +a m =2a p .3.本节基本思想:方程思想,函数思想,整体思想,分类争辩思想.一、基础过关1.已知等差数列{a n }中,a 2+a 8=8,则该数列的前9项和S 9等于( ) A .18 B .27 C .36 D .45 答案 C解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36.2.等差数列{a n }中,S 10=4S 5,则a 1d 等于( )A.12 B .2 C.14 D .4 答案 A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.3.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( )A .-9B .-11C .-13D .-15 答案 D解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3, ∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), ∵S 3=9,S 6-S 3=27,则S 9-S 6=45. ∴a 7+a 8+a 9=S 9-S 6=45.5.在小于100的自然数中,全部被7除余2的数之和为( )A .765B .665C .763D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.6.含2n +1项的等差数列,其奇数项的和与偶数项的和之比为________. 答案n +1n解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2,∵a 1+a 2n +1=a 2+a 2n , ∴S 奇S 偶=n +1n .7.已知等差数列{a n }的前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 解 设等差数列{a n }的公差为d ,则由题意得⎩⎨⎧a +3a =2×4d =4-aka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2d =2k =50.(注:k =-51舍)∴a =2,k =50. 二、力气提升8.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( ) A .38 B .20 C .10 D .9 答案 C解析 由于{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得:2a m -a 2m =0,由S 2m -1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m =10,故选C.9.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A .9 B .10 C .19 D .29答案 B解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个. ∴钢管总数:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200. ∴n =19时,剩余钢管根数最少,为10根.10.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310B.13C.18D.19 答案 A 解析 方法一 S 3S 6=3a 1+3d 6a 1+15d =13, ∴a 1=2d ,S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9照旧是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3, S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.11.甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m.(1)甲、乙开头运动后几分钟相遇?(2)假如甲、乙到达对方起点后马上返回,甲连续每分钟比前1分钟多走1 m ,乙连续每分钟走5 m ,那么开头运动几分钟后其次次相遇?解 (1)设n 分钟后第1次相遇,依题意, 有2n +n (n -1)2+5n =70,整理得n 2+13n -140=0. 解之得n =7,n =-20(舍去). 第1次相遇是在开头运动后7分钟.(2)设n 分钟后第2次相遇,依题意, 有2n +n (n -1)2+5n =3×70,整理得n 2+13n -420=0. 解之得n =15,n =-28(舍去). 第2次相遇是在开头运动后15分钟.12.一个等差数列的前10项和为100,前100项和为10,求前110项之和. 解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n , 则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎪⎫1 099-109×11100=-110.故此数列的前110项和为-110.方法二 设S n =an 2+bn .∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.三、探究与拓展13.2000年11月14日训练部下发了《关于在中学校实施“校校通”的工程通知》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中学校建成不同标准的校内网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺当实施,方案每年投入的资金都比上一年增加50万元.那么从2001年起的将来10年内,该市在“校校通”工程中的总投入是多少?解 依题意得,从2001~2010年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以可以建立一个等差数列{a n },表示从2001年起各年投入的资金,其中,a 1=500,d =50. 那么,到2010年(n =10),投入的资金总额为 S 10=10×500+10×(10-1)2×50=7 250(万元).答 从2001~2010年,该市在“校校通”工程中的总投入是7 250万元.。
数学北师大版高中必修5高中数学“等差数列的前n项和”教学设计与反思
高中数学“等差数列的前n项和”教学设计与反思一、教学内容分析本节课教学内容是《普通高中数学课程标准实验教科书·必修5》(北师大版)中第一章的第二节中“等差数列的前n项和”的第一课时。
本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用。
等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题。
同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法。
二、学生学习情况分析在本节课之前学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生已有了函数知识,因此在教学中可适当渗透函数思想.高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍。
三、设计思想建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构。
在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习。
同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的。
四、教学目标1. 理解等差数列前n项和公式的推导过程;掌握并能熟练运用等差数列前n项和公式;了解倒序相加法的原理;2. 通过公式的推导过程,体验从特殊到一般的研究方法,渗透函数思想与方程(组)思想,培养学生观察、归纳、反思的能力;通过小组讨论学习,培养学生合作交流、独立思考等良好的个性品质。
北师大版高中数学必修五教学案等差数列的前n项和
3.已知等差数列的前4项和为21,末4项和为67,前n项和为286,则项数n为()
A. 24 B. 26 C. 27 D. 28
4.在等差数列 中, , ,则 .
