2014山东高考数学考试试卷调整-复兰高考名师在线精编解析版
2014年山东省高考数学试卷(理科)答案与解析
2014年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)22.(5分)(2014•山东)设集合A={x丨丨x﹣1丨<2},B={y丨y=2x,x∈[0,2]},则A∩B=3.(5分)(2014•山东)函数f(x)=的定义域为()),),,<)∪(4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是.>=,故32∫(x|=87.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()=8.(5分)(2014•山东)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)),,<9.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a22=0作可行域如图,,解得:化目标函数为直线方程得:由图可知,当直线2a+b=2的最小值为10.(5分)(2014•山东)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()±x±y=0的方程为+的离心率为:,的方程为﹣的离心率为:,的离心率之积为,,±y=0二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2014•山东)执行如图程序框图,若输入的x的值为1,则输出的n的值为3.12.(5分)(2014•山东)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.,再根据中,∵•A=时,有=AC=××=故答案为:.13.(5分)(2014•山东)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.面积的,=.故答案为:.14.(5分)(2014•山东)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为2.+=,15.(5分)(2014•山东)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是(2,+∞).的定义可知,,﹣﹣>d=,或﹣222,三、解答题(共6小题,满分75分)16.(12分)(2014•山东)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.(,,﹣),可得•=msin2x+ncos2x,(,=(sin2x+cos2x2x+)+=2k,,)﹣,17.(12分)(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.,,,,,,,,﹣的法向量=的法向量=CD AM,=,)(,(﹣,,﹣的法向量,∴的法向量=,|==所成的角(锐角)的余弦值为18.(12分)(2014•山东)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B 上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.+,+=×))×=+.)﹣=×))×=;×=×))×=;×+×=;×=×+1×+2×+3×+4×+6×=.19.(12分)(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.=,,化为1==++.﹣++=1=.﹣++=1+=Tn=20.(13分)(2014•山东)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.当且仅当e,21.(14分)(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.,,,的左侧时,=p方程为联立方程,消去得的解为,直线,的方程为,即联立方程=的坐标为,点=,。
2014年高考(山东卷)数学试题评析
知识与能力完美融合,传统与创新和谐统一——2014年高考(山东卷)数学试题评析纵观2014年高考山东卷数学试题,试卷结构有较大调整,但又保持了传统的试题风格,立意于能力,注重考查考生的基础知识、基本技能和基本数学素养,符合考试说明的各项要求,兼顾公平和中学教学实际,是一份知识与能力完美融合、传统与创新和谐统一的优秀试卷。
一、回归教材,注重基础,考查考生的基础知识和基本技能2014年数学试题遵循了考查基础知识和基本技能为主体的原则,着重体现了对“双基”的考查。
试卷考查了中学数学尤其是考试说明中的大部分知识点,选择题、填空题着重考查了集合、复数、函数的定义域、图象、单调性、初等函数、三角函数、不等式、程序框图、立体几何、排列组合、圆锥曲线、统计初步等常规知识点;解答题的前三个题目,也着眼于常规的基本知识和基本技能的考查,考查了三角函数和解三角形、概率统计、立体几何等考生感觉熟悉、容易入手的内容,即使是解答题的后面三道,第一问的入口也都很宽,梯度设计合理。
整份试卷中大部分是基础题目,这些题目的设计回归教材和中学教学实际,以自然但不俗套的形式呈现,既保证了高考试题的创新性,又让考生能以一种平和的心态面对试题,在有限的时间内尽力发挥出自己的最佳水平,保证了考生的“基础得分”,从而保证了考试较高的信度和效度。
二、布局全面,注重综合,考查考生的数学方法和数学思想2014年试卷依旧承袭了山东卷历年的命题风格,在知识的交汇点采用网络式的布题模式,对主干知识进行了重点考查。
文、理两科试卷均对高中数学中的重点内容进行了综合考查,包括三角函数、概率统计、立体几何、数列、导数的应用以及解析几何等六大模块,注重综合和创新,以知识为载体,立意于能力,让数学方法和数学思想贯穿于整个试题的解答过程之中。
每道试题都有机综合了中学数学中的多个知识点,特别注重考查考生的数学思想,文(8)(10)(20)、理(9)(15)(20)着重考查了函数与方程的思想、转化与化归的思想;文(8)(9)(15)、理(6)(8)(9)(15)(17)着重考查了考生数形结合的思想;文(19)(20)(21)、理(18)(19)(20)(21)对分类与整合的思想进行了考查;文(16)、理(18)对或然与必然的思想进行了考查。
2014年全国高考理科数学试题及答案-山东卷
2014年全国高考理科数学试卷山东卷一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知,a b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()a bi +=(A )54i -(B )54i +(C )34i -(D )34i +(2)设集合{||1|2}A x x =-<,{|2,[0,2]}xB y y x ==∈,则A B =(A )[0,2](B )(1,3)(C )[1,3)(D )(1,4) (3)函数()f x =(A )1(0,)2(B )(2,)+∞(C )1(0,)(2,)2+∞(D )1(0,][2,)2+∞(4)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根 (C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根(5)已知实数,x y 满足x y a a <(01a <<),则下列关系式恒成立的是(A )221111x y >++(B )22ln(1)ln(1)x y +>+(C )sin sin x y >(D )22x y >(6)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为(A)(B)(C )2 (D )4(7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 (A )1 (B )8 (C )12 (D )18(8)已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是 (A )1(0,)2(B )1(,1)2(C )(1,2)(D )(2,)+∞(9)已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值22a b +的最小值为(A )5(B )4(C(D )2(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为2,则2C 的渐近线方程为(A )0x =(B 0y ±=(C )20x y ±=(D )20x y ±=二、填空题:本大题共5小题,每小题5分,共25分 (11)执行右面的程序框图,若输入的x 的值为1,则输出的n的值为 .(12)在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为 .(13)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = . (14)若24()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .(15)已知函数()()y f x x R =∈.对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x 关于点(,())x f x 对称.若()h x是()g x =()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 . 三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)已知向量(,cos 2)a m x =,(sin 2,)b x n =,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.(17)(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.(Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD且1CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.(18)(本小题满分12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望。
2014年山东省高考数学试卷(文科)(附参考答案+详细解析Word打印版)
