最新2018-2019年人教版七年级上期末数学考试题及答案 (8)

合集下载

2018-2019年新人教版七年级(上)期末考试数学试卷(含答案解析)

2018-2019年新人教版七年级(上)期末考试数学试卷(含答案解析)

2018-2019年新人教版七年级(上)期末考试数学试卷一、选择题(本大题共10小题,共30.0分)1.−12的相反数等于()A. 12B. 2 C. −12D. −22.下列计算正确的是()A. −2−2=0B. 8a4−6a2=2a2C. 3(b−2a)=3b−2aD. −32=−93.如图,点B在点A的方位是()A. 南偏东43∘B. 北偏西47∘C. 西偏北47∘D. 东偏南47∘4.据统计,网络《洋葱数学》学习软件,注册用户已达1200万人,数据1200万用科学记数法表示为()A. 1.2×103B. 1.2×107C. 1.2×108D. 1.2万×1045.如图,小刚将一副三角板摆成如图形状,如果∠DOC=120°,则∠AOB=()A. 45∘B. 70∘C. 30∘D. 60∘6.关于y的方程2m+y=m与3y-3=2y-1的解相同,则m的值为()A. 0B. −2C. −12D. 27.若|m|=5,|n|=3,且m+n<0,则m-n的值是()A. −8或−2B. ±8或±2C. −8或2D. 8或28.某土建工程共需动用30台挖运机械,每台机械每分钟能挖土3m3,或者运土2m3,为了使挖土和运土工作同时结束,安排了x台机械挖土,这里的x应满足的方程是()A. 30−2x=3xB. 3x−2x=30C. 2x=3(30−x)D. 3x=2(30−x)9.已知一个有50个奇数排成的数阵,用如图所示的框去框住四个数,并求出这四个数的和,在下列给出的备选答案中,有可能是这四个数的和的是()A. 114B. 122C. 220D. 8410.如果∠α和∠β互余,则下列表示∠β的补角的式子中:①180°-∠β,②90°+∠α,③2∠α+∠β,④2∠β+∠α,其中正确的有()A. ①②③B. ①②③④C. ①②④D. ①②二、填空题(本大题共8小题,共24.0分)11. 如果卖出一台电脑赚钱500元,记作+500,那么亏本300元,记作______元.12. 如图,在一个长方形休闲广场的中央设计一个圆形的音乐喷泉,若圆形音乐喷泉的半径为r 米,广场的长为a 米,宽为b 米,则广场空地的面积表示为:______米2.13. 某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是______元.14. 如图,将长方形纸片ABCD 沿直线EN 、EM 进行折叠后(点E 在AB 边上),B ′点刚好落在A ′E 上,若折叠角∠AEN =30°15′,则另一个折叠角∠BEM =______.15. 设0.7⋅=x ,由0.7⋅=0.777…可知,10x =7.777…,所以10x -x =7.解方程x =79.于是,得0.7⋅=79.则无限循环小数0.3⋅25⋅化成分数等于______.16. 如图,已知BC 是圆柱的底面直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,若展开图中,金属丝与底面周长围成的图形的面积是5πcm 2,该圆柱的侧面积是______cm 2.17. 已知线段AB =acm ,在直线AB 上截取BC =bcm ,且b <a ,D 是AC 的中点,则线段BD =______cm .18. 如图所示,用圆圈拼成的图案,图1由一个圆环组成,图2由5个圆圈组成,图3由13个圆圈组成,依此规律,第8个图案一共由______个圆圈组成,第n 个由______个组成.三、计算题(本大题共4小题,共34.0分)19. 计算与化简:(1)-23÷23×(-13)2 (2)2(a 2+a +1)-3(1-2a -a 2)20. 解方程:(1)5(x -2)-2=2(2+x )+x(2)0.1(2x−4)−10.2=0.2(4−2x)−0.10.3−121. 我们通常象这样来比较两个数或两个代数式值的大小:若a -b =0,则a =b ;若a -b<0,则a <b ;若a -b >0,则a >b ,我们把这种方法叫“作差法”.已知A =5m 3+3m 2-2(52m -12),B =5m 3+5(m 2-m )+5,试比较代数式A 与B 的大小.22. 如图,已知直线AB 与直线CD 相交于点O ,∠BOE =90°,FO 平分∠BOD ,∠BOC :∠AOC =1:3.(1)求∠DOE 、∠COF 的度数.(2)若射线OF 、OE 同时绕O 点分别以2°/s 、4°/s 的速度,顺时针匀速旋转,当射线OE 、OF 的夹角为90°时,两射线同时停止旋转.设旋转时间为t ,试求t 值.四、解答题(本大题共3小题,共32.0分)23. 如图,已知同一平面内的四个点A 、B 、C 、D ,根据要求用直尺画图.(1)画线段AB ,∠ADC ;(2)找一点P ,使P 点既在直线AD 上,又在直线BC上;(3)找一点Q ,使Q 到A 、B 、C 、D 四个点的距离和最短.24. 下表是某市青少年业余体育健身运动中心的三种消费方式.方式 一年费/元 消费限定次数(次) 消费超时费(元/次)方式A5807525方式B88018020方式C0不限次数,29元/次(1)设一年内参加健身运动的次数为t次(t为正整数).试用t表示大于180次时,三种方式分别如何计费.(2)试计算t为何值时,方式A与方式B的计费相等?方式A与方式C呢?(3)请你根据参加运动的次数,设计最省钱的消费方式.25.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P 点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B 两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.答案和解析1.【答案】A【解析】解:根据定义可得:-的相反数等于.故选:A.根据相反数的定义:只有符号不同的两个数叫做互为相反数可以直接写出答案.此题主要考查了相反数的定义,关键是掌握相反数的定义.2.【答案】D【解析】解:A、-2-2=-2+(-2)=-4,此选项错误;B、8a4与-6a2不是同类项,不能合并,此选项错误;C、3(b-2a)=3b-6a,此选项错误;D、-32=-9,此选项正确;故选:D.根据有理数的减法和乘方的运算法则及同类项的定义、去括号法则逐一判断可得.本题主要考查有理数的运算和整式的运算,解题的关键掌握有理数的减法和乘方的运算法则及同类项的定义、去括号法则.3.【答案】B【解析】解:由余角的定义,得,∠CAB=90°43°=47°,点B在点A的北偏西47°,故选:B.根据余角的定义,方向角的表示方法,可得答案.本题考查了方向角,利用余角的定义得出方向角是解题关键.4.【答案】B【解析】解:1200万=1.2×107.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.【答案】D【解析】解:∵∠DOB=∠AOC=90°,∠DOC=120°,∴∠DOA=30°,故∠AOB=90°-30°=60°.故选:D.直接利用互余的性质进而结合已知得出答案.此题主要考查了互余的性质,正确得出∠DOA=30°是解题关键.6.【答案】B【解析】解:由3y-3=2y-1,得y=2.由关于y的方程2m+y=m与3y-3=2y-1的解相同,得2m+2=m,解得m=-2.故选:B.分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.本题考查了同解方程,解决的关键是能够求解关于x的方程,根据同解的定义建立方程.7.【答案】A【解析】解:∵|m|=5,|n|=3,且m+n<0,∴m=-5,n=3;m=-5,n=-3,可得m-n=-8或-2,则m-n的值是-8或-2.故选:A.根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.此题考查了代数式求值,以及绝对值,熟练掌握运算法则是解本题的关键.8.【答案】D【解析】解:设安排x台机械挖土,则有(30-x)台机械运土,x台机械挖土的总数为3xm3,则(30-x)台机械运土总数为2(30-x)m3,根据挖出的土等于运走的土,得:3x=2(30-x).故选:D.根据安排x台机械挖土,则有(30-x)台机械运土,x台机械挖土的总数为3xm3,则(30-x)台机械运土总数为2(30-x)m3,进而得出方程.此题主要考查了由实际问题抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.【答案】B【解析】解:设最小的一个数为x,则另外三个数为x+8,x+10,x+12,显然x的个位数字只可能是3,5,7,框住的四个数之和为x+(x+8)+(x+10)+(x+12)=4x+30.当4x+30=114时,x=21,不合题意;当4x+30=122时,x=23,符合题意;当4x+30=220时,x=47.5,不合题意;当4x+30=84时,x=13.5,不合题意;故选:B.可利用图例,看出框内四个数字之间的关系,上下相差10,左右相差2,利用此关系表示四个数之和,再进行求解即可得出答案.此题考查了一元一次方程的应用,解题的关键是读懂题目的意思,根据题目表示出这四个数,注意阅读材料题一定要审题细致,思维缜密.10.【答案】A【解析】解:因为∠α和∠β互余,所以表示∠β的补角的式子:①180°-∠β,正确;②90°+∠α,正确;③2∠α+∠β,正确④2∠β+∠α,错误;故选:A.根据互余的两角之和为90°,进行判断即可.本题考查了余角和补角的知识,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.11.【答案】-300【解析】解:根据题意,亏本300元,记作-300元,故答案为:-300.由赚钱为正,亏本为负.赚钱500元记作+500,即可得到亏本300元应记作-300元.此题考查了正数与负数,熟练掌握相反意义的量是解本题的关键.12.【答案】(ab-πr2)【解析】解:由图可得,广场空地的面积为:(ab-πr2)米2,故答案为:(ab-πr2).根据题意和图形,可以用代数式表示出广场空地的面积.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.【答案】64【解析】解:设该玩具的进价为x元.根据题意得:100×80%-x=25%x.解得:x=64.故答案是:64.设该玩具的进价为x元.先求得售价,然后根据售价-进价=进价×利润率列方程求解即可.本题主要考查的是一元一次方程的应用,根据售价-进价=进价×利润率列出方程是解题的关键.14.【答案】59°45′【解析】解:由折叠性质得:∠AEN=∠A′EN,∠BEM=∠B′EM,∴∠A′EN=30°15′,∠BEM=(180°-∠AEN-∠A′EN)=(180°-30°15′-30°15′)=59°45′,故答案为:59°45′.由折叠性质得∠AEN=∠A′EN,∠BEM=∠B′EM,即可得出结果;本题主要考查了翻折变换的性质及其应用问题;灵活运用翻折变换的性质来分析、判断、推理是解决问题的关键.15.【答案】325999【解析】解:设=x,由=0.325325325…,易得1000x=325.325325….可知1000x-x=325.325325…-0.325325325…=325,即 1000x-x=325,解得:x=.故答案为:.设=x,找出规律公式1000x-x=325,解方程即可求解.此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化成整数形式.16.【答案】10π【解析】解:如图,圆柱的侧面展开图为长方形,AC=A'C ,且点C 为BB'的中点,∵AA'∥BB',四边形ABB'A'是矩形,∴S △AA'C =S 长方形ABB'A ',又∵展开图中,S △AA'C =5πcm 2,∴圆柱的侧面积是10πcm 2.故答案为:10π.由平面图形的折叠及立体图形的表面展开图的特点解题.此题主要考查圆柱的展开图,以及学生的立体思维能力.解题时注意:圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形17.【答案】12(a +b )或12(a -b )【解析】 解:①当点C 在点B 的左侧时,如图,AC=AB-BC=(a-b )cm ,∵D 是AC 的中点,∴CD=AC=(a-b )cm ,则BD=BC+CD=b+(a-b )=(a+b )cm ;②当点C 在点B 右侧时,如图2,AC=AB+BC=(a+b )cm ,∵D 是AC 的中点,∴CD=AC=(a+b )cm ,则BD=CD-BC=(a+b )-b=(a-b )cm ,故答案为:(a+b )或(a-b ).分①当点C 在点B 的左侧时和②当点C 在点B 右侧时,分别求解可得. 本题主要考查两点间的距离和中点的定义,熟练掌握线段的和差运算是解题的关键.18.【答案】113 n 2+(n -1)2【解析】解:图1由一个圆环组成:1=12图2由5个圆圈组成:5=22+12图3由13个圆圈组成:13=33+22依此规律,第8个图案:82+72=113第n 个由n 2+(n-1)2,故答案为113,n 2+(n-1)2;探究规律,利用规律即可解决问题;本题考查规律问题,解题的关键是学会探究规律的方法,学会利用数形结合的思想解决问题,属于中考常考题型.19.【答案】解:(1)原式=-8×32×19=-43;(2)原式=2a 2+2a +2-3+6a +3a 2=5a 2+8a -1.【解析】(1)原式先计算乘方运算,再计算乘除运算即可求出值;(2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)去括号得:5x -10-2=4+2x +x ,移项合并得:2x =16,解得:x =8;(2)方程整理得:x -2-5=2(4−2x)−13-1,去分母得:3x -21=7-4x -3,移项合并得:7x =25,解得:x =257.【解析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解. 此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.21.【答案】解:∵A =5m 3+3m 2-2(52m -12),B =5m 3+5(m 2-m )+5,∴A -B =5m 3+3m 2-5m +1-5m 3-5m 2+5m -5=-2m 2-4<0,则A <B .【解析】把A 与B 代入A-B 中,判断差的正负确定出A 与B 的大小即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)∵∠BOC :∠AOC =1:3,∴∠BOC =180°×11+3=45°, ∴∠AOD =45°,∵∠BOE =90°,∴∠AOE =90°,∴∠DOE =45°+90°=135°,∠BOD =180°-45°=135°,∵FO 平分∠BOD ,∴∠DOF =∠BOF =67.5°,∴∠COF =180°-67.5°=112.5°.(2)∠EOF =90°+67.5°=157.5°,依题意有4t -2t =157.5-90,解得t =33.75.故t 值为33.75.【解析】(1)根据平角的定义和已知条件可求∠BOC 的度数,根据对顶角相等可求∠AOD 的度数,根据角的和差关系可求∠DOE 的度数,根据平角的定义和角平分线的定义可求∠DOF 的度数,再根据平角的定义求得∠COF 的度数. (2)先求出∠EOF 的度数,再根据射线OE 、OF 的夹角为90°,列出方程求解即可.此题主要考查了角平分线的性质以及垂线定义和邻补角的定义,正确表示出∠AOD的度数是解题关键.23.【答案】解:(1)如图所示,线段AB、∠ADC即为所求;(2)直线AD与直线BC交点P即为所求;(3)如图所示,点Q即为所求.【解析】(1)根据线段和角的定义作图可得;(2)直线AD与直线BC交点P即为所求;(3)连接AC、BD,交点即为所求.本题主要考查作图-复杂作图,解题的关键是熟练掌握线段、直线和角的概念.24.【答案】解:(1)消费方式A所需费用为580+25(t-75)=25t-1295元;消费方式B所需费用为:880+20(t-180)=20t-2720元;消费方式C所需费用为:29t元.(2)当0<t≤75时,消费方式A所需费用为580元;当t>75时,消费方式A所需费用为(25t-1295)元.当0<t≤180时,消费方式B所需费用为880元;当t>180时,消费方式B所需费用为(20t-2720)元.当t>0时,消费方式C所需费用为29t元.①若方式A与方式B的计费相等,则25t-1295=880,解得:t=87,∴当t=87时,方式A与方式B的计费相等;②若方式A与方式C的计费相等,则580=29t,解得:t=20,∴当t=20时,方式A与方式C的计费相等.(3)根据(2)的结论,可知:当0<t<20时,选择方式C消费最省钱;当t=20时,选择方式A与方式C的计费相等;当20<t<87时,选择方式A消费最省钱;当t=87时,选择方式A与方式B的计费相等;当t>87时,选择方式B消费最省钱.【解析】(1)根据总费用=年卡+消费超时费×超出次数,即可得出选择消费方式A、消费方式B及消费方式C所需费用;(2)找出当0<t≤75及t>75时消费方式A所需费用;当0<t≤180及t>180时消费方式B所需费用;当t>0时消费方式C所需费用.①由方式A与方式B 的计费相等,即可得出关于t的一元一次方程,解之即可得出结论;②由方式A与方式C的计费相等,可得出关于t的一元一次方程,解之即可得出结论;(3)由(2)的结论,即可找出最省钱的消费方式.本题考查了列代数式以及一元一次方程的应用,解题的关键是:(1)根据三种消费方式的收费标准,找出当t>180时三种消费方式所需费用;(2)找准等量关系,正确列出一元一次方程;(3)根据(2)的结论,找出最省钱的消费方式.25.【答案】解:(1)∵P是AB的中点,A、B所对应的数值分别为-20和40.∴点p应该位于点A的右侧,和点A的距离是30,而点A位于原点O的左侧,距离为20∴点P位于原点的右侧,和原点O的距离为10.故答案是10.=20(秒),此即整个过程中点P运动(2)①点A和点B相向而行,相遇的时间为601+2的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤15.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤15.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P与点B的距离越来越大,所以不存在相等的时候.【解析】(1)根据题意结合图形即可解决问题;(2)①关键是确定P点运动的时间;②根据条件确定t的取值范围,由点P运动的时间和速度,再结合其初始位置,易得其在数轴上对应的位置;③研究三个点的相对位置和运动过程中距离的变化情况可以判断.该命题主要考查了数轴上的点的排列特点;解题的关键是深刻把握题意.。

