概率论2.3
概率论 第二章2
x kx2dx
0
x0 0 x2
0
0dx
2 kx2dx
x
kxdx
1
0
2
2 x3 3 x
x 0 x 2 x3
x
x
例3 设连续型随机变量X的概率密度为
f
(
x)
A 1 x2
,
0
,
x 1 x 1
求 (1)系数A (2)P{-1/2<X<1/2} (3)F(x)
§2.3 随机变量的分布函数
对于非离散型随机变量,由于它的可能取 值 不 能 一 个 一个地列举出来,因而就不能像离散型随 机变量那样用分布律来描述它 ; 另 外 ,非离散型随 机变量取指定实数值的概率通常等于零,因而我们 主 要 来研究随机变量所取的值落在一个区间内的 概率: P{x1<X x2}, 而
F(x)
当x<0时,F(x)=0;当x>1时,F(x)=1
1
1
当0≤x≤1时, F(x) P{0 X x} kx
x
特别,F(1)=P{0≤X≤1}=k=1
0
0, x 0 F (x)=P( X x)=x, 0 x 1
1, x 1
已知随机变量X的分布函数为
0
故对连续性随机变量,有
P{a<X<b}= P{a<X b}= P{a X<b}= P{a X b}
例1 已知连续型随机变量X的分布函数为
0,
x0
F ( x) sin x, 0 x 2
1,
x 2
试求 X 的概率密度 f(x) 及 P{/4 X 2}.
概率论与数理统计第6讲
d
d −c f ( x) d x = . b−a
2. 指数分布 定义: 定义:若随机变量 X 具有概率密度
λ e , x ≥ 0 , f ( x) = 0, x < 0.
− λx
(λ > 0)
的分布是参数为 的指数分布, 则称 X的分布是参数为λ的指数分布,记成 的分布是 X ~E(λ)。 。 指数分布常用于可靠性统计研究中, 指数分布常用于可靠性统计研究中,如 元件的寿命服从指数分布。 元件的寿命服从指数分布。
∫
于是
1= ∫
+∞
+∞
−∞
f ( x) d x = 1
2
故
−∞
f ( x) d x = c ∫
0
x x d x =c 3
2
3 2 0
8c = 3
3 c= . 8
(2) P ( −1 < X < 1) = ∫ f ( x) d x
−1
1
= ∫ 0 d x + ∫ cx 2 d x
−1dx= . 0 8 8
(2). 确定数据分组数 m (一般取为 ~15), 一般取为7~ ), 组距 d = (b − a) / m, , 子区间端点 ti = a + i d, i = 0, 1, · · · , m; ;
(3). 计算落入各子区间内观测值频数 ni =| { xj ∈ [ti−1, ti), j = 1, 2, · · · , n}|, , 频率 fi = ni / n, i = 1, 2, · · · , m; , ;
取值于(x 表示随机变量 X 取值于 , x +△ x]上的概率 上的概率 近似等于 f (x ) △x 。 f (x ) △x 在连续型随机变量中所起的作用与 pk=P{X=xk} 在离散型随机变量中所起的作用 类似。 类似。
2.3随机变量的独立性
问X和Y是否独立?
解:fX (x)
xe( x y)dy xe x ,
0
x>0
fY ( y)
xe( x y)dx e y ,
0
y >0
即:
xex , x 0
fX (x)
0,
其它
e y , y 0
fY
(
y)
0,
其它
若(X,Y)的概率密度为
2, 0 x y,0 y 1
f
f(x,y)= fX(x)fY(y)
特别,取 x=u1 , y=u2 代入上式有 f(u1,u2)= fX(u1)fY(u2)
即:
1
11
21 2 1 2
2 1 2 2
对比两边 ∴ =0
例3 设(X,Y)的概率密度为
xe( x y) , f (x, y)
0,
x其它0f,(对yx,一y故切)0Xx,,YfyX,独(均x立)有fY:( y)
如果两个随机变量不独立,讨论它们的 关系时,除了前面介绍的联合分布和边缘 分布外,有必要引入条件分布的概念,这 将在下一讲介绍.
45 x5
[
1
dy]dx
15 x5 1800
10
0 15 y 45
x
=1/6
60
xy
P(X<Y)
45 60
[
1
dy]dx
15 x 1800
40
=1/2
10
0 15 45
x
y
解二:P(| X-Y| 5)
60
1 dxdy
40
1
|xy|5 1800
[60 30 2(10 30 30 30 / 2)]
概率论 2.3(连续型随机变量)
x
a
[ x由概率密度求分布函数]
5.F ( x) f ( x)(x为f ( x)的连续点 ).[由分布函数求概率密度]
由性质5在f(x)的连续点x 处有
F ( x Δ x) F ( x) f ( x) lim Δ x 0 Δx P( x X x Δ x) lim . Δ x 0 Δx
2.3.2 常用连续分布
【补充例】 (等待时间)公共汽车每10分钟按时
通过一车站,一乘客随机到达车站.求他等车时
间不超过3分钟的概率. 解 设X表示他等车时间(以分计),则X是 一个随机变量,且 X ~ U (0,10). X的概率密度为
1 , 0 x 10, f ( x ) 10 其 它. 0,
这两条性质是判定一 个函数 f(x)是否为某 个随机变量 X的概率 牛顿-莱布 尼兹公式 密度函数的充要条件 .