2014年山东省普通高等学校招生统一考试数学试卷(文科)一.选择题每小题5分,共50分1.(5分)已知a,b∈R,i是虚数单位,若a+i=2﹣bi,则(a+bi)2=()A.3﹣4i B.3+4i C.4﹣3i D.4+3i2.(5分)设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2) C.[1,2) D.(1,4)3.(5分)函数f(x)=的定义域为()A.(0,2) B.(0,2]C.(2,+∞)D.[2,+∞)4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根5.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>6.(5分)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1 7.(5分)已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2 B.C.0 D.﹣8.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.189.(5分)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanx D.f(x)=cos(x+1)10.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b >0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2二.填空题每小题5分,共25分11.(5分)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为.12.(5分)函数y=sin2x+cos2x的最小正周期为.13.(5分)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为.14.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为.15.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.三.解答题共6小题,共75分16.(12分)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.19.(12分)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n,求T n.20.(13分)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.21.(14分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D 在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.2014年山东省高考数学试卷(文科)参考答案与试题解析一.选择题每小题5分,共50分1.(5分)已知a,b∈R,i是虚数单位,若a+i=2﹣bi,则(a+bi)2=()A.3﹣4i B.3+4i C.4﹣3i D.4+3i【分析】利用两个复数相等的充要条件求得a、b的值,再利用两个复数代数形式的乘法法则求得(a+bi)2的值.【解答】解:∵a+i=2﹣bi,∴a=2、b=﹣1,则(a+bi)2=(2﹣i)2=3﹣4i,故选:A.【点评】本题主要考查两个复数相等的充要条件,两个复数代数形式的乘法法则,属于基础题.2.(5分)设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2) C.[1,2) D.(1,4)【分析】分别解出集合A和B,再根据交集的定义计算即可.【解答】解:A={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|1≤x<2}.故选:C.【点评】本题是简单的计算题,一般都是在高考的第一题出现,答题时要注意到端点是否取得到,计算也是高考中的考查点,学生在平时要加强这方面的练习,考试时做到细致悉心,一般可以顺利解决问题.3.(5分)函数f(x)=的定义域为()A.(0,2) B.(0,2]C.(2,+∞)D.[2,+∞)【分析】分析可知,,解出x即可.【解答】解:由题意可得,,解得,即x>2.∴所求定义域为(2,+∞).故选:C.【点评】本题是对基本计算的考查,注意到“真数大于0”和“开偶数次方根时,被开方数要大于等于0”,及“分母不为0”,即可确定所有条件.高考中对定义域的考查,大多属于容易题.4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.【点评】本题考查反证法证明问题的步骤,基本知识的考查.5.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>【分析】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.【解答】解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.当x>y时,x3>y3,恒成立,B.当x=π,y=时,满足x>y,但sinx>siny不成立.C.若ln(x2+1)>ln(y2+1),则等价为x2>y2成立,当x=1,y=﹣1时,满足x >y,但x2>y2不成立.D.若>,则等价为x2+1<y2+1,即x2<y2,当x=1,y=﹣1时,满足x>y,但x2<y2不成立.故选:A.【点评】本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.6.(5分)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1【分析】根据对数函数的图象和性质即可得到结论.【解答】解:∵函数单调递减,∴0<a<1,当x=1时log a(x+c)=log a(1+c)<0,即1+c>1,即c>0,当x=0时log a(x+c)=log a c>0,即c<1,即0<c<1,故选:D.【点评】本题主要考查对数函数的图象和性质,利用对数函数的单调性是解决本题的关键,比较基础.7.(5分)已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2 B.C.0 D.﹣【分析】由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.【解答】解:由题意可得cos===,解得m=,故选:B.【点评】本题主要考查两个向量的夹角公式、两个向量的数量积公式的应用,属于基础题.8.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.18【分析】由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.【点评】本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题.9.(5分)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanx D.f(x)=cos(x+1)【分析】由题意判断f(x)为准偶函数的对称轴,然后判断选项即可.【解答】解:对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,∴函数的对称轴是x=a,a≠0,选项A函数没有对称轴;选项B、函数的对称轴是x=0,选项C,函数没有对称轴.函数f(x)=cos(x+1),有对称轴,且x=0不是对称轴,选项D正确.故选:D.【点评】本题考查函数的对称性的应用,新定义的理解,基本知识的考查.10.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b >0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2【分析】由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.【解答】解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.二.填空题每小题5分,共25分11.(5分)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为3.【分析】计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.12.(5分)函数y=sin2x+cos2x的最小正周期为π.【分析】利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期【解答】解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.【点评】本题主要考查两角和的正弦公式、二倍角的余弦公式,正弦函数的周期性,属于基础题.13.(5分)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为12.【分析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积.【解答】解:∵一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则,∴h=1,棱锥的斜高为:==2,该六棱锥的侧面积为:=12.故答案为:12.【点评】本题考查了棱锥的体积,侧面积的求法,解答的关键是能够正确利用体积与表面积公式解题.14.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为(x﹣2)2+(y﹣1)2=4.【分析】由圆心在直线x﹣2y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【解答】解:设圆心为(2t,t),半径为r=|2t|,∵圆C截x轴所得弦的长为2,∴t2+3=4t2,∴t=±1,∵圆C与y轴的正半轴相切,∴t=﹣1不符合题意,舍去,故t=1,2t=2,∴(x﹣2)2+(y﹣1)2=4.故答案为:(x﹣2)2+(y﹣1)2=4.【点评】此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.15.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为y=±x.【分析】求出双曲线的右顶点A(a,0),拋物线x2=2py(p>0)的焦点及准线方程,根据已知条件得出及,求出a=b,得双曲线的渐近线方程为:y=±x.【解答】解:∵右顶点为A,∴A(a,0),∵F为抛物线x2=2py(p>0)的焦点,F,∵|FA|=c,∴抛物线的准线方程为由得,,由①②,得=2c,即c2=2a2,∵c2=a2+b2,∴a=b ,∴双曲线的渐近线方程为:y=±x , 故答案为:y=±x .【点评】熟练掌握圆锥曲线的图象与性质是解题的关键.三.解答题共6小题,共75分16.(12分)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(Ⅰ)求这6件样品来自A ,B ,C 各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.【分析】(Ⅰ)先计算出抽样比,进而可求出这6件样品来自A ,B ,C 各地区商品的数量;(Ⅱ)先计算在这6件样品中随机抽取2件的基本事件总数,及这2件商品来自相同地区的事件个数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)A ,B ,C 三个地区商品的总数量为50+150+100=300, 故抽样比k==,故A 地区抽取的商品的数量为:×50=1; B 地区抽取的商品的数量为:×150=3; C 地区抽取的商品的数量为:×100=2;(Ⅱ)在这6件样品中随机抽取2件共有:=15个不同的基本事件;且这些事件是等可能发生的,记“这2件商品来自相同地区”为事件A ,则这2件商品可能都来自B 地区或C 地区,则A中包含=4种不同的基本事件,故P(A)=,即这2件商品来自相同地区的概率为.【点评】本题考查的知识点是分层抽样,古典概型概率计算公式,难度不大,属于基础题.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.【点评】本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.18.(12分)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.【分析】(Ⅰ)证明四边形ABCE是平行四边形,可得O是AC的中点,利用F为线段PC的中点,可得PA∥OF,从而可证AP∥平面BEF;(Ⅱ)证明BE⊥AP、BE⊥AC,即可证明BE⊥平面PAC.【解答】证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.【点评】本题考查直线与平面平行、垂直的判定,考查学生分析解决问题的能力,正确运用直线与平面平行、垂直的判定是关键19.(12分)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n,求T n.【分析】(Ⅰ)由于a2是a1与a4的等比中项,可得,再利用等差数列的通项公式即可得出.(Ⅱ)利用(Ⅰ)可得b n=a=n(n+1),因此T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).对n分奇偶讨论即可得出.