管理运筹学PPT精品课程课件全册课件汇总

合集下载

管理运筹学-PPT精品

管理运筹学-PPT精品

(50*60+100*250) - (50*50+100*250) = 500
, 500 / 10 = 50 元
说明在一定范围内每增加(减少)1个台时的设备能力就可增加(减少)50元利 润,称为该约束条件的对偶价格。
• 假设原料 A 增加10 千克时,即 b2变化为410,这时可行域扩大,但最优解仍为 x2 = 250 和 x1 + x2 = 300 的交点 x1 = 50,x2 = 250 。 此变化对总利润无影响,该约束条件的对偶价格为 0 。
§1问题的提出
例1. 某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的设备台时 及A、B两种原材料的消耗以及资源的限制,如下表:
设 备 原 料A 原 料B 单 位 产 品 获 利
甲 1 2 0 50元
乙 1 1 1 100元
资 源 限 制 300台 时 400千 克 250千 克
17
第三章 线性规划问题的计算机求解(2)
• 结果考察:(演示例1) 1、当目标函数的系数 ci 单一变化时,只要不超过其上、下限,最优解不变; 2、当约束条件中右边系数 bj 变化时,当其不超过上、下限,对偶价格不变(最优
解仍是原来几个线性方程的解); 3、当有多个系数变化时,需要进一步讨论。 • 百分之一百法则:对于所有变化的目标函数决策系数(约束条件右边常数值),
线性规划的最优解如果存在,则必定有一个顶点(极点)是最优解; 有的线性规划问题存在无穷多个最优解的情况; 有的线性规划问题存在无有限最优解的情况,也称无解; 有的线性规划问题存在无可行解的情况。
作业:P24---1,2,3,4,5
14ቤተ መጻሕፍቲ ባይዱ
§3图解法的灵敏度分析

《运筹学》课件

《运筹学》课件

cj→
CB
XB
31
x1
0
x4
0
x5
-z
b
30 280 120 -930
31 22 0 0 0
ห้องสมุดไป่ตู้
x1
x2
x3
x4
x5
1 1/3 1/6 0 0
约束条件:≥,=,≤
∑aijxj ≤(=, ≥) bi (i=1,2, …n)
变量符号:≥0,unr,≤0 xj ≥0
(j=1,2, …n)
线性规划的标准形式 目标函数:max 约束条件 := 变量符号 :≥0
max z=∑cjxj ∑aijxj = bi (i=1,2, …n) xj ≥0 (j=1,2, …n)
x2
50
当z的值增加时,目
标函数与约束条件:
40
4x1+3x2 120
30
重合,Q1与Q2之间都
是最优解。
20
Q2(15,20)
可行域
10
Q1(25,0)
10
20
30
40
x1
解的讨论:
无界解:
例:max z=x1+x2 s.t. -2x1+x2 40 x1-x2 20 x1,x2 0
取目标函数最大正系数对应的非基变量为入基变量;取最小比值所对应 方程的基变量为出基变量。本例中,取 x1为入基变量, x3为出基变量。
x1+ 1/3x2 +1/6x3 26/3x2 -2/3x3 +x4 4x2 -1/2x3 +x5
= 30 =280 =120
令 非 基 变 量 x2=x3=0,z(1)=930, 相 应 的 基 可 行 解 为 x(1)=(30,0,0,280,120)T

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

管理运筹学全套ppt课件

管理运筹学全套ppt课件
线性规划模型
设置变量:生产Ⅰ 产品x1个, Ⅱ产品 x2个
目标函数是利润最大化:
maz x5x 0 110x20
资源是有限的,第一个限制是设备台时 的限制:
x1x2 300
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
线性规划模型
建模型如下:设生产Ⅰ 产品x1件, Ⅱ产品 x2件。
max z 50 x1 100 x 2 (1)
x1 x 2 300
s
.t
.
2 x
x1 x 2 2 250
400 (2)
x1 , x 2 0
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
线性规划模型
第二个限制是原材料A的限制: 2x1x2 400
第三个限制是原材料B的限制:
x2 250
显然,产量不可能为负数:
x1,x2 0
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
考核方法
平时成绩占20%,每位同学的初始成绩都 是60分(按100分为满分计算)。
每次作业交上加1分,不交不加不减,拷 贝别人作业一次扣2分。
运筹学的体系和发展历史
二次世界大战中,英美科学家研究如何 有效运用雷达,研究船队遇到袭击如何 减少损失,以及如何使用深水炸弹等紧 迫问题。

