宁夏银川一中2015届高三上学期第四次月考数学(文科)试卷

合集下载

宁夏银川一中2015届高三第四次月考数学(文)试卷

宁夏银川一中2015届高三第四次月考数学(文)试卷

宁夏银川一中2015届高三第四次月考数学(文)试卷第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{x N x U *∈=<}6,集合{}{}5,3,3,1==B A ,则()B A C U ⋃等于A.{}4,1B.{}5,1 C.{}02,4,D.{}4,22.已知i 是虚数单位,且复数2121,21,3z z i z bi z 若-=-=是实数,则实数b 的值为 A .6B .6-C .0D .613.下列各式正确的是 A .a b =a b ⋅B .()222a b=a b ⋅⋅C .若()a b-c ,⊥则a b=a c ⋅⋅ D . 若a b=a c ⋅⋅则b=c4.已知3sin cos ,cos sin 842ππααααα=<<-且,则的值是 A .12B .12-C .14-D .12±5.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于 A .-10 B .-8 C .-6 D .-4 6.下列命题错误的是A .命题“21,11x x <<<若则-”的逆否命题是若1x ≥或1x ≤-,则12≥x B .“22am bm <”是”a b <”的充分不必要条件C.命题:存在,使得,则: 任意,都有D.命题“或”为真命题,则命题“”和命题“”均为真命题 7.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图 如图所示,则其侧视图的面积为 A.B C .2D 8.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩(如图),要测算两点的距离,测量人员p R x ∈001020<++x x p ⌝R x ∈012≥++x x p q p q ,A B ,A BA .B .C .9.已知函数()y xf x '=-的图象如图(其中()f x '是函数()f x 的导函数),下面四个图象中,()y f x =的图象可能是10.已知直线,l m ,平面,αβ,且,l m αβ⊥⊂,给出四个命题:①若α∥β,则l m ⊥; ②若l m ⊥,则α∥β; ③若αβ⊥,则l ∥m ; ④若l ∥m ,则αβ⊥. 其中真命题的个数是A .4B .3C .2D .111.已知函数⎪⎩⎪⎨⎧<-≥-=2,1)21(2,)2()(x x x a x f x 满足对任意的实数21x x ≠都有0)()(2121<--x x x f x f 成立,则实数a 的取值范围为 A .)2,(-∞B .]813,(-∞ C .]2,(-∞ D .)2,813[12.已知[1,1]x ∈-,则方程2cos 2πxx -=所有实数根的个数为A .2B .3C .4D .5第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.13.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1y z x +=的最小值为 .14. 已知,若2282y x m m x y+>+恒成立,则实数的取值范围是 . 15.已知三棱柱111ABC A B C -的侧棱垂直底面,所有顶点都在球面上,21==AA AB AC=1,oBAC 60=∠,则球的表面积为_________.m m m 0,0x y >>m16.下面四个命题:①已知函数(),0,,0,x f x x =<≥ 且()()44f a f +=,那么4a =-;②要得到函数sin 23y x π⎛⎫=+⎪⎝⎭的图象,只要将sin 2y x =的图象向左平移3π单位; ③若定义在()∞+∞,- 上的函数)(-1()(x f x f x f =+)满足,则)(x f 是周期函数;④已知奇函数()f x 在(0,)+∞为增函数,且(1)0f -=,则不等式()0f x <的解集{}1x x <-. 其中正确的是__________________.三、解答题:本大题共5小题,共计70分。

宁夏银川一中2015届高三上学期第四次月考语文试题

宁夏银川一中2015届高三上学期第四次月考语文试题

宁夏银川一中2015届高三上学期第四次月考语文试题高三2010-12-27 10:54银川一中2015届高三年级第四次月考语文试卷2010.11注意事项:本试卷分第I卷(阅读题)和第Ⅱ卷(表达题)两部分,其中第Ⅱ卷第三、四题为选考题,其它题为必考题。

第Ⅰ卷阅读题(共70分)甲必考题(45分)一、现代文阅读(9分,每小题3分)汉字的魅力优于拼音文字说到汉字,不能不提及世界文明史。

世界的古代文明,可以说就是尼罗河流域的埃及圈,幼发拉底河、底格里斯河流域的美索不达米亚圈,印度河、恒河流域的印度圈,黄河、长江流域的中国圈等四大文明。

这四大文明之中,前三者互相交往而发展,成为近代文明的源流,只有中国几乎未与其它文化产生关联而独自发展出汉字文化圈。

国人对此是充满自豪感的,无论是对汉字的发展历史,还是对汉字所承载的中国独具的文字文明和文化底蕴。

但是,由于汉字自身的特点所带来的缺陷,如撰文用字多、字型复杂、难记、难读,在过去几十年中,汉字的未来与发展前景便广受汉字文化圈中一些国家的关注和议论。

但肯定的一点是,要想准确把握汉字的功过是非,必须仔细回顾和耐心审视汉字所走过的历程。

写于1988年的《图说汉字的历史》引进出版,该书作者阿辻哲次以“事典”的形式,图文并茂地对汉字发展史上的基本事项进行了简洁却明晰的梳理和叙述,从新石器时代开始到现代的汉字发展史,从前印刷时代的汉字书写工具材料史到汉字印刷的发展史……意在为学习汉字、使用汉字的人提供更多的相关知识,让那些对汉字有成见的人明白:现在就想把拥有四千余年悠久历史、担负着人类文明发展一翼的汉字塞进博物馆里,还为时尚早。

汉字的表记法从古代到现代是连续发展的,从甲骨文、青铜器文字、篆体字,到隶、行、楷,没有文化断层。

汉字不是拼音文字,而是图形文字,以物的图形为基础而形成文字,例如“山”、“川”、“日”、“月”等。

而与汉字、汉学有关的律令制度,如国家概念、产业、生活、文化等,也都跨越广阔的版图,从中国中原,传播到东方的朝鲜、日本,南方的越南,用文字连结了中国与周边世界的文化。

2015届宁夏银川一中高三上学期第四次月考理科数学试题及答案

2015届宁夏银川一中高三上学期第四次月考理科数学试题及答案

银川一中2015届高三年级第四次月考数 学 试 卷(理)命题人:蔡伟第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数iiz +=1(其中i 为虚数单位)的虚部是A .21- B .i 21 C .21 D .i 21- 2. 已知:1: 1.:||12p q x a x ≥-<-若p 是q 的充分不必要条件,则实数a 的取值范围是A .(2,3]B .[2,3]C .(2,3)D .(,3]-∞3.设n S 为等比数列}{n a 的前n 项和,已知342332,32S a S a =-=-,则公比q = A .3 B .4 C .5 D .6 4. 某四棱锥的底面为正方形,其三视图如图所示, 则该四棱锥的体积等于 A .1 B .2 C .3D .45.在ABC ∆中,,,A B C 的对边分别是,,a b c ,其中25,3,sin a b B ===,则角A 的取值一定属于范围A .)2,4(ππB .)43,2(ππ C .),43()4,0(πππ⋃ D .)43,2()2,4(ππππ⋃ 6.为得到函数)32sin(π+=x y 的导函数...图象,只需把函数sin 2y x =的图象上所有点的A .纵坐标伸长到原来的2倍,横坐标向左平移6πB .纵坐标缩短到原来的12倍,横坐标向左平移3πC .纵坐标伸长到原来的2倍,横坐标向左平移125πD .纵坐标缩短到原来的12倍,横坐标向左平移65π7.在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是 A .BC ∥平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PAE ⊥平面 ABC8.已知函数2()2f x x x =-,()()20g x ax a =+>,若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得()()21x g x f =,则实数a 的取值范围是A .1(0,]2B .1[,3]2C .(0,3]D .[3,)+∞9.在ABC ∆中,若6·-=AC AB ,则ABC ∆面积的最大值为A .24B .16C .12 D.10.正四面体ABCD 的棱长为1,G 是△ABC 的中心,M 在线段DG 上,且∠AMB =90°,则GM 的长为A .12B .22C .33D .6611.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数()0,0>>+=b a by ax z 的值是最大值为12,则23ab+的最小值为A .625 B .38 C . 311 D . 412.已知函数()x f x e ax b =--,若()0f x ≥恒成立,则ab 的最大值为A eB .2eC .eD .2e 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.13.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是___________. 14.已知10(2)x a e x dx =+⎰(e 为自然对数的底数),函数ln ,0()2,0x x x f x x ->⎧=⎨≤⎩,则21()(log )6f a f +=__________. 15.如图,在空间直角坐标系中有棱长为a 的正方体 ABCD -A 1B 1C 1D 1,点M 是线段DC 1上的动点, 则点M 到直线AD 1距离的最小值是________. 16.定义方程()()f x f x '=的实数根o x 叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos x xϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是 .三、解答题:本大题共5小题,共计70分。

高三数学月考试题及答案-宁夏银川市普通高中2015届高三四月教学质量检测(理)

高三数学月考试题及答案-宁夏银川市普通高中2015届高三四月教学质量检测(理)