【解答】解:(Ⅰ)∵a2是a1与a4的等比中项,∴,∵在等差数列{a n}中,公差d=2,∴,即,化为,解得a1=2.∴a n=a1+(n﹣1)d=2+(n﹣1)×2=2n.(Ⅱ)∵b n=a=n(n+1),∴T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).=2k(2k+1)﹣(2k﹣1)(2k﹣1+1)=4k当n=2k(k∈N*)时,b2k﹣b2k﹣1T n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣b2k﹣1)=4(1+2+…+k)=4×=2k(k+1)=.当n=2k﹣1(k∈N*)时,T n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣2﹣b2k﹣3)﹣b2k﹣1=n(n+1)=﹣.故T n=.(也可以利用“错位相减法”)【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、分类讨论思想方法,属于中档题.20.(13分)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.【分析】(Ⅰ)根据导数的几何意义,曲线y=f(x)在x=1处的切线方程为y﹣f (1)=f′(1)(x﹣1),代入计算即可.(Ⅱ)先对其进行求导,即,考虑函数g(x)=ax2+(2a+2)x+a,分成a≥0,﹣<a<0,a≤﹣三种情况分别讨论即可.【解答】解:,(Ⅰ)当a=0时,,f′(1)=,f(1)=0∴曲线y=f(x)在点(1,f(1))处的切线方程为y=(x﹣1).(Ⅱ)(1)当a≥0时,由x>0知f′(x)>0,即f(x)在(0,+∞)上单调递增;(2)当a<0时,令f′(x)>0,则>0,整理得,ax2+(2a+2)x+a >0,令f′(x)<0,则<0,整理得,ax2+(2a+2)x+a<0.以下考虑函数g(x)=ax2+(2a+2)x+a,g(0)=a<0.,对称轴方程.①当a≤﹣时,△≤0,∴g(x)<0恒成立.(x>0)②当﹣<a<0时,此时,对称轴方程>0,∴g(x)=0的两根一正一负,计算得当0<x<时,g(x)>0;当x>时,g(x)<0.综合(1)(2)可知,当a≤﹣时,f(x)在(0,+∞)上单调递减;当﹣<a<0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减;当a>0时,f(x)在(0,+∞)上单调递增.【点评】导数是高考中极易考察到的知识模块,导数的几何意义和导数的单调性是本题检查的知识点,特别是单调性的处理中,分类讨论是非常关键和必要的,分类讨论也是高考中经常考查的思想方法.21.(14分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D 在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.【分析】(Ⅰ)由椭圆离心率得到a,b的关系,化简椭圆方程,和直线方程联立后求出交点的横坐标,把弦长用交点横坐标表示,则a的值可求,进一步得到b 的值,则椭圆方程可求;(Ⅱ)(i)设出A,D的坐标分别为(x1,y1)(x1y1≠0),(x2,y2),用A的坐标表示B的坐标,把AB和AD的斜率都用A的坐标表示,写出直线AD的方程,和椭圆方程联立后利用根与系数关系得到AD横纵坐标的和,求出AD中点坐标,则BD斜率可求,再写出BD所在直线方程,取y=0得到M点坐标,由两点求斜率得到AM的斜率,由两直线斜率的关系得到λ的值;(ii)由BD方程求出N点坐标,结合(i)中求得的M的坐标得到△OMN的面积,然后结合椭圆方程利用基本不等式求最值.【解答】解:(Ⅰ)由题意知,,则a2=4b2.∴椭圆C的方程可化为x2+4y2=a2.将y=x代入可得,因此,解得a=2.则b=1.∴椭圆C的方程为;(Ⅱ)(i)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(﹣x1,﹣y1).∵直线AB的斜率,又AB⊥AD,∴直线AD的斜率.设AD方程为y=kx+m,由题意知k≠0,m≠0.联立,得(1+4k2)x2+8kmx+4m2﹣4=0.∴.因此.由题意可得.∴直线BD的方程为.令y=0,得x=3x1,即M(3x1,0).可得.∴,即.因此存在常数使得结论成立.(ii)直线BD方程为,令x=0,得,即N().由(i)知M(3x1,0),可得△OMN的面积为S==.当且仅当时等号成立.∴△OMN面积的最大值为.【点评】本题考查椭圆方程的求法,主要考查了直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考试具备较强的运算推理的能力,是压轴题.。
2014年高考真题——理科数学(山东卷)解析版 Word版含
绝密★启用前2014年普通高等学校招生全国统一考试(山东卷)理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科 类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需 改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相 应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案; 不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中, 只有一个选项符合题目要求的。
1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a A .i 45- B .i 45+ C .i 43- D .i 43+2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x则=B AA .[0,2]B .(1,3)C . [1,3)D .(1,4) 3.函数1)(log 1)(22-=x x f 的定义域为A .)210(, B . )2(∞+,C .),2()210(+∞ ,D . )2[]210(∞+,, 4.用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是 A .方程02=++b ax x 没有实根 B .方程02=++b ax x 至多有一个实根0舒张压/kPa频率 / 组距0.360.240.160.08171615141312 C .方程02=++b ax x 至多有两个实根 D .方程02=++b ax x 恰好有两个实根 5.已知实数y x ,满足)10(<<<a a a y x ,则下列关系式恒成立的是A .111122+>+y x B .)1ln()1ln(22+>+y x C .y x sin sin > D .33y x >6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为 A .22 B .24 C .2 D .47.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单 位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分 别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组 与第二组共有20人,第三组中没有疗效的有6人, 则第三组中有疗效的人数为A .6B .8C .12D .188.已知函数12)(+-=x x f ,kx x g =)(.若方程)()(x g x f =有两个不相等的实根,则实数k 的取值范围是A .)210(, B .)121(,C .)21(, D .)2(∞+, 9.已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为 A .5 B .4 C .5 D .210.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 A .02x =±y B .02=±y x C .02y x =± D .0y 2x =±第Ⅱ卷(共100分)二.填空题:本大题共5小题,每小题5分,共25分。
2014年普通高等学校招生全国统一考试高考数学教师精校版含详解山东理
2014年山东理一、选择题(共10小题;共50分)1. 已知a,b∈R,i是虚数单位,若a−i与2+b i互为共轭复数,则a+b i2= A. 5−4iB. 5+4iC. 3−4iD. 3+4i2. 设集合A=x x−1<2,B=y y=2x,x∈0,2,则A∩B= A. 0,2B. 1,3C. 1,3D. 1,43. 函数f x=22的定义域为 A. 0,12B. 2,+∞C. 0,12∪2,+∞ D. 0,12∪2,+∞4. 用反证法证明命题:"已知a,b为实数,则方程x2+ax+b=0至少有一个实根"时,要做的假设是A. 方程x2+ax+b=0没有实根B. 方程x2+ax+b=0至多有一个实根C. 方程x2+ax+b=0至多有两个实根D. 方程x2+ax+b=0恰好有两个实根5. 已知实数x,y满足a x<a y0<a<1,则下列关系式恒成立的是 A. x3>y3B. sin x>sin yC. ln x2+1>ln y2+1D. 1x+1>1y+16. 直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为 A. 2B. 4C. 2D. 47. 为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为12,13,13,14,14,15,15,16,16,17,将其按从左到右的顺序分别编号为第一组,第二组,⋯,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 .A. 1B. 8C. 12D. 188. 已知函数f x=x−2+1,g x=kx,若f x=g x有两个不相等的实根,则实数k的取值范围是 A. 0,12B. 12,1 C. 1,2 D. 2,+∞9. 已知x,y满足约束条件x−y−1≤0,2x−y−3≥0,当目标函数z=ax+by a>0,b>0在该约束条件下取到最小值25时,a2+b2的最小值为 A. 5B. 4C. 5D. 210. 已知a>b>0,椭圆C1的方程为x2a2+y2b2=1,双曲线C2的方程为x2a2−y2b2=1,C1与C2的离心率之积为32,则C2的渐近线方程为 A. x±y=0B. x±y=0C. x±2y=0D. 2x±y=0二、填空题(共5小题;共25分)11. 执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为.12. 在△ABC中,已知AB⋅AC=tan A,当A=π6时,△ABC的面积为.13. 三棱锥P−ABC中,D,E分别为PB,PC的中点,记三棱锥D−ABE的体积为V1,P−ABC的体积为V2,则V1V2=.14. 若 ax2+bx 6的展开式中x3项的系数为20,则a2+b2的最小值为.15. 已知函数y=f x x∈R.对函数y=g x x∈I,定义g x关于f x的"对称函数"为函数y= x x∈I,y= x满足:对任意x∈I,两个点 x, x, x,g x关于点 x,f x对称.若 x是g x=4−x2关于f x=3x+b的"对称函数",且 x>g x恒成立,则实数b 的取值范围是.三、解答题(共6小题;共78分)16. 已知向量a=m,cos2x,b=sin2x,n,函数f x=a⋅b,且y=f x的图象过点π12,3和点2π3,−2.(1)求m,n的值;(2)将y=f x的图象向左平移φ0<φ<π个单位后得到函数y=g x的图象.若y=g x 的图象上各最高点到点0,3的距离的最小值为1,求y=g x的单调增区间.17. 如图,在四棱柱ABCD−A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60∘,AB=2CD=2,M是线段AB的中点.