5.在等差数列 中, , ,则 .
6.下列数列是等差数列的是().
A. B.
C. D.
7.等差数列{ }中,已知 ,那么 ().
例2已知一个等差数列 前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗?
等差数列 中,已知 , , ,求n.
等差数列{ }中, =-15,公差d=3,求 .
三巩固练习
1.在等差数列 中, ,那么 ().
A. 12 B. 24 C. 36 D. 48
2.在50和350之间,所有末位数字是1的整数之和是( ).
教案、学案用纸
年级高二
学科数学
课题
等差数列的前n项和
授课时间
撰写人
学习重点
等差数列前n项和公式
学习难点
等差数列的前n项和公式解决一些简单的与前n项和有关的问题.
学习目标
1.掌握等差数列前n项和公式及其获取思路;
2.会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.
教学过程
一自主学习
数列 的前n项的和:
一般地,称为数列 的前n项的和,用 表示,即
根据下列各题中的条件,求相应的等差数列 的前n项和 .
⑴
⑵ .
1.用 ,必须具备三个条件:.
2.用 ,必须已知三个条件:.
二师生互动
例12000年11月14日教育部下发了《关于在中小学实施“校校通”工程的统治》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?
北师大版高中数学必修五等差数列前n项和教案
1.2.2等差数列前n项和教学目标1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.(1)了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式;(2)用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;(3)会利用等差数列通项公式与前项和的公式研究的最值.2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法.3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.教学重点:等差数列的前项和公式的推导和应用,难点:获得推导公式的思路.教学方法:讲授法.教学建议(1)知识结构本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题.(2)重点、难点分析高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.(3)教法建议①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用.②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.④补充等差数列前项和的最大值、最小值问题.⑤用梯形面积公式记忆等差数列前项和公式.教学过程:一.新课引入提出问题:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?问题就是(板书)“”这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.我们希望求一般的等差数列的和,高斯算法对我们有何启发?二.讲解新课:(板书)等差数列前项和公式1.公式推导(板书)问题:设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.思路一:运用基本量思想,将各项用和表示,得,有以下等式,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.思路二:上面的等式其实就是,为回避个数问题,做一个改写,,两式左右分别相加,得:,于是有:.这就是倒序相加法.思路三:受思路二的启发,重新调整思路一,可得,于是.于是得到了两个公式:和.2.公式记忆:用梯形面积公式记忆等差数列前项和公式,这里对图形进行了割、补两种处理,对应着等差数列前项和的两个公式.3.公式的应用:公式中含有四个量,运用方程的思想,知三求一.例1.求和:(1);(2)(结果用表示)解题的关键是数清项数,小结数项数的方法.例2.等差数列中前多少项的和是9900?本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数.三.小结:1.推导等差数列前项和公式的思路;2.公式的应用中的数学思想.四.练习:P17练习 1、2、3 P18 1、2、3作业:P19 习题1——2第11、12题P19 习题1——2第13题。
北师版数学高二-必修5学案 等差数列的前n项和(一)
2.2 等差数列的前n 项和(一)[学习目标] 1.掌握等差数列前n 项和公式及其获取思路.2.经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思.3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个.[知识链接]1.设梯形的上底、下底、高分别为a ,b ,h ,把两个相同的梯形一个倒置并成平行四边形,则梯形的面积为________. 答案(a +b )h22.把二次函数y =-2x 2+4x +3化成y =a (x +h )2+k 的形式是________ ,当x = ________时,y 有最大值________. 答案 y =-2(x -1)2+5 1 5解析 y =-2x 2+4x +3=-2(x 2-2x )+3 =-2(x -1)2+5. ∴x =1时,y 有最大值5. [预习导引] 1.数列前n 项和设S n 为数列{a n }的前n 项和,即S n =a 1+a 2+a 3+…+a n ,则S n -1=a 1+a 2+a 3+…+a n -1. 