[确定待定参数]
b
3.P{a X b} 1 f ( x)dx F (b) F (a); [求概率]
4.F ( x)
f ( x)
f (t )odt( x );
解: (1) 由
f ( x ) d x 1, 得
3 2 3 3 0
1
f ( x )dx C (9 x )dx 2C (9 x 2 )dx
x3 3 2C (9 x ) |0 36 C 3
2.3.1 连续型随机变量及其概率密度
即 有C 1
3 0
所求概率为 P{ X 3}
3 f ( x )dx , 10
2.3.2 常用连续分布
【例2.12】设随机变量 X在(2,5)上服从均匀分布,
概率论与数理统计2.3
m! m 0,1,2,3,...
1 2 e e 1! 2!
2
0 2 P X 0 e e 为一页上无印刷错误的概率. 0! 任取4页, 设 Ai 表示 “第 i 页上 无印刷错误”
8 P ( Ai ) e 2 P A1 A2 A3 A4 P( A1 ) P( A2 ) P( A3 ) P ( A4 ) e
贝努利试验: 只有两种对立结果的试 验. n 重贝努利试验: 一个贝努利试验独立重 复 n次 .
例 一批产品合格率是0.9,有放回的抽取三 件:每次一件,连续三次,求三次中取到的合 格品数X的概率分布
设在一次试验中事件A 发生的概率为p ( 0 p 1), 则在 n 重贝努利试验中事件 A恰好发生k 次的概率为 k k Cn p (1 p) n k
2
n 1
np
2
EX n(n 1) p np
例. 已知随机变量X~b(n,p),EX=6,DX=4.2, 计算 P{X. 解 EX=np=6, 解得 DX=npq=4.2 ,
q=0.7,p=0.3,n=20,
P{X P{X<5} = 1–P{X
例 一大楼有五个同类型供水设备。调查表明: 在任一时刻,每台设备被使用的概率为0,1. 求:在某时刻(1)恰有两台设备被使用的概率; (2)至少有三台设备被使用的概率; (3)最多有三台设备被使用的概率。
设有 X 台设备同时被使用
则 X ~ b(5 , 0.1)
例.设某车间有10台同型车床.如果每台车床的工作情况
例. 每个粮仓内老鼠数目服 从泊松分布, 若已知 一个粮仓内有一只老鼠 的概率是有两只老鼠 概率的两倍, 求粮仓内无鼠的概率 . 现有 10 个 这样的粮仓, 求有老鼠的粮仓不超过 两个的概率
高中数学 第二章 概率 2.3.1 条件概率学案 苏教版选修2-3-苏教版高二选修2-3数学学案
2.3.1 条件概率学习目标 1.理解条件概率的定义.2.掌握条件概率的计算方法.3.能利用条件概率公式解决一些简单的实际问题.知识点一条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},AB={产品的长度、质量都合格}.思考1 试求P(A)、P(B)、P(AB).思考2 任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.思考3 P(B)、P(AB)、P(A|B)间有怎样的关系.梳理(1)条件概率的概念一般地,对于两个事件A和B,在已知________发生的条件下________发生的概率,称为事件B发生的条件下事件A的条件概率,记为________.(2)条件概率的计算公式①一般地,若P(B)>0,则事件B发生的条件下A发生的条件概率是P(A|B)=________.②利用条件概率,有P(AB)=________________.知识点二条件概率的性质1.任何事件的条件概率都在______之间,即________________________________________________________________________.2.如果B 和C 是两个互斥的事件,则P (B ∪C |A )=____________________.类型一 求条件概率 命题角度1 利用定义求条件概率例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表,(1)求这个代表恰好在第一小组的概率;(2)求这个代表恰好是团员代表的概率;(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.反思与感悟 用定义法求条件概率P (B |A )的步骤(1)分析题意,弄清概率模型.(2)计算P (A ),P (AB ).(3)代入公式求P (B |A )=P (AB )P (A ). 跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=________. 命题角度2 缩小基本事件范围求条件概率引申探究1.在本例条件下,求乙抽到偶数的概率.2.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).例2 集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.反思与感悟 将原来的基本事件全体Ω缩小为已知的条件事件A ,原来的事件B 缩小为AB .而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P (B |A )=n (AB )n (A ),这里n (A )和n (AB )的计数是基于缩小的基本事件范围的.跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.类型二条件概率的综合应用例3 把外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的球是红球,则称试验成功,求试验成功的概率.反思与感悟当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P(B∪C|A)=P(B|A)+P(C|A)便可求得较复杂事件的概率.跟踪训练3 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则从2号箱中取出红球的概率是多少?1.已知P (AB )=310,P (A )=35,则P (B |A )=________. 2.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到的一个甲厂的合格灯泡的概率是________.3.