(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.18. 乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在 C 上记3分,在 D 上记1分,其他情况记0分.对落点在 A上的来球,队员小明回球的落点在 C上的概率为12,在 D 上的概率为13;对落点在 B上的来球,小明回球的落点在 C上的概率为15,在D上的概率为35.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响.求:(1)小明的两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.19. 已知等差数列a n的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列a n的通项公式;(2)令b n=−1n−14na n a n+1,求数列b n的前n项和T n.20. 设函数f x=e xx2−k2x+ln x (k为常数,e=2.71828⋯是自然对数的底数).(1)当k≤0时,求函数f x的单调区间;(2)若函数f x在0,2内存在两个极值点,求k的取值范围.21. 已知抛物线C:y2=2px p>0的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有FA=FD.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,(i)证明直线AE过定点,并求出定点坐标;(ii)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.答案第一部分1. D2. C 【解析】由x−1<2,解得−1<x<3,由y=2x,x∈0,2,解得1≤y≤4,A∩B=−1,3∩1,4=1,3.3. C4. A5. A6. D7. C8. B 【解析】先作出函数f x=x−2+1的图象,如图,当直线g x=kx与直线AB平行时斜率为1,当直线g x=kx过点A时斜率为12,故f x=g x有两个不相等的实根时,k的范围为12,1.9. B 【解析】由x−y−1=02x−y−3=0可求得交点为2,1,则2a+b=25,a2+b2的最小值表示圆心0,0到直线2a+b−25=0的距离的平方5 52=22=4.10. A【解析】依题意得 a2−b2a × a2+b2a=32,解得ba=±2.第二部分11. 312. 16【解析】由已知,得AB AC cosπ6=tanπ6,解得AB AC=23,所以△ABC的面积为S=12AB AC sin A=16.13. 14【解析】V E−ABDV C−ABP =13×S△ABD× 113×S△ABP× 2=14.14. 2【解析】先利用二项式定理的通项公式,得ab=1,再由均值不等式,得a2+b2≥2.15. 210,+∞【解析】由题意,得 x+4−x22=3x+b,则 x=6x+2b−4−x2根据题意,得6x+2b−2>4−x23x+b>2恒成立.在同一坐标系内,画出直线y=3x+b和半圆y=4−x2,如图所示,可得10>2,即b>210.第三部分16. (1)由题意知f x=a⋅b=m sin2x+n cos2x,因为f x的图象过点π12,3,2π3,−2,所以fπ=m sinπ+n cosπ=3,f2π=m sin4π+n cos4π=−2,可得1m+3n=3,−3m−1n=−2,解得m=3,n=1.(2)由(1)和题意可知f x=3sin2x+cos2x=2sin2x+π,g x=f x+φ=2sin2x+2φ+π.设g x的对称轴为x=x0,因为d=1+x02=1解得x0=0,所以g0=2,解得φ=π6,可得g x =2sin 2x +π3+π6 =2sin 2x +π2=2cos2x ,故−π+2kπ≤2x ≤2kπ,k ∈Z ,−π2+kπ≤x ≤kπ,k ∈Z , 因此g x 的单调增区间为 −π2+kπ,kπ ,k ∈Z .17. (1)因为四边形ABCD 是等腰梯形,且AB =2CD ,所以AB ∥DC . 又由M 是AB 中点,因此CD ∥MA 且CD =MA . 连接AD 1,在四棱柱ABCD −A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因此C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1,所以C 1M ∥平面A 1ADD 1.(2)由(1)知,平面D 1C 1M ∩平面ABCD =AB .过C 向AB 作垂线交AB 于N ,连接D 1N .由CD 1⊥面ABCD ,可得D 1N ⊥AB ,故∠D 1NC 为二面角C 1−AB −C 的平面角. 在Rt △D 1CN 中,BC =1,∠NBC =60∘,可得CN =32,所以 ND 1= CD 12+CN 2=15. 在Rt △D 1CN 中,cos ∠D 1NC =CN1=32 152=5, 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55.18. (1)设恰有一次的落点在乙上为事件E,则P E=12+13×1−15−35+1−12−13×15+35=310.(2)ξ的可能取值为0,1,2,3,4,6.Pξ=0=1×1=1,Pξ=1=1×1+1×3=1,Pξ=2=13×35=15,Pξ=3=12×15+16×15=215,Pξ=4=1×3+1×1=11,Pξ=6=1×1=1.所以ξ的分布列为:ξ012346P 13016152151130110所以其数学期望为Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=91.19. (1)由题可知d=2,S1=a1,故S2=2a1+d,S4=4a1+6d.因为S1,S2,S4成等比数列,所以S22=S1S4,解得a1=1,因此a n=2n−1.(2)由(1)将a n=2n−1代入得b n=−1n−14n n n+1=−1n−112n−1+12n+1,当n为偶数时,T n=1+13−13+15+15+17−⋯+12n−3+12n−1−12n−1+12n+1,所以T n=2n2n+1;当n为奇数时,T n=1+13−13+15+15+17−⋯−12n−3+12n−1+12n−1+12n+1,所以T n =1+12n +1=2n +22n +1,故T n = 2n2n +1,n 为偶数,2n +2,n 为奇数.20. (1)函数f x 的定义域为 0,+∞ .fʹ x =e x ⋅x 2−2x e x x 4−k −2x 2+1x= x −2 e x −kx x 3,当k ≤0时,kx ≤0,所以e x −kx >0.令fʹ x =0,则x =2,所以,当x ∈ 0,2 时,f x 单调递减;当x ∈ 2,+∞ 时,f x 单调递增. 所以,f x 的单调递减区间为 0,2 ,单调递增区间为 2,+∞ .(2)由(1)知,k ≤0时,函数f x 在 0,2 内单调递减,故f x 在 0,2 内不存在极值点; 当k >0时,设函数g x =e x −kx ,x ∈ 0,+∞ .因为gʹ x =e x −k =e x −e ln k ,当0<k ≤1时,当x ∈ 0,2 时,g ′ x =e x −k >0,y =g x 单调递增,故f x 在 0,2 内不存在两个极值点;当k >1时,得x ∈ 0,ln k 时,g ′ x <0,函数y =g x 单调递减;x ∈ ln k ,+∞ 时,g ′ x >0,函数y =g x 单调递增,所以,函数y =g x 的最小值为g ln k =k 1−ln k .函数f x 在 0,2 内存在两个极值点,当且仅当g 0 >0,g ln k <0,g 2 >0,0<ln k <2.解得:e <k <e 22.综上所述,函数f x 在 0,2 内存在两个极值点时,k 的取值范围为 e,e 22 .21. (1)当A 的横坐标为3时,过A 作AG ⊥x 轴于G ,由抛物线的定义可知 AF =3+p2,所以FD = AF=3+p. 因为△AFD 为等边三角形,所以FG =1 FD =3+p .又 FG =3−p2,所以3+p =3−p , 所以p =2,所以C :y 2=4x .(2)(i )设A x 1,y 1 , FD = AF =x 1+1,所以D x 1+2,0 ,所以k AB =−y 12.由直线l 1∥l 可设直线l 1方程为y =−y 12x +m ,联立方程 y =−y 12x +m ,y 2=4x ,消去x 得y 1y 2+8y −8m =0, ⋯⋯①由l 1和C 有且只有一个公共点,得Δ=64+32y 1m =0,所以y 1m =−2,这时方程①的解为y =−4y 1=2m ,代入y =−y 12x +m 得x =m 2,所以E m 2,2m . 点A 的坐标可化为1m ,−2m,直线AE 方程为 y −2m =2m +2m m 2−1m 2 x −m 2 ,即y −2m =2mm 2−1x −m 2 , 所以y =2mm 2−1 x −1 ,所以直线AE 过定点 1,0 .当m 2=1,即y 12=4时,直线AE 的方程是x =1,过点 1,0 .综上,直线AE 过点 1,0 . (ii )l AB :y −y 1=−y 12x −y 124,即x =−2y 1y +y 124+2,联立方程得x =−2y 1y +y 124+2,y 2=4x ,消去x 得y 2+8y 1y − y 12+8 =0, 所以y 1+y 2=−8y 1,即y 2=−y 1−8y 1,所以普通高等学校招生全国统一考试高考数学教师精校版含详解完美版 AB =1+4y12⋅y1−y2=1+4y122y1+8y1,E到AB的距离d=812+y12+2−4121+y12=412+y12+21+y12,所以S=1AB ⋅d=12y1+81412+y12+2=2y1+213≥2×23=16,当且仅当y1=±2时," = "成立.。
2014年普通高等学校招生全国统一考试数学理试题(山东卷,解析版)
( A) 2 2 ( B) 4 2 ( C) 2(D) 4
( 7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:
kPa )的
分组区间为 [12,13) , [13,14) , [14,15) , [15,16) , [16,17] ,将其按从左到右的顺序分别编号为第一组,
, bc 6
, S ABC 3
bc sin A 2
6
1 13. 【答案】 4
h1 1 【解析】分别过 E, C 向平面 PAB做高 h1, h2 ,由 E 为 PC 的中点得 h2 2 ,
S ABD 由 D 为 PB 的中点得
14. 【答案】 2
1
1
1
1
S ABP
V1 :V2 ( S ABD h1 ) : ( S ABP h2 )
山东理科数学
一、选择题:本大题共 10 小题,每小题 5 分 . 在每小题给出的四个选项中,只有一项是符合题目要求的
.
( 1)已知 a, b R , i 是虚数单位,若 a i 与 2 bi 互为共轭复数,则 ( a bi )2
( A) 5 4i ( B) 5 4i ( C) 3 4i ( D) 3 4i
图像应位于直线 f ( x) 3x b 的右下方 . 根据图像分析得,当 f ( x) 3x b 与 g( x)
4 x2 在第二象限
相切时, b 2 10 ,由 h( x) g( x) 恒成立得 b 2 10 .
三.解答题:本大题共 6 小题,共 75 分,解答应写出文字说明、证明过程或演算步骤。
( 2)设集合 A { x || x 1| 2} , B { y | y 2x , x [0, 2]} ,则 A B
2014年山东省高考数学试卷(文科)答案与解析