2.等差数列的前n 项和公式3.等差数列前(1)若数列{a n }是公差为d 的等差数列,则数列{S n n }也是等差数列,且公差为d2.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .(3)设两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.要点一 与等差数列S n 有关的基本量的计算 例1 在等差数列{a n }中.(1)a 1=56,a n =-32,S n =-5,求n 和d .(2)a 1=4,S 8=172,求a 8和d .(3)已知d =2,a n =11,S n =35,求a 1和n . 解 (1)由题意,得S n =n (a 1+a n )2=n (56-32)2=-5,解得n =15.又a 15=56+(15-1)d =-32,∴d =-16.(2)由已知,得S 8=8(a 1+a 8)2=8(4+a 8)2=172,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.(3)由⎩⎨⎧a n=a 1+(n -1)d ,S n=na 1+n (n -1)2d ,得⎩⎨⎧a 1+2(n -1)=11,na 1+n (n -1)2×2=35,解方程组得⎩⎪⎨⎪⎧ n =5,a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.规律方法 a 1,d ,n 称为等差数列的三个基本量,a n 和S n 都可以用这三个基本量来表示,五个量a 1,d ,n ,a n ,S n 中可知三求二,一般通过通项公式和前n 项和公式联立方程(组)求解,在求解过程中要注意整体思想的运用. 跟踪演练1 在等差数列{a n }中. (1)已知a 6=10,S 5=5,求a 8和S 10; (2)已知a 3+a 15=40,求S 17. 解 (1)⎩⎪⎨⎪⎧S 5=5a 1+5×42d =5,a 6=a 1+5d =10,解得a 1=-5,d =3.∴a 8=a 6+2d =10+2×3=16, S 10=10a 1+10×92d =10×(-5)+5×9×3=85.(2)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.要点二 等差数列前n 项和公式在实际中的应用例2 某人用分期付款的方式购买一件家电,价格为1 150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?解 设每次交款数额依次为a 1,a 2,…,a 20,则 a 1=50+1 000×1%=60(元), a 2=50+(1 000-50)×1%=59.5(元), …a 10=50+(1 000-9×50)×1%=55.5(元), 即第10个月应付款55.5元.当n =20时,a 20=50,即第20个月时全部贷款付清. 由于{a n }是以60为首项,以-0.5为公差的等差数列, 所以有S 20=60+(60-19×0.5)2×20=1 105(元),即全部付清后实际付款1 105+150=1 255(元).规律方法 建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数.跟踪演练2 甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m. (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?解 (1)设n 分钟后第1次相遇,依题意,有2n +n (n -1)2+5n =70,整理得n 2+13n -140=0.解之得n =7,n =-20(舍去).即第1次相遇是在开始运动后7分钟.(2)设n 分钟后第2次相遇,依题意,有2n +n (n -1)2+5n =3×70,整理得n 2+13n -420=0.解之得n =15,n =-28(舍去). 即第2次相遇是在开始运动后15分钟. 要点三 等差数列前n 项和性质的应用例3 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.解 (1)方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列. ∴30,70,S 3m -100成等差数列. ∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列,∴2S 2m 2m =S m m +S 3m 3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210. (2)a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512. 规律方法 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练3 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n . 解 设等差数列{a n }的公差为d , 则S n =na 1+12n (n -1)d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1),∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12,∴T n =n (-2)+n (n -1)2×12=14n 2-94n .1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( ) A .12 B .24C .36D .48答案 B解析 由S 10=10(a 1+a 10)2,得a 1+a 10=S 105=1205=24.2.