管理运筹学ppt课件

管理运筹学ppt课件

最小生成树问题
要点一
总结词
最小生成树问题是网络优化中的另一类重要问题,旨在寻 找一个子图,该子图包含图中所有节点且边的总权重最小 。
要点二
详细描述
最小生成树问题是网络优化中的另一类重要问题。在一个 加权图中,我们希望找到一个子图,该子图包含图中所有 节点且边的总权重最小。这个子图被称为最小生成树。 Kruskal算法和Prim算法是最著名的最小生成树问题的求 解方法。这些算法可以帮助我们在加权图中找到一个最小 生成树,从而在实际应用中实现最小成本的网络设计或路 由选择。
决策变量
整数规划的决策变量是整数类型的变量,用于表 示决策结果。
ABCD
约束条件
整数规划的约束条件可以是等式或不等式,例如 资源限制、时间限制等。
整数约束
整数规划的约束条件要求决策变量取整数值,以 确保问题的可行解是整数解。
整数规划的求解方法
枚举法
枚举法是一种暴力求解方法,通 过列举所有可能的决策变量组合 来找到最优解。
约束条件
非线性规划的约束条件可以是等式或不等式, 限制决策变量的取值范围。
决策变量
非线性规划的决策变量可以是连续的或离散的,根据问题的具体情况而定。
非线性规划的求解方法
梯度法
通过计算目标函数的梯度,逐步逼近最优解。
牛顿法
利用目标函数的二阶导数信息,迭代逼近最优解。
拟牛顿法
通过构造一个近似于目标函数的二次函数,迭代 逼近最优解。
07 决策分析
决策分析的基本概念
决策分析
指在面临多种可能的选择时,基于一 定的目标,通过分析、比较和评估,
选择最优方案的过程。
决策要素
包括决策者、决策对象、决策信息、 决策目标、决策方案和决策评价。

第1章 绪论《管理运筹学》PPT课件

第1章 绪论《管理运筹学》PPT课件
非可控输入既可以是非常明确的,也可以是不确定的 、变化的。
如果一个模型的非可控输入都是已知的、不可变的, 这样的模型称为确定模型。
如果一个模型的非可控输入是不确定的、变化的,这 样的模型就称为随机模型或概率模型。
本书主要研究确定型数学模型。
1.2 运筹学问题的求解过程
了解模型的相关概念之后,下一个问题就是如何将一 个现实问题转化为数学模型,也就是建模过程。既然运筹 学模型的几个要素是:目标函数,约束条件(包括自然约 束和强加约束),决策变量。那么根据我们要解决的问题 ,只要我们经常问自己下面这些问题,一个模型的框架是 不难建立的。
1.2 运筹学问题的求解过程
1.2.1 从现实系统到理论模型:模型建立
模型是现实世界的抽象化反映。运筹学的实质在于建 立和使用模型来解决实际问题。尽管模型的具体结构和形 式总是与要解决的问题相联系,但在这里将抛弃模型在外 表上的差别,从最广泛的角度抽象出它们的共性。模型在 某种意义上说是客观事物的简化与抽象,是研究者经过思 维抽象后用文字、图表、符号、关系式以及实体模样对客 观事物的描述。
第1章 绪论
“运筹于帷幄之中,决胜于千里之外”。运筹学 将科学的方法、技术和工具应用到经济管理、工程设计 等领域,以便为人们提供最佳的解决方案。
在这一章里,首先介绍运筹学的基本概况,包括 运筹学的历史和发展,运筹学的性质和特点,运筹学研 究的主要内容和以后的发展趋势。然后从运筹学问题解 决过程的角度,依次介绍建模、求解和实际应用时应该 注意的一些问题,使初学者对运筹学概念和方法有初步 的认识。
我们需要什么目标? 通过调节哪些因素可以使得我们达到这一目标? 调节的因素是变动的吗? 要与实际情况相符合有什么 限制条件吗? 在实现目标的过程中,有哪些约束条件? 这样建立的模型是相对完备的吗?