2014年山东省高考数学试卷(文科)参考答案与试题解析一.选择题每小题5分,共50分1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a+i=2﹣bi,则(a+bi)2=()A.3﹣4i B.3+4i C.4﹣3i D.4+3i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数相等的充要条件求得a、b的值,再利用两个复数代数形式的乘法法则求得(a+bi)2的值.解答:解:∵a+i=2﹣bi,∴a=2、b=﹣1,则(a+bi)2=(2﹣i)2=3﹣4i,故选:A.点评:本题主要考查两个复数相等的充要条件,两个复数代数形式的乘法法则,属于基础题.2.(5分)(2014•山东)设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2)C.[1,2)D.(1,4)考点:交集及其运算.专题:集合.分析:分别解出集合A和B,再根据交集的定义计算即可.解答:解:A={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|1≤x<2}.故选:C.点评:本题是简单的计算题,一般都是在高考的第一题出现,答题时要注意到端点是否取得到,计算也是高考中的考查点,学生在平时要加强这方面的练习,考试时做到细致悉心,一般可以顺利解决问题.3.(5分)(2014•山东)函数f(x)=的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:分析可知,,解出x即可.解答:解:由题意可得,,解得,即x>2.∴所求定义域为(2,+∞).故选:C.点评:本题是对基本计算的考查,注意到“真数大于0”和“开偶数次方根时,被开方数要大于等于0”,及“分母不为0”,即可确定所有条件.高考中对定义域的考查,大多属于容易题.4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根考点:反证法与放缩法.专题:函数的性质及应用.分析:直接利用命题的否定写出假设即可.解答:解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.点评:本题考查反证法证明问题的步骤,基本知识的考查.5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.s inx>sinyC.l n(x2+1)>ln(y2+1)D.>考点:指数函数的图像与性质.专题:函数的性质及应用.分析:本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.解答:解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.当x>y时,x3>y3,恒成立,B.当x=π,y=时,满足x>y,但sinx>siny不成立.C.若ln(x2+1)>ln(y2+1),则等价为x2>y2成立,当x=1,y=﹣1时,满足x>y,但x2>y2不成立.D.若>,则等价为x2+1<y2+1,即x2<y2,当x=1,y=﹣1时,满足x>y,但x2<y2不成立.故选:A.点评:本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.6.(5分)(2014•山东)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1考点:对数函数图象与性质的综合应用.专题:函数的性质及应用.分析:根据对数函数的图象和性质即可得到结论.解答:解:∵函数单调递减,∴0<a<1,当x=1时log a(x+c)=log a(1+c)<0,即1+c>1,即c>0,当x=0时log a(x+c)=log a c>0,即c<1,即0<c<1,故选:D.点评:本题主要考查对数函数的图象和性质,利用对数函数的单调性是解决本题的关键,比较基础.7.(5分)(2014•山东)已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.解答:解:由题意可得cos===,解得m=,故选:B.点评:本题主要考查两个向量的夹角公式、两个向量的数量积公式的应用,属于基础题.8.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12 D.18考点:频率分布直方图.专题:概率与统计.分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;解答:解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.点评:本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题.9.(5分)(2014•山东)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanx D.f(x)=cos(x+1)考点:抽象函数及其应用.专题:函数的性质及应用.分析:由题意判断f(x)为准偶函数的对称轴,然后判断选项即可.解答:解:对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,∴函数的对称轴是x=a,a≠0,选项A函数没有对称轴;选项B、函数的对称轴是x=0,选项C,函数没有对称轴.函数f(x)=cos(x+1),有对称轴,且x=0不是对称轴,选项D正确.故选:D.点评:本题考查函数的对称性的应用,新定义的理解,基本知识的考查.10.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5B.4C.D.2考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.解答:解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.点评:本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.二.填空题每小题5分,共25分11.(5分)(2014•山东)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为3考点:程序框图.专题:算法和程序框图.分析:计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.解答:解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.点评:本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.12.(5分)(2014•山东)函数y=sin2x+cos2x的最小正周期为π.考点:二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期解答:解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.点评:本题主要考查两角和的正弦公式、二倍角的余弦公式,正弦函数的周期性,属于基础题.13.(5分)(2014•山东)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为12.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积.解答:解:∵一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则,∴h=1,棱锥的斜高为:==2,该六棱锥的侧面积为:=12.故答案为:12.点评:本题考查了棱锥的体积,侧面积的求法,解答的关键是能够正确利用体积与表面积公式解题.14.(5分)(2014•山东)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为(x﹣2)2+(y﹣1)2=4.考点:圆的标准方程.专题:直线与圆.分析:由圆心在直线x﹣2y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.解答:解:设圆心为(2t,t),半径为r=|2t|,∵圆C截x轴所得弦的长为2,∴t2+3=4t2,∴t=±1,∵圆C与y轴的正半轴相切,∴t=﹣1不符合题意,舍去,故t=1,2t=2,∴(x﹣2)2+(y﹣1)2=4.故答案为:(x﹣2)2+(y﹣1)2=4.点评:此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.15.(5分)(2014•山东)已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为y=±x.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的右顶点A(a,0),拋物线x2=2py(p>0)的焦点及准线方程,根据已知条件得出及,求出a=b,得双曲线的渐近线方程为:y=±x.解答:解:∵右顶点为A,∴A(a,0),∵F为抛物线x2=2py(p>0)的焦点,F,∵|FA|=c,∴抛物线的准线方程为由得,,c2=2a2,∵c2=a2+b2,∴a=b,∴双曲线的渐近线方程为:y=±x,故答案为:y=±x.点评:熟练掌握圆锥曲线的图象与性质是解题的关键.三.解答题共6小题,共75分16.(12分)(2014•山东)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50 150 100(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.考点:古典概型及其概率计算公式.专题:概率与统计.分析:(Ⅰ)先计算出抽样比,进而可求出这6件样品来自A,B,C各地区商品的数量;(Ⅱ)先计算在这6件样品中随机抽取2件的基本事件总数,及这2件商品来自相同地区的事件个数,代入古典概型概率计算公式,可得答案.解答:解:(Ⅰ)A,B,C三个地区商品的总数量为50+150+100=300,故抽样比k==,故A地区抽取的商品的数量为:×50=1;B地区抽取的商品的数量为:×150=3;C地区抽取的商品的数量为:×100=2;(Ⅱ)在这6件样品中随机抽取2件共有:=15个不同的基本事件;且这些事件是等可能发生的,记“这2件商品来自相同地区”为事件A,则这2件商品可能都来自B地区或C地区,则A中包含=4种不同的基本事件,故P(A)=,即这2件商品来自相同地区的概率为.点评:本题考查的知识点是分层抽样,古典概型概率计算公式,难度不大,属于基础题.17.(12分)(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.考点:正弦定理.专题:解三角形.分析:(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.解答:解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.点评:本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.18.(12分)(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(Ⅰ)证明四边形ABCE是平行四边形,可得O是AC的中点,利用F为线段PC的中点,可得PA∥OF,从而可证AP∥平面BEF;(Ⅱ)证明BE⊥AP、BE⊥AC,即可证明BE⊥平面PAC.解答:证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.点评:本题考查直线与平面平行、垂直的判定,考查学生分析解决问题的能力,正确运用直线与平面平行、垂直的判定是关键19.(12分)(2014•山东)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n,求T n.考点:数列的求和;等差数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)由于a2是a1与a4的等比中项,可得,再利用等差数列的通项公式即可得出.(Ⅱ)利用(Ⅰ)可得b n=a=n(n+1),因此T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).对n分奇偶讨论即可得出.解答:解:(Ⅰ)∵a2是a1与a4的等比中项,∴,∵在等差数列{a n}中,公差d=2,∴,即,化为,解得a1=2.∴a n=a1+(n﹣1)d=2+(n﹣1)×2=2n.(Ⅱ)∵b n=a=n(n+1),∴T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).