人教版2018-2019学年七年级上册数学期末考试题及答案

人教版2018-2019学年七年级上册数学期末考试题及答案

A .B .C .D .2018-2019学年第一学期期末测试卷初一数学一、选择题(每小题3分,本题共30分)1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米, 是当今世界上最大的城市广场. 将440 000用科学记数法表示应为 A .4.4×105B .4.4×104C .44×104D .0.44×1062. 如果向右走5步记为+5,那么向左走3步记为 A .+3 B .﹣3 C .31+D .31- 3. 如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是 A .点A 与点B B .点B 与点C C .点B 与点DD .点A 与点D4. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 A .45° B .55° C .125° D .135°5. 下列各式中运算正确的是A .189=-a aB .4222a a a =+C .b a b a b a 444253-=-D .532623a a a =+6. 下列几何体中,主视图相同的是 A .①② B .①④ C .①③ D .②④7. 下列图形中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是C D B A -2-12108. 如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条 墨线,能解释这一实际应用的数学知识是 A.两点确定一条直线 B.两点之间线段最短 C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直9. 在解方程133221=+--x x 时,去分母正确的是 A .()()132213=+--x x B .()()332213=+--x xC .()()632312=+--x xD .()()632213=+--x x10.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售. 方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买; 方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四二、填空题(每小题3分,本题共30分) 11.57.32︒ = _______︒ _______' ______ "12.若x =5是关于x 的方程2x +3k -5=0的解,则k = .13.单项式243ab c -的系数是 ,次数是 ,多项式222389x y x y --B的最高次项为 . 14.比较大小:31-52-15.利用等式的性质解方程:2x +13=12第一步:在等式的两边同时 ,第二步:在等式的两边同时 , 解得:x =16.如图,C ,D 是线段AB 上两点,CB =3cm ,DB =5cm ,D 是AC 的中点, 则线段AB 的长为 cm .17.教材中《一元一次方程》一章的知识结构如图所示, 则A 和B 分别代表的是A 代表 ,B 代表 .18. ,,,a b c d 为有理数,现规定一种运算:a cb d=ad bc -,那么当2(1)x -45=18时x 的值是 .19.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣. 《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”ABD C BA译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为 __________ __.20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、计算:(共4个小题,每小题5分,共20分) 21. -14 -5+30-2 22. (-125)⨯158÷(-23)23. )36()1276521(-⨯-+ 24. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦四、化简求值(共2个小题,每小题5分,共10分) 25. 化简:.74562222b a ab ab b a --+26. 先化简,再求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值,其中x =2,y =-21五、解方程(共2个小题,每小题5分,共10分) 27. )43(2)2(5x x --=- 28. 318146x x -+=-六、请按下列步骤画图:(用圆规、三角板或量角器画图,不写画法、保留作图痕迹)29. (每小题1分,共4分)如图,已知平面上的三个点A、B、C.(1)连接AB;(2)画射线AC;(3)画直线BC;(4)过点A作BC的垂线,垂足为D.七、列方程解应用题(本题8分)30.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成。

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。

人教版)2018-2019学年初一数学上册期末测试卷(含答案)

人教版)2018-2019学年初一数学上册期末测试卷(含答案)

人教版)2018-2019学年初一数学上册期末测试卷(含答案)2018-201年第一学期初一期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.绝对值是2的数是______。

A。

-2 B。

2 C。

2或-2 D。

122.据中新网报道,“神威·太湖之光”获吉尼斯世界纪录认证,成为世界上“运算速度最快的计算机”,它共有块处理器。

其中用科学记数法表示应为______。

A。

0.4096×10 B。

4.096×10^5 C。

4.0960×10 D。

40.96×103.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是______。

A。

m 3 C。

m< -n D。

-44.若x=3是关于x的方程2x-a=1的解,则a的值为______。

5.下列判断正确的是______。

A。

近似数0.35与0.350的精确度相同 B。

a的相反数为-a C。

m的倒数为1/m D。

m=m6.点C在射线AB上,若AB=3,BC=2,则AC为______。

A。

5 B。

1或5 C。

4 D。

不能确定7.同一平面内,两条直线的位置关系可能是______。

A。

相交或平行B。

相交或垂直C。

平行或垂直D。

平行、相交或垂直8.如图,点C为线段AB的中点,延长线段AB到D,使得BD=1/3AB。

若AD=8,则CD的长为______。

A。

2 B。

3 C。

5 D。

79.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是______。

A。

用两个钉子就可以把木条固定在墙上 B。

如果把A,B两地间弯曲的河道改直,那么就能缩短原来河道的长度 C。

植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线 D。

测量运动员的跳远成绩时,皮尺与起跳线保持垂直10.按下图方式摆放餐桌和椅子。

1张餐桌坐6人,2张餐桌坐8人,…,n张餐桌可坐的人数为______。

人教版2018-2019学年七年级上学期期末测试数学试卷(解析版)

人教版2018-2019学年七年级上学期期末测试数学试卷(解析版)