2015年宁夏银川市高考模拟(理科)(4月份)一、选择题:本大题共11小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合{5,6}等于()A.M∪N B.M∩N C.(∁U M)∪(∁U N)D.(∁U M)∩(∁U N)【考点】交、并、补集的混合运算.【专题】集合.【分析】由题意可得5∈∁U M,且5∈∁U N;6∈∁U M,且6∈∁U N,从而得出结论.【解析】解:∵5∉M,5∉N,故5∈∁U M,且5∈∁U N.同理可得,6∈∁U M,且6∈∁U N,∴{5,6}=(∁U M)∩(∁U N),故选:D.【点评】本题主要考查元素与集合的关系,求集合的补集,两个集合的交集的定义,属于基础题.2.(5分)已知i是虚数单位,复数z满足=i,则z的模是()A.1 B.C.D.【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把已知的等式变形,然后利用复数代数形式的乘除运算化简,再代入模的公式得答案.【解析】解:由=i,得(1+i)z=i,∴,∴.故选:C.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.(5分)在△ABC中,已知∠ACB=90°,CA=3,CB=4,点E是边AB的中点,则•=()A.2 B.C.D.﹣【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据已知条件便可得到,,,带入进行数量积的运算即可得到答案.【解析】解:如图,E是AB中点;∴,;∴=.故选:B.【点评】考查向量加法的平行四边形法则,向量减法的几何意义,以及数量积的运算.4.(5分)阅读如图所示的程序框图,输出A的值为()A.B.C.D.【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的A,i的值,当i=11时,不满足条件i≤10,退出循环,输出A的值为.【解析】解:模拟执行程序框图,可得A=1,i=1A=,i=2满足条件i≤10,A=,i=3满足条件i≤10,A=,i=4满足条件i≤10,A=,i=5满足条件i≤10,A=,i=6满足条件i≤10,A=,i=7满足条件i≤10,A=,i=8满足条件i≤10,A=,i=9满足条件i≤10,A=,i=10满足条件i≤10,A=,i=11不满足条件i≤10,退出循环,输出A的值为,故选:C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5.(5分)(2009•山东)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件;空间中直线与平面之间的位置关系.【专题】空间位置关系与距离;简易逻辑.【分析】判充要条件就是看谁能推出谁.由m⊥β,m为平面α内的一条直线,可得α⊥β;反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β.【解析】解:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,且m⊥β,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β,所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.【点评】本题考查线面垂直、面面垂直问题以及充要条件问题,属基本题.6.(5分)有六人排成一排,其中甲只能在排头或排尾,乙丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种【考点】计数原理的应用.【专题】排列组合.【分析】先排甲有两种方法,再把乙丙两人捆绑在一起,看做一个复合元素,和剩下的3人全排即可.【解析】解:先排甲有两种方法,再把乙丙两人捆绑在一起,看做一个复合元素,和剩下的3人全排,故有=96种,故选:C.【点评】本题考查了分步计数原理,相邻问题用捆绑,属于基础题.7.(5分)一个四棱锥的三视图如图所示,那么这个四棱锥的表面积是()A.B.C.D.【考点】由三视图求面积、体积.【专题】计算题;作图题;空间位置关系与距离.【分析】由三视图作直观图,从而结合三视图中的数据求各面的面积即可.【解析】解:由三视图可知,其直观图如右图,S△ABC==1,S△ABE=×2×2=2,S△ACD=×1×=,可知AD⊥DE,AD==,DE=,S△ADE=××=,S梯形BCDE=×(1+2)×1=;故其表面积为S=1+2+++=;故选A.【点评】本题考查了三视图的识图与计算,属于基础题.8.(5分)在平面直角坐标系中,不等式组所表示的平面区域是α,不等式组所表示的平面区域为α,在区域α内随机取一点P,则点P落在区域β内的概率是()A.B.C.D.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,求出相应的面积,利用几何概型的概率公式即可得到结论.【解析】解:由题意画出图形如图,则平面区域是α是边长为8的三角形ODE,面积为×8×8=32,从区域α中随机取一点P(x,y),P为区域β内的点的面积为═24,∴由几何概型的概率公式可得从区域α中随机取一点P(x,y),则P为区域β内的点的概率是.故选:D.【点评】本题主要考查几何概型的概率计算,根据二元一次不等式组作出对应的平面区域是解决本题的关键,是中档题.9.(5分)点M(1,1)到抛物线y=ax2的准线的距离为2,则a=()A.或B.C.D.4或﹣12【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】求出抛物线的准线方程,利用点到直线的距离公式求解即可.【解析】解:抛物线y=ax2化为:x2=y,它的准线方程为:y=﹣,点M(1,1)到抛物线y=ax2准线的距离为2,可得|1+|=2,解得a=或﹣.故选:A.【点评】本题考查抛物线的简单性质的应用,基本知识的考查.10.(5分)已知函数f(x)=sin(ωx+ϕ)的部分图象如右图所示,则y=f(x)的图象可由y=sin2x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】利用图象的最低点确定A的值,利用周期确定ω,再根据图象过点(,0),确定φ的值,即可求函数f(x)的解析式,f(x)=sin(2x+)=sin[2(x+)],由此可得结论.【解析】解:由函数图象可得:T=4()=π,故=2,又(,0)在函数图象上,既有:0=sin(2×+ϕ),可解得:ϕ=k,k∈Z,因为,|ϕ|<,所以可得:ϕ=.故:f(x)=sin(2x+)=sin[2(x+)].则y=f(x)的图象可由y=sin2x的图象向左平移个单位得到.故选:D.【点评】本题考查三角函数解析式的确定,考查图象的变换,考查学生分析解决问题的能力,属于中档题.11.(5分)对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】首先由题意求出f(x),然后令g(x)=mx,转化为图象交点的问题解决.【解析】解:由题意得,又因为f(x)是偶函数且周期是4,可得整个函数的图象,令g(x)=mx,本题转化为两个交点的问题,由图象可知有三部分组成,排除B,D易得当过(3,1),(﹣3,1)点时恰有三个交点,此时m=±,故选A.【点评】本题考查的是函数的性质的综合应用,利用数形结合快速得解.二、填空题:本大题共4小题,每小题5分12.(5分)已知双曲线=1(a,b>0)的一条渐近线方程为2x+3y=0,则双曲线的离心率是.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由双曲线=1(a,b>0)的一条渐近线方程为2x+3y=0,知a=3k,b=2k,c=k,由此能求出双曲线的离心率.【解析】解:因为双曲线=1(a,b>0)的一条渐近线方程为2x+3y=0,∴a=3k,b=2k,∴c=k,∴此双曲线的离心率e==.故答案为:.【点评】本题考查双曲线的离心率的求法,解题时要认真审题,注意等价转化思想的合理运用.13.(5分)由函数y=x2的图象与直线y=2x围成的图形的面积是.【考点】定积分在求面积中的应用.【专题】计算题;导数的综合应用.【分析】联立解曲线y=x2及直线y=2x,得它们的交点是O(0,0)和A(2,2),由此可得两个图象围成的面积等于函数y=2x﹣x2在[0,2]上的积分值,根据定积分计算公式加以计算,即可得到所求面积.【解析】解:由曲线y=x2与直线y=2x,解得交点为O(0,0)和A(2,2)因此,曲线y=x2及直线y=2x所围成的封闭图形的面积是S=(2x﹣x2)dx=(x2﹣x3)=.故答案为:.【点评】本题给出曲线y=x2及直线y=2x,求它们围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题.14.(5分)在数列{a n}中,a1=1,a2=2,且a n+2﹣a n=1+(﹣1)n(n∈N*),则a1+a2+a3+…+a51= 676.【考点】数列的求和.【专题】计算题;等差数列与等比数列.【分析】依题意,可求得a1=a3=a5=…=a51=1,{a2n}是以2为首项,2为公差的等差数列,从而可求得a1+a2+a3+…+a51的值.【解析】解:∵数列{a n}中,a1=1,a2=2,且a n+2﹣a n=1+(﹣1)n(n∈N*),∴a3﹣a1=0,a5﹣a3=0,…a51﹣a49=0,∴a1=a3=a5=…=a51=1;由a4﹣a2=2,得a4=2+a2=4,同理可得a6=6,a8=8,…,a50=50;∴a1+a2+a3+…+a51=(a1+a3+a5+…+a51)+(a2+a4+…+a50)=26+=676.故答案为:676.【点评】本题考查数列的求和,着重考查等差数列的判定与求和,突出考查分组求和,属于中档题.15.(5分)直线y=x+m与圆x2+y2=16交于不同的两点M,N,其中O是坐标原点,则实数m的取值范围是(﹣4,﹣2]∪[2,4).【考点】直线和圆的方程的应用.【专题】直线与圆.【分析】设MN的中点为A,则2=+,利用,可得||≥2,利用点到直线的距离公式,可得||,从而求出实数m的取值范围.【解析】解:设MN的中点为A,则OA⊥MN,并且2=+,∵,∴||≤2||,∴≤12,∴≤3,∴16﹣≤3,∴||≥2,∴O到直线MN的距离≥2…①,||=<4…②,由①②解得:﹣4<m<﹣2或2<m<4,故答案为:(﹣4,﹣2]∪[2,4).【点评】本题考查了直线与圆的位置关系以及点到直线的距离问题,考查勾股定理的运用,考查学生的计算能力,属于中档题.三、解答题(本题包括六道小题共计70分)16.(12分)已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=π,在△ABC 中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(Ⅰ)由题意可得a=c﹣4、b=c﹣2.又因,,可得,恒等变形得c2﹣9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=2sinθ,.△ABC的周长f (θ)=|AC|+|BC|+|AB|=.再由,利用正弦函数的定义域和值域,求得f(θ)取得最大值.【解析】解:(Ⅰ)∵a、b、c成等差,且公差为2,∴a=c﹣4、b=c﹣2.又∵,,∴,∴,恒等变形得c2﹣9c+14=0,解得c=7,或c=2.又∵c>4,∴c=7.…(6分)(Ⅱ)在△ABC中,由正弦定理可得,∴,AC=2sinθ,.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|===,…(10分)又∵,∴,∴当,即时,f(θ)取得最大值.…(12分)【点评】本题主要考查正弦定理、余弦定理的应用,正弦函数的定义域和值域,属于中档题.17.(12分)已知在直三棱柱ABC﹣A1B1C1中,AB=AA1=2,∠ACB=,点D是线段BC 的中点.(1)求证:A1C∥平面AB1D;(2)当三棱柱ABC﹣A1B1C1的体积最大时,求直线A1D与平面AB1D所成角θ的正弦值.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)设A1B∩AB1=O,连接OD,利用三角形的中位线定理可得:A1C∥OD,利用线面平行的判定定理即可证明;(2)当三棱柱ABC﹣A1B1C1的底面积最大时,体积最大,利用余弦定理与基本不等式的性质可得:当AC=BC,三角形ABC为正三角形时取最大值,然后建立空间直角坐标系,利用空间向量求直线A1D与平面AB1D所成角θ的正弦值.【解析】(1)证明:如图,设A1B∩AB1=O,连接OD,则OD为三角形A1BC的中位线,∴A1C∥OD,OD⊆平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D;(2)解:当三棱柱ABC﹣A1B1C1的底面积最大时,体积最大,∵2AC•BC﹣AC•BC=AC•BC,∴当AC=BC,三角形ABC为正三角形时面积取最大值,以D为原点建立如图所示坐标系,则D(0,0,0),A(,0,0),B1(0,﹣1,2),,∴=(,0,0),=(0,﹣1,2),,设平面AB1D的法向量为,由,得,取z=1,得y=2.∴,则直线A1D与平面AB1D所成角θ的正弦值为sinθ=||=||=.【点评】本题考查了线面面面垂直与平行的判定与性质定理、三角形的中位线定理、余弦定理,考查了推理能力与计算能力,考查了空间想象能力,训练了利用空间向量求线面角,属于中档题.18.(12分)某手机销售商对某市市民进行手机品牌认可度的调查,在已购买某品牌手机的500名市民中,随机抽样100名,按年龄进行统计的频率分布表和频率分布直方图如下:(1)频率分布表中①②应填什么数?补全频率分布直方图,并根据频率分布直方图估计这500名市民的平均年龄;(2)在抽出的这100市民中,按分层抽样抽取20人参加宣传活动,从20人中随机选取2人各赠送一部手机,设这两名市民中年龄低于30岁的人数为X,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【专题】综合题;概率与统计.【分析】(1)利用频率分布表和频率分布直方图能求出频率分布表中的①②位置应填什么数,并补全频率分布直方图,再根据频率分布直方图能统计出这500名志愿者得平均年龄.(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列及数学期望.【解析】解:(1)由题意知频率分布表中的①位置应填数字为:100﹣5﹣20﹣30﹣10=35,②位置应填数字为:=0.30.补全频率分布直方图,如右图所示.平均年龄估值为:(45×0.05+55×0.2+65×0.35+75×0.3+85×0.1)=33.5(岁).(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)==,∴X的分布列为:X 0 1 2PEX=0×+1×+2×=.【点评】本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.(12分)已知直线l:y=x+1,圆O:,直线l被圆截得的弦长与椭圆C:的短轴长相等,椭圆的离心率e=.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(0,)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.【考点】直线与圆锥曲线的综合问题;直线与圆相交的性质.【专题】综合题.【分析】(Ⅰ)由题设可知b=1,利用,即可求得椭圆C的方程;(Ⅱ)先猜测T的坐标,再进行验证.若直线l的斜率存在,设其方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量的坐标运算公式即可证得.【解析】解:(Ⅰ)则由题设可知b=1,(2分)又e=,∴=,∴a2=2 (3分)所以椭圆C的方程是+y2=1.…(4分)(Ⅱ)若直线l与y轴重合,则以AB为直径的圆是x2+y2=1①若直线l垂直于y轴,则以AB为直径的圆是②…(6分)由①②解得.由此可知所求点T如果存在,只能是(0,1).…(7分)事实上点T(0,1)就是所求的点.证明如下:当直线l的斜率不存在,即直线l与y轴重合时,以AB为直径的圆为x2+y2=1,过点T(0,1);当直线l的斜率存在,设直线方程为,代入椭圆方程,并整理,得(18k2+9)x2﹣12kx﹣16=0(8分)设点A、B的坐标分别为A(x1,y1),B(x2,y2),则x1+x2=,x1x2=∵=(x1,y1﹣1),=(x2,y2﹣1)∴=x1x2+(y1﹣1)(y2﹣1)=(k2+1)x1x2﹣(x1+x2)+=∴,即以AB为直径的圆恒过定点T(0,1).…(11分)综上可知,在坐标平面上存在一个定点T(0,1)满足条件.…(12分)【点评】本小题主要考查椭圆的标准方程、向量的坐标运算、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.20.(12分)设f(x)=x1nx+ax2,a为常数.(1)若曲线y=f(x)在x=1处的切线过点A(0,﹣2),求实数a的值;(2)若f(x)有两个极值点x1,x2且x l<x2①求证:<a<0②求证:f (x2)>f (x1)>.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.【专题】函数的性质及应用;导数的概念及应用;导数的综合应用.【分析】(1)求出函数f(x)的导数,求得切线的斜率,由两点的斜率公式计算即可得到a=1;(2)①由题意可得f′(x)=0有两个不等的实根x1,x2,且0<x1<x2,设g(x)=lnx+1+2ax,求出导数,对a讨论,分a≥0,a<0,求出单调区间和极值,令极大值大于0,即可得到a 的范围;②由上可知,f(x)在(x1,x2)递增,即有f(x2)>f(x1),求出x1∈(0,1),设h(x)=(xlnx﹣x),0<x<1,求出导数,判断单调性,运用单调性,即可得到所求范围.【解析】解:(1)f(x)=x1nx+ax2的导数为f′(x)=lnx+1+2ax,在x=1处的切线斜率为k=1+2a,切点为(1,a),在x=1处的切线过点A(0,﹣2),则k=1+2a=a+2,解得a=1;(2)证明:①由题意可得f′(x)=0有两个不等的实根x1,x2,且0<x1<x2,设g(x)=lnx+1+2ax,g′(x)=+2a,x>0.当a≥0,则g′(x)>0,g(x)在(0,+∞)递增,不合题意;当a<0时,g′(x)>0解得x<﹣,g′(x)<0解得x>﹣,即有g(x)在(0,﹣)递增,在(﹣,+∞)递减.即有g(﹣)=ln(﹣)>0,解得﹣<a<0;②由上可知,f(x)在(x1,x2)递增,即有f(x2)>f(x1),f′(1)=g(1)=1+2a>0,则x1∈(0,1),由①可得ax1=,即有f(x1)=x1lnx1+ax12=(x1lnx1﹣x1),设h(x)=(xlnx﹣x),0<x<1,h′(x)=lnx<0在(0,1)恒成立,故h(x)在(0,1)递减,故h(x)>h(1)=﹣,由此可得f(x1)>﹣,综上可得,f (x2)>f (x1)>.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值和最值,同时考查函数的单调性的运用:求参数的范围和证明不等式,运用构造函数和分类讨论的思想方法及不等式恒成立思想是解题的关键.选做题请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.选修4-1:几何证明选讲21.(10分)选修4﹣1:几何证明选讲如图,已知四边形ABCD内接于ΘO,且AB是的ΘO直径,过点D的ΘO的切线与BA的延长线交于点M.(1)若MD=6,MB=12,求AB的长;(2)若AM=AD,求∠DCB的大小.【考点】与圆有关的比例线段;圆的切线的性质定理的证明.【专题】计算题.【分析】(1)利用MD为⊙O的切线,由切割线定理以及已知条件,求出AB即可.(2)推出∠AMD=∠ADM,连接DB,由弦切角定理知,∠ADM=∠ABD,通过AB是⊙O 的直径,四边形ABCD是圆内接四边形,对角和180°,求出∠DCB即可.【解析】选修4﹣1:几何证明选讲解:(1)因为MD为⊙O的切线,由切割线定理知,MD2=MA•MB,又MD=6,MB=12,MB=MA+AB,…(2分),所以MA=3,AB=12﹣3=9.…(5分)(2)因为AM=AD,所以∠AMD=∠ADM,连接DB,又MD为⊙O的切线,由弦切角定理知,∠ADM=∠ABD,(7分)又因为AB是⊙O的直径,所以∠ADB为直角,即∠BAD=90°﹣∠ABD.又∠BAD=∠AMD+∠ADM=2∠ABD,于是90°﹣∠ABD=2∠ABD,所以∠ABD=30°,所以∠BAD=60°.…(8分)又四边形ABCD是圆内接四边形,所以∠BAD+∠DCB=180°,所以∠DCB=120°…(10分)【点评】本题考查圆的内接多边形,切割线定理的应用,基本知识的考查.选修4-4:坐标系与参数方程22.已知曲线C1的参数方程为(t为参数),当t=1时,曲线C1上的点为A,当t=﹣1时,曲线C1上的点为B.以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=.(1)求A、B的极坐标;(2)设M是曲线C2上的动点,求|MA|2+|MB|2的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(1)当t=1时,代入参数方程可得即A,利用,即可得出点A的极坐标,同理可得及其点B的极坐标.(2)由ρ=,化为4ρ2+5(ρsinθ)2=36,利用即可化为直角坐标方程,设曲线C2上的动点M(3cosα,2sinα),可得|MA|2+|MB|2=10cos2α+16,再利用余弦函数的单调性即可得出.【解析】解:(1)当t=1时,代入参数方程可得即A,∴=2,,∴,∴点A的极坐标为.当t=﹣1时,同理可得,点B的极坐标为.(2)由ρ=,化为ρ2(4+5sin2θ)=36,∴4ρ2+5(ρsinθ)2=36,化为4(x2+y2)+5y2=36,化为,设曲线C2上的动点M(3cosα,2sinα),则|MA|2+|MB|2=+=18cos2α+8sin2α+8=10cos2α+16≤26,当cosα=±1时,取得最大值26.∴|MA|2+|MB|2的最大值是26.【点评】本题考查了把极坐标方程化为直角坐标方程、椭圆的标准方程及其参数方程、三角函数基本关系式、余弦函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.选修4-5:不等式选讲23.已知a,b,c∈R,a2+b2+c2=1.(Ⅰ)求证:|a+b+c|≤;(Ⅱ)若不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.【考点】绝对值不等式的解法;不等式的证明.【专题】计算题;证明题;不等式的解法及应用.【分析】(Ⅰ)由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即可得证;(Ⅱ)不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,运用绝对值的定义,即可解出不等式.【解析】(Ⅰ)证明:由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即有(a+b+c)2≤3,即有|a+b+c|≤;(Ⅱ)解:不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,由x≥1得,2x≥3,解得,x≥;由x≤﹣1,﹣2x≥3解得,x≤﹣,由﹣1<x<1得,2≥3,不成立.综上,可得x≥或x≤﹣.则实数x的取值范围是(﹣]∪[).【点评】本题考查柯西不等式的运用,考查不等式恒成立问题,考查绝对值不等式的解法,属于中档题.。