运筹学全册精品完整课件

运筹学全册精品完整课件
否则,目标函数等值线与可行域 将交于无穷远处,此时称无有限最 优解。
36
例2-2 考虑例2-1
某工厂拥有A、B、C 三种类型的设备,
生产甲、乙两种产品。每件产品在生产中 需要占用的设备机时数,每件产品可以获 得的利润以及三种设备可利用的时数如下 表所示。问题:工厂应如何安排生产可获 得最大的总利润?
一、线性规划问题的提出
在实践中,根据实际问题的要求,常常 可以建立线性规划问题数学模型。
例2-1 我们首先分析开篇案例提到的问题。 解:设变量 xi 为第 i 种(甲、乙)产品的 生产件数(i=1,2)。根据题意,我们知道 两种产品的生产受到设备能力(机时数)的 限制。对设备A:两种产品生产所占用的机时 数不能超过65,于是我们可以得到不等式:
运筹学是运用科学的方法(如 分析、试验、量化等)来决定如何 最佳地运营和设计各种系统的一门 学科。
4
运筹学概述
运筹学能够对经济管理系统中 的人力、物力、财力等资源进行统 筹安排,为决策者提供有依据的最 优方案,以实现最有效的管理。
通常以最优、最佳等作为决策 目标,避开最劣的方案。
5
运筹学的产生和发展
8பைடு நூலகம்
运筹学在管理中的应用
生产计划:生产作业的计划、日程表的
编排、合理下料、配料问题、物料管 理等。
库存管理:多种物资库存量的管理,库
存方式、库存量等。
运输问题:确定最小成本的运输线路、
物资的调拨、运输工具的调度以及建
厂地址的选择等。
9
运筹学在管理中的应用
• 人事管理:对人员的需求和使用的 预测,确定人员编制、人员合理分 配,建立人才评价体系等。
x1 ,x2 ,… ,xn ≥ 0

《管理运筹学》课件

《管理运筹学》课件
《管理运筹学》PPT课件
本课程将介绍管理运筹学的定义、作用、应用领域,以及运筹学方法和案例 分析。通过课堂练习和总结展望,我们将深入了解管理运筹学的重要性和未 来发展。
什么是管理运筹学
管理运筹学是运用数学和逻辑方法解决管理问题的学科。它研究如何制定最佳决策和资源分配方案,以达到目 标并提高效率。
管理运筹学的作用和重要性
目标规划
设置多个目标,通过权衡取得平衡解决方案。
整数规划
考虑数量限制的情况下,寻找整数解决方案。
动态规划
通过拆解问题,逐步求解并得到最优解。
案例分析
实际案例分析
通过分析实际问题和数据,应用运筹学方法解 决问题。
运筹学方法在案例中的应用
展示运筹学方法如何在实际案例中发挥作用, 并达到良好效果。
课堂练习
管理运筹学组织中起着关键作用,可以帮助管理者优化资源利用、降低成本、提高生产效率,并最大程度地 满足组织的目标和利益。
管理运筹学的应用领域
管理运筹学广泛应用于生产管理、供应链管理、物流管理、项目管理等领域。 它可以帮助优化决策流程,提高管理效能。
运筹学方法
线性规划
通过建立数学模型,寻找最优解决方案。
解决实际问题的练习
通过课堂练习,学习如何应用运筹学方法解决实际问题,并培养分析和决策能力。
运筹学方法的实践应用
实践运筹学方法,加深对理论的理解,并在实际场景中应用。
总结与展望
本课程的收获和总结
总结本课程学到的知识和技能,回顾个人成长。
运筹学在未来的发展前景
展望运筹学在未来的应用前景,探讨其在逐渐增长的需求和新兴领域中的作用。

《管理运筹学》课件

《管理运筹学》课件
目标函数
目标函数是最大化或最小化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ... + c_nx_n$。
约束条件
约束条件是决策变量必须满足的条件,通常表示为$a_1x_1 + a_2x_2 + ... + a_nx_n leq b$或$a_1x_1 + a_2x_2 + ... + a_nx_n
PART 05
动态规划
动态规划的基本概念
动态规划是一种通过将原问 题分解为相互重叠的子问题 ,并存储子问题的解以避免
重复计算的方法。
它是一种优化策略,适用于 多阶段决策问题,其中每个 阶段的决策都会影响后续阶
段的决策。
动态规划的基本思想是将一 个复杂的问题分解为若干个 相互重叠的子问题,并逐个 求解子问题,以获得原问题 的最优解。
对偶算法
对偶算法是一种基于对偶理论的求解线性规划问题的算法,其基本思想是通过构造对偶问题来求解原问题。对偶算法 可以在某些情况下比单纯形法更高效,尤其是在处理大规模问题时。
内点法
内点法是一种求解线性规划问题的迭代算法,其基本思想是通过不断逼近问题的最优解来寻找最优解。 内点法在处理大规模问题时非常有效,因为它可以利用问题的结构来加速收敛速度。
= b$。
线性规划的数学模型
• 线性规划的数学模型由决策变量 、目标函数和约束条件组成,可 以表示为
线性规划的数学模型01Βιβλιοθήκη $begin{aligned}
02
text{maximize} & f(x) = c_1x_1 + c_2x_2 + ... + c_nx_n
03