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取两次,每次取1件,已知第二次取得一等品,则第一次取得的是二等品的概率为________.4.假定生男、生女是等可能的,一个家庭中有两个小孩,已知有一个是女孩,则另一个小孩是男孩的概率是________.5.抛掷红、蓝两颗骰子,记事件A 为“蓝色骰子的点数为4或6”,事件B 为“两颗骰子的点数之和大于8”,求:(1)事件A 发生的条件下事件B 发生的概率;(2)事件B 发生的条件下事件A 发生的概率.1.P(A|B)表示事件A在“事件B已发生”这个附加条件下的概率,与没有这个附加条件的概率是不同的.也就是说,条件概率是在原随机试验的条件上再加上一定的条件,求另一事件在此“新条件”下发生的概率.2.若事件A,C互斥,则P[A∪C|B]=P(A|B)+P(C|B).答案精析问题导学知识点一思考1 P (A )=93100,P (B )=90100, P (AB )=85100. 思考2 事件A |B 发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P (A |B )=8590. 思考3 P (A |B )=P (AB )P (B ). 梳理 (1)事件B 事件A P (A |B ) (2)①P (AB )P (B ) ②P (A |B )P (B ) 知识点二1.0和1 0≤P (B |A )≤12.P (B |A )+P (C |A )题型探究例1 解 设A ={在班内任选1名学生,该学生属于第一小组},B ={在班内任选1名学生,该学生是团员}.(1)P (A )=1040=14. (2)P (B )=1540=38. (3)P (AB )=440=110. (4)方法一 P (A |B )=P (AB )P (B )=11038=415. 方法二 P (A |B )=n (AB )n (B )=415.跟踪训练1 解析 P (A )=C 23+C 22C 25=25, P (AB )=C 22C 25=110, ∴P (B |A )=P (AB )P (A )=11025=14. 例2 解 将甲抽到数字a ,乙抽到数字b ,记作(a ,b ),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率P =915=35. 引申探究1.解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35. 2.解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.所以P (B |A )=212=16. 跟踪训练2 解 设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .根据分步计数原理得n (A )=A 14A 15=20,n (AB )=A 24=12. 所以P (B |A )=n (AB )n (A )=1220=35. 例3 解 设A ={从第一个盒子中取得标有字母A 的球},B ={从第一个盒子中取得标有字母B 的球},R ={第二次取出的球是红球},W ={第二次取出的球是白球},则容易求得P (A )=710,P (B )=310, P (R |A )=12,P (W |A )=12,P (R |B )=45,P (W |B )=15.事件“试验成功”表示为AR ∪BR ,又事件AR 与事件BR 互斥,故由概率的加法公式,得 P (AR ∪BR )=P (AR )+P (BR )=P (R |A )P (A )+P (R |B )P (B )=12×710+45×310=0.59. 跟踪训练3 解 记事件A =“最后从2号箱中取出的球是红球”, 事件B =“从1号箱中取出的球是红球”,则P (B )=42+4=23,P (B )=1-P (B )=13, P (A |B )=3+18+1=49,P (A |B )=38+1=13, 从而P (A )=P (AB )+P (A B )=P (A |B )P (B )+P (A |B )P (B )=49×23+13×13=1127. 当堂训练1.122.0.6653.254.235.解 抛掷红、蓝两颗骰子,事件总数为6×6=36,事件A 的基本事件数为6×2=12,所以P (A )=1236=13. 由于3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8, 所以事件B 的基本事件数为4+3+2+1=10,所以P (B )=1036=518. 事件AB 的基本事件数为6,故P (AB )=636=16. 由条件概率公式,得(1)P (B |A )=P (AB )P (A )=1613=12. (2)P (A |B )=P (AB )P (B )=16518=35.。
概率论习题2答案
习题22.1 (2)抛掷一颗匀称质骰子两次, 以X 表示前后两次出现点数之和,求X 的概率分布,并验证其满足(2.2.2)式。
2.1解:样本空间为{})6,6(),....,1,2(),16(),...,2,1(),1,1(=Ω,且每个样本点出现的概率均为361,X 的所有可能的取值为2,3,4,5,6,7,8,9,10,11,12,且有 {}{}{}363)2,2(),1,3(),3,1()4(,362)1,2(),2,1()3(,361)1,1()2(=========P X P P X P P X P类似地,365)6(,364)5(====X P X P ,365)8(,366)7(====X P X P ,363)10(,364)9(====X P X P ,361)12(,362)11(====X P X PX 的概率分布为36118112191365613659112118136112111098765432kp X 满足:1362/652636543212366)(122=⨯⨯+=+++++==∑=k k X P 2.2设离散随机变量X 的概率分布为 {}kP X k ae -==, k=1,2,…,试确定常数.a2.2解:由于11111)(1--∞=-∞=-====∑∑e e a aek X P k kk ,故1111-=-=--e ee a2.3 甲、乙两人投篮,命中率分别为0.7,和0.4,今甲、乙两人各投篮两次,求下列事件的概率:(1)两人投中的次数相同 ; (2)甲比乙投中的次数多。