期末测试卷一、选择题:每小题3分,共30分1. 2015的相反数是()A. B. ﹣2015 C. 2015 D. ﹣【答案】B【解析】分析:利用相反数的定义即可得结果.详解:2015的相反数是﹣2015.故选B.点睛:本题主要考查了相反数的定义,熟记定义是解答此题的关键.2. 在﹣4,0,2.5,|﹣3|这四个数中,最大的数是()A. ﹣4B. 0C. 2.5D. |﹣3|【答案】D【解析】分析:|﹣3|=3,再去比较﹣4,0,2.5,3这四个数即可得出结论.详解:∵|﹣3|=3,且有﹣4<0<2.5<3,∴最大的数是|﹣3|.故选D.3. 我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A. 0.21×108B. 21×106C. 2.1×107D. 2.1×106【答案】D【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:2100000=2.1×106,故选D.考点:科学记数法—表示较大的数.4. 下列方程为一元一次方程的是()A. y+3=0B. x+2y=3C. x2=2xD. +y=2【答案】A【解析】试题分析:一元一次方程是指只含有一个未知数,且未知数的最高次数为1次的整式方程.B选项含有两个未知数;C选项未知数的最高次数为2次;D选项不是整式.考点:一元一次方程的定义5. 已知∠A=65°,则∠A的补角等于()A. 125°B. 105°C. 115°D. 95°【答案】C【解析】∵∠A=65°,∴∠A的补角为180°-65°=115°,故选C.6. 下列各式正确的是()A. ﹣8+5=3B. (﹣2)3=6C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b【答案】C【解析】A. ∵﹣8+5=-3 ,故不正确;B. ∵(﹣2)3=-8,故不正确;C. ∵﹣(a﹣b)=﹣a+b,故正确;D. ∵2(a+b)=2a+2b ,故不正确;故选C.7. 如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A. b﹣a>0B. a+b<0C. ab<0D. b<a【答案】A【解析】A. ∵b<a, ∴ b﹣a<0 ,故不正确;B. ∵b<0,a>0,, ∴ a+b<0 ,故正确;C. ∵b<0,a>0, ab<0 ,故正确;D. ∵b<0,a>0, b<a ,故正确;故选A.8. 将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】D【解析】试题分析:根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选D.考点:点、线、面、体.9. 一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A. x(30﹣2x)平方厘米B. x(30﹣x)平方厘米C. x(15﹣x)平方厘米D. x(15+x)平方厘米【答案】C【解析】试题分析:由题意先根据长方形的周长公式表示出另一边的长,再根据长方形的面积公式求解即可.由题意得该长方形的面积是x(15-x)平方厘米,故选C.考点:长方形的周长和面积公式...... ...............10. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A. 赚16元B. 赔16元C. 不赚不赔D. 无法确定【答案】B【解析】试题分析:此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.解:设赚了25%的衣服的售价x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的售价y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选B.考点:一元一次方程的应用.二、填空题:每小题4分,共24分11. 如果“节约10%”记作+10%,那么“浪费6%”记作:______.【答案】﹣6%.【解析】试题分析:明确“正”和“负”所表示的意义:节约用+号表示,则浪费一定用﹣表示,据此即可解决.解:因为节约10%记作:+10%,所以浪费6%记作:﹣6%.故答案为:﹣6%.考点:正数和负数.12. 按四舍五入法则去近似值:(1)2.086≈______(精确到百分位).(2)0.03445≈______(精确到0.001)【答案】(1). 2.09(2). 0.034【解析】试题分析:精确到百分位即是对千分位四舍五入,精确到0.001即是对0.0001位四舍五入.按四舍五入法则取近似值:2.096≈2.10(精确到百分位).-0.03445≈-0.034(精确到0.001).考点:近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握取近似数的方法,即可完成.13. 若﹣5x n y2与12x3y2m是同类项,则m=______,n=______.【答案】(1). 1(2). 3【解析】试题分析:根据同类项的定义(所含字母相同,相同字母的指数相同),列出方程,从而求出m,n的值.解:因为﹣5x n y2与12x3y2m是同类项,所以n=3,2=2m,解得:m=1,n=3.故答案为:1,3.点评:本题考查同类项的知识,属于基础题目,关键是掌握同类项所含字母相同,且相同字母的指数相同,这两点是易混点,同学们要注意区分.14. 已知5是关于x的方程3x﹣2a=7的解,则a的值为______.【答案】4【解析】∵关于x的方程3x﹣2a=7的解是5,∴3×5﹣2a=7,∴a=4.故答案为:4.15. 如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=______.【答案】134°【解析】试题分析:根据题意可得∠AOE=90°,则∠AOC=46°,则∠AOD=180°-∠AOC=180°-46°=134°.考点:角度的计算.16. 已知线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,…,A n平分AA n﹣1,则AA n=____cm.【答案】【解析】分析:根据题意,找出AA1,AA2,AA3与a的关系,再按照规律解答即可.详解:∵线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,∴AA1=a,AA2=a,AA n=()na.故答案为:()n a.点睛:本题主要考查两点间的距离,熟练找出规律是解答本题的关键.三、解答题:每小题6分,共18分17. 计算:﹣12014﹣6÷(﹣2)×|﹣|.【答案】0【解析】分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.详解:原式=﹣1+6××=﹣1+1=0.点睛:本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.18. 如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析.【解析】试题分析:(1)按要求画图即可;按要求画图即可;按要求画图即可;试题解析:(1)如图所示;如图所示;如图所示。

2018-2019学年新人教版数学七年级上册期末试题(含答案解析)

2018-2019学年新人教版数学七年级上册期末试题(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。

2018—2019学年度新人教版七年级数学第一学期期末试卷含有参考答案带解析

2018—2019学年度新人教版七年级数学第一学期期末试卷含有参考答案带解析

2018—2019学年度新人教版七年级数学第一学期期末试卷一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际问题的数学知识是( ) A .两点确定一条直线 B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直2、向北行驶3 km ,记作+3 km ,向南行驶2 km 记作( )A .+2 kmB .-2 kmC .+3 kmD .-3 km 3、若使等式(-4)□(-6)=2成立,则□中应填入的运算符号是( ) A .+ B .- C .× D .÷ 4、下列运算正确的是( )A .5x -3x =2B .2a +3b =5abC .-(a -b)=b +aD .2ab -ba =ab5、如果以x =-5为方程的解构造一个一元一次方程,那么下列方程中不满足要求的是( )A .x +5=0B .x -7=-12C .2x +5=-5D .=-16、张东同学想根据方程10x +6=12x -6编写一道应用题:“几个人共同种一批树苗,________,求参与种树的人数.”若设参与种树的有x 人,那么横线部分的条件应描述为( )A .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,那么剩下6棵树苗未种B .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,那么缺6棵树苗C .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,也会剩下6棵树苗未种D .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,同样也是缺6棵树苗 7、在数轴上,两点M ,N 分别表示数m ,n ,那么M ,N 两点之间的距离等于( ) A .m +n B .m -n C .|m +n| D .|m -n|8、在同一平面上,若∠BOA =60.3°,∠BOC =20°30′,则∠AOC 的度数是( ) A .80.6° B .40° C .80.8°或39.8° D .80.6°或40°9、-7的倒数是( )A .7B .C .-7D .-10、如图,下面几何体,从左边看得到的平面图形是( )A .AB .BC .CD .D二、填空题11、据统计,2014年全国约有939万人参加高考,939万人用科学记数法表示为____________人。

人教版2018-2019学年七年级上册数学期末考题及答案

人教版2018-2019学年七年级上册数学期末考题及答案

人教版2018-2019学年七年级上册数学期末考题及答案第一部分:选择题1. 以下哪个数是自然数?- A. -3- B. 0- C. 1- D. 1/2- 答案:C2. 简化下列算式:2(3x - 4) + 5(x + 2)- A. 11x + 2- B. 11x - 8- C. 11x + 8- D. 5x + 8- 答案:B3. 已知直角三角形的斜边长为5,其中一条直角边长为3,求另一条直角边长。

- A. 4- B. 8- C. 9- D. 16- 答案:4第二部分:填空题1. 用科学记数法表示2000000。

- 答案:2 × 10^62. 等差数列的首项为20,公差为5,求第10项。

- 答案:653. 一个正方形的周长为24 cm,求其面积。

- 答案:36 cm^2第三部分:解答题1. 某商店原价200元的商品打8折出售,求打折后的价格。

- 解答:打折后的价格为200 × 0.8 = 160元。

2. 某图书馆有5000本书,其中非教材类书籍占总数的四分之一,求非教材类书籍的数量。

- 解答:非教材类书籍的数量为5000 × (1/4) = 1250本。

3. 一辆汽车以每小时60公里的速度行驶,行驶2小时后,汽车的行驶距离是多少?- 解答:汽车行驶的距离为60 km/h × 2 h = 120公里。

以上是人教版2018-2019学年七年级上册数学期末考题及答案的部分内容。

*注意:以上答案仅供参考,具体以实际试卷为准。

*。

人教版七年级上册数学期末试题及答案(2018-2019学年)

人教版七年级上册数学期末试题及答案(2018-2019学年)

人教版七年级上册数学期末试题及答案(2018-2019学年)一、选择题1. 如果 \(a^3 = -8\),那么实数 \(a\) 等于:A. \(-2\)B. \(2\)C. \(0\)D. \(3\){答案:A}2. 下列各数中是无理数的是:A. \(3\sqrt{2}\)B. \(\sqrt{9}\)C. \(0.333...\)D. \(2\sqrt{5}\){答案:A, D}3. 已知 \(a = 5\) 和 \(b = 12\),则 \(a^2 + b^2\) 等于:A. \(119\)B. \(121\)C. \(125\)D. \(132\){答案:B}4. 下列各数中是等差数列的是:A. \(2, 5, 8, 11, ...\)B. \(1, 3, 5, 7, ...\)C. \(2, 4, 8, 16, ...\)D. \(1, 1, 1, 1, ...\){答案:B}5. 如果 \(a:b = 2:3\),那么 \(a+b : b\) 等于:A. \(5:3\)B. \(2:3\)C. \(6:5\)D. \(8:7\){答案:A}二、填空题1. \(3^0 = _______){答案:1}2. 一个数的平方根叫做它的______。

{答案:算术平方根}3. 若 \(a:b = 4:5\),那么 \(a+b : b = _______)。

{答案:9}三、解答题1. 解方程 \(2x-5=3x+1\)。

{答案:x = -6}2. 已知 \(a=6\) 和 \(b=8\),求 \(a^2+b^2\)。

{答案:100}3. 计算 \(7+8\times(-2)\)。

{答案:-3}4. 判断 \(2^3 = 8\) 是否成立。

{答案:成立}5. 解不等式 \(3x-7>2x+1\)。

{答案:x>8}四、应用题1. 小明的身高是1.6米,小华的身高是1.5米,小明比小华高多少?{答案:0.1米}2. 一个长方形的长是10厘米,宽是5厘米,求它的面积和周长。