记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A .2 B .3C .6D .7答案 B解析 方法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4,S 4=4a 1+6d =20,解得d =3.方法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 3.在一个等差数列中,已知a 10=10,则S 19=________. 答案 190解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190.4.已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)∵S n =n ·32+n (n -1)2(-12)=-15,整理得n 2-7n -60=0,解之得n =12或n =-5(舍去), a 12=32+(12-1)×(-12)=-4.(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解之得d =-171.1.求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到. 2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量,在利用求和公式时,要注意整体思想的应用,注意结论若m +n =p +q ,则a m +a n =a p +a q (n ,m ,p ,q ∈N +),若m +n =2p ,则a m +a n =2a p 的应用. 3.本节基本思想:方程思想,函数思想,整体思想,分类讨论思想.一、基础达标1.已知等差数列{a n }中,a 2+a 8=8,则该数列的前9项和S 9等于( ) A .18 B .27 C .36 D .45答案 C解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36.2.等差数列{a n }中,S 10=4S 5,则a 1d 等于( )A.12 B .2C.14D .4答案 A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d , ∴10a 1=5d ,∴a 1d =12.3.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( )A .-9B .-11C .-13D .-15答案 D解析 由a 23+a 28+2a 3a 8=9,得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45C .36D .27答案 B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), ∵S 3=9,S 6-S 3=27,则S 9-S 6=45.∴a 7+a 8+a 9=S 9-S 6=45. 5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763D .663答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15, ∴n =14,S 14=14×2+12×14×13×7=665.6.含2n +1项的等差数列,其奇数项的和与偶数项的和之比为________. 答案n +1n解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2,∵a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n .7.已知等差数列{a n }的前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 解 设等差数列{a n }的公差为d ,则由题意得⎩⎨⎧a +3a =2×4,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2,d =2,k =50.(注:k =-51舍)∴a =2,k =50. 二、能力提升8.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( ) A .38 B .20C .10D .9答案 C解析 因为{a n }是等差数列,所以a m -1+a m +1=2a m , 由a m -1+a m +1-a 2m =0,得2a m -a 2m =0,由S 2m -1=38知a m ≠0, 所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m =10,故选C.9.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A .9 B .10 C .19D .29答案 B解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200. ∴n =19时,剩余钢管根数最少,为10根.10.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=________.答案310解析 由等差数列的求和公式可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d 且d ≠0,所以S 6S 12=6a 1+15d12a 1+66d =27d 90d =310.11.有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台则所买各台单价均减少20元,但每台最少不低于440元;乙商场一律都按原价的75%销售,某单位需要购买一批此类影碟机,问去哪一家商场购买花费较少?