宁夏银川一中2015届高三第四次月考文综地理试卷

宁夏银川一中2015届高三第四次月考文综地理试卷

宁夏银川一中2015届高三第四次月考文综试卷第Ⅰ卷(选择题,140分)本卷共35个小题,每小题4分,共140分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

图1中,甲和乙表示某地区不同季节的风向变化。

读图,回答1~2题。

1.该地区的气候类型是A.地中海气候 B.温带海洋性气候C.亚热带湿润气候 D.温带季风气候2.图甲所示季节里A.黄河宁夏段凌汛多发B.非洲热带草原的野生动物向南迁徙图1C.美国东南部多飓风活动D.三江平原正在播种小麦在GIS中,不同类型的地理空间信息储存在不同的图层上,叠加不同的图层可以分析不同要素间的相互关系。

据此回答3~4题。

3.将某区域的水系、土地利用、地形、土壤图层叠加,可以进行A.商业分布和规划B.评价交通网的合理性C.耕地分类和规划D.估算工农业生产总值4.如果需要规划当地的工矿企业,则还需要添加的图层是①交通线②矿产地③居民点④学校A.①②③B.②③④C.①②④D.①③④图2为东南亚某半岛气温(虚线,单位:℃)、降水(实线,单位:毫米)分布图,读图回答5-6题。

图2 5.据图判断甲、乙两地 A .1月气温差异大 B .甲地降水量季节变化较大 C .7月气温差异大D .乙地降水量年际变化较大6.与同纬度半岛东西两岸相比,丙地气温特点及其影响的主导因素分别是: A .气温低,海陆因素 B .气温低,地形因素 C .气温高,海陆因素D .气温高,地形因素图3中阴影区域为铁观音茶产地,读图回答7-8题。

图3 7.铁观音产地适宜种植茶树的自然条件是A .海拔较低,热量充足B 雨水充沛,云雾较多 C. 昼夜温差小 D .日照时间长8.某校研究性学习小组发现,E 地比F 地更适于铁观音的种植,主要原因是E 地比F 地 A.坡度陡 B.纬度高C .劳动力多 D.更加适合商业化生产 读2000年土地城市化质量的差异图表(图4)。

完成9-10题。

234注:城市用地人口密度等于城市人口除以城市用地面积;城市用地经济密度等于城市产生的GDP除以城市用地面积。

宁夏银川一中2015届高三年级第四次月考语文试卷

宁夏银川一中2015届高三年级第四次月考语文试卷

宁夏银川一中2015届高三年级第四次月考语文试卷高三2010-12-03 14:21银川一中2015届高三年级第四次月考语文试卷第Ⅰ卷阅读题(共70分)甲必考题(45分)一、现代文阅读(9分,每小题3分)汉字的魅力优于拼音文字说到汉字,不能不提及世界文明史。

世界的古代文明,可以说就是尼罗河流域的埃及圈,幼发拉底河、底格里斯河流域的美索不达米亚圈,印度河、恒河流域的印度圈,黄河、长江流域的中国圈等四大文明。

这四大文明之中,前三者互相交往而发展,成为近代文明的源流,只有中国几乎未与其它文化产生关联而独自发展出汉字文化圈。

国人对此是充满自豪感的,无论是对汉字的发展历史,还是对汉字所承载的中国独具的文字文明和文化底蕴。

但是,由于汉字自身的特点所带来的缺陷,如撰文用字多、字型复杂、难记、难读,在过去几十年中,汉字的未来与发展前景便广受汉字文化圈中一些国家的关注和议论。

但肯定的一点是,要想准确把握汉字的功过是非,必须仔细回顾和耐心审视汉字所走过的历程。

写于1988年的《图说汉字的历史》引进出版,该书作者阿辻哲次以“事典”的形式,图文并茂地对汉字发展史上的基本事项进行了简洁却明晰的梳理和叙述,从新石器时代开始到现代的汉字发展史,从前印刷时代的汉字书写工具材料史到汉字印刷的发展史……意在为学习汉字、使用汉字的人提供更多的相关知识,让那些对汉字有成见的人明白:现在就想把拥有四千余年悠久历史、担负着人类文明发展一翼的汉字塞进博物馆里,还为时尚早。

汉字的表记法从古代到现代是连续发展的,从甲骨文、青铜器文字、篆体字,到隶、行、楷,没有文化断层。

汉字不是拼音文字,而是图形文字,以物的图形为基础而形成文字,例如“山”、“川”、“日”、“月”等。

而与汉字、汉学有关的律令制度,如国家概念、产业、生活、文化等,也都跨越广阔的版图,从中国中原,传播到东方的朝鲜、日本,南方的越南,用文字连结了中国与周边世界的文化。

虽然多数国家后来又在汉字的基础上创造了自己的文字,但依然有着汉字的影响和痕迹存在。

2015年宁夏银川一中高三文科一模数学试题及详解(绝密)

2015年宁夏银川一中高三文科一模数学试题及详解(绝密)