当n=2k(k∈N*)时,b2k﹣b2k﹣1=2k(2k+1)﹣(2k﹣1)(2k﹣1+1)=4kT n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣b2k﹣1)=4(1+2+…+k)=4×=2k(k+1)=.当n=2k﹣1(k∈N*)时,T n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣2﹣b2k﹣3)﹣b2k﹣1=n(n+1)=﹣.故T n=.点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、分类讨论思想方法,属于中档题.20.(13分)(2014•山东)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)根据导数的几何意义,曲线y=f(x)在x=1处的切线方程为y﹣f(1)=f′(1)(x﹣1),代入计算即可.(Ⅱ)先对其进行求导,即,考虑函数g(x)=ax2+(2a+2)x+a,分成a≥0,﹣<a<0,a≤﹣三种情况分别讨论即可.解答:解:,(Ⅰ)当a=0时,,f′(1)=,f(1)=0∴曲线y=f(x)在点(1,f(1))处的切线方程为y=(x﹣1).(Ⅱ)(1)当a≥0时,由x>0知f′(x)>0,即f(x)在(0,+∞)上单调递增;(2)当a<0时,令f′(x)>0,则>0,整理得,ax2+(2a+2)x+a >0,令f′(x)<0,则<0,整理得,ax2+(2a+2)x+a<0.以下考虑函数g(x)=ax2+(2a+2)x+a,g(0)=a<0.,对称轴方程.①当a≤﹣时,△≤0,∴g(x)<0恒成立.(x>0)②当﹣<a<0时,此时,对称轴方程>0,∴g(x)=0的两根均大于零,计算得当<x<时,g(x)>0;当0<x<或x>时,g(x)<0.综合(1)(2)可知,当a≤﹣时,f(x)在(0,+∞)上单调递减;当﹣<a<0时,f(x)在(,)上单调递增,在(0,),(,+∞)上单调递减;当a≥0时,f(x)在(0,+∞)上单调递增.点评:导数是高考中极易考察到的知识模块,导数的几何意义和导数的单调性是本题检查的知识点,特别是单调性的处理中,分类讨论是非常关键和必要的,分类讨论也是高考中经常考查的思想方法.21.(14分)(2014•山东)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C 上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(Ⅰ)由椭圆离心率得到a,b的关系,化简椭圆方程,和直线方程联立后求出交点的横坐标,把弦长用交点横坐标表示,则a的值可求,进一步得到b的值,则椭圆方程可求;(Ⅱ)(i)设出A,D的坐标分别为(x1,y1)(x1y1≠0),(x2,y2),用A的坐标表示B的坐标,把AB和AD的斜率都用A的坐标表示,写出直线AD的方程,和椭圆方程联立后利用根与系数关系得到AD横纵坐标的和,求出AD中点坐标,则BD斜率可求,再写出BD所在直线方程,取y=0得到M点坐标,由两点求斜率得到AM的斜率,由两直线斜率的关系得到λ的值;(ii)由BD方程求出N点坐标,结合(i)中求得的M的坐标得到△OMN的面积,然后结合椭圆方程利用基本不等式求最值.解答:解:(Ⅰ)由题意知,,则a2=4b2.∴椭圆C的方程可化为x2+4y2=a2.将y=x代入可得,因此,解得a=2.则b=1.∴椭圆C的方程为;(Ⅱ)(i)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(﹣x1,﹣y1).∵直线AB的斜率,又AB⊥AD,∴直线AD的斜率.设AD方程为y=kx+m,由题意知k≠0,m≠0.联立,得(1+4k2)x2+8kmx+4m2﹣4=0.∴.因此.由题意可得.∴直线BD的方程为.令y=0,得x=3x1,即M(3x1,0).可得.∴,即.因此存在常数使得结论成立.(ii)直线BD方程为,令x=0,得,即N().由(i)知M(3x1,0),可得△OMN的面积为S==.当且仅当时等号成立.∴△OMN面积的最大值为.点评:本题考查椭圆方程的求法,主要考查了直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考试具备较强的运算推理的能力,是压轴题.。
山东省2014年春季高考数学试题答案及评分标准1
山东省2014年普通高校招生(春季)考试数学试题答案及评分标准卷一(选择题,共75分)一、选择题(本大题20个小题,每题3分,共60分)题号 1 2 3 4 5 6 7 8 9 10 答案 C A D C D B A C D B 题号 11 12 13 14 15 16 17 18 19 20 答案BABDAADCBD卷二(非选择题,共60分)二、填空题(本大题5个小题,每题4分,共20分)21.55 22. 5 23. 123 24.833π 25. 5.96% 三、解答题(本大题5个小题,共40分)26.(本小题6分)解: 由题意得 3d =- (2分)661610,+2=10S a a a =+由得方程3 (1分)解得1=8a (1分) 因为()112n n n S na d +=+(1分) 所以1055S =- (1分) 27.(本小题8分) 解:由题意知:∆PRQ是等边三角形,四边形ABCD 是矩形()06,CD x x PD x =<<=设则 (1分)()36,sin 6062DQ x AD DQ x =-=︒=-所以 (2分) ()23363322S x x x x =-=-+所以矩形面积是 (2分)当3S m =时,S 有最大值 (1分) ()()2max 39363322S m =-⨯= (2分)28.(本小题8分)则()()2sin 21, 2 4f x x m f x π⎛⎫=+-+ ⎪⎝⎭由得最大值是所以m=1 (1分) (2) ()2sin 24f x x π⎛⎫=+ ⎪⎝⎭由()21sin 2= 42f x x π⎛⎫=+ ⎪⎝⎭,得 (1分) 所以()3 2=+2 2=+24444x k x k k Z ππππππ++∈或, (1分) 0=24x x ππ⎛⎫∈ ⎪⎝⎭又因为,,解得 (1分)29.(本小题8分)解:(1) 因为PA=AD ,点E 是PD 的中点,则AE ⊥PD (1分) 因为PA ⊥平面ABCD,所以PA ⊥AB (1分) 由已知AB ⊥AD,PAAD=A,所以AB ⊥平面PAD (1分)因为AE ⊂平面PAD ,所以AB ⊥AE (1分) 由AB//CD,知CD ⊥AE 因为PDCD=D,所以AE ⊥平面PCD (1分)(2) 取PC 的中点F ,连接EF 、FB, (1分) 则EF//CD 且EF=12CD,由已知AB//CD 且AB=12CD 可得EF//AB 且EF=AB,则四边形ABFE 为平行四边形,所以AE//BF (1分)因为BF ⊂平面PBC, AE ⊄平面PBC,所以AE//平面PBC (1分) 30.(本小题10分) 解:(1) 由题意知,2222,a b a b c ==+ (1分)所以b c = (1分) 于是222c c e a c===(1分) (2) 由(1)知,椭圆方程为22222221,222x y x y c c c+=+=即设()()2,0,,F c M c m ,将(),M c m 代入椭圆方程得22m c = (1分) OM 的斜率为22,则PQ 的斜率为2,则直线的方程为()2y x c =-- (1分)EPDCBA 第29题图F解方程组()222222y x c x y c⎧=--⎪⎨+=⎪⎩ 消去x ,整理得2252220y cy c --= (2分)设1122(,),(,)P x y Q x y ,由韦达定理得21212222,55y y c y y c +==- (1分) 由()1121221212124PF Q PF F QF F S S S c y y c y y y y ∆∆∆=+=-=+- (1分)于是,228843255cc c =+ 得2225,10,5,c a b ===则所以椭圆的标准方程是221105x y += (1分)F 1Oy xF 2 M第30题图PQ。
2014年山东高考数学文科试卷及详细解析
2014年山东高考数学文科试卷解析一.选择题: (1) 【解析】由ia +bi-=2得,12-==b a ,,=+2)(bi a i i i i 4344)2(22-=+-=-故答案选A (2)【解析】[]4,1)20(==B A ,,,数轴上表示出来得到=B A [1,2) 故答案为C (3)【解析】01log 2>-x 故2>x 。
选D (4)【解析】答案选A ,解析略。
(5)【解析】由)10(<<<a a a y x 得,y x >,但是不可以确定2x 与2y 的大小关系,故C 、D 排除,而x y sin =本身是一个周期函数,故B 也不对,33y x >正确。
(6) 【解析】由图象单调递减的性质可得01a <<,向左平移小于1个单位,故01c <<答案选C (7)【解析】:()22333cos ,29233393a b m a b a b a b m m m m ⋅=+⋅==+⋅∴+=⋅+∴=r rr r r r r r答案:B (8)【解析】:第一组与第二组频率之和为0.24+0.16=0.4200.450÷=500.361818612⨯=-=答案:C (9)【解析】:由分析可知准偶函数即偶函数左右平移得到的。
答案:D (10)【解析】:10230x y x y --≤⎧⎨--≥⎩求得交点为()2,1,则225a b +=,即圆心()0,0到直线2250a b +-=的距离的平方2225245⎛⎫== ⎪ ⎪⎝⎭。
答案: B二.填空题:11【解析】:根据判断条件0342≤+-x x ,得31≤≤x ,输入1=x第一次判断后循环,11,21=+==+=n n x x 第二次判断后循环,21,31=+==+=n n x x 第三次判断后循环,31,41=+==+=n n x x 第四次判断不满足条件,退出循环,输出3=n 答案:3 12【解析】:233111sin 2cos sin 2cos 2sin 2222262y x x x x x π⎛⎫=+=++=++ ⎪⎝⎭ 22T ππ∴==. 答案:T π=13【解析】:设六棱锥的高为h ,斜高为h ',则由体积1122sin 6062332V h ⎛⎫=⨯⨯⨯⨯⨯⨯= ⎪⎝⎭得:1h =,()2232h h '=+=∴ 侧面积为126122h '⨯⨯⨯=.答案:12 14【解析】 设圆心(),02a a a ⎛⎫> ⎪⎝⎭,半径为a . 由勾股定理()22232a a ⎛⎫+= ⎪⎝⎭得:2a =∴圆心为()2,1,半径为2, ∴圆C 的标准方程为()()22214x y -+-= 答案:()()22214x y -+-=15【解析】 由题意知222Pc a b =-=, 抛物线准线与双曲线的一个交点坐标为,2P c ⎛⎫⎪⎝⎭,即(),c b -代入双曲线方程为22221c ba b-=,得222c a=,∴渐近线方程为yx =±,2211b c a a∴=-=.答案:1 三.解答题 (16) 【解析】:(Ⅰ)因为工作人员是按分层抽样抽取商品,所以各地区抽取商品比例为:::50:150:1001:3:2A B C ==所以各地区抽取商品数为:1:616A ⨯=,3:636B ⨯=,2:626C ⨯=;(Ⅱ)设各地区商品分别为:12312,,,,,A B B B C C时间空间Ω为:()()()()()()()123121213,,,,,,,,,,,,,A B A B A B A C A C B B B B()()()()()()()()1112232122313212,,,,,,,,,,,,,,,B C B C B B B C B C B C B C C C ,共15个.