《运筹学》全套课件(完整版)

《运筹学》全套课件(完整版)
负指数分布、几何分布、爱尔朗分布等。
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。

管理运筹学课件

管理运筹学课件
层次分析法
将多目标问题分解为若干层次,逐层进行分析和比较 ,确定各目标的优先级。
进化算法
借鉴生物进化原理,通过种群进化、基因交叉、变异 等操作,寻找多目标问题的非劣解集。
多目标规划的应用案例
生产计划问题
在生产过程中,需要平衡产量、成本、交货期等多个目标 ,通过多目标规划进行优化。
ห้องสมุดไป่ตู้
01
金融投资组合
投资者需要在风险和收益之间进行权衡 ,通过多目标规划选择最优的投资组合 。
02
03
城市交通规划
城市交通规划需要考虑交通流量、道 路建设成本、环境影响等多个目标, 通过多目标规划进行优化。
06
动态规划
动态规划的基本概念
1
动态规划是一种通过将原问题分解为相互重叠的 子问题,并存储子问题的解以避免重复计算的方 法。
2
它是一种优化技术,用于解决多阶段决策问题, 其中每个阶段的决策都会影响后续阶段的决策。
02
线性规划
线性规划的基本概念
01
线性规划是一种数学优化技术,用于在有限资源约 束下最大化或最小化线性目标函数。
02
它通过建立和解决线性等式或不等式约束下的优化 问题,来找到最优解决方案。
03
线性规划问题具有可加性、齐次性和凸性的特点。
线性规划的求解方法
单纯形法
单纯形法是解决线性规划问题的 经典算法,通过迭代过程逐步改 进可行解,直到找到最优解。
管理运筹学主要研究如何运用定量方 法对组织中的各种资源进行最优配置 和有效利用,以实现组织的目标和战 略。
管理运筹学的应用领域
01
生产与运作管理
涉及生产计划、调度、质量控制等 方面的优化问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8 12 36 z 决策变量 目标函数 函数约束
max
s.t.
x2 ≥ 0
非负性约束
1.1 线性规划的一般模型
例2
配料问题
某化工厂根据一项合同要为用户生产一种用甲、乙
两种原料混合配制而成的特殊产品。甲、乙两种原料都 含有A,B,C三种化学成分,其含量(%)是:甲为12,
2, 3;乙为3,3,15。按合同规定,产品中三化学
1. 50年代中期钱学森、华罗庚、许国志等著名学者将 Operations Research(简称OR)从西方引入我国。 2. 1956年将Operations Research直译为“运用学” 3. 1957年将Operations Research.意译为“运筹学” 是取自《史记·高祖本记》“夫运筹帷幄之中,决胜 于千里之外,吾不如子房” 一语,摘取“运筹”二字 作为这门科学的名称,既显示其军事的起源,也表明 运筹学的哲理思想远在我国古代已经存在。
0.2 运筹学简史
混沌时期;朦眬时期;初创时期;确立时期; 扩展时期 我国运筹学发展概况
运筹学是指通过运用科学方法研究某一系统的 最优管理和控制,或者分析研究某一系统的运行状况, 以及系统的管理问题和生产经营活动。主要研究方法 是定量化和模型化,特别是运用各种数学模型,目的 是基于所研究的系统,力求获得一个合理运用人力、 物力、财力和各种资源的最佳方案,以使系统获得最 优目标。
线性规划 基本性质
LP
第1章 线性规划的基本性质
1.1 线性规划的一般模型
1.2 线性规划的图解法 1.3 线性规划的标准形式 1.4 线性规划的解及其性质 1.5 线性规划的应用模型
线性规划是运筹学的一个分支,主要用于研 究解决有限资源的最佳分配问题,即如何对 有限资源做出最佳方式的调配和最有利的使 用,以便最充分地发挥资源的效能,以获取 最佳经济效益。 Linear Programming --- LP
为8、12、36,问应如何安排生产这两种产品才能获利最多?
1.1 线性规划的一般模型
产品 车间 单耗(工时/件) 甲 乙 最大生产能力 (工时/天)
A B C
单位利润 (百元/件)
1 0 3 3 x1 z = 3x1 +5x2 x1 ≤ 8 2x2 ≤ 12 3x1 + 4x2 ≤ 36 x1