2.3解:设Y X ,分别为甲、乙投中的次数,则有)4.0,2(~),7.0,2(~B Y B X ,因此有2,1,0,)6.0()4.0()(,)3.0()7.0()(2222=====--k C k Y P C k X P k k kk k k(1) 两人投中次数相同的概率为∑======23142.0)()()(k k Y P k X P Y X P(2) 甲比乙投中次数多的概率为5628.0)]1()0()[2()0()1()()()(2==+==+===<==>∑=Y P Y P X P Y P X P k Y P k X P Y X P k 2.4设离散随机变量X 的概率分布为 {}12kP X k ==, k=1,2,….求 (1){}2,4,6,...P X =; (2){}2.5P X ≥;2.4解:(1){}4.015615321)3()2()1(31==++==+=+==≤≤X P X P X P X P (2){}2.01531521)2()1(5.25.0==+==+==<<X P X P X P2.5设离散随机变量X 的概率分布为 {}15kk X P ==, k=1,2,3,4,5.求(1){}13P X ≤≤; (2){}0.5 2.5P X <<;2.5解:(1){}314/114/14121)2(,...6,4,21121=-======∑∑∑∞=∞=∞=k k k k k k X P X P (2)25.0412/118/121)()3(33==-====≥∑∑∞=∞=k kk k X P X P 2.6 设事件A 在每次试验中发生的概率为0.4,当A 发生3次或3次以上时,指示灯发出信号,求下列事件的概率.(1)进行4次独立试验,指示灯发出信号; (2)进行5次独立试验,指示灯发出信号;2.6解:设X 为4次独立试验时事件A 发生的次数,设Y 为5次独立试验时事件A 发生的次数,则有)4.0,5(~),4.0,4(~B Y B X (1)所求概率为:1792.04.06.04.04)4.01(4.0)4.01(4.0)4()3()3(434444434334=+⨯⨯=-+-==+==≥--C C X P X P X P(2)所求概率为:31744.04.06.04.056.04.010)4.01(4.0)4.01(4.0)4.01(4.0)5()4()3()3(5423555554544535335=+⨯⨯+⨯⨯=-+-+-==+=+==≥---C C C Y P Y P Y P Y P2.7 某城市在长度为t (单位:小时)的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊松分布,且与时间间隔的2无关,求下列事件的概率. (1)某天中午12点到下午15点末发生火灾;(2)某天中午12点到下午16点至小发生两次火灾。
概率论与数理统计 2.3连续型随机变量
称X服从参数为 ,的正态分布或 高斯分布,记为 X~N( , 2) f(x) 1 (1)关于直线x 对称; 1 2 ( 2)最大值为 ; 2 ( 3)在x 处有拐点. o x 可求得X的分布函数为: ( t )2 x 1 2 2 F ( x) dt e 2
1 2
x
u2 2
du (x源自) (4) a<b, X~N( , 2) ,有: b a P(a X b) ( ) ( )
例7 设X~N(3,4),试求:
(1) P(2<X≤5) (2) P(2<X<7)
(3)若P(X>c)=P(X≤c),求c的值
0
得 P(X=a)=0
故: (1) P(A)=0 A是不可能事件 (2) 连续型随机变量X落在区间的概率 与区间是否包含端点无关 即: P(a<X≤b)=P(a≤X<b) =P(a<X<b) =P(a≤X≤b)
例1 设连续型随机变量X的概率密度为 f(x)=Ae-|x| , <x<+ 试求: (1)常数A (2) P(0<X<1) (3) X的分布函数
24
p P( X 10) 1 P( X 10)
1
10 0
1 e dx 1 e 5
x 5
x 5 10 0
| e
2
由于顾客每次去银行都是独立的,Y~B(5,p)
因此Y的分布律为
P (Y k ) C p (1 p )
k 5 k 5 k 2 5 k 2k
解: =3, =2
( x 3 ) 又 F ( x ) ( ) 2
概率论习题讲解
x e
x!
(x =0,1,2, …,)
N→∞, H (n, M , N ) B(n, p). p M ,
N
n →∞, B(n, p) P() np
1
§2.5 随 机 变 量 旳 分 布 函 数
一.定义
F(x) P(X x)
二.分布函数 旳性质:
(1) 0 F ( x) 1, ( x )
若 不是整数,则当 m [ ]时,P( X m)最大。
13
9. 一本书中每页印刷错误旳个数X 服从泊松分布P0.2,
写出X 旳概率分布,并求一页上印刷错误不多于1个旳概率。
解 X旳概率分布为:PX k 0.2k e0.2
k!
查表求
PX 1 PX 0 PX 1 0.8187 0.1638 0.9825
6设随机变量X 服从二项分布 Bn, p 当x 为何值时,概率
PX x取得最大值。
解
PX
=
x
=
C
x n
pxqn-x
PX x PX x 1
1
n 1p
xq
x
当 x n 1p 时, PX x PX x 1;
当 x n 1p 时, PX x PX x 1;
当 x n 1p 时, PX x PX x 1;
FX
x
x dx f x, ydy
f x, ydy
FY y F , y
y dy f x, ydx
fY y
d dy
FY
y
f x, ydx
§2.11 随机变量旳独立性
一. 离散型随机变量旳独立性 p xi , y j pX xi pY y j
二. 连续随机变量旳独立性
概率论与数理统计公式
概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。
2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。
概率论与数理统计2_3连续型随机变量
《概率统计》
返回
下页
结束
若不计高阶无穷小,有
f ( x)
f (a)1ຫໍສະໝຸດ oP{ x X x x } f ( x )x
的概率近似等于
a
x
它表示随机变量 X 取值于 ( x, x x ]
x)) x x ff ((x
在连续型随机变量理论中所起的作用与
P X xk pk
x2 , f ( x) A, 0, 0 x 1 1 x 2 其它
求 (1)常数A; ( 2) P{0 X 3};
(3)分布函数F(x).