样本时间空间为:()()()()12132312,,,,,,,B B B B B B C C 所以这两件商品来自同一地区的概率为:()415P A = (17) 【解析】:(Ⅰ)由题意知:23sin 1cos 3A A =-=, 6sin sin sin cos cos sin cos 2223B A A A A πππ⎛⎫=+=+== ⎪⎝⎭,由正弦定理得:sin 32sin sin sin a b a Bb A B A⋅=⇒== (Ⅱ)由余弦定理得:2222126cos 43903,33,23b c a A c c c c bc +-==⇒-+=⇒== 又因为2B A π=+为钝角,所以b c >,即3c =,所以132sin .22ABCS ac B == (18)【解析】:(Ⅰ)连接AC 交BE 于点O ,连接OF ,不妨设AB=BC=1,则AD=2,//,BC AD BC AB = ∴四边形ABCE 为菱形AP OF PC AC F O //,,∴中点,分别为又BEF AP BEF OF 平面,平面//∴⊂ (Ⅱ)CD AP PCD CD PCD AP ⊥∴⊂⊥,平面,平面CD BE BCDE ED BC ED BC //,,//∴∴=为平行四边形, ,PA BE ⊥∴AC BE ABCE ⊥∴为菱形,又PAC AC PA A AC PA 平面、又⊂=⋂, ,PAC BE 平面⊥∴(19)【解析】: (Ⅰ)由题意知:{}n a 为等差数列,设()d n a a n 11-+=,2a 为1a 与4a 的等比中项4122a a a ⨯=∴且01≠a ,即()()d a a d a 31121+=+, 2=d 解得:21=an n a n 22)1(2=⨯-+=∴(Ⅱ)由 (Ⅰ)知:n a n 2=,)1(2)1(+==+n n a b n n n①当n 为偶数时:()()()()()()()()[]()()222222642222624221153431214332212nn n n n n n n n n n T n +=+⨯=++++⨯=⨯++⨯+⨯+⨯=++--+++-++-=+++⨯-⨯+⨯-=②当n 为奇数时:()()()()()()()()[]()()()()[]()()()212122112211642212126242212153431214332212++-=----+⨯=+--++++⨯=+-⨯-++⨯+⨯+⨯=+-+---+++-++-=+-+⨯-⨯+⨯-=n n n n n n n n n n n n n n n n n n n T n综上:⎪⎪⎩⎪⎪⎨⎧+++-=为偶数为奇数,n n n n n n T n ,2221222 (20)【解析】(1)0a =当时212(),()1(1)x f x f x x x -'==++ 221(1)(11)2f '==+ (1)0(1,0)f =∴又直线过点1122y x ∴=- (2) 22()(0)(1)af x x x x '=+>+ 220()0.()(1)a f x f x x '==+①当时,恒大于在定义域上单调递增. 2222(1)20()=0.()(1)(1)a a x x a f x f x x x x x ++'>=+>++②当时,在定义域上单调递增.2210(22)4840,.2a a a a a <∆=+-=+≤≤-③当时,即()f x 开口向下,在定义域上单调递减。
2014山东高考数学文科试卷逐题解析
2014-山东-高考数学(文)-试卷一.选择题1.已知a ,b R ∈,i 是虚数单位. 若a i +=2bi -,则2()a bi +=( )A.34i -B.34i +C.43i -D.43i +【答案】A 【解析】先依据两复数相等的充要条件确定出a ,b 的值,再进行复数的平方运算.由i a +bi -=2得,12-==b a ,,=+2)(bi a i i i i 4344)2(22-=+-=-. 【知识点】复数相等的条件;复数的四则运算2.设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =( )A.(0,2]B.(1,2)C.[1,2)D.(1,4)【答案】C 【解析】先将集合化简,再求交集.2{|20}{|(2)0}(02)A x x x x x x =-<=-<=,,{|14}[14]B x x =≤≤=,,[12)A B ∴=,. 【知识点】一元二次不等式;集合的基本运算3.函数()f x =的定义域为( )A.(0,2)B.(0,2]C.(2,)+∞D.[2,)+∞【答案】C 【解析】求函数的定义域时要保证函数解析式有意义.要使函数有意义,2log 100x x ->⎧⎨>⎩,,故2>x .【知识点】函数的定义域与值域;对数函数的概念、图像和性质;对数不等式4.用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是( ) A.方程30x ax b ++=没有实根B.方程30x ax b ++=至多有一个实根C.方程30x ax b ++=至多有两个实根D.方程30x ax b ++=恰好有两个实根【答案】A 【解析】依据反证法的要求,即至少有一个的反面是一个也灭有,直接写出命题的否定. 方程30x ax b ++=至少有一个实根的反面是方程30x ax b ++=没有实根,故选A. 【知识点】命题及其关系;反证法5.已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( ) A.33x y >B.sin sin x y >C.22ln(1)ln(1)x y +>+D.221111x y >++ 【答案】A 【解析】先依据指数函数的性质确定x ,y 的大小,再逐一对选项进行判断.,01x y a a a <<<Q ,x y ∴>.排除C ,D ,对于B ,sin x 是周期函数,排除B. 函数3=y x 在R 上是增函数,故选A.【知识点】基本初等函数的性质;不等式性质6.已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是( ) A.0,1a c >>B.1,01a c ><<C.01,1a c <<> D .01,01a c <<<<【答案】D 【解析】依据对数函数的图像和性质及函数图像的平移变换求解.由图象单调递减的性质可得01a <<,向左平移小于1个单位,故01c << 【知识点】对数函数的概念、图像及其性质;函数的图像变换7.已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6π,则实数m =( )A.C.0D.【答案】B 【解析】依据向量数量积的定义和坐标运算列出关于m 的方程.3a b ⋅=r r Q ,又()||||cos ,2a b a b a b ⋅===r r r r r r3∴m ∴【知识点】平面向量的数量积;平面向量的坐标运算8.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa ) 的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一 组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组 共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6B.8C.12D.18【答案】C 【解析】一局频率分布直方图及频率公式求解.第一组与第二组频率之和为0.240.160.4+=,所以志愿者的总人数为200.450÷=,所以第三组人数为500.3618⨯=,有疗效的人数为18612-=.【知识点】用样本估计总体9.对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则 称()f x 为准偶函数,下列函数中是准偶函数的是( )A.()f x =B.3()f x x =C.()tan f x x =D.()cos(1)f x x =+【答案】D 【解析】在正确理解新定义的基础上对所给选项作出判断.由()(2)f x f a x =-知()f x 的图像关于x a =对称,且0a ≠,A ,C 中两函数图像无对称轴,B 中函数图像的对称轴只有0x =,而D 中当1()a k k Z π=-∈时,x a =都是()cos(1)f x x =+的 图像的对称轴. 【知识点】函数新定义10.已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数z ax by =+(0,0)a b >>在该约束条件下取到最小值22a b +的最小值为( )A.5B.4D.2【答案】B 【解析】先正确作出可行域,运用平移直线法确定出关于a ,b 的不等式,再进一步求出22a b +的最小值.线性约束条件所表示的可行域如图所示.由10230x y x y --≤⎧⎨--≥⎩,,解得21x y =⎧⎨=⎩,,所以z ax by =+在(21)A ,处取得最小值,故2a b +=222222)4)44a b a a +=+=-+≥. 【知识点】线性规划;函数的极值和最值二.填空题11.执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 . 【答案】3 【解析】按照程序框图逐一进行.根据判断条件0342≤+-x x ,得31≤≤x ,输入1=x第一次判断后循环,11,21=+==+=n n x x ; 第二次判断后循环,21,31=+==+=n n x x ;第三次判断后循环,31,41=+==+=n n x x ; 第四次判断不满足条件,退出循环,输出3=n . 【知识点】算法的概念;基本算法语句12.函数22cos y x x =+的最小正周期为 . 【答案】π 【解析】先将函数化为sin()y A x ωϕ=+的形式,再依据周期公式进行求解.23111sin 2cos 2cos 2sin 22262y x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, ∴函数的最小正周期22T ππ==. 【知识点】三角恒等变换;三角函数的周期性13.一个六棱锥的体积为2的正六边形,侧棱长都相等,则该六棱锥的侧面积 为 . 【答案】12 【解析】利用体积公式求出正六棱锥的高,再利用截面图确定正六棱锥斜高,最后求侧面积. 设六棱锥的高为h ,斜高为h ',则由体积1122sin 60632V h ⎛⎫=⨯⨯⨯⨯⨯⨯= ⎪⎝⎭1h =,2h '==∴ 侧面积为126122h '⨯⨯⨯=.【知识点】空间几何体的表面积和体积14.圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为C 的 标准方程为 . 【答案】22(2)(1)4x y -+-= 【解析】设出圆心坐标,由弦长公式求解.设圆心(),02a a a ⎛⎫> ⎪⎝⎭,半径为a .由弦长公式2222a a ⎛⎫+= ⎪⎝⎭得:2a =∴圆心为()2,1,半径为2, ∴圆C 的标准方程为()()22214x y -+-=【知识点】圆的方程;直线与圆的位置关系;弦长公式15.已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线 为 . 【答案】y x =± 【解析】依据题意得到关于a ,b 的等式,进而得出双曲线的渐近线方程. 抛物线的准线2p y =-,焦点(0)2p F ,,222()2p a c ∴+=. ① 设抛物线的准线2p y =-交双曲线于1()2p M x -,,2()2p N x -,两点,222221p y x y a b ⎧=-⎪⎪∴⎨⎪-=⎪⎩,,22c ∴=. ② 又222b c a =-,③ ∴由①②③,得222c a =. 222211b c a a∴=-=,解得1b a =.∴双曲线的渐近线方程为y x =±【知识点】双曲线的定义及其标准方程;双曲线的几何性质;抛物线的定义及其标准方程;抛物线的几何性质三.解答题16.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如右表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.【答案】(1)A ,B ,C 三个地区的商品被选取的件数分别为1,3,2;(2)415【解析】(1)按照分层抽样中抽样比与每层抽出的数量成比例求解. 因为样本容量与总体中的个体数的比时615015010050=++,所以,样本中包含三个地区的个体数量分别是:111501,1503,1002505050⨯=⨯=⨯=. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2. (2)列出基本事件和所求事件,用古典概型概率公式求解. 