2015年宁夏银川一中高考一模文科数学试卷(绝密)时间120分钟满分150分 2015.4.5一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•浙江模拟)已知集合A={x|x<a},B={x|1≤x<2},且A∪(∁UB)=R,则实数a的取值范围是()A.a≤1 B. a<1 C.a≥2 D. a>22.(5分)(2015•重庆一模)复数所对应的点位于复平面内()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(5分)(2014•江西模拟)已知等差数列{an}的公差为d(d≠0),且a 3+a6+a10+a13=32,若am=8,则m为() A. 12 B. 8 C. 6 D. 44.(5分)下列命题中为真命题的是()A.若x≠0,则x+≥2B.命题:若x2=1,则x=1或x=﹣1的逆否命题为:若x≠1且x≠﹣1,则x2≠1C.“a=1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件5.(5分)(2011秋•东城区期末)设x>0,且1<b x<a x,则()A. 0<b<a<1 B. 0<a<b<1 C. 1<b<a D. 1<a<b6.(5分)(2012•东城区二模)设M(x0,y)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x的取值范围是()A.(2,+∞) B.(4,+∞) C.(0,2) D.(0,4)7.(5分)(2012•嘉峪关校级三模)如果下面的程序执行后输出的结果是11880,那么在程序UNTIL后面的条件应为()A. i<10 B.i≤10 C.i≤9 D. i<98.(5分)(2013•淄博模拟)若k∈[﹣2,2],则k的值使得过A(1,1)可以做两条直线与圆x2+y2+kx﹣2y﹣k=0相切的概率等于()A. B. C. D.不确定9.(5分)一个几何体的三视图如图所示,则该几何体的外接球的表面积为()A. 36π B. 8π C.π D.π10.(5分)(2014•浙江模拟)设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m∥α,m∥β,则α∥β;②若m⊥α,m∥β,则α⊥β;③若m∥α,m∥n,则n∥α;④若m⊥α,α∥β,则m⊥β.上述命题中,所有真命题的序号是()A.③④ B.②④ C.①② D.①③11.(5分)(2013•莱城区校级模拟)函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin2x的图象,则只要将f (x)的图象()A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度12.(5分)(2012•西山区校级模拟)设函数,其中[x]表示不超过x的最大整数,如[﹣1.2]=﹣2,[1.2]=1,[1]=1,若直线y=kx+k (k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是()A. B. C. D.二、填空题:本大题共4小题,每小题5分.13.(5分)(2014•许昌一模)在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域内的面积等于2,则a= .14.(5分)等比数列{an }的前n项和为Sn,若S1,S3,S2成等差数列,则{an}的公比q= .15.(5分)若等腰梯形ABCD中,AB∥CD,AB=3,BC=,∠ABC=45°,则•的值为.;16.(5分)已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)(2013•天心区校级二模)已知△ABC的内角A、B、C的对边分别为a、b、c,,且c=3.(1)求角C;(2)若向量与共线,求a、b的值.18.(12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(1)在CD上找一点F,使AD∥平面EFB;(2)求点C到平面ABD的距离.19.(12分)(2010•鲤城区校级二模)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日昼夜温差x(℃) 10 11 13 12 8 6就诊人数y(人) 22 25 29 26 16 12该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?20.(12分)(2015•邢台模拟)已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2.(I)求椭圆C的标准方程;(Ⅱ)若直线AP的倾斜角为,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.21.(12分)(2012•武汉模拟)设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)讨论函数f(x)的单调区间和极值;(Ⅱ)已知x1=(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>.三.请考生在第22、23、24三题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-1:几何证明选讲] 22.(10分)(2014•葫芦岛二模)如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P做AP的垂线,交直线AC于点E,交直线AD于点F.(1)求证:∠PEC=∠PDF;(2)求PE•PF的值.[选修4-4:坐标系与参数方程]23.(2012•洛阳模拟)已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.[选修4-5;不等式选讲]24.(2012•包头一模)选修4﹣5;不等式选讲.设不等式|2x﹣1|<1的解集是M,a,b∈M.(I)试比较ab+1与a+b的大小;(II)设max表示数集A的最大数.h=max,求证:h≥2.答案:一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•浙江模拟)已知集合A={x|x<a},B={x|1≤x<2},且A∪B)=R,则实数a的取值范围是()(∁UA.a≤1 B. a<1 C.a≥2 D. a>2【考点】:并集及其运算.【专题】:集合.【分析】:根据全集R以及B求出B的补集,由A与B补集的并集为R,确定出a的范围即可.【解析】:解:∵B={x|1≤x<2},∴∁RB={x|x<1或x≥2},∵A={x|x<a},A∪(∁RB)=R,∴a的范围为a≥2,故选:C.【点评】:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关机后.2.(5分)(2015•重庆一模)复数所对应的点位于复平面内()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】:复数的代数表示法及其几何意义.【专题】:数系的扩充和复数.【分析】:把给出的等式变形后直接利用复数代数形式的乘除运算化简,得到复数对应点的坐标即可.【解析】:解:∵.∴复数所对应的点()在第二象限.故选B.【点评】:本题考查了复数代数形式的乘除运算,复数的几何意义,是基础题.3.(5分)(2014•江西模拟)已知等差数列{an}的公差为d(d≠0),且a 3+a6+a10+a13=32,若am=8,则m为() A. 12 B. 8 C. 6 D. 4【考点】:等差数列的性质.【专题】:等差数列与等比数列.【分析】:根据a3+a6+a10+a13中各项下标的特点,发现有3+13=6+10=16,优先考虑等差数列的性质去解.【解析】:解:a3+a6+a10+a13=32即(a3+a13)+(a6+a10)=32,根据等差数列的性质得 2a8+2a8=32,a8=8,∴m=8故选:B.【点评】:本题考查了等差数列的性质.掌握等差数列的有关性质,在计算时能够减少运算量,凸显问题的趣味性.4.(5分)下列命题中为真命题的是()A.若x≠0,则x+≥2B.命题:若x2=1,则x=1或x=﹣1的逆否命题为:若x≠1且x≠﹣1,则x2≠1C.“a=1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件D.若命题P:∂x∈R,x2﹣x+1<0,则¬P:∀x∈R,x2﹣x+1>0【考点】:命题的真假判断与应用.【专题】:计算题;推理和证明.【分析】:对四个命题,分别进行判断,即可得出结论.【解析】:解:对于A,x>0,利用基本不等式,可得x+≥2,故不正确;对于B,命题:若x2=1,则x=1或x=﹣1的逆否命题为:若x≠1且x≠﹣1,则x2≠1,正确;对于C,“a=±1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件,故不正确;对于D,命题P:∂x∈R,x2﹣x+1<0,则¬P:∀x∈R,x2﹣x+1≥0,故不正确.故选:B.【点评】:本题考查命题的真假判断与应用,考查学生分析解决问题的能力,比较基础.5.(5分)(2011秋•东城区期末)设x>0,且1<b x<a x,则()A. 0<b<a<1 B. 0<a<b<1 C. 1<b<a D. 1<a<b【考点】:指数函数单调性的应用.【专题】:探究型.【分析】:利用指数函数的性质,结合x>0,即可得到结论.【解析】:解:∵1<b x,∴b0<b x,∵x>0,∴b>1∵b x<a x,∴∵x>0,∴∴a>b∴1<b<a故选C.【点评】:本题考查指数函数的性质,解题的关键是熟练运用指数函数的性质,属于基础题.6.(5分)(2012•东城区二模)设M(x0,y)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x的取值范围是()A.(2,+∞) B.(4,+∞) C.(0,2) D.(0,4)【考点】:抛物线的简单性质.【专题】:计算题;空间位置关系与距离.【分析】:由条件|FM|>4,由抛物线的定义|FM|可由x0表达,由此可求x的取值范围【解析】:解:由条件以F为圆心,|FM|为半径的圆和抛物线C的准线相交,可得|FM|>4,由抛物线的定义|FM|=x0+2>4,所以x>2故选A.【点评】:本题考查直线和圆的位置关系、抛物线的定义的运用,考查学生分析解决问题的能力,属于基础题.7.(5分)(2012•嘉峪关校级三模)如果下面的程序执行后输出的结果是11880,那么在程序UNTIL后面的条件应为()A. i<10 B.i≤10 C.i≤9 D. i<9【考点】:伪代码.【专题】:常规题型.【分析】:先根据输出的结果推出循环体执行的次数,再根据s=1×12×11×10×9=11880得到程序中UNTIL后面的“条件”.【解析】:解:因为输出的结果是132,即s=1×12×11×10×9,需执行4次,则程序中UNTIL后面的“条件”应为i<9.故选D【点评】:本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序).如果将程序摆在我们的面前时,从识别逐个语句,整体把握,概括程序的功能.8.(5分)(2013•淄博模拟)若k∈[﹣2,2],则k的值使得过A(1,1)可以做两条直线与圆x2+y2+kx﹣2y﹣k=0相切的概率等于()A. B. C. D.不确定【考点】:几何概型;直线与圆的位置关系.【专题】:概率与统计.【分析】:把圆的方程化为标准方程后,根据构成圆的条件得到等号右边的式子大于0,列出关于k的不等式,求出不等式的解集,然后由过已知点总可以作圆的两条切线,得到点在圆外,故把点的坐标代入圆的方程中得到一个关系式,让其大于0列出关于k的不等式,求出不等式的解集,最后根据几何概率的定义,求出相切的概率即可.【解析】:解:把圆的方程化为标准方程得:(x+)2+(y﹣1)2=1+k+k2,所以1+k+k2>0,解得:k<﹣4或k>﹣1,又点(1,1)应在已知圆的外部,把点代入圆方程得:1+1+k﹣2﹣k>0,解得:k<0,则实数k的取值范围是k<﹣4或0>k>﹣1.则k的值使得过A(1,1)可以做两条直线与圆x2+2+kx﹣2y﹣k=0 相切的概率等于:P==.故选B.【点评】:此题考查了几何概型,点与圆的位置关系,二元二次方程为圆的条件及一元二次不等式的解法.理解过已知点总可以作圆的两条切线,得到把点坐标代入圆方程其值大于0是解本题的关键.9.(5分)一个几何体的三视图如图所示,则该几何体的外接球的表面积为()A. 36π B. 8π C.π D.π【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:根据几何体的三视图得出该几何体是直三棱锥,且底面是等腰直角三角形,根据直三棱锥的外接球是对应直三棱柱的外接球,由外接球的结构特征,求出它的半径与表面积.【解析】:解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形,高为2的直三棱锥;如图所示;则该直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R,∵底面是等腰直角三角形,∴底面外接圆的半径为1,∴R2=1+1=2,∴外接球的表面积是4πR2=8π.故选:B.【点评】:本题考查了根据几何体的三视图求对应的几何体的表面积的应用问题,是基础题目.10.(5分)(2014•浙江模拟)设m,n为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m∥α,m∥β,则α∥β;②若m⊥α,m∥β,则α⊥β;③若m∥α,m∥n,则n∥α;④若m⊥α,α∥β,则m⊥β.上述命题中,所有真命题的序号是()A.③④ B.②④ C.①② D.①③【考点】:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【专题】:空间位置关系与距离.【分析】:利用空间中线线、线面、面面间的位置关系求解.【解析】:解:①若m∥α,m∥β,则α与β相交或平行,故①错误;②若m⊥α,m∥β,则由平面与平面垂直的判定定理得α⊥β,故②正确;③若m∥α,m∥n,则n∥α或n⊂α,故③错误;④若m⊥α,α∥β,则由直线与平面垂直的判定定理得m⊥β,故④正确.故选:B.【点评】:本题考查命题真假的判断,是中档题,解题时要注意空间思维能力的培养.11.(5分)(2013•莱城区校级模拟)函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin2x的图象,则只要将f (x)的图象()A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度【考点】:函数y=Asin(ωx+φ)的图象变换.【专题】:三角函数的图像与性质.【分析】:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解析】:解:由函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象可得A=1,==﹣,求得ω=2.再根据五点法作图可得2×+φ=π,求得φ=,故f(x)=sin(2x+)=sin2(x+).故把f(x)的图象向右平移个单位长度,可得g(x)=sin2x的图象,故选:A.【点评】:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.12.(5分)(2012•西山区校级模拟)设函数,其中[x]表示不超过x的最大整数,如[﹣1.2]=﹣2,[1.2]=1,[1]=1,若直线y=kx+k (k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是()A. B. C. D.【考点】:根的存在性及根的个数判断.【专题】:新定义.【分析】:画图可知f(x)就是周期为1的函数,且在[0,1)上是一直线y=x 的对应部分的含左端点,不包右端点的线段,要有三解,只需直线y=kx+k过点(3,1)与直线y=kx+k过点(2,1)之间即可.【解析】:解:∵函数,∴函数的图象如下图所示:∵y=kx+k=k(x+1),故函数图象一定过(﹣1,0)点若f(x)=kx+k有三个不同的根,则y=kx+k与y=f(x)的图象有三个交点当y=kx+k过(2,1)点时,k=,当y=kx+k过(3,1)点时,k=,故f(x)=kx+k有三个不同的根,则实数k的取值范围是故选D【点评】:本题考查的知识点是根据根的存在性及根的个数的判断,其中将方程的根转化为函数的零点,然后利用图象法分析函数图象交点与k的关系是解题的关键.二、填空题:本大题共4小题,每小题5分.13.(5分)(2014•许昌一模)在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域内的面积等于2,则a= 3 .【考点】:简单线性规划.【分析】:先根据约束条件(a为常数),画出可行域,求出可行域顶点的坐标,再利用几何意义求关于面积的等式求出a值即可.【解析】:解:当a<0时,不等式组所表示的平面区域,如图中的M,一个无限的角形区域,面积不可能为2,故只能a≥0,此时不等式组所表示的平面区域如图中的N,区域为三角形区域,若这个三角形的面积为2,则AB=4,即点B的坐标为(1,4),代入y=ax+1得a=3.故答案为:3.【点评】:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.14.(5分)等比数列{an }的前n项和为Sn,若S1,S3,S2成等差数列,则{an}的公比q= ﹣.【考点】:等差数列与等比数列的综合.【专题】:等差数列与等比数列.【分析】:依题意有,从而2q2+q=0,由此能求出{an}的公比q.【解析】:解:∵等比数列{an }的前n项和为Sn,S1,S3,S2成等差数列,∴依题意有,由于a1≠0,故2q2+q=0,又q≠0,解得q=﹣.故答案为:﹣.【点评】:本题考查等比数列的公比的求法,是基础题,解题时要注意等差数列和等比数列的性质的合理运用.15.(5分)若等腰梯形ABCD中,AB∥CD,AB=3,BC=,∠ABC=45°,则•的值为﹣3 .【考点】:平面向量数量积的运算.【专题】:平面向量及应用.【分析】:根据已知条件及向量的加法:=,而要求只需知道向量的夹角,而通过过D作BC的平行线,根据已知的角即可求出的夹角,这样即可求得答案.【解析】:解:如图,==;过D作DE∥BC,根据已知条件,∠ADC=135°,∠EDC=45°;∴∠ADE=90°;∴;∴.故答案为:﹣3.【点评】:考查向量加法的几何意义,向量数量积的计算公式,以及等腰梯形的边角关系.16.(5分)已知函数f(x)=e x﹣mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为(,+∞).【考点】:利用导数研究曲线上某点切线方程.【专题】:计算题;直线与圆;圆锥曲线的定义、性质与方程.【分析】:求出函数的导数,运用两直线垂直的条件可得e x﹣m=﹣有解,再由指数函数的单调性,即可得到m的范围.【解析】:解:函数f(x)=e x﹣mx+1的导数为f′(x)=e x﹣m,若曲线C存在与直线y=ex垂直的切线,即有e x﹣m=﹣有解,即m=e x+,由e x>0,则m>.则实数m的范围为(,+∞).故答案为:(,+∞).【点评】:本题考查导数的几何意义:函数在某点处的导数即为曲线在该点处切线的斜率,同时考查两直线垂直的条件,属于基础题.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)(2013•天心区校级二模)已知△ABC的内角A、B、C的对边分别为a、b、c,,且c=3.(1)求角C;(2)若向量与共线,求a、b的值.【考点】:余弦定理;三角函数的恒等变换及化简求值;正弦定理.【专题】:计算题.【分析】:(1)利用二倍角公式及辅助角公式对已知化简可得sin(2C﹣30°)=1,结合C的范围可求C(2)由(1)C,可得A+B,结合向量共线的坐标表示可得sinB﹣2sinA=0,利用两角差的正弦公式化简可求【解析】:解:(1)∵,∴∴sin(2C﹣30°)=1∵0°<C<180°∴C=60°(2)由(1)可得A+B=120°∵与共线,∴sinB﹣2sinA=0∴sin(120°﹣A)=2sinA整理可得,即tanA=∴A=30°,B=90°∵c=3.∴a=,b=2【点评】:本题主要考查了二倍角公式、辅助角公式及两角和的正弦公式、锐角三角函数的综合应用18.(12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(1)在CD上找一点F,使AD∥平面EFB;(2)求点C到平面ABD的距离.【考点】:点、线、面间的距离计算;直线与平面平行的判定.【专题】:空间位置关系与距离.【分析】:(1)取CD的中点F,连结EF,BF,在△ACD中,可证AD∥EF,又EF⊆平面EFB AD⊄平面EFB,可证AD∥平面EFB.(2)设点C到平面ABD的距离为h,由于可证AD⊥BD,可得,又三=2,由=即可解得点C到平棱锥B﹣ACD的高BC=2,S△ACD面ABD的距离.【解析】:(1)取CD的中点F,连结EF,BF,在△ACD中,∵E,F分别为AC,DC的中点,∴EF为△ACD的中位线∴AD∥EF,EF⊆平面EFB,AD⊄平面EFB∴AD∥平面EFB.(2)设点C到平面ABD的距离为h,∵平面ADC⊥平面ABC,且BC⊥AC,∴BC⊥平面ADC,∴BC⊥AD,而AD⊥DC•∴AD⊥平面BCD,即AD⊥BD•∴•=2,∴三棱锥B﹣ACD的高BC=2,S△ACD∴=∴可解得:h=2.【点评】:本题主要考查了直线与平面平行的判定,考查了点、线、面间的距离计算,考查了空间想象能力和转化思想,属于中档题.19.(12分)(2010•鲤城区校级二模)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日昼夜温差x(℃) 10 11 13 12 8 6就诊人数y(人) 22 25 29 26 16 12该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?【考点】:回归分析的初步应用;等可能事件的概率.【专题】:计算题;方案型.【分析】:(Ⅰ)本题是一个古典概型,试验发生包含的事件是从6组数据中2种情况,满足条件的事件是抽到相邻两个月的数据的情况选取2组数据共有C6有5种,根据古典概型的概率公式得到结果.(Ⅱ)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数b,把b和x,y的平均数,代入求a的公式,做出a的值,写出线性回归方程.(Ⅲ)根据所求的线性回归方程,预报当自变量为10和6时的y的值,把预报的值同原来表中所给的10和6对应的值做差,差的绝对值不超过2,得到线性回归方程理想.【解析】:解:(Ⅰ)由题意知本题是一个古典概型,设抽到相邻两个月的数据为事件A2=15种情况,试验发生包含的事件是从6组数据中选取2组数据共有C6每种情况都是等可能出现的其中,满足条件的事件是抽到相邻两个月的数据的情况有5种∴(Ⅱ)由数据求得,由公式求得b=再由求得a=﹣∴y关于x的线性回归方程为(Ⅲ)当x=10时,y=,||=<2∴该小组所得线性回归方程是理想的.【点评】:本题考查线性回归方程的求法,考查等可能事件的概率,考查线性分析的应用,考查解决实际问题的能力,是一个综合题目,这种题目可以作为解答题出现在高考卷中.20.(12分)(2015•邢台模拟)已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2.(I)求椭圆C的标准方程;(Ⅱ)若直线AP的倾斜角为,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.【考点】:直线与圆锥曲线的综合问题.【专题】:圆锥曲线中的最值与范围问题.【分析】:(Ⅰ)由题意可设椭圆C的方程为(a>b>0),F(c,0).由题意知,解得即可得出.(II)以BD为直径的圆与直线PF相切.由题意可知,c=1,F(1,0),直线AP的方程为y=﹣x﹣2.则点D坐标为(2,﹣4),BD中点E的坐标为(2,﹣2),圆的半径r=2.直线AP的方程与椭圆的方程联立可得7x2+16x+4=0.可得点P的坐标.可得直线PF的方程为:4x﹣3y﹣4=0.利用点到直线的距离公式可得点E 到直线PF的距离d.只要证明d=r.【解析】:解:(Ⅰ)由题意可设椭圆C的方程为(a>b>0),F(c,0).由题意知,解得.故椭圆C的方程为.(Ⅱ)以BD为直径的圆与直线PF相切.证明如下:由题意可知,c=1,F(1,0),直线AP的方程为y=﹣x﹣2.则点D坐标为(2,﹣4),BD中点E的坐标为(2,﹣2),圆的半径r=2.由得7x2+16x+4=0.设点P的坐标为(x0,y),则.∵点F坐标为(1,0),直线PF的斜率为,直线PF的方程为:4x﹣3y﹣4=0.点E到直线PF的距离d==2.∴d=r.故以BD为直径的圆与直线PF相切.【点评】:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、直线与圆相切的判定方法,考查了推理能力与计算能力,属于难题.21.(12分)(2012•武汉模拟)设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)讨论函数f(x)的单调区间和极值;(Ⅱ)已知x1=(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2>.【考点】:利用导数研究函数的单调性;利用导数研究函数的极值.【专题】:计算题.【分析】:(I)先求函数f(x)的导函数f′(x),并确定函数的定义域,再解不等式f′(x)>0,f′(x)<0,即可分别求得函数f(x)的单调增区间和单调减区间,进而利用极值定义求得函数的极值,由于导函数中含有参数a,故为解不等式的需要,需讨论a的正负;(II)将x1=代入函数f(x),即可得a的值,再利用(I)中的单调性和函数的零点存在性定理,证明函数的另一个零点x2是在区间(,)上,即可证明结论【解析】:解:(Ⅰ)函数f(x)的定义域为(0,+∞).求导数,得f′(x)=﹣a=.①若a≤0,则f′(x)>0,f(x)是(0,+∞)上的增函数,无极值;②若a>0,令f′(x)=0,得x=.当x∈(0,)时,f′(x)>0,f(x)是增函数;当x∈(,+∞)时,f′(x)<0,f(x)是减函数.∴当x=时,f(x)有极大值,极大值为f()=ln﹣1=﹣lna﹣1.综上所述,当a≤0时,f(x)的递增区间为(0,+∞),无极值;当a>0时,f(x)的递增区间为(0,),递减区间为(,+∞),极大值为﹣lna﹣1 =是函数f(x)的零点,(Ⅱ)∵x1∴f ()=0,即﹣a=0,解得a==.∴f(x)=lnx﹣x.∵f()=﹣>0,f()=﹣<0,∴f()•f()<0.由(Ⅰ)知,函数f(x)在(2,+∞)上单调递减,∴函数f(x)在区间(,)上有唯一零点,>.因此x2【点评】:本题主要考查了导数在函数单调性和函数极值中的应用,连续函数的零点存在性定理及其应用,分类讨论的思想方法,属中档题三.请考生在第22、23、24三题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-1:几何证明选讲] 22.(10分)(2014•葫芦岛二模)如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P做AP的垂线,交直线AC于点E,交直线AD于点F.(1)求证:∠PEC=∠PDF;(2)求PE•PF的值.【考点】:与圆有关的比例线段.【专题】:选作题;立体几何.【分析】:(1)证明P、B、C、E四点共圆、A、B、C、D四点共圆,利用四点共圆的性质,即可证明:∠PEC=∠PDF;(2)证明D,C,E,F四点共圆,利用割线定理,即可求得PE•PF的值.【解析】:(1)证明:连结BC,∵AB是圆O的直径,∴∠ACB=∠APE=90°,∴P、B、C、E四点共圆.∴∠PEC=∠CBA.又∵A、B、C、D四点共圆,∴∠CBA=∠PDF,∴∠PEC=∠PDF﹣﹣﹣﹣(5分)(2)解:∵∠PEC=∠PDF,∴F、E、C、D四点共圆.∴PE•PF=PC•PD=PA•PB=2×12=24.﹣﹣﹣﹣(10分)【点评】:本题考查圆的性质,考查四点共圆的判定,考查割线的性质,属于中档题.[选修4-4:坐标系与参数方程]23.(2012•洛阳模拟)已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【考点】:圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.【专题】:计算题.【分析】:(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.【解析】:解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;。