2
解: (1)由于f(x)是一个密度函数,
由
f ( x)dx 1, 得
2 2 1
x dx
0
1
Adx 1
《概率统计》
返回
下页
结束
例3.设随机变量X在[2,8]上服从均匀分布,求二次方程 y2+2Xy+9=0 有实根的概率.
解:由于X服从均匀分布,故X的概率密度为
1 , 2 x8 f ( x) 6 0, 其它
方程有实根等价于4X236≥0 , 即X≥3或X≤3. 从而, P{y2+2Xy+9=0 有实根}=P{X≥3}+P{X≤3}
1 f ( x) e 2
( x )2 2 2
f(x)
, x
其中μ,σ(σ>0)为常数,则称X服从参 数为μ,σ2的正态分布或高斯(Gauss) 分布,记作 X~ N(μ,σ2)
0
x
分布函数
F(x)
x 1 e 2 ( t )2 2 2
F ( x)
概率论中几种概率模型方法总结
概率论中几种概率模型方法总结绪论:概率论中几种常用的概率模型是古典概型、几何概型、贝努里概型.本文对概率论中几种概率模型方法进行了总结。
1 古典概型古典概型及其概率是概率论的基础知识,它既是进一步学习概率的基础,下面就一些典型事件的分析来说明古典概型的概率计算方法。
古典概型的概率计算可以分为三个步骤:确定所研究的对象为古典概型;计算样本点数;利用公式计算概率。
即如果随机试验只有有限个可能结果,而且每一个可能结果出现的可能性相同,那么这样的随机试验就是古典概型问题。
若设Ω是一个古典概型样本空间, 则对任意事件A 有: A m P ( A ) ==Q n中的样本点数中的样本点数。
在计算m 和n 时,经常使用排列与组合计算公式。
在确定一个试验的每个基本事件发生的可能性相同时,经常根据问题本身所具有的某种“对称性”,即利用人们长期积累的关于“对称性”的实际经验,认为某些基本事件发生的可能性没有理由偏大或偏小。
关于古典概型的数学模型如下:1.1 袋中取球问题1.1.1 随机地同时从袋中取若干球问题随机地同时从袋中取若干球问题是古典概型中的一类最基本问题,其特点是所考虑的事件中只涉及球的结构而不涉及取球的先后顺序,计算样本点数时只需考虑组合数即可。
概率中的很多问题常常可以归结为此类问题来解决。
事件1 一袋中有m + n 个球,其中m 个黑球, n 个白球,现随机地从袋中取出k 个球( k ≤m + n) ,求其中恰好有l 个白球( l ≤n)的概率。
分析:随机地从袋中取出k 个球有km+n C 种可能的结果,其中“恰好有l 个白球”这一事件包含了l k-l n mC C 种结果,因此所求概率为lk - ln m k m + n C C P =C 这个结论可以作为一个公式来应用。
用它可以解决一些类似的问题。
1.1.2 随机地从袋中不放回地取球若干次随机地从袋中不放回地取球若干次就是指随机地从袋中每次只取一个球,取后不再放回袋中,连续进行若干次。
《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节
第二章 随机变量 2.12.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--= 2.6解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=X 2 3 4 5 6 7 8 9 10 11 12P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.7 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.8解:设应配备m 名设备维修人员。
2.3 概率论——二维连续型随机变量及其分布
并求 P{(X ,Y ) D1} (D1 D)
y
解 由性质(2)
f
(
x,
y)dxdy
D1 D
f ( x, y)dxdy
D
0
x
dxdy SD 1
D
1
SD
(SD 为区域D的面积)
P{(x, y) D1} f ( x, y)dxdy D1
1 SD
dxdy
D1
S D1 SD
密度函数,或( X ,Y )的密度函数,简记为( X ,Y ) ~ f ( x, y)。
密度函数的性质: (1) f ( x, y) 0, ( x, y) R2
(2)
f
(
x,
y)dxdy
1
若( X ,Y )为连续型,则X ,Y均为连续型随机变量。
可以证明,对任意平面区域D,
P{( X ,Y ) D} f ( x, y)dxdy
(
x,
y)
Axe2
y
0
0 x 1, y 0 其它
求:(1)A;(2)P{ X Y 1};(3)( X ,Y )的联合分布函数。
y解(1)来自f( x,y)dxdy
f
( x,
y)dxdy
D
Axe2 ydxdy 0 dy01 Axe2 ydx
D
0
A 2
e2 ydy
A 4
1
D x y1 D1
(
x,
y)
x2 y2 1
1
0 其它
0 D 1x 1
例2 设随机向量( X ,Y ) ~ f ( x, y)
f (x,
y)
Axy 2
0 x 1,0 y 1
浙教版数学九年级上册《2.3 用频率估计概率》教案1
浙教版数学九年级上册《2.3 用频率估计概率》教案1一. 教材分析浙教版数学九年级上册《2.3 用频率估计概率》是对概率论的一个初步介绍。