解 设某单位需购买影碟机n 台,在甲商场购买每台售价不低于440元时,售价台数n 成等差数列{a n },a n =780+(n -1)(-20)=800-20n ,解不等式a n ≥440,800-20n ≥440,得n ≤18.当购买台数小于18时,每台售价为800-20n 元,当台数大于或等于18时,每台售价440元.到乙商场购买,每台售价为800×75%=600(元). 作差(800-20n )n -600n =20n (10-n ). ∴当n <10时,600n <(800-20n )n ; 当n =10时,600n =(800-20n )n ; 当10<n ≤18时,(800-20n )n <600n ; 当n >18时,440n <600n .∴当购买台数少于10台时,到乙商场购买花费较少;当购买10台时,到两商场购买花费相同;当购买台数多于10台时,到甲商场购买花费较少.12.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n , 则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎪⎫1 099-109×11100=-110.故此数列的前110项之和为-110.方法二 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100为等差数列,设公差为d ′ 则10S 10+10×92×d ′=S 100=10,又∵S 10=100,代入上式得d ′=-22, ∴S 110-S 100=S 10+(11-1)×d ′ =100+10×(-22)=-120, ∴S 110=-120+S 100=-110. 三、探究与创新13.2000年11月14日教育部下发了《关于在中小学实施“校校通”的工程通知》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来15年内,该市在“校校通”工程中的总投入是多少?解 依题意得,从2001~ 2015年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以可以建立一个等差数列{a n },表示从2001年起各年投入的资金,其中,a 1=500,d =50.那么,到2015年( n =15),投入的资金总额为 S 15=15×500+15×(15-1)2×50=12 750(万元).答 从2001~2015年,该市在“校校通”工程中的总投入是12 750万元.。
北师大版数学高二-必修5教案 1.2《等差数列的前n项和》
1.2《等差数列的前n 项和》教学设计【学习目标】1.掌握数列的前n 项和的概念,会根据前n 项和求通项.理解并掌握等差数列的前n 项和公式,掌握公式的推证方法——倒序相加法,掌握等差数列前n 项和公式的简单应用;2.会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题.【学习新课】1.复习回顾经过前面的学习,我们知道,在等差数列中: (1)a n -a n -1=d (n ≥1),d 为常数.(2)若a ,A ,b 为等差数列,则A =a +b2(3)若m +n =p +q ,则a m +a n =a p +a q .(其中m ,n ,p ,q 均为正整数) 2. 问题情境导入:例:如图,一个堆放铅笔的V 形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支,这个V 形架上共放着多少支铅笔?这是一堆放铅笔的V 形架,这形同前面所接触过的堆放钢管的示意图,看到此图,大家都会很快捷地找到每一层的铅笔数与层数的关系,而且可以用一个式子来表示这种关系,利用它便可以求出每一层的铅笔数.那么,这个V 形架上共放着多少支铅笔呢?这个问题又该如何解决呢?经过分析,我们不难看出,这是一个等差数求和问题.新课学习阶段1.等差数列的前n 项和的推导:首先,我们来看这样一个问题:1+2+3+…+100=?对于这个问题,著名数学家高斯10岁时曾很快求出它的结果,你知道他是怎么算的吗? 高斯的算法是:首项与末项的和:1+100=101, 第2项与倒数第2项的和:2+99=101,第3项与倒数第3项的和:3+98=101,……第50项与倒数第50项的和:,于是所求的和是这个问题,它也类似于刚才我们所遇到的问题,它可以看成是求等差数列1,2,3,…,n,…的前100项的和.在上面的求解中,我们发现所求的和可用首项、末项及项数n来表示,且任意的第k项与倒数第k项的和都等于首项与末项的和,这就启发我们如何去求一般等差数列的前n项的和.如果我们可归纳出一计算式,那么上述问题便可迎刃而解.2.等差数列的前n项和的具体推导:有了此公式,我们就不难解决最开始我们遇到的问题,下面我们看具体该如何解决?分析题意可知,这个V形架上共放着120层铅笔,且自上而下各层的铅笔成等差数列,可记为{a n},其中a1=1,a120=120,n=120.解:例1等差数列-10,-6,-2,2,…前多少项的和是54?分析:解:例2 在等差数列{a n}中,(1)已知a2+a5+a12+a15=36,求S16(2)已知a6=20,求S11.分析:(1)由于本题只给了一个等式,不能直接利用条件求出a1,a16,d,但由等差数列的性质,可以直接利用条件求出a1+a16的和,于是问题得以解决.(2)要求S11只需知道a1+a11即可,而a1与a11的等差中项恰好是a6,从而问题获解.解:例3有一项数为2n+1的等差数列,求它的奇数项之和与偶数项之和的比.例4 若两个等差数列的前n项和之比是(7n+1)∶(4n+27),试求它们的第11项之比.课堂小结通过本节学习,要熟练掌握等差数列前n 项和公式:S n =n (a 1+a n )2 =na 1+n (n -1)2d 及其获取思路. 