宁夏银川市高三数学第四次月考试题 文 新人教A版

宁夏银川市高三数学第四次月考试题 文 新人教A版

数 学 试 卷(文)2012.11第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 300cos 的值是( ) A .21B .21-C .23 D .23-2.已知集合}121|{},72|{-<<+=≤≤-=m x m x B x x A 且≠B φ,若A B A =⋃则( ) A .43≤≤-m B .43<<-mC .42<<mD .42≤<m3.已知3(,),sin ,25παπα∈=则tan()4πα+等于( )A .17 B. 7 C. 17- D. 7- 4. 已知等差数列{}241071510S n a a a ==中,,,则前项和=( )A.420B.380C.210D.1405. 已知a>0,b>0,则ab ba 211++的最小值为( ) A .2 B. 22 C. 4 D.25 6. 已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=,)31(x 那么)21(f 的值是( )A .33B .-33 C .3 D .-37. 设0,0>>b a ,则以下不等式中不恒成立的是( ) A .4)11)((≥++ba b aB .b a b a 22222+≥++C .3223b ab b a a +≥+ D .b a b a -≥-8.凸多边形各内角依次成等差数列,其中最小角为120°,公差为5°,则边数n 等于( ) A .16B .9C .16或9D .129.已知函数a x x x f ++=2sin 3cos 2)(2(a 为常数)的定义域为⎥⎦⎤⎢⎣⎡2,0π,)(x f 的最大值为6,则a 等于( )A .3B .4C .5D .610. 已知向量)4,(),2,1(x b a ==,若向量a∥b,则x=( )A. 21-B.21D. -2 D. 211.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有( )A .(0)(2)2(1)f f f +≥B. (0)(2)2(1)f f f +>C .(0)(2)2(1)f f f +≤D .(0)(2)2(1)f f f +<12. 已知0,1||,1||=⋅==,点C 在AOC ∠30o=的边AC 上,设),(+∈+=R n m OB n OA m OC ,则mn等于( ) A.13 B. 3C. 3第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13.已知00>>b a ,,且满足3=+b a ,则ba 41+的最小值为 . 142=2=,a 与b 的夹角为 45,要使λ-b a 与a 垂直,则λ=15. 已知O 是坐标原点,点()1,1A -.若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是__________. 16. 已知函数()()22log 1,02,0x x f x x x x ⎧+>=⎨--≤⎩,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是 。

高三数学月考试题及答案-宁夏银川市普通高中2015届高三四月教学质量检测(文)

高三数学月考试题及答案-宁夏银川市普通高中2015届高三四月教学质量检测(文)

2015年宁夏银川市高考模拟(文科)(4月份)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x∈N|0≤x≤5},∁A B={1,3,5},则集合B=()A.{2,4} B.{0,2,4} C.{0,1,3} D.{2,3,4}【考点】补集及其运算.【专题】计算题.【分析】根据题意,先用列举法表示集合A,进而由补集的性质,可得B=∁A(∁A B),计算可得答案.【解析】解:根据题意,集合A={x∈N|0≤x≤5}={0,1,2,3,4,5},若C A B={1,3,5},则B=∁A(∁A B)={0,2,4},故选B.【点评】本题考查补集的定义与运算,关键是理解补集的定义.2.(5分)若复数z满足(1﹣i)z=4i,则复数z对应的点在复平面的()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【专题】计算题.【分析】根据所给的关系式整理出z的表示形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,点的代数形式的最简形式,写出对应的点的坐标,判断出位置.【解析】解:∵复数z满足(1﹣i)z=4i,∴z===﹣2+2i∴复数对应的点的坐标是(﹣2,2)∴复数对应的点在第二象限,故选:B.【点评】本题考查复数的代数形式的表示及其几何意义,本题解题的关键是求出复数的代数形式的表示形式,写出点的坐标.3.(5分)已知α为第二象限角,sinα=,则sin的值等于()A.B.C.D.【考点】两角和与差的正弦函数.【专题】三角函数的求值.【分析】利用两角和差的正弦公式进行求解即可.【解析】解:∵α为第二象限角,sinα=,∴cosα=,则sin=sinαcos﹣cosαsin=×﹣×=,故选:C【点评】本题主要考查三角函数值的计算,根据两角和差的正弦公式是解决本题的关键.4.(5分)从集合A={﹣1,1,2}中随机选取一个数记为k,从集合B={﹣2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件(k,b)的取值所有可能的结果可以列举出,满足条件的事件直线不经过第三象限,符合条件的(k,b)有2种结果,根据古典概型概率公式得到结果.【解析】解:由题意知本题是一个古典概型,试验发生包含的事件k∈A={﹣1,1,2},b∈B={﹣2,1,2}得到(k,b)的取值所有可能的结果有:(﹣1,﹣2);(﹣1,1);(﹣1,2);(1,﹣2);(1,1);(1,2);(2,﹣2);(2,1);(2,2)共9种结果.而当时,直线不经过第三象限,符合条件的(k,b)有2种结果,∴直线不过第四象限的概率P=.故选A.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、体积的比值得到.5.(5分)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的体积是()A.π B.C.D.【考点】由三视图求面积、体积.【专题】计算题.【分析】由三视图可知:该几何体是两个同底的半圆锥,其中底的半径为1,高为=,据此可计算出体积.【解析】解:由三视图可知:该几何体是两个同底的半圆锥,其中底的半径为1,高为=,因此体积=2×=.故选D.【点评】本题考查由三视图计算原几何体的体积,正确恢复原几何体是计算的前提.6.(5分)已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A.B.C.2或D.或【考点】双曲线的简单性质.【专题】计算题;分类讨论.【分析】利用双曲线的焦点所在坐标轴,根据双曲线的渐近线求得a和b的关系,进而根据求得c和b的关系,代入离心率公式,解答即可.【解析】解:①当双曲线的焦点在x轴上时,由渐近线方程,可令a=k,b=k (k>0),则c=2k,e=2;②当双曲线的焦点在y轴上时,由渐近线方程,可令a=k,b=k (k>0),则c=2k,e=;离心率为:2或.故选C.【点评】本题考查双曲线的离心率的性质和应用,解题时要注意公式的合理运用和分类讨论.7.(5分)若x,y满足约束条件,则z=3x﹣y的最小值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解析】解:由约束条件作出可行域如图,化z=3x﹣y为y=3x﹣z,由图可知,当直线y=3x﹣z过A(0,4)时,直线在y轴上的截距最大,z有最小值.∴z max=3×0﹣4=﹣4.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.(5分)某程序框图如图所示,运行该程序时,输出的S值是()A.44 B.70 C.102 D.140【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,K的值,当S=102时,满足条件S>100,退出循环,输出S的值为102.【解析】解:模拟执行程序框图,可得K=1,S=0S=2,K=4不满足条件S>100,S=10,K=7不满足条件S>100,S=24,K=10不满足条件S>100,S=44,K=13不满足条件S>100,S=70,K=16不满足条件S>100,S=102,K=19满足条件S>100,退出循环,输出S的值为102.故选:C.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的S,K的值是解题的关键,属于基本知识的考查.9.(5分)在△ABC中,若向量,的夹角为60°,=2,且AD=2.∠ADC=120°,则=()A.2B.2C.2D.6【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据已知条件容易得到D为边BC的中点,△ABD为等边三角形,从而可得到AB=2,BC=4,从而要求先来求,从而得出答案.【解析】解:如图,由知,D是BC边的中点;∠ADC=120°;∴∠ADB=60°;又∠ABD=60°;∴△ABD是等边三角形,AD=2;∴AB=2,BC=4;∴;∴.故选:C.【点评】考查向量数乘的几何意义,等边三角形的概念,求向量长度的方法:先去求向量的平方,以及数量积的计算公式.10.(5分)已知定义在R上的奇函数f(x)的图象关于直线x=2对称,且x∈[0,2]时,f (x)=log2(x+1),则f(7)=()A.﹣1 B.1 C.﹣3 D. 3【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】函数f(x)的图象关于直线x=2对称且为奇函数,所以f(x)=f(﹣4﹣x)=﹣f (4+x),从而f(8+x)=f(x),即函数f(x)的周期为8,代入验证即可.【解析】解:函数f(x)的图象关于直线x=2对称且为奇函数.∴f(x)=f(﹣4﹣x)=﹣f(4+x)∴f(8+x)=f(x)即函数f(x)的周期为8∴f(7)=f(﹣1)=﹣f(1)=﹣1,故选A【点评】本题考查的是函数的奇偶性及周期性的综合运用,另外利用数形结合也可得到答案.11.(5分)设a,b,c表示三条直线,α,β表示两个平面,则下列命题中逆命题不成立的是()A.c⊥α,若c⊥β,则α∥βB.b⊂α,c⊄α,若c∥α,则b∥cC.b⊂β,若b⊥α,则β⊥αD.a,b⊂α,a∩b=P,c⊥a,c⊥b,若α⊥β,则c⊂β【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【专题】空间位置关系与距离.【分析】根据面面平行的几何特征及线面垂直的性质,可判断A;根据线面平行的判定定理,可判断B;根据面面垂直的几何特征,可判断C;根据线面垂直的判定定理及面面垂直的判定定理,可判断D.【解析】解:A的逆命题为c⊥α,若α∥β,则c⊥β,根据面面平行的几何特征及线面垂直的性质,可得其逆命题成立;B的逆命题为b⊂α,c⊄α,若b∥c,则c∥α,根据线面平行的判定定理,可得其逆命题成立;C的逆命题为b⊂β,若β⊥α,则b⊥α,根据面面垂直的几何特征,当b与两平面的交线不垂直时,结论不成立,故C的逆命题不成立;D的逆命题为a,b⊂α,a∩b=P,c⊥a,c⊥b,即c⊥α,若c⊂β,则α⊥β,由面面垂直的判定定理,可得其逆命题成立;故选C【点评】本题以逆命题的判定为载体考查了空间直线与平面,平面与平面位置关系的判定,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.12.(5分)一个大风车的半径为8m,12min旋转一周,它的最低点Po离地面2m,风车翼片的一个端点P从P o开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是()A.B.C.D.【考点】在实际问题中建立三角函数模型.【专题】三角函数的图像与性质.【分析】由题意可设h(t)=Acosωt+B,根据周期性=12,与最大值与最小值分别为18,2.即可得出.【解析】解:设h(t)=Acosωt+B,∵12min旋转一周,∴=12,∴ω=.由于最大值与最小值分别为18,2.∴,解得A=﹣8,B=10.∴h(t)=﹣8cos t+10.故选:B.【点评】本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)如图,根据图中的数构成的规律,a所表示的数是144.【考点】归纳推理.【专题】计算题;推理和证明.【分析】根据杨辉三角中的已知数据,易发现:每一行的第一个数和最后一个数与行数相同,之间的数总是上一行对应的两个数的积,即可得出结论.【解析】解:由题意a=12×12=144.故答案为:144.【点评】此题主要归纳推理,其规律:每一行的第一个数和最后一个数与行数相同,之间的数总是上一行对应的两个数的积.通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.14.(5分)若M是抛物线y2=4x上一点,且在x轴上方,F是抛物线的焦点,直线FM的倾斜角为60°,则|FM|=4.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出抛物线的焦点坐标,由直线倾斜角求出斜率,写出直线方程,和抛物线方程联立求得M的坐标,再由抛物线焦半径公式得答案.【解析】解:如图,由抛物线y2=4x,得F(1,0),∵直线FM的倾斜角为60°,∴,则直线FM的方程为y=,联立,即3x2﹣10x+3=0,解得(舍)或x2=3.∴|FM|=3+1=4.故答案为:4.【点评】本题考查了抛物线的简单几何性质,考查了数学转化思想方法,是中档题.15.(5分)已知△ABC的内角A,B,C对边分别为a,b,c,若cosC=,且sinC=sinB,则△ABC的内角A=.【考点】正弦定理.【专题】解三角形.【分析】利用余弦定理表示出cosC,代入已知第一个等式整理得到关系式,第二个关系式利用正弦定理化简,代入上式得出的关系式整理表示出a,再利用余弦定理表示出cosA,把表示出的a与c代入求出cosA的值,即可确定出A的度数.【解析】解:由已知等式及余弦定理得:cosC==,即a2+b2﹣c2=2a2①,将sinC=sinB,利用正弦定理化简得:c=b②,②代入①得:a2=b2﹣b2=b2,即a=b,∴cosA===,则A=.故答案为:.【点评】此题考查了正弦、余弦定理,熟练掌握定理是解本题的关键.16.(5分)已知,则使f(x)﹣e x﹣m≤0恒成立的m的范围是[2,+∞).【考点】分段函数的应用;函数恒成立问题.【专题】函数的性质及应用;不等式的解法及应用.【分析】运用参数分离的方法,分别讨论当x≤1时,当x>1时,函数f(x)﹣e x的单调性和最大值的求法,注意运用导数,最后求交集即可.【解析】解:当x≤1时,f(x)﹣e x﹣m≤0即为m≥x+3﹣e x,可令g(x)=x+3﹣e x,则g′(x)=1﹣e x,当0<x<1时,g′(x)<0,g(x)递减;当x<0时,g′(x)>0,g(x)递增.g(x)在x=0处取得极大值,也为最大值,且为2,则有m≥2 ①当x>1时,f(x)﹣e x﹣m≤0即为m≥﹣x2+2x+3﹣e x,可令h(x)=﹣x2+2x+3﹣e x,h′(x)=﹣2x+2﹣e x,由x>1,则h′(x)<0,即有h(x)在(1,+∞)递减,则有h(x)<h(1)=4﹣e,则有m≥4﹣e ②由①②可得,m≥2成立.故答案为:[2,+∞).【点评】本题考查不等式恒成立问题注意转化为求函数的最值问题,同时考查运用导数判断单调性,求最值的方法,属于中档题和易错题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知各项都不相等的等差数列{a n}的前7项和为70,且a3为a1和a7的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b n+1﹣b n=a n,n∈N*且b1=2,求数列的前n项和T n.【考点】数列的求和;等差数列的性质.【专题】等差数列与等比数列;点列、递归数列与数学归纳法.【分析】(I)设等差数列{a n}的公差为d(d≠0),通过前7项和为70、且a3为a1和a7的等比中项,可得首项和公差,计算即可;(II)通过递推可得b n=n(n+1),从而=,利用并项法即得结论.【解析】解:(I)设等差数列{a n}的公差为d(d≠0),则,解得,∴a n=2n+2;(II)∵b n+1﹣b n=a n,∴b n﹣b n﹣1=a n﹣1=2n (n≥2,n∈N*),b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1=a n﹣1+a n﹣2+…+a1+b1=n(n+1),∴==,∴T n===.【点评】本题考查数列的通项公式、前n项和,考查递推公式,利用并项法是解决本题的关键,注意解题方法的积累,属于中档题.18.(12分)已知四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,,O为AB的中点.(Ⅰ)求证:EO⊥平面ABCD;(Ⅱ)求点D到面AEC的距离.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】综合题;空间位置关系与距离.【分析】(I)连接CO,利用△AEB为等腰直角三角形,证明EO⊥AB,利用勾股定理,证明EO⊥CO,利用线面垂直的判定,可得EO⊥平面ABCD;(II)利用等体积,即V D﹣AEC=V E﹣ADC,从而可求点D到面AEC的距离.【解析】(I)证明:连接CO∵∴△AEB为等腰直角三角形∵O为AB的中点,∴EO⊥AB,EO=1…(2分)又∵AB=BC,∠ABC=60°,∴△ACB是等边三角形∴,…(4分)又EC=2,∴EC2=EO2+CO2,∴EO⊥CO,∵AB∩CO=O∴EO⊥平面ABCD…(6分)(II)解:设点D到面AEC的距离为h∵∴…(8分)∵,E到面ACB的距离EO=1,V D﹣AEC=V E﹣ADC∴S△AEC•h=S△ADC•EO…(10分)∴∴点D到面AEC的距离为…(12分)【点评】本题考查线面垂直,考查点到面距离的计算,解题的关键是掌握线面垂直的判定方法,考查等体积的运用,属于中档题.19.(12分)为了比较两种复合材料制造的轴承(分别称为类型I轴承和类型II轴承)的使用寿命,检验了两种类型轴承各30个,它们的使用寿命(单位:百万圈)如下表:类型I(Ⅰ)根据两组数据完成下面茎叶图;(Ⅱ)分别估计两种类型轴承使用寿命的中位数;(Ⅲ)根据茎叶图对两种类型轴承的使用寿命进行评价.【考点】茎叶图;众数、中位数、平均数;极差、方差与标准差.【专题】应用题;概率与统计.【分析】(Ⅰ)根据两组数据,即可得到茎叶图;(Ⅱ)注意到两组数字是有序排列的,中位数为第15,16两个数,即可得出结论;(Ⅲ)由中位数及标准差分析即可.【解析】解:(Ⅰ)茎叶图:(Ⅱ)由茎叶图知,类型I轴承的使用寿命按由小到大排序,排在15,16位是11.8,12.2,故中位数为12;类型II轴承的使用寿命按由小到大排序,排在15,16位是10.4,10.6,故中位数为10.5;(Ⅲ)由所给茎叶图知,类型I轴承的使用寿命的中位数高于对类型II轴承的使用寿命的中位数,表明类型I轴承的使用寿命较长;茎叶图可以大致看出类型I轴承的使用寿命的标准差大于类型II轴承的使用寿命的标准差,表明类型I轴承稳定型较好.【点评】本题考查了样本的数字特征,属于中档题.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.【考点】椭圆的标准方程;圆的标准方程;直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)先设出椭圆的方程,根据题设中的焦距求得c和焦点坐标,根据点(1,)到两焦点的距离求得a,进而根据b=求得b,得到椭圆的方程.(Ⅱ)先看当直线l⊥x轴,求得A,B点的坐标进而求得△AF2B的面积与题意不符故排除,进而可设直线l的方程为:y=k(x+1)与椭圆方程联立消y,设A(x1,y1),B(x2,y2),根据韦达定理可求得x1+x2和x1•x2,进而根据表示出|AB|的距离和圆的半径,求得k,最后求得圆的半径,得到圆的方程.【解析】解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C两焦点坐标分别为F1(﹣1,0),F2(1,0).∴.∴a=2,又c=1,b2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l⊥x轴,计算得到:,,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由,消去y得(3+4k2)x2+8k2x+4k2﹣12=0显然△>0成立,设A(x1,y1),B(x2,y2),则,又即,又圆F2的半径,所以,化简,得17k4+k2﹣18=0,即(k2﹣1)(17k2+18)=0,解得k=±1所以,,故圆F2的方程为:(x﹣1)2+y2=2.【点评】本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.21.(12分)已知函数f(x)=a(x﹣1)﹣21nx(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1)上无零点,求a的取值范围.【考点】利用导数研究函数的单调性;函数零点的判定定理.【专题】导数的综合应用.【分析】(Ⅰ)将a=1代入,求出函数的导数,从而得到函数的单调区间;(Ⅱ)通过讨论a的范围,结合函数的单调性,求出函数的极值,从而得到a的范围.【解析】解:(Ⅰ)a=1时,函数f(x)=x﹣1﹣2lnx,定义域是(0,+∞),f′(x)=1﹣=,由f′(x)>0解得:x>2,由f′(x)<0,解得0<x<2,∴f(x)在(0,2)递减,在(2,+∞)递增;(Ⅱ)(1)当a≤0时,由x∈(0,1),得x﹣1<0,﹣2lnx>0,∴f(x)>0恒成立,即a≤0符合题意;(2)当a>0时,f′(x)=a﹣=(x﹣),①当a≤2时,即≥1时,由f′(x)<0得0<x<,即f(x)在区间(0,1)单调递减,故f(x)>f(1)=0,满足对∀x∈(0,1),f(x)>0恒成立,故此时f(x)在区间(0,1)上无零点,符合题意;②当a>2时,即0<<1时,由f′(x)>0得x>,由f′(x)<0得0<x<,即f(x)在(0,)递减,在(,1)递增,此时f()<f(1)=0,令g(a)=e a﹣a,当a>2时,g′(a)=e a﹣1>e2﹣1>0恒成立,故函数g(a)=e a﹣a在区间(2,+∞)递增,∴g(a)>g(2)=e2﹣2>0;即e a>a>2,∴0<<<<1,而f()=a(﹣1)﹣2ln=+a>0,故当a>2时,f()•f()<0,即∃x0∈(,),使得f(x0)=0成立,∴a>2时,f(x)在区间(0,1)上有零点,不合题意,综上,a的范围是{a|a≤2}.【点评】本题考查了函数的单调性,考查了导数的应用,考查分类讨论思想,本题有一定的难度.选做题请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.选修4-1:几何证明选讲22.(10分)选修4﹣1:几何证明选讲如图,已知四边形ABCD内接于ΘO,且AB是的ΘO直径,过点D的ΘO的切线与BA的延长线交于点M.(1)若MD=6,MB=12,求AB的长;(2)若AM=AD,求∠DCB的大小.【考点】与圆有关的比例线段;圆的切线的性质定理的证明.【专题】计算题.【分析】(1)利用MD为⊙O的切线,由切割线定理以及已知条件,求出AB即可.(2)推出∠AMD=∠ADM,连接DB,由弦切角定理知,∠ADM=∠ABD,通过AB是⊙O 的直径,四边形ABCD是圆内接四边形,对角和180°,求出∠DCB即可.【解析】选修4﹣1:几何证明选讲解:(1)因为MD为⊙O的切线,由切割线定理知,MD2=MA•MB,又MD=6,MB=12,MB=MA+AB,…(2分),所以MA=3,AB=12﹣3=9.…(5分)(2)因为AM=AD,所以∠AMD=∠ADM,连接DB,又MD为⊙O的切线,由弦切角定理知,∠ADM=∠ABD,(7分)又因为AB是⊙O的直径,所以∠ADB为直角,即∠BAD=90°﹣∠ABD.又∠BAD=∠AMD+∠ADM=2∠ABD,于是90°﹣∠ABD=2∠ABD,所以∠ABD=30°,所以∠BAD=60°.…(8分)又四边形ABCD是圆内接四边形,所以∠BAD+∠DCB=180°,所以∠DCB=120°…(10分)【点评】本题考查圆的内接多边形,切割线定理的应用,基本知识的考查.选修4-4:坐标系与参数方程23.已知曲线C1的参数方程为(t为参数),当t=1时,曲线C1上的点为A,当t=﹣1时,曲线C1上的点为B.以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=.(1)求A、B的极坐标;(2)设M是曲线C2上的动点,求|MA|2+|MB|2的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(1)当t=1时,代入参数方程可得即A,利用,即可得出点A的极坐标,同理可得及其点B的极坐标.(2)由ρ=,化为4ρ2+5(ρsinθ)2=36,利用即可化为直角坐标方程,设曲线C2上的动点M(3cosα,2sinα),可得|MA|2+|MB|2=10cos2α+16,再利用余弦函数的单调性即可得出.【解析】解:(1)当t=1时,代入参数方程可得即A,∴=2,,∴,∴点A的极坐标为.当t=﹣1时,同理可得,点B的极坐标为.(2)由ρ=,化为ρ2(4+5sin2θ)=36,∴4ρ2+5(ρsinθ)2=36,化为4(x2+y2)+5y2=36,化为,设曲线C2上的动点M(3cosα,2sinα),则|MA|2+|MB|2=+=18cos2α+8sin2α+8=10cos2α+16≤26,当cosα=±1时,取得最大值26.∴|MA|2+|MB|2的最大值是26.【点评】本题考查了把极坐标方程化为直角坐标方程、椭圆的标准方程及其参数方程、三角函数基本关系式、余弦函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.选修4-5:不等式选讲24.已知a,b,c∈R,a2+b2+c2=1.(Ⅰ)求证:|a+b+c|≤;(Ⅱ)若不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.【考点】绝对值不等式的解法;不等式的证明.【专题】计算题;证明题;不等式的解法及应用.【分析】(Ⅰ)由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即可得证;(Ⅱ)不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,运用绝对值的定义,即可解出不等式.【解析】(Ⅰ)证明:由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即有(a+b+c)2≤3,即有|a+b+c|≤;(Ⅱ)解:不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,由x≥1得,2x≥3,解得,x≥;由x≤﹣1,﹣2x≥3解得,x≤﹣,由﹣1<x<1得,2≥3,不成立.综上,可得x≥或x≤﹣.则实数x的取值范围是(﹣]∪[).【点评】本题考查柯西不等式的运用,考查不等式恒成立问题,考查绝对值不等式的解法,属于中档题.。