2018-2019学年七年级上期末数学试卷含答案新人教版

2018-2019学年七年级上期末数学试卷含答案新人教版

2018-2019学年第一学期期末测试卷初 一 数 学一、选择题:(共8个小题,每小题2分,共16分)每小题给出的四个选项中,只有一个是符合题目要求的............,请在答题纸上将所选项涂.........黑.. 1.随着“一带一路”的建设推进,我国与一带一路沿线部分地区的贸易额加速增长.据统计,2017年我国与东南亚地区的贸易额将超过189 000 000万美元.将189 000 000用科学记数法表示应为A .610189⨯B .610891⨯.C .710918⨯.D .810891⨯.2.鼓是中国传统民族乐器.鼓作为一种打击乐器,在我国民间被广泛流传,它发音脆亮,独具魅力.鼓在传统音乐以及现代音乐中是一种比较重要的乐器,它来源于生活,又很好地表现了生活.除了作为乐器外,鼓在古代还用来传播信息.如图1是我国某少数民族的一种鼓的轮廓图,如果从上面看是图形A .B. C . D . 图13.数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示有理数,这样就建立起了“数”与“形”之间的联系.同时,数轴也是我们研究相反数、绝对值的直观工具.有理数a ,b ,c 在数轴上的位置如图所示,则a 的相反数是A .aB .bC .cD .b -4.下列计算中,正确的是A .22254a b a b a b -=B .a b ab +=C .33624a a -=D .235235b b b +=5. 若23(2)0m n ++-=,则m -n 的值为A .1B .-1C .5D .-56.随着我国的发展与强大,中国文化与世界各国文化的交流与融合进一步加强.为了增进世界各国人民对中国语言和文化的理解,在世界各国建立孔子学院,推广汉语,传播中华文化.同时,各国学校之间的交流活动也逐年增加.在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是 A .仁 B .义C .智D .信7.计算23222333m n ⨯⨯⨯=+++个个……–1–2–3–41234acbA.23nmB.23mnC.32mnD.23mn8.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是A.80%x-20B.80%(x-20)C.20%x-20D.20%(x-20)二、填空题(共8个小题,每题2分,共16分)9.近似数2.780精确到.10.已知∠α+∠β=90°,且∠α=36°40′,则∠β= .11.关于x的方程2x+5a=3的解与方程2x+2=0的解相同,则a的值是__________.12.比较大小:-2_____ -5(填“>”或“<”或“=”).请你说明是怎样判断的.13.写出-21x2y3的一个同类项.14.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所万步. 15.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题: “今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起, 问何日相逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从 北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞, 经过几天相遇.设野鸭与大雁从南海和北海同时起飞,经过x 天16.按下面的程序计算:三、解答题 (本题68分)17.计算: (1)7+(-28)-(-9) (2)23136()3412-⨯+- (3)32128(2)4-÷-⨯- 18.先化简,再求值:222(22)(21)x x x x +----,其中12x =-.19.解方程:(1)293(2)x x -+=- (2) 12126x x -++=20.填空,完成下列说理过程如图,点A ,O ,B 在同一条直线上, OD ,OE 分别平分∠AOC 和∠BOC . 求∠DOE 的度数.解:因为OD 是∠AOC 的平分线,( )所以∠COD =21∠AOC .( )因为OE 是∠BOC 的平分线, 所以 =21∠BOC . 所以∠DOE =∠COD +∠COE =21(∠AOC+∠BOC )=21∠AOB= °.21.如图,点C 是线段AB 上的一点,延长线段 AB 到点D ,使BD=CB . (1)请依题意补全图形;(2)若AD =7,AC =3,求线段DB 的长. 22.如图,点A ,B ,C 是平面上三个点.(1)按下列要求画图:①画线段AB ;②画射线CB ;③反向延长线段AB ; ④过点B 作直线AC 的垂线BD ,垂足为点D ;(2)请你测量点B 到直线AC 的距离,大约是 cm .(精确到0.1cm ) 23.列方程解应用题.甲班有45人,乙班有39人.现在需要从甲、乙两班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍,请问从甲、乙两班各抽调了多少人参加歌咏比赛?24.如图,点P ,点Q 分别代表两个村庄,直线l 代表两个村庄中间的一条公路.B根据居民出行的需要,计划在公路l 上的某处设置一个公交站.(1)若考虑到村庄P 居住的老年人较多,计划建一个离村庄P 最近的车站,请在公路l 上画出车站的位置(用点M 表示),依据是 ; (2)若考虑到修路的费用问题,希望车站的位置到村庄P 和村庄Q 的距离之和最小,请在公路l 上画出车站的位置(用点N 表示),依据是 .25.阅读材料.2017年10月18日,第十九次全国代表大会在人民大会堂隆重开幕.十九大提出,既要创造更多物质财富和精神财富以满足人民日益增长的美好生活需要,也要提供更多优质生态产品以满足人民日益增长的优美生态环境需要.必须坚持节约优先、保护优先、自然恢复为主的方针,形成节约资源和保护环境的空间格局、产业结构、生产方式、生活方式,还自然以宁静、和谐、美丽.为了保护环境节约水资源,我市按照居民家庭年用水量实行阶梯水价,水价分档递增.居民用户按照以下的标准执行:第一阶梯上限180立方米,水费价格为5元/每立方米;第二阶梯为181-260立方米之间,水费价格7元/每立方米;第三阶梯为260立方米以上用水量,水价为9元/每立方米.如下表所示:l QP根据以上材料解决问题:若小明家在2017年共用水200立方米,准备1000元的水费够用吗?说明理由.26.阅读材料.点M ,N 在数轴上分别表示数m 和n ,我们把m ,n 之差的绝对值叫做点M ,N 之间的距离,即MN=|m-n |.如图,在数轴上,点A ,B ,O ,C ,D 的位置如图所示,则DC=|3-1|=|2|=2;CO=|1-0|=|1|=1;BC=|(-2)-1|=|-3|=3;AB=|(-4)-(-2)|=|-2|=2.(1) BD = ;(2)|1-(-4)|表示哪两点的距离?(3)点P 为数轴上一点,其表示的数为x ,用含有x 的式子表示BP= ,当BP =4时,x = ;当|x -3|+|x +2|的值最小时,x 的取值范围是 .27.阅读材料.某校七年级共有10个班,320名同学,地理老师为了了解全年级同学明年选考时,选修地理学科的意向,请小丽,小明,小东三位同学分别进行抽样调查.三位同学调查结果反馈如下:A B O C D–1–2–3–41234(1)小丽、小明和小东三人中,你认为哪位同学的调查结果较好地反映了该校七年级同学选修地理的意向,请说出理由.(2)估计全年级有意向选修地理的同学的人数为_______人,理由是 .28.阅读材料.我们知道,1+2+3+…+n =2)1(+n n ,那么12+22+32+…+n 2结果等于多少呢? 在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为n+n+n+…+n ,即n 2.这样,该三角形数阵中共有2)1(+n n 个圆圈,所有圆圈中数的和为12+22+32+…+n 2. (1)2..................22 (32)………(n -1)2 ………………n 2第1行……………… 第2行……………… 第3行………………第(n -1)行……… 第n 行……………… 图1【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n 2)= ,因此,12+22+32+…+n 2= . 【解决问题】根据以上发现,计算:10...32110...3212222++++++++的结果为 .延庆区2017-2018学年第一学期期末测试卷初 一数 学 答 案一、选择题:(共8个小题,每小题2分,共16分)DACA DBBA二、填空题 (共8个小题,每空2分,共16分)9.0.001 10.53°20′ 11.1 12.>,合理13.ax 2y 3 14.1.3 15.1)9171(=+x 16.3三、解答题17.(1)解:7289=-+原式 ……… 2分1628=- ………… 3分12=- ………… 4分17.(2)解:原式=2313636363412-⨯-⨯+⨯ ………………3分 =24273--+ ……………………………4分 =48- ……………………………………5分17.(3)解:原式=18844-÷-⨯………………2分 =11--……………………………… 4分 =-2…………………………………… 5分 18.解:原式=2224421x x x x +--++ ……………………3分 =263x x +-………………………………………4分当12x =-时, 原式=211()6()322-+⨯--1334=--234=-………………… 5分 19.(1)解:去括号,得 2936x x -+=- …………………2分移项,合并同类项,得 515x = ……………4分3x = ……………5分所以原方程的解是3x =19.(2)解:2)1(36+=-+x x …………………………………2分2336+=-+x x …………………………………3分 12-=x ………………………………4分.21-=x ……………5分20.已知 ……………………………1分角平分线定义…………………………………2分∠COE ……………………………3分90 ……………………………4分21 (1)补全图形…………………………………1分(2)解:∵AD =7,AC =3,(已知)∴CD =AD -AC =7-3=4.. …………………………………2分∵BD=CB ,(已知)∴B 为CD 中点.(中点定义) …………………………………3分 ∵B 为CD 中点,(已证)∴BD =21CD .(中点定义)…………………………………4分 ∵CD =4,(已证)∴BD =21×4=2. …………………………………5分 22.(1)图略…………………………………4分(2)1.7至2.0. ……………………………5分23.解:设从甲班抽调了x 人,那么从乙班抽调了(x -1)人. ………1分45-x =2[39-(x -1)] ……………………………………2分解得x =35.x -1=34 ……………………………………3分答:从甲班抽掉了35人,从乙班抽掉了34人. ………………4分24.(1) 直线外一点与直线上各点连接的所有线段中,垂线段最短. …………………………………2分(2)两点之间线段最短………………………………4分25.解:180×5+(200-180)×7------------------1分=900+140=1040-----------------------------------2分∵1040>1000∴准备1000元的水费不够.--------------------3分26.(1)4…………………………………1分5…………………………………2分(2)A ,C …………………………………3分(3)|x +2|…………………………………4分2或-6…………………………………5分-2≤x ≤3…………………………………6分27.(1)答:小东的数据较好地反映了该校八年级同学选修地理的意向.--------- 1分 理由如下:小丽仅调查了一个班的同学,样本不具有随机性;小明只调查了10位地理课代表,样本容量过少,不具有代表性;小东的调查样本容量适中,且具有随机性. ------------- 2分Q(2)120----------------------------------------3分数据支撑,体现样本估计总体-------------- 4分28.2n+1…………………………………1分2)1 2)(1(++nnn…………………………………2分6)1 2)(1(++nnn…………………………………3分7 …………………………………4分。

2018-2019学年人教版七年级(上)期末数学试卷(含答案)

2018-2019学年人教版七年级(上)期末数学试卷(含答案)