作业见同步练习部分拓展提升1.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= ( )A.310B.13C.18D.192.设n S 是等差数列{}n a 的前n 项和,6636,324,144(6)n n S S S n -===>,则n 等于( )A. 15B. 16C. 17D. 183.在等差数列{}n a 中,10110,0a a <>,且1110||a a >,则n a 中最大的负数为 ( ) A. 17S B. 18S C. 19S D. 20S4.数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n .5.已知等差数列{}n a 共有10项,其奇数项之和为10,偶数项之和为30,则其公差是 .6.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = .7.已知n S 为等差数列{}n a 的前n 项和,100,7,141===n S a a ,则=n . 8.已知n S 为等差数列{}n a 的前n 项和,10,10010010==S S ,求110S .9.已知数列{}n a 满足()1111,32n n n a a a n --==+≥.(Ⅰ)求23,a a ; (Ⅱ)证明:312n n a -=.10.⑴已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; ⑵若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n .11.已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n . ⑴求数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立?若存在,求最小的正整数k ,若不存在,说明理由.12.已知等差数列{}n a 中,21920,28a a a =-+=- ⑴求数列{}n a 的通项公式;⑵若数列{}n b 满足2log n n a b =,设12n n T b b b =,且1n T =,求n 的值.13.已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a ⑴当n 为何值时,n S 取得最大值;⑵求208642a a a a a +++++ 的值; ⑶求数列{}n a 的前n 项和.n T参考答案 新授课阶段1.等差数列的前n 项和的推导: 50+51=101; 101×1002=5050.设等差数列{a n }的前n 项和为S n ,即S n =a 1+a 2+…+a n①把项的次序反过来,S n 又可写成S n =a n +a n -1+…+a 1②①+②⇒2S n =(a 1+a n )+(a 2+a n -1)+…+(a n +a 1) 又∵a 2+a n -1=a 3+a n -2=a 4+a n -3=…=a n +a 1 ∴2S n =n (a 1+a n ) 即:S n =n (a 1+a n )2若根据等差数列{a n }的通项公式,S n 可写为:S n =a 1+(a 1+d )+…+①,把项的次序反过来,S n 又可写为:S n =a n +(a n -d )+…+,把①、②两边分别相加,得2S n =个n n n n a a a a a a )()()(111++⋅⋅⋅++++=n (a 1+a n )即:S n =n (a 1+a n )2.由此可得等差数列{a n }的前n 项和的公式S n =n (a 1+a n )2.也就是说,等差数列的前n 项和等于首末两项的和与项数乘积的一半. 用这个公式来计算1+2+3+…+100=?我们有S 100=100(1+100)2=5050.又∵a n =a 1+(n -1)d ,∴S n =n (a 1+a n )2 =n [a 1+a 1+(n -1)d )]2 =na 1+n (n -1)2 d∴S n =n (a 1+a n )2 或S n =na 1+n (n -1)2d有了此公式,我们就不难解决最开始我们遇到的问题,下面我们看具体该如何解决? 分析题意可知,这个V 形架上共放着120层铅笔,且自上而下各层的铅笔成等差数列,可记为{a n },其中a 1=1,a 120=120,n =120.解:设自上而下各层的铅笔成等差数列{a n },其中n =120,a 1=1,a 120=120. 则:S 120=120(1+120)2 =7260答案:这个V 形架上共放着7260支铅笔. 例1分析:先根据等差数列所给出项求出此数列的首项,公差,然后根据等差数列的求和公式求解.解:设题中的等差数列为{a n },前n 项为的S n ,由题意可知:a 1=-10,d =(-6)-(-10)=4,S n =54由等差数列前n 项求和公式可得: -10n +n (n -1)2 ×4=54解之得:n 1=9,n 2=-3(舍去)答案:等差数列-10,-6,-2,2,…前9项的和是54. 例2分析:(1)由于本题只给了一个等式,不能直接利用条件求出a 1,a 16,d ,但由等差数列的性质,可以直接利用条件求出a 1+a 16的和,于是问题得以解决.(2)要求S 11只需知道a 1+a 11即可,而a 1与a 11的等差中项恰好是a 6,从而问题获解. 解:(1)∵a 2+a 15=a 5+a 12=a 1+a 16=18 ∴S 16=16(a 1+a 16)2 =8×18=144.(2)∵a 1+a 11=2a 6∴S 11=11(a 1+a 11)2 =11a 6=11×20=220.例3分析一:利用S n =na 1+n (n -1)2d 解题.