宁夏银川一中2015届高三第四次月考文综历史试卷

宁夏银川一中2015届高三第四次月考文综历史试卷

宁夏银川一中2015届高三第四次月考文综试卷第Ⅰ卷(选择题,140分)本卷共35个小题,每小题4分,共140分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

24.《文献通考》记载:“三师、三公不常置,宰相不专用三省长官。

中书、门下并列于外,又别置中书于禁中,是谓政事堂,与枢密院对掌大政。

天下财赋,内庭诸司,中外莞库,悉隶三司。

据此可知该朝政治机构改革A.废除宰相权力,加强皇权 B.三省分工协作,相互制约C.分割宰相权力,加强皇权 D.削弱地方权力,加强中央集权25.顾炎武认为:“知封建之所以变而为郡县,则知郡县之敝而将复变。

然则将复变而为封建乎?曰:不能。

有圣人起,寓封建之意于郡县之中,而天下治矣。

”材料表明其主张是A.反对封建君主专制 B.郡县制避免了分封制的弊端C.应重新恢复分封制 D.中央集权和地方分权相结合26.余英时在《士与中国文化》一书中指出“15世纪以来,弃儒就贾是中国社会史上的普遍的新现象。

不但贾人多从士人中来而且士人也往往出身于商贾家庭。

明清的中国也可以说是一个士魂商才的时代”这种现象表明明清时期A.政府的重农抑商政策已名存实亡B. 商品经济的发展促使传统的社会结构发生变化C.读书人通过商业活动跻身仕途D.商业经营的好坏是衡量士人成功与否的标准27.冯友兰在《中国哲学史》一书中写道:(明清)在这个时期,在某些方面,中国的文化有了重大进展……官方方面,程朱学派的地位甚至比前朝更为巩固。

非官方方面,程朱学派和陆王学派在清朝都发生了重大的反动。

这里的“反动”是指A.宋明理学的统治地位丧失B.对传统儒学地位的彻底否定C.对传统儒家思想的批判继承 D.倡导“自由”“平等”思想28.“举中国数千年礼仪人伦,诗书典则,一旦扫地荡尽。

此岂独我大清之变,乃开辟以来名教之奇变,我孔子、孟子之所痛哭于九原,凡读书识字者,又乌可袖手安坐,不思一为之所也!”(曾国藩《讨粤匪檄》)这从侧面反映了A.列强侵略给中国带来了严重危害 B.太平天国对中国传统文化的冲击C.曾国藩兴办洋务以实现富国强兵 D.太平天国农民的愚昧无知和落后29.有学者认为:“所谓洋务运动,乃是清朝统治者在汉族地主官僚和外国侵略者的支持下,用出卖中国人民利益的办法,换取外洋枪炮船只来武装自己,血腥地镇压中国人民起义,借以保存封建政权的残骸的运动。

宁夏回族自治区银川一中高三数学上学期第四次月考试题 文

宁夏回族自治区银川一中高三数学上学期第四次月考试题 文

6题图银川一中2016届高三年级第四次月考数 学 试 卷(文)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合}06|{2≤--=x x x A ,{|14}B x x x =<->或,则集合A B I 等于A .{}|21x x --<≤ B .{}|13x x -<≤ C .{}|34x x <≤D .{}|34x x x >或≤2.命题“若x 2+y 2=0,x 、y ∈R ,则x =y =0”的逆否命题是A .若x ≠y ≠0,x 、y ∈R,则x 2+y 2=0 B .若x =y ≠0,x 、y ∈R,则x 2+y 2≠0C .若x ≠0且y ≠0,x 、y ∈R,则x 2+y 2≠0 D .若x ≠0或y ≠0,x 、y ∈R,则x 2+y 2≠0 3.直线l 过抛物线x 2=2py (p >0)的焦点,且与抛物线交于A 、B 两点,若线段AB 的长是6,A B 的中点到x 轴的距离是1,则此抛物线方程是A .x 2=12yB .x 2=8yC . x 2=6yD .x 2=4y4.已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r ,则顶点D的坐标为 A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13), 5.函数⎩⎨⎧>+-≤-+=0,ln 20,32)(2x x x x x x f 的零点个数为A .3B .2C .1D .0 6.电流强度I(安)随时间t(秒)变化的函数 I=Asin(ωt+φ)(A>0,ω>0,0<φ<2π)的图象如图所 示,则当t=1100秒时,电流强度是 A .-5安B .5安C .3安D .-10安7.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线斜率为 A. -4 B. 14 C. 4 D. -148.已知点F 1(-2,0),F 2(2,0),动点P 满足|PF 2|-|PF 1|=2,当点P 的纵坐标是12时,点P 到坐标原点的距离是11题图A. 2B. 32C. 3 D .629.若直线2ax +by -2=0(a >0,b >0)平分圆x 2+y 2-2x -4y -6=0,则ba 12+的最小值是 A.22-B.12-C.223+D.223-10.设F 1、F 2分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,若双曲线的右支上存在一点P ,使,021=⋅PF PF 且21PF F ∆的三边长构成等差数列,则此双曲线的离心率为 A.2 B.3 C.2 D.511.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么, 当小圆这样滚过大圆内壁的一周,点,M N 在大圆内所绘出的 图形大致是12.已知函数y =f (x )是定义在R 上的偶函数,且当x >0时,不等式()()成立,022<'⋅+x f x x f若()()),41(log )41(log ,2log )2(log ,33222.02.0f c f b f a ===ππ则c b a ,,之间的大小 关系为 A. a >c >bB. c >a >bC. b >a >cD. c >b >a第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分,共20分。