2018-2019 学年七年级(上)期末数学试卷一、选择题(本大题共10 小题,每小题3 分,共30 分)1.(3 分)2 的绝对值是()A.2 B.﹣2 C.2 或﹣2 D.2 或2.(3 分)化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n3.(3 分)下列方程是一元一次方程的是()A.3x+1=5x B.3x2+1=3x C.2y2+y=3 D.6x﹣3y=1004.(3 分)如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C 中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,05.(3 分)下列等式的变形正确的是()A.如果s=vt,那么v=B.如果x=6,那么x=3C.如果﹣x﹣1=y﹣1,那么x=y D.如果a=b,那么a+2=2+b6.(3 分)一件夹克衫先按成本提高50%标价,再以8 折(标价的80%)出售,结果获利28 元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+287.(3 分)下列说法中正确的是()A.38.15°=38.9′B.两点之间,直线最短C.两条射线构成的图形叫做角D.互余的两个角不可能相等8.(3 分)已知a﹣2b 的值是﹣2,则(a﹣2b)2+2(a﹣2b)的值是()A.﹣4 B.﹣1 C.0 D.29.(3 分)已知线段AB=10cm,在直线AB 上有一点C,且线段BC=4cm,点M 是线段AC 的中点,则AM 的长为()A.3cm B.7cm C.6cm D.3cm 和7cm10.(3 分)如图,当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成 3 个角;当过O点画不重合的4 条射线时,共组成6 个角;….根据以上规律,当过O 点画不重合的10 条射线时,共组成()个角.A.28 B.36 C.45 D.55二、填空题(本大题共5 小题,每小题3 分,共15 分,把答案写在题中横线上)11.(3 分)A 看B 的方向是北偏东21°,那么B 看A 的方向是.12.(3 分)已知14x6y2与﹣31x3m y2是同类项,则12m﹣24= .13.(3 分)对于任意有理数a.b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b,例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.若(x﹣3)⊗x=2011,则x 的值为.14.(3 分)如图,∠AOB=30°,∠BOC=70°,OE 是∠AOC 的平分线,则∠BOE 的度数为.15.(3 分)有m 辆客车及n 个人,若每辆客车乘40 人,则还有10 人不能上车;若每辆客车乘43 人,则最后一辆车有 2 个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m﹣10=43m+2 ;③= ;④= ;⑤43m=n+2.其中正确的是(只填序号).三、解答题(本大题共7 小题,共55 分,解答应写出证明过程或演算步骤)16.(6 分)计算:(1)90°23′﹣36°12′(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)217.(7 分)(1)化简:3a3﹣(3a2+b2﹣5b)+a2﹣5b+b2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣18.(8 分)解方程:(1)3(x﹣1)+2(x+1)=﹣6(2)=1+19.(6 分)列方程解应用题某文具店一支铅笔的售价为1.2 元,一支圆珠笔的售价为2 元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60 支,卖得87 元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?20.(8 分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC.(1)填空:与∠AOE 互补的角是;(2)若∠AOD=36°,求∠DOE 的度数;(3)当∠AOD=x°时,请直接写出∠DOE 的度数.21.(8 分)阅读思考我们知道,在数轴上|a|表示数a 所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b 表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q 两点表示的数分别是﹣1 和2,那么P,Q 两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A 在数轴上对应的数为a,点 B 对应的数为b,且a、b 满足|a+3|+(b ﹣2)2=0(1)求线段AB 的长;(2)如图,点C 在数轴上对应的数为x,且x 是方程2x+1=x﹣8 的解,①求线段BC 的长;②在数轴上是否存在点P 使PA+PB=BC?若存在,直接写出点P 对应的数:若不存在,说明理由.22.(12 分)我国出租车的收费标准因地而异,甲市规定:起步价为6 元,3 千米之后每千米1.4 元:;乙市规定:起步价8 元,3 千米之后每千米1.2 元.(1)分别求出在甲市乘出租车2 千米,5 千米应付的车费;(2)在甲、乙两市乘出租车x (x>3)千米时应付的车费各是多少元(用含有x 的式子表示);(3)若某乘客需在甲、乙两市乘出租车15 千米,请你算一算在哪个城市乘出租车便宜?(4)如果李先生在甲、乙两市乘出租车所付的车费相等,试算出李先生乘出租车多少干米,参考答案与试题解析一、选择题(本大题共10 小题,每小题3 分,共30 分)1.(3 分)2 的绝对值是()A.2 B.﹣2 C.2 或﹣2 D.2 或【分析】根据正数的绝对值是它本身,可得答案.【解答】解:2 的绝对值是2.故选:A.【点评】本题考查了绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0.2.(3 分)化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n【分析】利用分配律把括号内的 2 乘到括号内,然后利用去括号法则求解.【解答】解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.【点评】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.3.(3 分)下列方程是一元一次方程的是()A.3x+1=5x B.3x2+1=3x C.2y2+y=3 D.6x﹣3y=100【分析】根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、是一元一次方程,故此选项正确;B、不是一元一次方程,故此选项错误;C、不是一元一次方程,故此选项错误;D、不是一元一次方程,故此选项错误;故选:A.【点评】此题主要考查了一元一次方程定义,关键是理解一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.4.(3 分)如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C 中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,0【分析】使得它们折成正方体后相对的面上两个数互为相反数,则 A 与﹣1,B 与3;C 与0 互为相反数.【解答】解:根据以上分析:填入正方形A,B,C 中的三个数依次是1,﹣3,0.故选:A.【点评】本题主要考查人们的空间想象能力,请不要忘记正方体展开时的各种情形.5.(3 分)下列等式的变形正确的是()A.如果s=vt,那么v=B.如果x=6,那么x=3C.如果﹣x﹣1=y﹣1,那么x=y D.如果a=b,那么a+2=2+b【分析】根据等式的性质:等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0 数或字母,等式仍成立,可得答案.【解答】解:A、左边乘以,右边乘以,故A 错误;B、左边乘以2,右边乘以,故B 错误;C、左边加(2x+1),右边加1,故C 错误;D、两边都加2,故D 正确;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0 数或字母,等式仍成立.6.(3 分)一件夹克衫先按成本提高50%标价,再以8 折(标价的80%)出售,结果获利28 元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+28【分析】根据售价的两种表示方法解答,关系式为:标价×80%=进价+28,把相关数值代入即可.【解答】解:标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选:B.【点评】考查列一元一次方程;根据售价的两种不同方式列出等量关系是解决本题的关键.7.(3 分)下列说法中正确的是()A.38.15°=38.9′B.两点之间,直线最短C.两条射线构成的图形叫做角D.互余的两个角不可能相等【分析】利用余角与补角定义,线段的性质,以及度分秒性质判断即可.【解答】解:A、38.15°=38.9′,故选项正确;B、两点之间,线段最短,故选项错误;C、有公共顶点的两条射线组成的图形叫做角,故选项错误;D、互余的两个角可能相等,故选项错误.故选:A.【点评】此题考查了余角和补角,线段的性质,以及度分秒的换算,熟练掌握各自的性质是解本题的关键.8.(3 分)已知a﹣2b 的值是﹣2,则(a﹣2b)2+2(a﹣2b)的值是()A.﹣4 B.﹣1 C.0 D.2【分析】把a﹣2b=﹣2 代入(a﹣2b)2+2(a﹣2b),计算求值即可.【解答】解:把a﹣2b=﹣2 代入(a﹣2b)2+2(a﹣2b)得:(﹣2)2+2×(﹣2)=4﹣4=0故选:C.【点评】本题考查代数式求值,掌握代入求值的方法是解题的关键.9.(3 分)已知线段AB=10cm,在直线AB 上有一点C,且线段BC=4cm,点M 是线段AC 的中点,则AM 的长为()A.3cm B.7cm C.6cm D.3cm 和7cm【分析】应考虑到A、B、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论.【解答】解:①如图1 所示,当点C 在点A 与B 之间时,∵线段AB=10cm,BC=4cm,∴AC=10﹣4=6cm.∵M 是线段AC 的中点,∴AM= AC=3cm,②当点 C 在点B 的右侧时,∵BC=4cm,∴AC=14cmM 是线段AC 的中点,∴AM=AC=7cm.综上所述,线段AM 的长为3cm 或7cm.故选:D.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.10.(3 分)如图,当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成 3 个角;当过O点画不重合的4 条射线时,共组成6 个角;….根据以上规律,当过O 点画不重合的10 条射线时,共组成()个角.A.28 B.36 C.45 D.55【分析】根据题意得出规律.若从点O 出发的n 条射线,可以组成角的个数是:,代入计算即可.【解答】解:当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成3 个角;当过O 点画不重合的 4 条射线时,共组成 6 个角;….根据以上规律,当过O 点画不重合的n 条射线时组成的角的个数是:,故当n=10 时,=45;故选:C.【点评】本题考查了角的概念,图形的变化类;根据题意得出规律公式是解决问题的关键.二、填空题(本大题共5 小题,每小题3 分,共15 分,把答案写在题中横线上)11.(3 分)A 看B 的方向是北偏东21°,那么B 看A 的方向是南偏西21°.【分析】首先根据从A 看B 的方向是北偏东21°正确作出A 和B 的示意图,然后根据方向角定义解答.【解答】解:从B 看A 的方向是南偏西21°.故答案是:南偏西21°.【点评】本题考查了方向角的定义,正确作出 A 和 B 的位置示意图也是关键.12.(3 分)已知14x6y2与﹣31x3m y2是同类项,则12m﹣24= 0 .【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵14x6y2与﹣31x3m y2是同类项,∴3m=6,∴12m=24,∴12m﹣24=0.故答案为:0.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.(3 分)对于任意有理数a.b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b,例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.若(x﹣3)⊗x=2011,则x 的值为2017 .【分析】已知等式利用已知新定义化简,即可求出x 的值.【解答】解:已知等式利用题中新定义化简得:2(x﹣3)﹣x=2011,解得:x=2017,故答案为:2017【点评】此题考查了解一元一次方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.14.(3 分)如图,∠AOB=30°,∠BOC=70°,OE 是∠AOC 的平分线,则∠BOE 的度数为20°.【分析】根据角的和差,可得∠AOC,根据角平分线的定义,可得∠AOE,根据角的和差,可得答案.【解答】解:∵∠AOB=30°,∠BOC=70°,∴∠AOC=∠AOB+∠BOC=30°+70°=100°,∵OE 平分∠AOC,∴∠AOE=∠COE=50°,∴∠BOE=∠AOE﹣∠AOB=50°﹣30°=20°.故答案为20°.【点评】本题考查了角的计算,利用角的和差得出∠AOC 的度数是解题关键,又利用了角平分线的定义.15.(3 分)有m 辆客车及n 个人,若每辆客车乘40 人,则还有10 人不能上车;若每辆客车乘43 人,则最后一辆车有 2 个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m﹣10=43m+2 ;③= ;④= ;⑤43m=n+2.其中正确的是①③⑤(只填序号).【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解答】解:根据总人数列方程,应是40m+10=43m﹣2,①正确,②错误;根据客车数列方程,应该为=,③正确,④错误;根据总人数和客车数列方程得:43m=n+2.故答案为:①③⑤.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题(本大题共7 小题,共55 分,解答应写出证明过程或演算步骤)16.(6 分)计算:(1)90°23′﹣36°12′(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2【分析】(1)直接利用度分秒转换法则计算得出答案;(2)直接利用化简各数,进而计算得出答案.【解答】解:(1)90°23′﹣36°12′=54°11′;(2)原式=﹣5×(﹣1)﹣4×4=﹣11.【点评】此题主要考查了度分秒转化换以及有理数的混合运算,正确化简各数是解题关键.17.(7 分)(1)化简:3a3﹣(3a2+b2﹣5b)+a2﹣5b+b2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣【分析】(1)直接利用去括号,进而合并同类项得出答案;(2)直接利用去括号,进而合并同类项,把已知代入得出答案.【解答】解:(1)原式=3a3﹣3a2﹣b2+5b+a2﹣5b+b2=3a3﹣2a2;(2)原式=x﹣2x+2y2﹣x+y2=﹣2x+3y2,当x=2,y=﹣时,原式=﹣2×2+3×(﹣)2=﹣4+=﹣.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.18.(8 分)解方程:(1)3(x﹣1)+2(x+1)=﹣6(2)=1+【分析】根据一元一次方程的解法即可求出答案.【解答】(每小题(4 分),本题共8 分)解:(1)3x﹣3+2x+2=﹣65x﹣1=﹣65x=﹣5x=﹣1(2)3(x﹣1)=12+4(x+1)3x﹣3=12+4x+43x﹣3=16+4x3x﹣4x=19x=﹣19【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.19.(6 分)列方程解应用题某文具店一支铅笔的售价为1.2 元,一支圆珠笔的售价为2 元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60 支,卖得87 元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?【分析】设卖出铅笔x 支,则卖出圆珠笔(60﹣x)支,根据总价=单价×数量,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:设卖出铅笔x 支,则卖出圆珠笔(60﹣x)支,根据题意得:1.2×0.8x+2×0.9(60﹣x)=87,解得:x=25,∴60﹣x=60﹣25=35.答:卖出铅笔25 支,卖出圆珠笔35 支.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.(8 分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC.(1)填空:与∠AOE 互补的角是∠BOE、∠COE ;(2)若∠AOD=36°,求∠DOE 的度数;(3)当∠AOD=x°时,请直接写出∠DOE 的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.【解答】解:(1)∵OE 平分∠BOC,∴∠BOE=∠COE;∵∠AOE+∠BOE=180°,∴∠AOE+∠COE=180°,∴与∠AOE 互补的角是∠BOE、∠COE;故答案为∠BOE、∠COE;(2)∵OD、OE 分别平分∠AOC、∠BOC,∴∠COD=∠AOD=36°,∠COE=∠BOE= ∠BOC,∴∠AOC=2×36°=72°,∴∠BOC=180°﹣72°=108°,∴∠COE= ∠BOC=54°,∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=x°时,∠DOE=90°.【点评】本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.21.(8 分)阅读思考我们知道,在数轴上|a|表示数a 所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b 表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q 两点表示的数分别是﹣1 和2,那么P,Q 两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A 在数轴上对应的数为a,点 B 对应的数为b,且a、b 满足|a+3|+(b ﹣2)2=0(1)求线段AB 的长;(2)如图,点C 在数轴上对应的数为x,且x 是方程2x+1=x﹣8 的解,①求线段BC 的长;②在数轴上是否存在点P 使PA+PB=BC?若存在,直接写出点P 对应的数:若不存在,说明理由.【分析】(1)利用非负数的性质求出a 与b 的值,即可确定出AB 的长;(2)①求出方程的解得到x 的值,进而确定出BC 的长;②存在,求出P 点对应的数即可.【解答】解:(1)由题意得|a+3|+(b﹣2)2=0,所以a+3=0,b﹣2=0,解得,a=﹣3,b=2,所以AB=2﹣(﹣3)=5;(2)①2x+1=x﹣8,解得,x=﹣6,∴BC=2﹣(﹣6)=8,即线段BC 的长为8;②存在点P,当点P 对应的数是3.5 或﹣4.5 使PA+PB=BC.【点评】此题考查了实数与数轴,非负数的性质,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.22.(12 分)我国出租车的收费标准因地而异,甲市规定:起步价为6 元,3 千米之后每千米1.4 元:;乙市规定:起步价8 元,3 千米之后每千米1.2 元.(1)分别求出在甲市乘出租车2 千米,5 千米应付的车费;(2)在甲、乙两市乘出租车x (x>3)千米时应付的车费各是多少元(用含有x 的式子表示);(3)若某乘客需在甲、乙两市乘出租车15 千米,请你算一算在哪个城市乘出租车便宜?(4)如果李先生在甲、乙两市乘出租车所付的车费相等,试算出李先生乘出租车多少干米,【分析】(1)由2<3 可得出乘出租车 2 千米应付的车费,再根据应付费用=起步价+1.4×超出 3 千米部分,即可求出乘出租车 5 千米应付的车费;(2)根据两地的收费标准即可找出在甲、乙两市乘出租车x (x>3)千米时应付的车费;(3)将x=15 代入(2)的代数式中即可求出结论;(4)设李先生乘出租车x 千米时,李先生在甲,乙两市乘出租车所付的车费相等,根据(2)的结论,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:(1)∵2<3,∴乘出租车 2 千米应付6 元,乘出租车5 千米应付的车费为:6+1.4×(5﹣3)=8.8(元).答:在甲市乘出租车2 千米应付6 元车费,在甲市乘出租车5 千米应付8.8 元车费.(2)在甲市应付:6+1.4(x﹣3)=1.4x+1.8(元);在乙市应付:8+1.2(x﹣3)=1.2x+4.4(元).(3)由(2)得:在甲市坐出租车的车费为:1.4x+1.8=1.4×15+1.8=22.8 元,在乙市坐出租车的车费为:1.2x+4.4=1.2×15+4.4=22.4 元.∵22.8>19.4,∴在乙市乘出租车便宜.(4)设李先生乘出租车x 千米时,李先生在甲,乙两市乘出租车所付的车费相等,根据题意得:1.2x+4.4=1.4x+1.8,解得:x=13.答:李先生乘出租车13 千米时,所付车费相等.【点评】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据收费标准列式计算;(2)根据数量间的关系,列出代数式;(3)代入x=15 求值;(4)找准等量关系,正确列出一元一次方程.。