设6件来自A,B,C 三个地区的样品分别为12312;,,;,A B B B C C .则抽取的这2件商品构成的所有基本事件为:12312{,},{,},{,},{,},{,}A B A B A B A C A C1213111223{,},{,},{,},{,},{,}B B B B B C B C B B ,2122313212{,},{,},{,},{,},{,}B C B C B C B C C C 共15个.每个样品被抽到的机会均等,因此这些基本事件的出现时等可能的. 记事件D :“抽取的这2件商品来自相同的地区”,则事件D 包含的基本事件由12132312{,},{,},{,},{,}B B B B B B C C 共4个.所以4()15P D =,即这2件商品来自相同地区的概率为415. 【知识点】分层抽样;古典概型17.ABC ∆中,角A ,B ,C 所对的边分别为,,a b c . 已知3,cos 2a A B A π===+. (1)求b 的值; (2)求ABC ∆的面积.【答案】(1)(2)2【解析】(1)先求出的sin A ,sin B 的值,再用正弦定理求解. 在ABC ∆中,由题意知sin A ==,又因为2B A π=+,所以sin sin()cos 2B A A π=+==由正弦定理可得3sin sin a B b A ===. (2)先用三角函数的诱导公式、两角和公式求出sin C ,再代入三角形面积公式即可求得面积. 由2B A π=+得cos cos()sin 23B A A π=+=-=-. 由A B C π++=,得()C A B π=-+.所以sin sin[()]sin()C A B A B π=-+=+sin cos cos sin A B A B =+(=+13=. 因此ABC ∆的面积111sin 32232S ab C ==⨯⨯=. 【知识点】正弦定理;诱导公式;三角恒等变换;解三角形18.如图,四棱锥P ABCD -中,1,,,,2AP PCD AD BC AB BC AD E F ⊥==平面∥分别为线段,AD PC 的中点.(1)求证:AP BEF ∥平面; (2)求证:BE PAC ⊥平面. 【答案】见解析 【解析】证明(1)在平面中连接OF ,依据线面平行的判定定理只需证明//AP OF 即可. 设ACBE O =,连接OF ,EC .由于E 为AD 的中点,1,//2AB BC AD AD BC ==, 因此四边形ABCE 为菱形,所以O 为AC 的中点,又F 为PC 的中点,因此在PAC ∆中,可得//AP OF .又OF BEF AP BEF ⊂⊄平面,平面 所以//AP BEF 平面.(2)依据线面垂直的判定定理,只需证明BE 垂直于平面PAC 内的两条相交直线即可.由题意知//,ED BC ED BC =,所以四边形BCDE 为平行四边形,因此//BE CD .又AP PCD ⊥平面,所以AP CD ⊥,因此AP BE ⊥.因为四边形ABCE 为菱形,所以BE AC ⊥. 又APAC A =,且AP ,AC ⊂平面PAC ,所以BE ⊥平面PAC .【知识点】线面位置关系;线面平行的判定和性质;线面垂直的判定和性质19.在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项. (1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .【答案】(1)2n a n =;(2)2(1),2(1),2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数为偶数 【解析】(1)根据条件建立首项1a 的方程求解.由题意知2111(3)a d a a d +=+(),即21112(6)a a a +=+(),解得12a =.所以,数列{}n a 的通项公式为2n a n =.(2)分n 为奇数和偶数进行讨论,求出数列{}n b 的前n 项和n T .由题意知(1)2(1)n n n b a n n +==+,所以122334...(1)(1)n n T n n =-⨯+⨯-⨯++-⨯+.因为12(1)n n b b n +-=+,可得, 当n 为偶数时,12141()()...()n n n T b b b b b b -=-++-+++-+4812...2n =++++(42)22nn +=(2)2n n +=. 当n 为奇数时,1()n n n T T b -=+-(1)(1)(1)2n n n n -+=-+2(1)2n +=-. 所以2(1),2(1),2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数为偶数 【知识点】等差数列的概念和性质;等差数列的通项公式;等差数列的前n 项和公式;等比数列的概念和性质;等比数列的通项公式;等比数列的前n 项和公式;数列求和方法.20.设函数1()ln 1x f x a x x -=++ ,其中a 为常数. (1)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)讨论函数()f x 的单调性.【答案】(1)210x y --=;(2)见解析 【解析】(1)利用导数求出曲线()y f x =在点(1,(1))f 处的切线的斜率,再用点斜式求出切线方程. 由题意知0a =时,1(),(0,)1x f x x x -=∈+∞+. 此时22()(1)f x x '=+,可得1(1)2f '=,又(1)0f =,所以曲线()y f x =在(1,(1))f 处的切线方程为210x y --=.(2)对()f x 的导函数中的字母参数进行分类讨论,确定出导函数的符号,从而得出函数()f x 的单调性.函数()f x 的定义域为(0,)+∞,2222(22)()(1)(1)a ax a x af x x x x x +++'=+=++. 当0a ≥时,()0f x '>,函数()f x 在(0,)+∞上单调递增;当0a <时,令2()(22)g x ax a x a =+++,由于22(22)44(21)a a a ∆=+-=+,①当12a =-时,0∆=,221(1)2()0(1)x f x x x --'=≤+,函数()f x 在(0,)+∞上单调递减. ②当12a <-时,0,()0g x ∆<<, ()0f x '<,函数()f x 在(0,)+∞上单调递减. ③当102a -<<时,0∆>. 设1212,()x x x x <是函数()g x 的两个零点,则12x x ==由11a x a +=-0a=>-,所以1(0,)x x ∈时,()0,()0g x f x '<<,函数()f x 单调递减,12(,)x x x ∈时,()0,()0g x f x '>>,函数()f x 单调递增,2(,)x x ∈+∞时,()0,()0g x f x '<<,函数()f x 单调递减.综上可得:当0a ≥时,函数()f x 在(0,)+∞上单调递增; 当12a <-时,函数()f x 在(0,)+∞上单调递减;当102a -<<时,函数()f x 在)+∞上单调递减,在上单调递增. 【知识点】导数的概念与几何意义;导数计算;利用导数研究函数的单调性21.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>,直线y x =被椭圆C . (1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点). 点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(Ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值; (Ⅱ)求OMN ∆面积的最大值.【答案】(1)2214x y +=;(2)(Ⅰ)12λ=-;(Ⅱ)98 【解析】(1)由椭圆的离心率得出a ,c 的关系,结合y x =被椭圆C 截得的线段长确定a ,b 的值.由题意知2a =,可得224ab =.椭圆C 的方程可简化为2224x y a +=.将y x =代入可得x ==2a =,因此1b =. 所以,椭圆C 的方程为2214x y +=. (2)(Ⅰ)设出A ,B ,D 三点坐标,进而确定出直线BD ,AM 的斜率,代入表达式即可证明.设111122(,)(0),(,)A x y x y D x y ≠,则11(,)B x y --,因为直线AB 的斜率11AB y k x =,又AB AD ⊥,所以直线AD 的斜率11x k y =-. 设直线AD 的方程为y kx m =+,由题意知0,0k m ≠≠ 由2214y kx m x y =+⎧⎪⎨+=⎪⎩可得222(14)8440k x mkx m +++-=. 所以122814mk x x k +=-+,因此121222()214m y y k x x m k +=++=+. 由题意知12x x ≠,所以1211121144y y y k x x k x +==-=+. 所以,直线BD 的方程为1111()4y y y x x x +=+. 令0y =,得13x x =,即1(3,0)M x ,可得1212y k x =-,所以1212k k =-,即12λ=-. 因此,存在常数12λ=-使得结论成立. (Ⅱ)求出含参数的OMN ∆的面积的表达式,应用均值不等式求最小值. 直线BD 的方程1111()4y y y x x x +=+,令0x =,得134y y =-,即13(0,)4N y -. 由(Ⅰ)知1(3,0)M x ,可得OMN ∆的面积11111393||||||||248S x y x y =⨯⨯=. 因为221111||||14x x y y ≤+=当且仅当11||||22x y ==时等号成立,此时S 取得最大值98, 所以OMN ∆面积的最大值为98. 【知识点】椭圆的定义及标准方程;椭圆的几何性质;直线与圆锥曲线的位置关系;均值不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在做试卷之前,给大家推荐一个视频学习网站,我之前很长时间一直是做试卷之后,再到这上面去找一些相关的学习视频再复习一遍,效果要比只做试题要好很多,真不是打广告。
如果你有上网的条件,建议你也去学习一下,全站所有的视频都是免费的。
◆高考语文类在线听课地址:
/yuwen
◆高考数学类在线听课地址:
/shuxue
◆高考英语类在线听课地址:
/yingyu
◆高考化学类在线听课地址:
/huaxue
◆高考物理类在线听课地址:
/wuli
其他学科的大家自己去找吧!
◆高考在线题库:
/exams
数学:选择题目减少2个降10分填空题目增加1题增9分
与2013年相比,变化比较大的是试卷结构:试卷长度由原来的22道题减少到了21道题,其中第Ⅰ卷选择题由12道减为10道,每题分值仍为5分,共50分,比原来的60分减少了10分;第Ⅱ卷中的填空题由4道增加到5道,每题分值由4分变为5分,共25分,比原来的16分增加了9分;解答题仍为6道,总分75分,比原来增加了1分。
可以看出,2014年的数学高考试题,虽然试题总数减少了1个小题,但是加大了对于第Ⅱ卷主观题的考查,特别是填空题分值增加较多,而以往的填空题考生的得分率普遍不高。
建议广大考生,要在老师的引领下,重视对运算能力基本功的提高,规范解题步骤、加强对中低档题目的落实,这一点显得尤为重要,避免出现“会儿不对、对而不全”等眼高手低的现象;要研究考试的基本题型,把握考试的高频考点和低频考点,要关注“正态分布”、“线性回归”、“独立性检验”等考试中出现频率较低的考点;要“重视通法、淡化技巧”,从知识结构、解题方法、考试题型三个维度去立体式的复习,吃透考点,明确重点,突破难点,进行解题训练,要注重相似题目之间的联系,能够将解题方法从一个题目“迁移”到另一个题目,做到举一反三、触类旁通,提升实战能力;同时要了解6道不同内容的解答题的得分点,加强对应试技巧的训练。
考生在研读《说明》时,一定要关注“命题指导思想”,在选择备考材料时要注意是否具备山东卷的风格,复习中要注重基础、注重联系、不钻片怪、提高能力,把“基本题目做熟,典型题目做透”,不要做无用功,力争“会做的题不丢分”。
另外还要注意心理调整,相信采取了科学的备考策略,就一定能在高考中取得理想的成绩。