宁夏银川一中2015届高三第三次月考数学(文)试题(解析版)

宁夏银川一中2015届高三第三次月考数学(文)试题(解析版)

银川一中2015届高三年级第三次月考数 学 试 卷(文)【试卷综析】本试卷是高三文科试卷,以基础知识为载体,以基本能力测试为主导,重视学生科学素养的考查.知识考查注重基础、兼顾覆盖面.试题重点考查:集合、数列、复数、导数、函数的性质、线性规划等;考查学生解决实际问题的综合能力,是份比较好的试卷. 【题文】一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.集合}0)1(|{},42|{>-=≤=x x x N x M x ,则N C M =A.(,0)[1,]-∞⋃+∞B.(,0)[1,2]-∞⋃C.(,0][1,2]-∞⋃D.(,0][1,]-∞⋃+∞ 【知识点】集合及其运算A1【答案解析】C 由M 中不等式变形得:2x ≤4=22,即x≤2,∴M=(-∞,2], 由B 中不等式变形得:x (x-1)<0,解得:0<x <1,即N=(0,1), 则∁M N=(-∞,0]∪[1,2].故选:C .【思路点拨】求出M 与N 中不等式的解集确定出M 与N ,根据全集M 求出N 的补集即可. 【题文】2.已知复数2320151...z i i i i =+++++,则复数z = A .0 B .1- C .1 D .1i + 【知识点】复数的基本概念与运算L4【思路点拨】利用复数的周期性、等比数列的前n 项和公式即可得出. 【题文】3.n S 为等差数列{}n a 的前n 项和,682=+a a ,则=9SA B .27 C .54 D .108 【知识点】等差数列及等差数列前n 项和D2【思路点拨】由等差数列的性质结合a 2+a 8=6求出a 5,代入前9项和公式即可求得答案.【题文】4. 已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是 A.63 B. 233 C. 23 6 D. 4332a b+≤E6【思路点拨】由不等式x -4ax+3a <0(a >0)的解集为(x 1,x 2),利用根与系数的关系可得x 1+x 2,x 1x 2,再利用基本不等式即可得出.【题文】5.在ABC ∆中,90C =,且3CA CB ==,点M 满足2,BM MA CM CB =⋅则等于 A .3B .2C .4D .6是等腰直角三角形,CM CB ⋅=(1CA AB +) =CB CA ⋅+1AB ⋅CB =0+1|AB |•|CB |cos45°【思路点拨】由CM CB ⋅=(13CA AB +),再利用向量AB 和CB 的夹角等于向量的数量积的定义,求出CM CB ⋅的值. ..A .命题“x ∀∈R ,0x e >”的否定是“x ∃∈R ,0x e >”B .命题 “已知,x y ∈R ,若3x y +≠,则2x ≠或1y ≠”是真命题C .“22x x ax +≥在[]1,2x ∈上恒成立”⇔“max min 2)()2(ax x x ≥+在[]1,2x ∈上恒成立”D .命题“若1a =-,则函数()221f x ax x =+-只有一个零点”的逆命题为真命题的前10项和为B. C. D.【思路点拨】根据等差数列与等比数列的定义结合题中的条件得到数列{a n }与{b n }的通项公式,进而表达出{b an }的通项公式并且可以证明此数列为等比数列,再利用等比数列前n 项和的公式计算出答案即可.【题文】8.关于函数x x x x f cos )cos (sin 2)(-=的四个结论: P 1:P 2:最小正周期为π; P 3:; P 4:函数()y f x =的一条对称轴是 其中正确的有A .1 个B .2个C .3个D .4个A.3 B. 2 C. 1 D. 0【思路点拨】可利用不等式的性质逐个判断,①用到均值不等式,注意均值不等式成立的条件.②用到不等式的可乘性,注意在不等式两边同乘数的正负.③用到作差法证明不等式.【题文】10.已知x>1,y>1,,lny成等比数列,则xy的最小值是A. 1B.C. eD. 2a b+≤E6O的“和谐函数”,下列函数不是..圆O的“和谐函数”的是A.3()4f x x x=+B C D.()x xf x e e-=+【思路点拨】由“和谐函数”的定义及选项知,该函数若为“和谐函数”,其函数须为过原点的奇函数,由此逐项判断即可得到答案.【题文】12的图像上关于原点对称的点有( )对 A. 0B. 2C. 3D. 无数个【知识点】函数的图像B8【题文】本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 【题文】二、填空题:本大题共4小题,每小题5分,共20分. 【题文】13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y的最大值为 .【知识点】简单的线性规划问题E5【答案解析】8 作出不等式组对应的平面区域如图:(阴影部分ABC ).由z=2x-y 得y=2x-z ,平移直线y=2x-z ,由图象可知当直线y=2x-z 经过点A 时,直线y=2x-z 的截距最小,此时z 最大.由70310x y x y +-=⎧⎨-+=⎩,解得52x y =⎧⎨=⎩, 即A (5,2)将A 的坐标代入目标函数z=2x-y ,得z=2×5-2=8.即z=2x-y 的最大值为8.故答案为:8【思路点拨】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【题文】14.数列{}n a 中,11a =,,则5a =__________. 【知识点】等差数列D2 由取导数得 11112n n a a +-=,11a =则11a =1 所以{1n a }为等差数列,所以51a =1+412⨯=3,所以5a 【思路点拨】构造新数列确定{1n a }为等差数列,求出51a ,再求出5a 。

宁夏中宁一中2015届高三上学期第二次月考试卷数学(文科)

宁夏中宁一中2015届高三上学期第二次月考试卷数学(文科)

俯视图正视图侧视图中宁一中2015届高三第二次月考试卷文科数学考试时间;150分钟 分值;120分第I 卷一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1. 设集合2{|2},{|340},S x x T x x x =>-=+-≤则()R S T ð=( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)2.复数311i z i-=+(i 为虚数单位)的模是( ) B. C.5 D.83.设x ,y ∈R ,向量a =(x ,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则||a +b =( )A. 5B.10 C .2 5 D .104.设,αβ为两个不同平面,m 、 n 为两条不同的直线,且,,βα⊂⊂n m 有两个命题:P :若m ∥n ,则α∥β;q :若m ⊥β, 则α⊥β. 那么( ) A .“p ⌝或q ”是假命题 B .“p ⌝且q ”是真命题 C .“p 或q ⌝”是真命题 D .“p⌝且q ”是真命题 5.如图是一个几何体的三视图,正视图和侧视图均为矩形, 俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为() A .2+3π+.2+2π+C .8+5π+ D .6+3π+6. 设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=1log (1-x ),则函数f (x )在(1,2)上( )A .是增函数且f (x )<0B .是增函数且f (x )>0C .是减函数且f (x )<0D .是减函数且f (x )>07. 函数22x y x =-的图象大致是( )8、已知数列{}n a 的前n 项和为n S , 112,1+==n n a S a ,则n S =( )(A )12-n (B )1)23(-n (C )1)32(-n (D )121-n9. (设11333124log ,log ,log ,233a b c ===则,,a b c 的大小关系是( ). (A )a b c << (B )c b a << (C )b a c << (D )b c a <<10. 在ABC ∆,内角,,A B C 的对边分别为,,.a b c 若1sin cos sin cos ,2a B C c B Ab +=且,a b >则B ∠=( )(A )6π (B )3π (C )23π (D )56π 11. 函数()2s i n ()(0)22f x x ππωϕωϕ=+>-<<,的部分图像如图所示,则ωϕ,的值分别是( ).(A ) 2,3-π (B ) 2,6-π (C) 4,6-π(D )4,3π12. 在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( ).第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.。

宁夏回族自治区银川一中2015届高三上学期第六次月考数学(文)试题

宁夏回族自治区银川一中2015届高三上学期第六次月考数学(文)试题

宁夏回族自治区银川一中2015届高三上学期第六次月考数学(文)试题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=I ,}12|{)},1ln(|{)2(<=-==-x x x N x y x M , 则右图中阴影部分表示的集合为A .{|1}x x ≥B .{|12}x x ≤<C .{|01}x x <≤D .{|1}x x ≤2.若复数31412z ii i +=+-,则z=( )A.9+i B .9- i C .2+i D.2-i 3.执行如图所示的程序框图,如果输入的N 是6,那么输出的p 是( )A .120B .720C .1440D .5040 4.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C . 67.7万元 D . 72.0万元 5.若sin α+cos αsin α-cos α=12,则tan 2α=A .-43B. 43C .-34D. 346.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为 A .34π B .π3C .π23 D .π7.已知数列{n a }满足*331log 1log ()n n a a n ++=∈N ,且2469a a a ++=,则15793log ()a a a ++的值是A. 15-B. 5C. 5-D. 158.函数2()ln f x x e x =-的零点个数为A .0B .1C .2D .39.已知抛物线y 2=4x 的准线过双曲线x 2a 2-y2b2=1(a >0,b >0)的左顶点,且此双曲线的一条渐近线方程为y =2x ,则双曲线的焦距等于 A . 5B .2 5C . 3D .2 310.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为A.B.C.D.11.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则A .f (x )在⎝⎛⎭⎫0,π2单调递减B .f (x )在⎝⎛⎭⎫π4,3π4单调递减 C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增 12.设函数)(x f 在R 上的导函数为)('x f ,且2)(')(2x x xf x f >+,下面的不等式在R 上恒成立的是 A .0)(>x f B .0)(<x f C .x x f >)( D .x x f <)(第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.13.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1—50号,并分组,第一组1—5号,第二组6—10号,……,第十组46—50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为 的学生.14.若向量(1,)a k =- ,(3,1)b = ,且a b +与a 垂直,则实数k 的值为_______.15.已知[]6,1∈m ,[]6,1∈n ,则函数3213y mx nx =-+在[1,)+∞上为增函数的概率是 ____________.16.椭圆221369x y +=上有动点P ,(3,0)E ,则PE 的最小值为_______.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17. (本小题满分12分)设n S 为数列{n a }的前n 项和,已知01≠a ,2n n S S a a ∙=-11,∈n N (1)求1a ,2a ,并求数列{n a }的通项公式; (2)求数列{n na }的前n 项和. 18.(本小题满分12分)为调查银川市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人? (2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率;(3)你能否有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关?下面的临界值表供参考:独立性检验统计量()()()(),2d b c a d c b a bc ad n K ++++-=其中.d c b a n +++=19.(本小题满分12分)AD //FE ,∠AFE =60º,且平面ABCD ⊥平面ADEF , AF =FE =AB =12AD =2,点G 为AC 的中点. (1)求证:EG //平面ABF ; (2)求三棱锥B -AEG 的体积;(3)试判断平面BAE 与平面DCE 是否垂直?若垂直,请证明;若不垂直,请说明理由. 20.(本小题满分12分)设椭圆222:1(0)2x y C a a+=>的左、右焦点分别为F 1、F 2,A 是椭圆C 上的一点,2120AF F F ⋅=,坐标原点O 到直线AF 1的距离为11||.3OF (1)求椭圆C 的方程;(2)设Q 是椭圆C 上的一点,过点Q 的直线交x 轴于点(1,0)F -,交y 轴于点M ,若||2||MQ QF =,求直线的斜率.21.(本小题满分12分)已知1()2(2)ln f x ax a x x=--+(0)a ≥ (1)当a =0时,求f(x)的极值;(2)当a >0时,讨论f(x)的单调性;(3)若对任意的a ∈(2, 3),x 1, x 2∈[1, 3],恒有(m -ln3)a -2ln3>|f(x 1)-f(x 2)|成立,求实数m 的取值范围。

银川一中2015高三第四次月考

银川一中2015高三第四次月考

银川一中2015届高三年级第四次月考理科综合试卷命题人:陈够丽、李建国、杨树斌本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

其中第Ⅱ卷第33~40题为选考题,其它题为必考题。

考生作答时,将答案写在答题卡上,在本试卷上答题无效。

第Ⅰ卷(共126分)可能用到的相对原子质量(原子量):H-1 C-12 N-14 O-16 Na-23 S-32 Cl-35.5Fe-56 Cu-64 Co-59 Ba-137一、选择题:本题包括13小题。

每小题6分,共78分,每小题只有一个选项符合题意。

1.下列关于细胞结构和生物体内化合物的叙述正确的是A.抗体、激素、tRNA发挥一次作用后都将失去生物活性B.ATP脱去两个磷酸基团后成为RNA的基本组成单位之一C.蓝藻和绿藻都能进行光合作用,故二者含有的光合色素相同D.细菌代谢速率极快,细胞膜和细胞器膜为其提供了结构基础2.下列与核酸相关的叙述正确的是A.参与细胞分裂的核酸只有mRNA和tRNAB.细胞分化的原因是核DNA遗传信息改变C.细胞凋亡的根本原因是DNA的水解D.细胞癌变后mRNA的种类和数量改变3.恶性血液病中一种罕见的因20号染色体长臂部分缺失引发的疾病,引起医学家的关注。

下列与这种病产生原因相似的是A. 线粒体DNA突变会导致生物性状变异B. 三倍体西瓜植株的高度不育C. 猫叫综合征D. 白化病4. 探究生物的遗传物质和遗传规律的漫长岁月中,众多学者做出卓越贡献,正确的是A.萨顿运用假说-演绎法提出基因在染色体上B.克里克最先预见了遗传信息传递的一般规律,并将其命名为中心法则C.格里菲思的肺炎双球菌转化实验最早证实DNA是遗传物质D.赫尔希等人用T2噬菌体侵染大肠杆菌的实验,使人们确信 DNA 是主要的遗传物质5.埃博拉出血热(EBHF)是由埃博拉病毒(EBV)(一种丝状单链RNA病毒)引起的当今世界上最致命的病毒性出血热,目前该病毒已经造成超过5160人死亡。