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。

2018-2019学年第一学期人教版七年级数学期末测试卷及答案

2018-2019学年第一学期人教版七年级数学期末测试卷及答案

2018-2019学年七年级(上)期末数学试卷一、认真选一选(3&#215;10=30分)1.下列代数式中,不是单项式的是()A.B.﹣C.t D.3a2b2.下列各式计算正确的是()A.a2+a2=2a4B.5m2﹣3m2=2 C.﹣x2y+yx2=0 D.4m2n﹣m2n=2mn3.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.0.675×105吨D.67.5×103吨4.若x=3是方程a﹣x=7的解,则a的值是()A.4 B.7 C.10 D.5.要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图6.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.7.有理数a、b在数轴上的位置如图所示,则a+b的值()A.大于0 B.小于0 C.大于等于0 D.小于等于08.如果线段AB=5cm,BC=4cm,且A、B、C、D,在同一条直线上,那么A、C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°10.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为()A.3 B.2 C.0 D.﹣1二、仔细填一填(每题2分,共16分)11.﹣4的绝对值是.12.计算:15°37′+42°51′=.13.若m2+3n﹣1的值为5,则代数式2m2+6n+5的值为.14.在数轴上,点A表示数﹣1,距A点2个单位长度的点表示的数是.15.如图,点O是直线AB上一点,图中共有个小于平角的角.16.若x|a|﹣1﹣3=6是关于x的一元一次方程,则a的值为.17.钟面上6点20分时,时针与分针所构成的角度是度.18.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是.三.解答题(7小题,共54分)19.计算:(1)﹣16﹣|﹣5|+2×(﹣)2;(2)2﹣54×(﹣+).20.解方程:(1)5(x﹣5)+2x=﹣4;(2)=1﹣.21.先化简,再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.22.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.23.小刚在A,B两家体育用品商店都发现了他看中的羽毛球拍和篮球,两家商店的羽毛球拍和篮球的单价都是相同的,羽毛球拍和篮球单价之和是426元,且篮球的单价是羽毛球拍的单价的4倍少9元.(1)求小刚看中的羽毛球拍和篮球的单价各是多少元?(2)小刚在元旦这一天上街,恰好赶上商店促销,A商店所有商品打八五折销售,B商店全场购物满100元返购物券20元(不足100元不返券,购物券全场通用,用购物券购物不再返券),但他只带了380元钱,如果他只在一家商店购买看中的这两样商品,你能说明他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?24.某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:(1)这次评价中,一共抽查了名学生;(2)请将条形统计图补充完整;(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?25.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.2018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、认真选一选(3&#215;10=30分)1.下列代数式中,不是单项式的是()A.B.﹣C.t D.3a2b【考点】单项式.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【解答】解:A、是分式,所以它不是单项式;符合题意;B、﹣是数字,是单项式;不符合题意;C、t是字母,所以它是单项式;不符合题意;D、3a2b是数字与字母的积的形式,所以它是单项式;不符合题意.故选A.2.下列各式计算正确的是()A.a2+a2=2a4B.5m2﹣3m2=2 C.﹣x2y+yx2=0 D.4m2n﹣m2n=2mn【考点】合并同类项.【分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变即可判断.【解答】解:A、a2+a2=2a2,故选项错误;B、5m2﹣3m2=2m2,故选项错误;C、正确;D、4m2n﹣m2n=3m2n,故选项错误.故选C.3.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.0.675×105吨D.67.5×103吨【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故选A.4.若x=3是方程a﹣x=7的解,则a的值是()A.4 B.7 C.10 D.【考点】一元一次方程的解.【分析】根据方程的解的定义,把x=3代入即可得到一个关于a的方程,即可求解.【解答】解:根据题意得:a﹣3=7,解得:a=10,故选C.5.要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:C.6.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.7.有理数a、b在数轴上的位置如图所示,则a+b的值()A.大于0 B.小于0 C.大于等于0 D.小于等于0【考点】有理数的加法;数轴.【分析】根据数轴判断出a,b的符号和绝对值的大小,从而判断出|b|>|a|,再根据有理数的加法法则即可得出a+b的值.【解答】解:根据图可得:a<0,b>0,|b|>|a|,则a+b>0;故选A.8.如果线段AB=5cm,BC=4cm,且A、B、C、D,在同一条直线上,那么A、C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确【考点】两点间的距离.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.当点C在AB之间时,AC=AB﹣BC;当点C在点B的右侧时,AC=AB+BC.【解答】解:当点C在AB之间时,AC=AB﹣BC=5﹣4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选:C.9.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【考点】直角三角形的性质.【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选:B.10.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为()A.3 B.2 C.0 D.﹣1【考点】规律型:数字的变化类.【分析】首先由已知和表求出a、b、c,再观察找出规律求出第2011个格子中的数.【解答】解:已知其中任意三个相邻格子中所填整数之和都相等,则,3+a+b=a+b+c,a+b+c=b+c﹣1,所以a=﹣1,c=3,按要求排列顺序为,3,﹣1,b,3,﹣1,b,…,再结合已知表得:b=2,所以每个小格子中都填入一个整数后排列是:3,﹣1,2,3,﹣1,2,…,得到:每3个数一个循环,则:2011÷3=670余1,因此第2011个格子中的数为3.故选A.二、仔细填一填(每题2分,共16分)11.﹣4的绝对值是4.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故答案为:4.12.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.13.若m2+3n﹣1的值为5,则代数式2m2+6n+5的值为17.【考点】代数式求值.【分析】由题意得到m2+3n=6,原式变形后代入计算即可求出值.【解答】解:由题意得:m2+3n﹣1=5,即m2+3n=6,则原式=2(m2+3n)+5=12+5=17,故答案为:1714.在数轴上,点A表示数﹣1,距A点2个单位长度的点表示的数是﹣3或1.【考点】数轴.【分析】根据题意,距A点2个单位长度的点有2个,分别位于点A的两侧,据此求出距A点2个单位长度的点表示的数是多少即可.【解答】解:(1)当所求点在点A的左侧时,距A点2个单位长度的点表示的数是:﹣1﹣2=﹣3.(2)当所求点在点A的右侧时,距A点2个单位长度的点表示的数是:﹣1+2=1.即距A点2个单位长度的点表示的数是﹣3或1.故答案为:﹣3或1.15.如图,点O是直线AB上一点,图中共有5个小于平角的角.【考点】角的概念.【分析】根据题意结合角的表示方法得出答案.【解答】解:如图所示:小于平角的角有:∠AOC,∠AOD,∠COD,∠COB,∠DOB,一共5个.故答案为:5.16.若x|a|﹣1﹣3=6是关于x的一元一次方程,则a的值为2或﹣2.【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:含有一个未知数并且未知数的指数是1的方程叫做一元一次方程解答.【解答】解:由题意得,|a|﹣1=1,所以,a﹣1=1或﹣a﹣1=1,所以,a=2或a=﹣2.故答案为:2或﹣2.17.钟面上6点20分时,时针与分针所构成的角度是70度.【考点】钟面角.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:6点20分时,时针与分针相距2+=,6点20分时,时针与分针所构成的角度是30×=70°,故答案为:70.18.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是7.【考点】专题:正方体相对两个面上的文字.【分析】从3个图形看,和1相邻的有2,4,5,6,那么和1相对的就是3.则和2相邻的有1,3,4,5,那么和2相对的就是6.则和5相对的就是4.再将数字1和5对面的数字相加即可.【解答】解:根据三个图形的数字,可推断出来,1对面是3;2对面是6;5对面是4.∴3+4=7.则数字1和5对面的数字的和是7.故答案为:7.三.解答题(7小题,共54分)(1)﹣16﹣|﹣5|+2×(﹣)2;(2)2﹣54×(﹣+).【考点】有理数的混合运算.【分析】(1)根据有理数的混合运算顺序,首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式﹣16﹣|﹣5|+2×(﹣)2的值是多少即可.(2)首先根据乘法分配律,求出54×(﹣+)的值是多少;然后计算减法即可.【解答】解:(1)﹣16﹣|﹣5|+2×(﹣)2=﹣1﹣5+2×=﹣6=﹣5(2)2﹣54×(﹣+)=2﹣(54×﹣54×+54×)=2﹣(45﹣24+18)=2﹣39=﹣3720.解方程:(1)5(x﹣5)+2x=﹣4;(2)=1﹣.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:5x﹣25+2x=﹣4,移项合并得:7x=21,(2)去分母得:5x=15﹣3x+3,移项合并得:8x=18,解得:x=.21.先化简,再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【考点】整式的加减—化简求值.【分析】先将原式去括号、合并同类项,再把x=1,y=﹣1代入化简后的式子,计算即可.【解答】解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×12×(﹣1)+5×1×(﹣1)=0.22.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【考点】角的计算;角平分线的定义.【分析】设∠AOC=x,则∠BOC=2x,∠AOB=3x.先由角平分线的定义得出∠AOD=,再根据∠AOD﹣∠AOC=∠COD=20°,列出关于x的方程,解方程求出x的值,进而得到∠AOB的度数.【解答】解:设∠AOC=x,则∠BOC=2∠AOC=2x,∠AOB=∠BOC+∠AOC=3x.∵OD平分∠AOB,∴∠AOD=∠AOB=.又∵∠AOD﹣∠AOC=∠COD=20°,∴﹣x=20°,解得x=40°,∴∠AOB=3x=120°.23.小刚在A,B两家体育用品商店都发现了他看中的羽毛球拍和篮球,两家商店的羽毛球拍和篮球的单价都是相同的,羽毛球拍和篮球单价之和是426元,且篮球的单价是羽毛球拍的单价的4倍少9元.(1)求小刚看中的羽毛球拍和篮球的单价各是多少元?(2)小刚在元旦这一天上街,恰好赶上商店促销,A商店所有商品打八五折销售,B商店全场购物满100元返购物券20元(不足100元不返券,购物券全场通用,用购物券购物不再返券),但他只带了380元钱,如果他只在一家商店购买看中的这两样商品,你能说明他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【考点】一元一次方程的应用.【分析】(1)设羽毛球拍单价为x元,则篮球的单价是(4x﹣9)元,根据羽毛球拍和篮球单价之和是426元,可得方程求解即可;(2)根据(1)知两件商品单价之和是542元,首先计算A商场,打八折的价格是433.6元,故在A商场可以买到;再根据B全场购物满100元返购物券30元销售,则先拿432元购买运动服,返还120元购物券,再拿120元即可购买运动鞋.然后比较两个商场的价钱,进行判断.【解答】解:(1)设羽毛球拍单价为x元,则篮球的单价是(4x﹣9)元,依题意得:x+4x﹣9=426,解得x=87,则426﹣87=339.答:羽毛球拍单价为87元,则篮球的单价是339元;(2)在A商场购物更省钱;理由:∵A商场所有商品打八五折销售,∴A商场所付金额为:426×0.85=362.1(元),∵B商场全场满100元返购物卷20元(不足100元不反卷,购物卷全场通用),∴先购买篮球339元,赠购物卷60元,故此次只需要339+27=366(元),故在A商场购物更省钱.24.某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:(1)这次评价中,一共抽查了560名学生;(2)请将条形统计图补充完整;(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用专注听讲的人数224除以专注听讲所占的百分比即可得到所抽查的学生总人数;(2)用16万乘以“独立思考”的学生所占的百分比即可.【解答】解:(1)抽查的学生总人数==560(名);(2)讲解题目的人数=560﹣84﹣168﹣224=84(名),画条形统计图为:(3)∵16×=4.8(万),∴全市在试卷讲评课中,“独立思考”的学生约有4.8万人.故答案为560.25.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2| .(3)如果|x﹣2|=5,则x=7或﹣3.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【考点】绝对值;数轴.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.2016年8月11日。