本节内容通过实例让学生理解频率与概率的关系,学会如何利用频率来估计概率,并能够运用这一方法解决一些实际问题。
教材通过具体的实验和数据分析,引导学生感受概率论的基本思想,为后续学习更深入的概率知识打下基础。
二. 学情分析九年级的学生已经具备了一定的数据分析能力,对随机事件有一定的认识。
但用频率估计概率这一概念对学生来说较为抽象,需要通过具体的实例和操作来深入理解。
在教学过程中,教师应关注学生的认知水平,尽可能地让学生通过自主探究、合作交流来掌握这一概念。
三. 教学目标1.让学生了解频率与概率的关系,理解用频率估计概率的方法。
2.培养学生通过实验和数据分析来探究问题、解决问题的能力。
3.提高学生的数学思维能力和实际应用能力。
四. 教学重难点1.重点:频率与概率的关系,用频率估计概率的方法。
2.难点:如何引导学生通过实验和数据分析来理解用频率估计概率的方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题来学习用频率估计概率的方法。
2.运用实验教学法,让学生亲自动手进行实验,观察频率与概率的关系。
3.采用合作交流的学习方式,让学生在讨论中深入理解用频率估计概率的方法。
六. 教学准备1.准备相关实验材料,如骰子、卡片等。
2.设计好实验方案,确保实验结果具有可重复性。
3.准备相关练习题,以便在巩固环节进行练习。
七. 教学过程导入(5分钟)教师通过一个简单的实验引入课题,例如抛硬币实验,让学生观察正面朝上的频率。
提问:这个频率与概率有什么关系?如何用频率来估计概率?呈现(10分钟)教师呈现实验结果,引导学生思考频率与概率的关系。
通过多次实验,让学生观察频率的波动情况,探讨如何用频率来估计概率。
操练(10分钟)学生分组进行实验,每组选择一个随机事件,如掷骰子、抽卡片等,记录实验结果,计算频率。
概率论与统计第二章第三节连续型随机变量
x
于是当△x( > 0)充分小时, P{x<X≤x+ △x}≈f(x)△ x。这表明f(x)
本身并非概率,但它的大小却决定了X 落入区间[x ,x+△x]内的概
率的大小.即f(x) 反映了点x 附近所分布的概率的“疏密”程度 ――
连续型随机变量的一个重要特征是:连续型随机变量取任意
一个指定值的概率均为零,即P{X =x0}=0.
例7 若X ~N(0,1) ,当α = 0.10、α = 0.05、α = 0.01 时,分别确定u0,使得P{|X|>u0} = α.
解 P{|X|>u0} = P{X<-u0}+ P{X>u0} = φ(-u0)+1-P{X≤-u0} =1-φ(u0) +1- φ(u0) = 2-2 φ(u0) .
均匀分布的密度函数与分布函数的图形如图.
均匀分布是常见的连续分布之一.例如数值计算中的舍入 误差、在每隔一定时间有一辆班车到来的汽车站上乘客的候车 时间等常被假设服从均匀分布.此外,均匀分布在随机模拟中 亦有广泛应用.
例3 某市每天有两班开往某旅游景点的列车, 发车时间分
别为早上7点30分和8点.设一游客在7 点至8点间任何时刻到达
P{|X|<2}=2Φ(2) -1=2×0.9772-1 = 0.9544
P{|X|<3}=2Φ(3) -1 = 2×0.9987-1 = 0.9974
对于X ~ N (, 2 )
P{| X | 1} P{ X }
=Φ(1)-Φ(-1) = 0.6826
P{| X | 2} P{ 2 X 2 }
(2)
F(x)
x
f (t)dt
当x<0 ,
F
(
x)
x
应坚刚概率论第二版答案
应坚刚概率论第二版答案坚强概率论第二版答案第一部分:基本概念1.1. 事件和概率在概率论中,我们用“事件”来表示某种结果。
例如,抛硬币时,正面朝上是一个事件,反面朝上是另一个事件。
概率是指某个事件发生的可能性大小。
在概率论中,我们通常用[0,1]这个区间来表示概率,其中0表示事件不可能发生,1表示事件一定会发生。
1.2. 随机变量与概率分布随机变量是指取值不确定,但在某种概率分布下可被描述的一种变量。
例如,扔骰子的点数就是一个随机变量。
概率分布是指随机变量取某个值的概率大小。
我们通常用概率密度函数或概率分布函数来描述概率分布。
例如,正态分布的概率密度函数为:其中μ和σ为均值和标准差。
1.3. 期望与方差期望是指随机变量取值的平均值。
例如,扔骰子,出现1、2、3、4、5、6的概率分别为1/6,在多次扔骰子的结果中,1、2、3、4、5、6分别出现的次数平均来说就是(1+1+1+1+1+1)/6=1。
方差是指随机变量的取值偏离期望的程度。
偏离的程度越大,方差就越大。
它的公式为E[(X-μ)²],其中X为随机变量,μ为期望值。
第二部分:概率论的应用2.1. 中心极限定理中心极限定理是概率论中的一个重要定理,它表明当独立的随机变量的数量增加时,它们的和趋近于正态分布,不论这些随机变量的分布如何。
这个定理在统计学中有广泛的应用。
例如,当我们在一个大样本(n>30)中取出一组样本,它们的平均值的分布会接近于正态分布,从而我们可以对总体的均值作出估计。
2.2. 假设检验假设检验是指基于样本数据对总体参数进行推断的一种统计方法。
它的核心思想是将总体的参数假设为某个值,然后根据样本数据和一些统计量来判断这个假设是否成立。