0 2 4 5 x2 0 ① ② ③ ④
0.3 运筹学模型
0.3.1 引言 模型:就是现实系统的简仿物或抽象表示。 运筹学模型属于后者。 决策变量;约束条件;目标函数 可行解、最优解。 0.3.2 模型建立

数学模型举例:成本、收益和利润的数
学模型(略) 运筹学的应用(略)
Linear Programming
第1章

1.1 线性规划的一般模型
1.1.1 引 例
例1 产品配比问题(范例)
某厂拟生产甲、乙两种产品,每件利润分别为3、5百元。 甲、乙产品的部件各自在A、B两个车间分别生产,每件甲、 乙产品的部件分别需要A、B车间的生产能力1、2工时。两件 产品的部件最后都要在C车间装配,装配每件甲、乙产品分别
需要3、4工时,三车间每天可用于生产这两种产品的工时分别
成分的含量(%)不得低于4,2,5。甲、乙原料成本为 每千克3,2元。
厂方希望总成本达到最小,则应如何配制该产品?
1.1 线性规划的一般模型
化学成分 A B C 成本(元 /千克)
原 料
成分含量(%)
甲 12 2 3 3 乙 3 3 15 2
产品成分 最低含量(%) 4 2 5
z
x1
min z = 3x1+2x2 12 x1 +3x2 ≥ 4 2 x1 +3x2 ≥ 2 s.t. 3 x1+15x2 ≥ 5 x1 +x2 = 1 x 1 , x2 ≥ 0
x2
配料平衡条件
1.1 线性规划的一般模型
1.1. 2 线性规划的一般模型
opt z = c1 x1+c2 x2+c3 x3+…+cn xn a11x1 +a12 x2+…+a1n xn < >b1 a21x1 +a22 x2+…+a2n xn < > b2 … s.t. am1x1+am2x2+…+amn xn < > bm xj≥(或≤) 0, 或自由, j=1,2,…,n 一般LP模型的三类参数: 价值系数c j,消耗系数a ij,右端常数b i . LP模型的三要素:决策变量,目标函数,约束条件.
管理运筹学与运筹学的含义基本一致,只不过是为突出运筹 学的管理性质而加上了“管理”二字。
0.1 什么是运筹学

0.1.1 引言 田忌赛马;沈括运粮 0.1.2 名称 0.1.3 定义 我国的定义: 0.1.4 特点 0.1.5 内容 确定型;随机型;混合型;模糊型 0.1.6 相关学科
XX学院 XX 专业
《管理运筹学》
【全套课件】 授课人:XX XX
第 0章
绪论
0.1 什么是运筹学 0.2 运筹学简史 0.3 运筹学模型
为何学习运筹学?最有效率!最经济!最和谐! 政府需要、企业需要、家庭需要、个人成长需要。
运筹学(Operations Research)是近几十年发展起来的一门 新兴的应用性学科。其主要思想是运用数学模型方法研究各种决 策问题的优化途径及方案,为管理决策者提供科学决策的参考依 据。
(港台称“作业研究”)
中国的第一个运筹学研究小组是在钱学森、许国
志先生的推动下于1956年在中国科学院力学研究所成 立的。其应用是在1957年始于建筑业和纺织业,从 1958年开始在交通运输、工业、农业、水利建设、邮 电等方面使用。尤其是在运输方面,从物资调运、装 卸到调度等等。
1958年,建立了专门的运筹学研究室,但由于在 应用单纯形法解决粮食合理运输问题时遇到了困难, 我国运筹学工作者于是创立了运输问题的“图上作业 法”。1959年成立国际运筹学联合会(International Federation of Operations Research Societies, IFORS),我国于1982年加入IFORS,并于1999年8月组 织了第15届大会。
1948年,美国麻省理工学院率先开设了运筹学课程;
1950年,美国出版了第一份运筹学杂志;
1951年,Morse 和 Kimball 出版了《运筹学方法》第一
本以运筹学为名的专著,给出了运筹学的定义:为决策
机构在对其控制下业务活动进行决策时,提供以数量化 为基础的科学方法。
运筹学在中国的发展(我国现代运筹学概况)
相关文档
最新文档