20182019人教版七年级数学上册期末试卷及答案(10套)

20182019人教版七年级数学上册期末试卷及答案(10套)

1
A、0
2018-2019 人教版七年级数学上册期末试卷及答案 (10 套 )
B、- 1
C、3
D、5
9、若 x + y <0, x y <0, x > y ,则有( ).
A . x >0, y <0 , x 绝对值较大
B. x >0, y <0 , y 绝对值较大
C. x <0, y >0 , x 绝对值较大
a=-
1 ,b
=
1
2
3
四、解答题(本大题共 6 个小题, 每题 5 分,共 30 分;要求写出必要的解题过程和步骤 ) 23、出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果 规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-3,+14, -11, +10,-12. (1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是多少千 米? (2)若汽车耗油量为 a 升 / 千米,这天下午汽车耗油共多少升?
7
10
7
6
B. 2.5 10 C. 2.5 10
5
D. 25 10
5、已知代数式 3y2- 2y+6 的值是 8,那么 3 y2- y+1 的值是 2
()
A .1 B
.2
C
.3
D
.4
6、2、在│ -2 │,- │ 0│,( -2 )5,- │ -2 │,-( -2 )这 5 个数中负数共有
()
A. 1 个 B . 2 个 C . 3 个 D . 4 个
线段 DC= .
18.钟表在 3 点 30 分时,它的时针和分针所成的角是