解法一:设该数列的首项为a 1,公差为d ,奇数项为a 1,a 1+2d ,…其和为S 1,共n +1项;偶数项为a 1+d ,a 1+3d ,a 1+5d ,…,其和为S 2,共n 项.∴S 1S 2 =(n +1)a 1+12 (n +1)[(n +1)-1]2dn (a 1+d )+12 n (n -1)2d=n +1n. 分析二:利用S n =n (a 1+a n )2解题.解法二:由解法一知:S 1=(n +1)(a 1+a 2n +1)2 ,S 2=n (a 2+a 2n )2例4分析一:利用性质m +n =p +q ⇒a m +a n =a p +a q 解题.解法一:设数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n . 则:a 11=a 1+a 212 ,b 11=b 1+b 212,∴a 11b 11 =a 1+a 212 b 1+b 212 =a 1+a 212 ·21b 1+b 212 ·21 =S 21T 21 =7×21+14×21+27 =43分析二:利用等差数列前n 项和S n =An 2+Bn 解题. 解法二:由题设,令S n =(7n +1)·nk ,T n =(4n +27)·nk 由a n =S n -S n -1=k (14n -6),得a 11=148k ,n ≥2 b n =T n -T n -1=k (8n -23),得b 11=111k ,n ≥2, ∴a 11b 11 =148k 111k =43. 评述:对本例,一般性的结论有:已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,则:(1)a n b n =S 2n -1T 2n -1 ;(2) a m b n =2n -12m -1 ·S 2m -1T 2n -1 .拓展提升1.A 【解析】根据等差数列的性质232,,m m m m m S S S S S --……成等差数列,即可得解.2.D 【解析】由6324,144n n S S -==得12345180n n n n n n a a a a a a -----+++++=,再由161()326,36,324,182n n n n a a S a a S n +=∴+=∴==∴= 3.C 【解析】1910201011190,10()0S a S a a =<=+>.4.24【解析】 由492-=n a n 知{}n a 是等差数列,.250>⇒>n a n ∴.24=n5.4【解析】 已知两式相减,得.4205=⇒=d d6.1)1(21++n n 【解析】 利用迭加法(或迭代法),也可以用归纳—猜想—证明的方法.7.解:设等差数列的公差为d ,则23171414=-=--=a a d101002)1(21=⇒=⨯-+=n n n n S n . 8.解:方法1:设等差数列的公差为d ,则⎪⎩⎪⎨⎧=-=⇒⎩⎨⎧=+=+100109950111049501001004510111d a d a d a ∴110109110211101110-=⨯⨯+=d a S ;方法2: 2902)(90100111001110100-=+⇒-=+=-a a a a S S∴1102)(1102)(110100*********-=+=+=a a a a S .9.解:(Ⅰ)解:∵11,a =∴223314,3413a a =+==+=. (Ⅱ)证明:由已知113n n n a a ---=,故112211()()()n n n n n a a a a a a a a ---=-+-++-+123331n n --=++++312n -=,∴ 312n n a -=10. 分析:⑴利用等差数列的通项公式d n a a n )1(1-+=求出1a 及d ,代入n S 可求项数n ;⑵利用等差数列的前4项和及后4项和求出n a a +1,代入n S 可求项数n . 解:⑴设等差数列的首项为1a ,公差为d ,则3,186893111-==⇒⎩⎨⎧-=+=+d a d a d a∴7,663)1(231821==⇒=--=n n n n n S n ⑵ 124,363214321=+++=+++---n n n n a a a a a a a a3423121---+=+=+=+n n n n a a a a a a a a ∴40160)(411=+⇒=+n n a a a a ∴39780207802)(1=⇒=⇒=+=n n a a n S n n 11.解:⑴当2≥n 时,)(22111----=⇒=n n n n n n n S S S S a S S∴21111-=--n n S S ,且3111=S ,∴{}n a 是以21-为公差的等差数列,其首项为31 .∴nS n n S S n n 356635)1(21111-=⇒-=--= ∴当2≥n 时,)53)(83(18211--==-n n S S a n n n 当1=n 时,11018)53)(83(18a ≠=--,∴⎪⎩⎪⎨⎧≥--=)2()53)(83(18)1(3n n n n ;⑵0)23)(53)(83(181>---=-+k k k a a k k ,得3532<<k 或38>k ,∴当3≥k 时,1+>k k a a 恒成立,所求最小的正整数.3=k12.解:⑴设数列{}n a 的公差为d ,则2,22288220111=-=⇒⎩⎨⎧-=+-=+d a d a d a ∴242)1(222-=-+-=n n a n⑵ 242log 2-=n b n ,∴2422-=n n b∴n n n n n n n b b b b T 24)1(24)321(232122-+-++++===令(1)240n n n +-=,得23=n ∴当23n =时,.1=n T 13.解:⑴ 等差数列{}n a 中,.16,2541==a a ∴公差31414-=--=a a d ∴283+-=n a n ,令90283≤⇒>+-=n n a n∴当9≤n 时,0>n a ;当9>n 时,0<n a .∴当9=n 时,n S 取得最大值;⑵ 数列{}n a 是等差数列∴208642a a a a a +++++ 20)9325(10102)(1011202-=⨯-==+=a a a ;⑶由⑴得,当9≤n 时,0>n a ;当9>n 时,0<n a∴n n n S S a a a a a a T -=+++-+++=911109212)(印刷版高中数学 ⎥⎦⎤⎢⎣⎡---⨯-⨯=)1(2325)336259(2n n n 234253232+-=n n。