例如,我们想知道一个硬币是不是公正的。
我们可以将这个问题转化为一个假设检验问题,即假设硬币正面朝上的概率为0.5,然后根据抛硬币的结果来判断这个假设是否成立。
2.3. 贝叶斯统计贝叶斯统计是一种基于贝叶斯定理的统计方法。
概率论常见公式应用解析
概率论常见公式应用解析概率论是数学中的一个分支,主要研究随机事件的发生概率及其规律。
在概率论的学习中,常见公式的应用十分重要。
本文将通过解析常见的概率论公式,探讨它们在实际问题中的应用。
一、排列组合公式排列组合公式是概率论中最基础的公式之一,用于解决对象的排列组合问题。
在排列组合问题中,需要考虑对象的顺序、个数和选择情况。
下面我们来讨论常见排列组合公式的应用。
1.1. 阶乘公式阶乘公式(n!)在排列组合问题中经常使用,表示连乘从1到n的所有正整数。
例如,4! = 4 × 3 × 2 × 1 = 24。
阶乘公式可以简化排列组合问题的计算过程。
1.2. 排列公式排列公式(A(n, m))应用于计算从n个对象中选取m个对象,并考虑对象的顺序。
例如,从5个不同的书中选取3本,可以使用排列公式A(5, 3) = 5! / (5-3)! = 60种不同的排列方式。
1.3. 组合公式组合公式(C(n, m))用于计算从n个对象中选择m个对象,不考虑对象的顺序。
例如,从10个人中选取3个人组队,可以使用组合公式C(10, 3) = 10! / (3! × (10-3)!) = 120种不同的组合方式。
二、事件概率公式事件概率公式是概率论中的核心公式之一,用于计算随机事件的概率。
概率表示事件发生的可能性大小,是一个介于0和1之间的实数。
下面我们来讨论常见的事件概率公式及其应用。
2.1. 总则公式总则公式(P(A∪B))用于计算两个事件A和B至少发生一个的概率。
根据总则公式,P(A∪B) = P(A) + P(B) - P(A∩B)。
其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
2.2. 条件概率公式条件概率公式(P(A|B))用于计算事件A在事件B发生的条件下发生的概率。
根据条件概率公式,P(A|B) = P(A∩B) / P(B)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x=0 处
( x)
31 May 2013
1 2
e
x
t2 2
dt , x
第二章 随机变量和概率分布
第28页
(x) 的计算
(1) x 0 时, 查标准正态分布分布函数表. (2) x < 0时, 用 (x ) 1 ( x ).
若 X ~ N(0, 1), 则 (1) P(X a) = (a); (2) P(X>a) =1(a); (3) P(a<X<b) = (b)(a); (4) 若a 0, 则 P(|X|<a) = P(a<X<a) = (a)(a) = (a) [1 (a)] = 2(a)1
设X 是随机变量,
若存在非负可积函数f (x) ,满足:
P(a X b) f ( x)dx,
b a
则称 X 为连续型随机变量,
称 f(x)为X的概率密度函数,简称密度函数.
31 May 2013
第二章 随机变量和概率分布
第4页
几何意义
对连续型随机变量而言,概率的几何意义是分布 密度函数曲线下方的面积 。
第二章 随机变量和概率分布
第1页
§2.3 连续型随机变量
连续随机变量X的可能取值充满某个区间 (a, b). 因为对连续随机变量X,有P(X=x)=0, 所以无法仿离散随机变量用 P(X=x) 来描述连续 随机变量X的分布. 注意离散随机变量与连续随机变量的差别.
31 May 2013
第二章 随机变量和概率分布
a x b ( a b) 其它 0
f ( x )dx
0dx dx 0dx (b a ) 1
a b
1 b a 1 则 ,因此f ( x ) ba 0 P{c X d }
31 May 2013
31 May 2013
1.5
3e 3 x dx
第二章 随机变量和概率分布
第20页
例
某公路桥每天第一辆汽车过桥时刻为T,设[0, t] 时段内过桥的汽车数X t 服从参数为t 的泊松分 布,求T的概率密度。
P(T t ) P( X t 0) e
31 May 2013
t
第二章 随机变量和概率分布
于是 P(Y≥1)=1-P(Y=0)=1-(1-e -2)5≈0.5167.
31 May 2013
第二章 随机变量和概率分布 y
第23页
N(μ1,σ12)
N(μ1,σ22)
O
μ
x
31 May 2013
第二章 随机变量和概率分布
第24页
正态分布的性质
p(x)
(1) p(x)是关于 是对称的.
σ
在 点 p(x) 取得最大值. (2) 若 固定, 改变, p(x)左右移动, 形状保持不变. (3) 若 固定, 改变, 越大曲线越平坦;
解:由题意可知, X ~
3e 3 x f ( x) 0
x0 x 0,
(1) p{ X 2} 3e 3 x dx e 6
2
p{ X 3.5, X 1.5} 3.5 (2) p{ X 3.5 | X 1.5} e 6 { X 1.5} 3e 3 x dx
e , f ( x) 5 0,
x 0;
x 0.