宁夏银川一中2015届高三上学期第四次月考数学(文)试题及答案

宁夏银川一中2015届高三上学期第四次月考数学(文)试题及答案

A银川一中2015届高三年级第四次月考数 学 试 卷(文)命题人:赵冬奎第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{x N x U *∈=<}6,集合{}{}5,3,3,1==B A ,则()B A C U ⋃等于 A.{}4,1B.{}5,1C.{}02,4,D.{}4,22.已知i 是虚数单位,且复数2121,21,3z z i z bi z 若-=-=是实数,则实数b 的值为 A .6B .6-C .0D .613.下列各式正确的是A .a b =a b ⋅B .()222a b =a b ⋅⋅C .若()a b-c ,⊥则a b=a c ⋅⋅ D . 若a b=a c ⋅⋅ 则b=c4.已知3sin cos ,cos sin 842ππααααα=<<-且,则的值是 A .12B .12-C .14-D .12±5.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于 A .-10 B .-8 C .-6 D .-4 6.下列命题错误的是A .命题“21,11x x <<<若则-”的逆否命题是若1x ≥或1x ≤-,则12≥xB .“22am bm <”是”a b <”的充分不必要条件 C .命题p :存在R x ∈0,使得01020<++x x ,则p ⌝: 任意R x ∈,都有012≥++x xD .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题 7.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图 如图所示,则其侧视图的面积为ABCD 8.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩,A B (如图),要测算,A B 两点的距离,测量人员在岸边定出基线BC ,测得50BC m =,105,45ABC BCA ∠=∠= ,就可以计算出,A B 两点的距离为A.m B.m C.mD.2m 9.已知函数()y xf x '=-的图象如图(其中()f x '是函数()f x 的导函数),下面四个图象中,()y f x =的图象可能是10.已知直线,l m ,平面,αβ,且,l m αβ⊥⊂,给出四个命题:①若α∥β,则l m ⊥; ②若l m ⊥,则α∥β; ③若αβ⊥,则l ∥m ; ④若l ∥m ,则αβ⊥. 其中真命题的个数是A .4B .3C .2D .111.已知函数⎪⎩⎪⎨⎧<-≥-=2,1)21(2,)2()(x x x a x f x 满足对任意的实数21x x ≠都有0)()(2121<--x x x f x f成立,则实数a 的取值范围为 A .)2,(-∞B .]813,(-∞ C .]2,(-∞ D .)2,813[12.已知[1,1]x ∈-,则方程2cos 2πxx -=所有实数根的个数为A .2B .3C .4D .5第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分.13.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1y z x +=的最小值为 .14. 已知0,0x y >>,若2282y x m m x y+>+恒成立,则实数m 的取值范围是 . 15.已知三棱柱111ABC A B C -的侧棱垂直底面,所有顶点都在球面上,21==AAAB AC=1,oBAC 60=∠,则球的表面积为_________.16.下面四个命题:①已知函数(),0,,0,x f x x =<≥ 且()()44f a f +=,那么4a =-;②要得到函数sin 23y x π⎛⎫=+⎪⎝⎭的图象,只要将sin 2y x =的图象向左平移3π单位; ③若定义在()∞+∞,- 上的函数)(-1()(x f x f x f =+)满足,则)(x f 是周期函数; ④已知奇函数()f x 在(0,)+∞为增函数,且(1)0f -=,则不等式()0f x <的解集{}1x x <-.其中正确的是__________________.三、解答题:本大题共5小题,共计70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BAC宁夏银川一中2015届高三上学期第四次月考数学(文科)试卷第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{x N x U *∈=<}6,集合{}{}5,3,3,1==B A ,则()B A C U ⋃等于 A.{}4,1B.{}5,1C.{}02,4,D.{}4,22.已知i 是虚数单位,且复数2121,21,3z z i z bi z 若-=-=是实数,则实数b 的值为 A .6B .6-C .0D .613.下列各式正确的是 A .a b =a b ⋅B .()222a b=a b ⋅⋅C .若()a b-c ,⊥则a b=a c ⋅⋅ D . 若a b=a c ⋅⋅则b=c4.已知3sin cos ,cos sin 842ππααααα=<<-且,则的值是 A .12B .12-C .14-D .12±5.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于 A .-10 B .-8 C .-6 D .-4 6.下列命题错误的是A .命题“21,11x x <<<若则-”的逆否命题是若1x ≥或1x ≤-,则12≥xB .“22am bm <”是”a b <”的充分不必要条件 C .命题p :存在R x ∈0,使得01020<++x x ,则p ⌝: 任意R x ∈,都有012≥++x xD .命题“p或q ”为真命题,则命题“p ”和命题“q ”均为真命题 7.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图 如图所示,则其侧视图的面积为 A.4 B .2C .2D 8.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩,A B(如图),要测算,A B 两点的距离,测量人员在岸边定出基线BC ,测得50BC m =,105,45ABC BCA ∠=∠=,就可以计算出,A B 两点的距离为A .mB .mC .m D.2m9.已知函数()y xf x '=-的图象如图(其中()f x '是函数()f x 的导函数),下面四个图象中,()y f x =的图象可能是10.已知直线,l m ,平面,αβ,且,l m αβ⊥⊂,给出四个命题:①若α∥β,则l m ⊥; ②若l m ⊥,则α∥β; ③若αβ⊥,则l ∥m ; ④若l ∥m ,则αβ⊥. 其中真命题的个数是A .4B .3C .2D .111.已知函数⎪⎩⎪⎨⎧<-≥-=2,1)21(2,)2()(x x x a x f x 满足对任意的实数21x x ≠都有0)()(2121<--x x x f x f成立,则实数a 的取值范围为 A .)2,(-∞B .]813,(-∞ C .]2,(-∞ D .)2,813[12.已知[1,1]x ∈-,则方程2cos 2πxx -=所有实数根的个数为A .2B .3C .4D .5第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分.13.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1y z x +=的最小值为 .14. 已知0,0x y >>,若2282y x m m x y+>+恒成立,则实数m 的取值范围是 . 15.已知三棱柱111ABC A B C -的侧棱垂直底面,所有顶点都在球面上,21==AA ABAC=1,oBAC 60=∠,则球的表面积为_________. 16.下面四个命题:①已知函数(),0,,0,x f x x =<≥ 且()()44f a f +=,那么4a =-;②要得到函数sin 23y x π⎛⎫=+⎪⎝⎭的图象,只要将sin 2y x =的图象向左平移3π单位; ③若定义在()∞+∞,- 上的函数)(-1()(x f x f x f =+)满足,则)(x f 是周期函数; ④已知奇函数()f x 在(0,)+∞为增函数,且(1)0f -=,则不等式()0f x <的解集{}1x x <-.其中正确的是__________________.三、解答题本大题共5小题,共计70分。

解答应写出文字说明.证明过程或演算步骤 17.(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且12n n n S na a c =+-(c 是常数,*N n ∈),26a =. (1)求c 的值及数列{}n a 的通项公式; (2)证明8111113221<++++n n a a a a a a . 18. (本小题满分12分)在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,PA ⊥平面ABCD ,E 为PD 的中点,PA =2AB =2.(1)若F 为PC 的中点,求证:PC ⊥平面AEF ; (2)求四棱锥P -ABCD 的体积V .19.(本小题满分12分)己知函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f的部分图象如图所示.(1)求函数)(x f 的解析式;(2)若30,54)2(παα<<=f ,求αcos 的值.20.(本小题满分12分)如图所示,在直.三棱柱...ABC -A 1B 1C 1中,AC ⊥BC .(1) 求证:平面AB 1C 1⊥平面AC 1;(2) 若AB 1⊥A 1C ,求线段AC 与AA 1长度之比; (3) 若D 是棱CC 1的中点,问在棱AB 上是否 存在一点E ,使DE ∥平面AB 1C 1?若存在,试确定 点E 的位置;若不存在,请说明理由. 21. (本小题满分12分)设函数()ln ,()xf x ax xg x e ax =-=-,其中a 为正实数. (l)若x=0是函数()g x 的极值点,讨论函数()f x 的单调性;(2)若()f x 在(1,)+∞上无最小值,且()g x 在(1,)+∞上是单调增函数,求a 的取值范围;并由此判断曲线()g x 与曲线212y ax ax =-在(1,)+∞交点个数.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写题号.11122.(本小题满分10分)【选修4—1:几何证明选讲】 如图,在正△ABC 中,点D,E 分别在边AC, AB 上, 且AD=13AC , AE= 23AB ,BD ,CE 相交于点F 。

(1)求证:A ,E ,F ,D 四点共圆;(2)若正△ABC 的边长为2,求,A ,E ,F ,D 所在圆的半径. 23. (本小题满分10分)【选修4—1:几何证明选讲】在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系,已知曲线θθρcos 2sin :2a C =)0(>a ,已知过点)4,2(--P 的直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222 (t 为参数),直线l 与曲线C 分别交于N M ,两点。

(1)写出曲线C 和直线l 的普通方程;(2)若|||,||,|PN MN PM 成等比数列,求a 的值. 24.(本小题满分10分)选修4-5:不等式选讲对于任意的实数a (0≠a )和b ,不等式||||||a M b a b a ⋅≥-++恒成立,记实数M 的最大值是m .(1)求m 的值;(2)解不等式m x x ≤-+-|2||1|.宁夏银川一中2015届高三第四次月考数学(文科)试卷参考答案13. 1 14. 42m -<< 15. 8π 16. ③ 三、解答题: 17. (Ⅰ)解因为12n n n S na a c =+-, 所以当1n =时,11112S a a c =+-,解得12a c =,当2n =时,222S a a c =+-,即1222a a a c +=-,解得23a c =, 所以36c =, 解得2c =;则14a =,数列{}n a 的公差212d a a =-=, 所以1(1)22n a a n d n =+-=+. (Ⅱ)因为12231111n n a a a a a a ++++L 111111111()()()24626822224n n =-+-++-++LMF EDCBA P1111111[()()()]246682224n n =-+-++-++L 111()2424n =-+1184(2)n =-+. 因为*N n ∈ 所以1223111118n n a a a a a a ++++<L 18.(1)∵PA =CA ,F 为PC 的中点,∴AF ⊥PC .∵PA ⊥平面ABCD ,∴PA ⊥CD . ∵AC ⊥CD ,PA ∩AC =A ,∴CD ⊥平面PAC .∴CD ⊥PC . ∵E 为PD 中点,F 为PC 中点, ∴EF ∥CD .则EF ⊥P C . ∵AF ∩EF =F ,∴PC ⊥平面AEF . (2)在Rt △ABC 中,AB =1,∠BAC =60°,∴BCAC =2. 在Rt △ACD 中,AC =2,∠CAD =60°, ∴CD =AD =4. ∴S ABCD =1122AB BC AC CD ⋅+⋅111222=⨯⨯⨯. 则V=12319.20.解析:(1)由于ABC -A 1B 1C 1是直三棱柱....,所以B 1C 1⊥CC又因为AC ⊥BC ,所以B 1C 1⊥A 1C 1,所以B 1C 1⊥平面AC 1 .由于B 1C 1⊂平面AB 1C 1,从而平面AB 1C 1⊥平面AC 1 .(2)由(1)知,B 1C 1⊥A 1C .所以,若AB 1⊥A 1C 111得:A 1C ⊥平面AB 1C 1,从而A 1C ⊥ AC 1 .由于ACC 1A 1是矩形,故AC 与AA 1长度之比为1:1. (3)点E 位于AB 的中点时,能使DE ∥平面AB 1C 1.证法一:设F 是BB 1的中点,连结DF 、EF 、DE .则易证:平面DEF //平面AB 1C 1,从而DE ∥平面AB 1C 1. 证法二:设G 是AB 1的中点,连结EG ,则易证EG DC 1. 所以DE // C 1G ,DE ∥平面AB 1C 1. 21. 【答案】解(1) 由'(0)10g a =-=得1a = ()f x 的定义域为(0,)+∞'1()1f x x=-函数()f x 的增区间为(1,)+∞,减区间为(0,1) (2)由11'ax f (x )a x x -=-=若01a <<则)(x f 在),1(+∞上有最小值()f a 当1a ≥时,)(x f 在),1(+∞单调递增无最小值∵)(x g 在),1(+∞上是单调增函数∴0xg'(x )e a =-≥在),1(+∞上恒成立 ∴a e ≤ ------- 综上所述a 的取值范围为[]1,e --------此时21()2g x ax ax =-即223222(2),()'()x x x e e e x a h x h x x x x-==⇒=令, 则 h(x)在(0,2) 单减,(2,)+∞在单增,极小值为2h(2)2e e =>. 故两曲线没有公共点22.(本小题满分10分)【选修4—1:几何证明选讲】 (Ⅰ)证明:23AE AB =,∴13BE AB =. 在正△ABC 中,13AD AC =,∴AD BE =,又AB BC =,BAD CBE ∠=∠,∴△BAD ≌△CBE ,∴ADB BEC ∠=∠,即πADF AEF ∠+∠=,所以A ,E ,F ,D 四点共圆. …………………………(5分) (Ⅱ)解:如图6,取AE 的中点G ,连结GD ,则12AG GE AE ==.23AE AB =,∴1233AG GE AB ===, 图61233AD AC ==,60DAE ∠=︒,∴△AGD 为正三角形, ∴23GD AG AD ===,即23GA GE GD ===, 所以点G 是△AED 外接圆的圆心,且圆G 的半径为23. 由于A ,E ,F ,D 四点共圆,即A ,E ,F ,D 四点共圆G ,其半径为23.…(10分)23解:(Ⅰ)C 02:,22=--=y x l ax y(Ⅱ)将直线的参数表达式代入抛物线得at t a t t a t a t 832,22280416)224(2121212+=+=+∴=+++-因为|||||,||||,|||2121t t MN t PN t PM -=== 由题意知, 21221212215)(||||t t t t t t t t =+⇒=- 代入得 1=a24.解 (1)不等式||||||a M b a b a ⋅≥-++恒成立,即||||||a b a b a M -++≤对于任意的实数a (0≠a )和b 恒成立,只要左边恒小于或等于右边的最小值. 因为||2|)()(|||||a b a b a b a b a =-++≥-++,当且仅当0))((≥+-b a b a 时等号成立,即||||b a ≥时,2||||||≥-++a b a b a 成立,也就是||||||a b a b a -++的最小值是2.(2) 2|2||1|≤-+-x x . 解法1利用绝对值的意义得2521≤≤x 解法2当1<x 时,原不等式化为2)2()1(≤----x x ,解得21≥x ,所以x 的取值范围是121<≤x .当21≤≤x 时,原不等式化为2)2()1(≤---x x ,得x 的取值范围是21≤≤x .当2>x 时,原不等式化为2)2()1(≤-+-x x ,解得25≤x ,所以x 的取值范围是252≤<x .综上所述 x 的取值范围是51≤≤x .解法3构造函数2|2||1|--+-=x x y 作⎪⎩⎪⎨⎧>-≤≤-<+-=)2(,52)21(,1)1(,12x x x x x y 的图象,利用图象有0≤y 得 2521≤≤x。

相关文档
最新文档