高二数学北师大版必修5教学教案1-2-2等差数列的前n项和(5)Word版含解析
《等差数列的前n项和公式》教学设计教学目标:1、知识与技能(1)掌握等差数列前n项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n项和公式求和。
2、过程与方法经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。
3、情感、态度与价值观通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
教学重点、难点:1、等差数列前n项和公式是重点。
2、获得等差数列前n项和公式推导的思路是难点。
教学过程:(一)创设问题情境问题1 如图,一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支,最上面一层放100支. 这个V形架上共放了多少支铅笔?故事引入:德国伟大的数学家高斯“神述求和”的故事。
高斯在上小学四年级时,老师出了这样一道题“1+2+3……+99+100”高斯稍微想了想就得出了答案。
高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。
高斯的方法:首项与末项的和:1+100=101第2项与倒数第2项的和:2+99=101第3项与倒数第3项的和:3+98=101……第50项与倒数第50项的和:50+51=101∴前100个正整数的和为:101×50=5050(二)等差数列求和公式一般地,称为等差数列的前n项的和,用表示,即1、思考:受高斯的启示,我们这里可以用什么方法去求和呢?思考后知道,也可以用“倒序相加法”进行求和。
由此得到等差数列的前n项和的公式对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。
2、除此之外,等差数列还有其他方法吗?当然,对于等差数列求和公式的推导,也可以有其他的推导途径。
例如:这两个公式是可以相互转化的。
把代入中,就可以得到引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。
高中数学(北师大版)必修五教案:1.2 等差数列前n项和公式的应用
等差数列前n项和公式的应用等差数列的前n项和公式是一个很重要的公式.对这个公式的形式和本质特征的研究,将有助于提高我们的计算能力和分析、解决问题的能力.一、分析公式的结构特征难得出下面的结论:中间项.2.当n是偶数时,a1与a n的等差中项不是该数列的项,它的值等于数列前n项中正中间两项的算术平均数.根据上述结论,可得:性质1等差数列{a n}中.S2n-1=(2n-1)a n;S2n=n(a n+a n+1).(因为a n是前2n-1项的正中间;a n,a n+1是前2n项的正中间两项)例1 (1)等差数列中,若a8=5,则S15=________.(2)等差数列{a n}中,若a6=a3+a8,S9=________.解(1)依性质1,得S15=S2×8-1=(2×8-1)a8=15a8,而a8=5,∴S15=15×5=75.(2)∵a6=a3+a8,由通项公式,得a1-(6-1)d=[a1+(3-1)d]+[a1+(8-1)d](d为公差).整理得a1+4d=0.即a1+(5-1)d=0,而a5=a1+(5-1)d,∴a5=0.由性质1得S9=S2×5-1=(2×5-1)a5=9×0=0.例2设等差数列{a n}的前n项和为S n,已知S12>0,S13<0,指出:S1、S2、S3、…、S12中哪一个值最大,并说明理由.解依题意,有∴a6>-a7>0,而a7<0(公差d<0),故S1,S2,S3,…,S12中S6的值最大.二、注意公式的变形我们有:例3等差数列{a n}的前m项和为30,前2m项为100,则它的前3m项和为[ ]A.30 B.170 C.210 D.260解已知S m=30,S2m=100,求S3m=?均成等差数列.则∴S3m=210.故选(C).S3m-S2m成等差数列.性质3等差数列中依次每m项和S m,S2m-S m,S3m-S2m成等差数列.例4等差数列{a n}的前n项和为S1,次n项和为S2,后n项和为S3,证明由性质3,知:S1,S2,S3成等差数列,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
背景知识
我国数列求和的概念起源很早,古书《周髀算经》里谈到“没日影”时,已出现了简单的等差数列;《九章算术》中的一些问题反映出当时已形成了数列求和的简单概念。
到南北朝时,张丘建始创等差数列求和解法。
他在《张丘建算经》里给出了几个等差数列问题。
例如:“今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日
织一尺,计织三十日,问共织几何?”
原书的解法是:“并初、末日织布数,半之,余以乘织讫日数,即得。
”这个解法相当于给出了等差数列的求和公式
n a a S n n ⋅+=2
)(1 再如:“今有女子善织布,逐日所织的布以同数递增,初日织五尺,计织三十日,共织九匹三丈,问日增几何?” 书中给出了计算公式)1()22(
1-÷-=n a n S d n ,这个公式等式价于现今中学课本里的公式:2])1(2[1d n a n S n -+=。