因此,
1 t 5 t 5 2 p P( X 10) e dt e |10 e . 10 5 Y的分布律为 P(Y k ) C k (e 2 ) k (1 e 2 )5k , k 0,1,,5. 5
31 May 2013
小 0 μ x
σ大
越小曲线越陡峭.
第二章 随机变量和概率分布
第25页
标准正态分布N(0, 1)
密度函数记为 (x),
( x )
p(x)
1 ( x )
x 0 x x
分布函数记为 (x)=P(X ≤ x).
1 (1) (0) , 2 (2) ( x) (x) 1, ( x ) 1 (x )
31 May 2013
第二章 随机变量和概率分布
第13页
f(x)
1 ba
0
a
b
x
均匀分布随机变量的概率意义是,它在 取值区间[a,b]上任何一个子区间取值的概率, 与该子区间长度成正比,与子区间在[a,b]中 位置无关,比例系数恰好是[a,b]上的概率密 度值。
31 May 2013
第二章 随机变量和概率分布
31 May 2013
第二章 随机变量和概率分布
第16页
指数分布
如果随机变量X的密度函数是
e x , f ( x) 0,
其中 >0.
31 May 2013
x 0 x0
就称X服从参数的指数分布,为记为 X ~ Exp(),
第二章 随机变量和概率分布
第17页
31 May 2013
第二章 随机变量和概率分布
第10页
常用连续分布
均匀分布
指数分布
正态分布
伽玛分布
贝塔分布
31 May 2013
第二章 随机变量和概率分布
第11页
若随机变量X的密度函数 f ( x )
试求f(x)和P{cX d},其中[c,d][a,b]。 a b 解
31 May 2013
第二章 随机变量和概率分布
第15页
例
X ~ U(2, 5). 现在对 X 进行三次独立 观测,试求至少有两次观测值大于 3 的概率.
解: 记 A = { X > 3 }, 则 P(A) = P( X> 3) = 2/3 设 Y 表示三次独立观测中 A 出现的次数,
则 Y~ b(3, 2/3),所求概率为 P(Y≥2) = P(Y=2)+P(Y=3) 2 3 0 2 2 1 3 2 1 C3 C3 =20/27 3 3 3 3
31 May 2013
第二章 随机变量和概率分布
第5页
密度函数的基本性质
(1) f ( x) 0;
(非负性)
(2) f ( x)dx 1. (正则性)
满足(1) (2)的函数都可以看成某个 连续随机变量的概率密度函数.
31 May 2013
第二章 随机变量和概率分布
第6页
密度函数的基本性质
概率为零的事件不一定是“不可能事件”。
31 May 2013
第二章 随机变量和概率分布
第9页
例
求 (1) 常数 k.
ke3 x , 设 X ~ p( x ) 0,
(2) 求P(X>1) (3)求概率P(1<X2)
x 0, x 0.
解:
(1) k =3. (2)e-3 (3)e-6
31 May 2013
第二章 随机变量和概率分布
第22页
.顾客在某银行窗口等待服务的时间X服从参数为1/5的指数分 布,X的计时单位为分钟.若等待时间超过10分钟,则他就离开. 设他一个月内要来银行5次,以Y表示一个月内他没有等到服务 而离开窗口的次数,求Y分布律及至少有一次没有等到服务的 概率P(Y≥1). 解:由题意不难看出Y~B(5,p) 而其中的概率p=P(X>10),现X的概 率密度函数为 1 x 5
P( X > s+t | X > s )=P( X > t ) 无后效性是指数分布的特征.
31 May 2013
第二章 随机变量和概率分布
第19页
例 某电子元件的寿命X(年)服从参数为3的指数分布.(1)
求该电子元件寿命超过2年的概率。(2)已知该电子元 件已使用了1.5年,求它还能使用两年的概率为多少?
a x b ( a b) 其它 1 d c dx ba ba
d
c
f ( x )dx
d
c
第二章 随机变量和概率分布
第12页
均匀分布
对a<b,如果X的密度是
1 , f ( x) b a 0,
a x b 其 它
就称X服从区间(a,b)上的均匀分布,记为X ~ U(a, b)
指数分布应用背景
指数分布经常用来作各种“寿命”分布的近 似。如随机服务系统中的服务时间, 某些消 耗性产品(电子元件等)的寿命,动物的寿命, 电话问题中的通话时间等, 都常被假定服从 指数分布。
31 May 2013
第二章 随机变量和概率分布
第18页
指数分布的无后效性
定理:设X是连续型非负随机变量,则X服从指数分布 的充分必要条件是对任何的S,t≥0,有
第21页
正态分布
如果随机变量X 的密度函数是
( x )2 p( x) 1 exp , 2 2 2
x
则称X服从参数(, 2)的正态分布,记为X ~ N(, 2),
其中 >0, 是任意实数. 是位置参数.
是尺度参数.
(3) P( X a) 0;
这是因为 P( X a) P( X (a , a])
a a
f ( x)dx 0, 0.
31 May 2013
第二章 随机变量和概率分布
第7页
密度函数的基本性质
(4) 对任何的Borel集A, P( X A) A f ( x)dx.
31 May 2013
第二章 随机变量和概率分布