人教版2018-2019学年七年级(上)期末数学试卷含解析

 人教版2018-2019学年七年级(上)期末数学试卷含解析

人教版2018-2019学年七年级(上)期末数学试卷含解析一、选择题(本大题共12小题,每小题3分,共36分.下列各题所给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.)1.下列图形中,是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】直接利用轴对称图形的定义进而判断得出答案.【解答】解:根据题意可得:从左起第2,3,4个图形,沿某条直线折叠后直线两旁的部分能够完全重合,都是轴对称图形,第1个图形不能重合,故选:C.2.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2B.4C.6D.8【考点】K6:三角形三边关系.【分析】已知三角形的两边长分别为2和4,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选:B.3.若=3,则a的值为()A.3B.±3C.D.﹣3【考点】21:平方根;22:算术平方根.【专题】1:常规题型.【分析】直接利用算术平方根的定义计算得出答案.【解答】解:∵=3,∴a=±3.故选:B.4.下列各组数,互为相反数的是()A.﹣2与B.|﹣|与C.﹣2与(﹣)2D.2与【考点】14:相反数;15:绝对值;22:算术平方根;24:立方根;28:实数的性质.【专题】11:计算题;511:实数.【分析】利用相反数定义判断即可.【解答】解:﹣2与(﹣)2互为相反数,故选:C.5.将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项正确的是()A.B.C.D.【考点】P5:关于x轴、y轴对称的点的坐标.【专题】1:常规题型.【分析】根据将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,可得出对应点关于y轴对称,进而得出答案.【解答】解:∵将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,∴对应点的坐标关于y轴对称,只有选项A符合题意.故选:A.6.若点A(x1,y1)和B(x2,y2)是直线y=﹣x+1上的两点,且x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【考点】F8:一次函数图象上点的坐标特征.【专题】1:常规题型.【分析】根据k=﹣<0,y将随x的增大而减小,然后根据一次函数的性质得出y1与y2的大小关系.【解答】解:∵k=﹣<0,∴y将随x的增大而减小,∵x1>x2,∴y1<y2.故选:A.7.△ABC的三边分别为a、b、c,其对角分别为∠A、∠B、∠C.下列条件不能判定△ABC是直角三角形的是()A.∠B=∠A﹣∠C B.a:b:c=5:12:13C.b2﹣a2=c2D.∠A:∠B:∠C=3:4:5【考点】K7:三角形内角和定理;KS:勾股定理的逆定理.【专题】11:计算题.【分析】根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【解答】解:A、∵∠B=∠A﹣∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2﹣a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选:D.8.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19 cm,△ABD的周长为13 cm,则AE的长为()A.3 cm B.6 cm C.12 cm D.16 cm【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∵△ABC的周长为19 cm,△ABD的周长为13 cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BC+DC=AB+BC=13 cm,∴AC=6cm,∵DE是AC的垂直平分线,∴AE=AC=3cm,故选:A.9.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm【考点】KU:勾股定理的应用.【专题】554:等腰三角形与直角三角形.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角形.盒内可放木棒最长的长度是=7cm.故选:B.10.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为()A.﹣1B.9C.12D.6或12【考点】D6:两点间的距离公式.【专题】55:几何图形.【分析】根据平行于x轴的直线上的点的纵坐标相等求出a的值,再根据A、B为不同的两点确定b的值.【解答】解:∵AB∥x轴,∴a=4,∵AB=3,∴b=5+3=8或b=5﹣3=2.则a+b=4+8=12,或a+b=2+4=6,故选:D.11.如图,△ABC中,点D是边AB上一点,点E是边AC的中点,过点C作CF∥AB与DE的延长线相交于点F.下列结论不一定成立的是()A.DE=EF B.AD=CF C.DF=AC D.∠A=∠ACF【考点】KD:全等三角形的判定与性质.【专题】55:几何图形.【分析】根据平行线性质得出∠1=∠F,∠2=∠A,求出AE=EC,根据AAS证△ADE≌△CFE,根据全等三角形的性质推出即可.【解答】解:∵CF∥AB,∴∠1=∠F,∠2=∠A,∵点E为AC的中点,∴AE=EC,在△ADE和△CFE中,∴△ADE≌△CFE(AAS),∴DE=EF,AD=CF,∠A=∠ACF,故选:C.12.A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶.如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系.根据图象得出的下列结论,正确的个数是()①甲骑车速度为30km/小时,乙的速度为20km/小时;②l1的函数表达式为y=80﹣30x;③l2的函数表达式为y=20x;④小时后两人相遇.A.1个B.2个C.3个D.4个【考点】FH:一次函数的应用.【专题】533:一次函数及其应用.【分析】根据速度=,即可求出两人的速度,利用待定系数法求出一次函数和正比例函数解析式即可判定②③正确,利用方程组求出交点的横坐标即可判断④即可.【解答】解:甲骑车速度为=30km/小时,乙的速度为=20km/小时,故①正确,设l1的表达式为y=kx+b,把(0,80),(1,50)代入得到:,解得,∴直线l1的解析式为y=﹣30x+80,故②正确,设直线l2的解析式为y=k′x,把(3,60)代入得到k′=20,∴直线l2的解析式为y=20x,故③正确,由,解得x=,∴小时后两人相遇,故④正确,故选:D.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.的平方根是±2.【考点】21:平方根;22:算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±214.如果点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(3,﹣4).【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(3,﹣4),故答案为:(3,﹣4).15.如图,已知△ABC≌△DEF,∠A=50°,∠ACB=30°,则∠E=100°【考点】KA:全等三角形的性质.【专题】55:几何图形.【分析】根据全等三角形的性质可得∠A=∠EDC=50°,∠ACB=∠F=30°,然后利用三角形内角和定理可得答案.【解答】解:∵△ABC≌△DEF,∴∠A=∠EDC=50°,∠ACB=∠F=30°,∴∠E=180°﹣30°﹣50°=100°.故答案为:100°.16.把直线y=2x﹣1向上平移三个单位,则平移后直线与x轴的交点坐标是(﹣1,0).【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【解答】解:直线y=2x﹣1沿y轴向上平移3个单位,则平移后直线解析式为:y=2x﹣1+3=2x+2,当y=0时,则x=﹣1,故平移后直线与x轴的交点坐标为:(﹣1,0).故答案为:(﹣1,0).17.如图,有一块直角三角形纸片,两直角边AC=12,BC=16,现将直角边AC沿AD折叠,使它落在斜边AB上,且与AE重合,则△ADB的面积为60【考点】PB:翻折变换(折叠问题).【专题】55:几何图形.【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得DE的长,进而利用三角形面积解答.【解答】解:∵AC=12,BC=16,∴AB=20,∵AE=12(折叠的性质),∴BE=8,设CD=DE=x,则在Rt△DEB中,82+x2=(16﹣x)2,解得x=6,即DE等于6,所以△ADB的面积=,故答案为:6018.已知一次函数y=kx+2(k≠0)与两坐标轴围成的三角形面积为2,则一次函数的表达式为y=x+2或y=﹣x+2.【考点】F8:一次函数图象上点的坐标特征;FA:待定系数法求一次函数解析式.【专题】53:函数及其图象.【分析】先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【解答】解:可得一次函数y=kx+2(k≠0)图象过点(0,2),令y=0,则x=﹣,∵函数图象与两坐标轴围成的三角形面积为2,∴×2×|﹣|=2,即||=2,解得:k=±1,则函数的解析式是y=x+2或y=﹣x+2.故答案为:y=x+2或y=﹣x+2三、解答题(本大题共7小题,共66分)19.计算:(1)﹣﹣;(2)+|﹣3|+(2﹣)0;(3)已知2x+1的平方根是±3,3x+y﹣2的立方根是﹣3,求x﹣y的平方根.【考点】21:平方根;24:立方根;2C:实数的运算;6E:零指数幂.【专题】11:计算题;511:实数.【分析】(1)原式利用平方根,立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值;(3)利用平方根,立方根定义求出x与y的值,即可求出所求.【解答】解:(1)原式=﹣3﹣﹣9=﹣12;(2)原式=+3﹣+1=4;(3)根据题意得:2x+1=9,3x+y﹣2=﹣27,解得:x=4,y=﹣37,则x﹣y=4﹣(﹣37)=41,即41的平方根是±.20.尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A和工厂B,位于两条公路OC、OD之间的地带,现要建一座货物中转站P.若要求中转站P 到两条公路OC、OD的距离相等,且到工厂A和工厂B的距离之和最短,请用尺规作出P的位置.【考点】KF:角平分线的性质;N4:作图—应用与设计作图;PA:轴对称﹣最短路线问题.【专题】1:常规题型.【分析】结合角平分线的作法以及利用轴对称求最短路线的方法分析得出答案.【解答】解:如图所示:点P即为所求.21.如图,某港口P位于东西方向的海岸线上,A、B两艘轮船同时从港口P出发,各自沿一固定方向航行,A轮船每小时航行12海里,B轮船每小时航行16海里.它们离开港口一个半小时后分别位于点R、Q处,且相距30海里.已知B轮船沿北偏东60°方向航行.(1)A轮船沿哪个方向航行?请说明理由;(2)请求出此时A轮船到海岸线的距离.【考点】KU:勾股定理的应用;TB:解直角三角形的应用﹣方向角问题.【专题】554:等腰三角形与直角三角形.【分析】(1)直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案;(2)直接利用sin60°=,得出答案.【解答】解:(1)由题意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵B轮船沿北偏东60°方向航行,∴∠RPS=30°,∴A轮船沿北偏西30°方向航行;(2)过点R作RM⊥PE于点M,则∠RPM=60°,则sin60°=,解得:RM=9.答:此时A轮船到海岸线的距离为9海里.22.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【考点】F3:一次函数的图象;F4:正比例函数的图象.【专题】533:一次函数及其应用;66:运算能力;67:推理能力.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).23.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF =∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.【解答】(1)证明:如图,∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)解:∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°﹣60°=120°.即:∠BPC=120°.24.如图,点A的坐标为(﹣,0),点B的坐标为(0,3).(1)求过A,B两点直线的函数表达式;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.【考点】F8:一次函数图象上点的坐标特征;FA:待定系数法求一次函数解析式.【专题】1:常规题型.【分析】(1)设直线l的解析式为y=ax+b,把A、B的坐标代入求出即可;(2)分为两种情况:①当P在x轴的负半轴上时,②当P在x轴的正半轴上时,求出AP和OB,根据三角形面积公式求出即可.【解答】解:(1)设过A,B两点的直线解析式为y=ax+b(a≠0),则根据题意,得,解得,,则过A,B两点的直线解析式为y=2x+3;(2)设P点坐标为(x,0),依题意得x=±3,所以P点坐标分别为P1(3,0),P2(﹣3,0).==,=×(3﹣)×3=,所以,△ABP的面积为或.25.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.(1)判断直线BE与线段AD之间的关系,并说明理由;(2)若∠C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.【考点】K7:三角形内角和定理;KL:等边三角形的判定.【专题】552:三角形.【分析】(1)根据余角的性质即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根据三角形的外角的性质得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到结论.(2)根据∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,进而得到∠ADB=∠3+∠C=60°,∠BAD=60°,依据∠ABD=∠BDA=∠BAD,可得△ABD是等边三角形;依据∠AEG=∠AGE=∠GAE,即可得到△AEG是等边三角形.【解答】解:(1)BE垂直平分AD,理由:∵AM⊥BC,∴∠ABC+∠5=90°,∵∠BAC=90°,∴∠ABC+∠C=90°,∴∠5=∠C;∵AD平分∠MAC,∴∠3=∠4,∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,∴∠BAD=∠ADB,∴△BAD是等腰三角形,又∵∠1=∠2,∴BE垂直平分AD.(2)△ABD、△GAE是等边三角形.理由:∵∠5=∠C=30°,AM⊥BC,∴∠ABD=60°,∵∠BAC=90°,∴∠CAM=60°,∵AD平分∠CAM,∴∠4=∠CAM=30°,∴∠ADB=∠3+∠C=60°,∴∠BAD=60°,∴∠ABD=∠BDA=∠BAD,∴△ABD是等边三角形.∵Rt△BGM中,∠BGM=60°=∠AGE,又∵Rt△ACM中,∠CAM=60°,∴∠AEG=∠AGE=∠GAE,∴△AEG是等边三角形.。

人教版2018-2019学年七年级上册数学期末试题及答案

人教版2018-2019学年七年级上册数学期末试题及答案

2018-2019学年七年级上册数学期末卷一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.6-的相反数是()A.6B.6-C.16D.16-2.光年是天文学中的距离单位,1光年大约是9500000000000km,这个数据用科学记数法表示是()A..1309510km⨯ B..129510km⨯ C.119510km⨯ D..119510km⨯3.下列图形中,可以是正方体表面展开图的是()4.射线OC在AOB∠的内部,下列给出的条件不能得出OC是AOB∠的平分线的是()A.AOC BOC∠=∠ B.AOB2AOC∠=∠C.AOC BOC AOB∠+∠=∠ D.1BOC AOB2∠=∠5.下列方程中是一元一次方程的是()A.210x-= B.2x1= C.1x32-= D.2x y1+=6.下列各组单项式中,是同类项的是()A.24x y-和21yx2B.2x和22x C.22x y和2xy- D.34x y和34x z-7.a b5-=,那么13a75b6a b3⎛⎫++-+⎪⎝⎭等于()A.7-B.10C.9-D.8-8.如右图所示得数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n行有n个数,且两端的数均为1n,每个数是它下一个左右相邻两数的和,则第8行第3个数(从左往右数)为()A.160B.1168C.1252D.12809.甲看乙的方向为北偏东︒60,则乙看甲的方向是()A.南偏东︒60 B.南偏西︒60 C.南偏东︒30 D.南偏西︒3010.形如a bc d的式子叫做二阶行列式,它的运算法则用公式表示为a bc dad bc=-,依此法则计算32-41的结果为()A.5B.-5C.11D.-11二、填空题(本题有6个小题,每小题3分,共计18分)11.要在A B、两个村庄之间建一个车站,则当车站建在A B、两个村庄之间的线段上时,它到两个村庄的路程和最短,理由是 .12. m23x y-与3n5x y是同类项,则m n+= .13.若()2x2y30-++=,则x y= .14.已知α∠与β∠互余,且'3518α∠=,则β∠= .15.已知A B C、、三点在一条直线上,且线段,AB15cm BC5cm==,则线段AC cm=.16.一份试卷共25到选择题,规定答对一道题的4分,答错或不答一题扣1分,有人得了80分,问此人答对了道题.三、解答题(本题有5个小题,每小题6分,共计30分)17.化简:()3b5a2a4b+--.18.如图,已知A B C D、、、是平面内的四个点,请根据下列要求在所给的图中作图.①.画直线AB;②.画线段BC;③.画射线AC;④.画线段AD并取线段AD的中点E.A C DAB原图19.计算:()241211244⎛⎫-+-÷-⨯ ⎪⎝⎭.20.解下列方程:2x 12x 1136--=-21.一个锐角的补角等于这个锐角的余角的3倍,求这个锐角四、解答题(本题有3个小题,每小题8分,共计24分)22.先化简,再求值:222233x y 2xy 2xy x y x y 2⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦,其中,1x 3y 3==-.23.若a b 、互为相反数, c d 、互为倒数, m 的绝对值为2. ⑴.直接写出,,a b cd m +的值; ⑵.求a bm cd m+++的值.24.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?五、解答下列各题(本题共有2个小题,第23题8分,第24题10分,共计18分)25.如图,已知BOC 2AOC ∠=∠,OD 平分AOC ∠,且COD 20∠=,求AOB ∠的度数.26.把正整数12342017,,,,, 排列成如图所示得一个数表. ⑴.用一个正方形在表中随意框住4个数,把其中最小的数记为x ,另外三个数用含x 的式子表示出来,从大到小依次是 , , ; ⑵.当被框住的4个数之和等于416时,x 的值是多少?⑶.被框住的4个数之和能否等于622?如果能,请求出x 的值;如果不能,请说明理由.七年级数学期末试题答案一、选择题(本题有10个小题,每小题3分,共计30分)1. A .2.B.3. D .4. C .5. C .6. A .7. D .8. B .9.B 。

人教版2018-2019学年初一上册数学期末考试题及答案

人教版2018-2019学年初一上册数学期末考试题及答案

人教版2018-2019学年初一上册数学期末考试题及答案2018-201年第一学期期末教学统一测试初一数学试卷满分:100分,考试时间:100分钟一、选择题(每题3分,共30分)1.-8的相反数是A。

11 B。

8 C。

-8 D。

-2.北京某天的最高气温是8℃,最低气温是-2℃,则这天的温差是A。

10℃ B。

-10℃ C。

6℃ D。

-6℃3.我国于2016年9月15日成功发射天宫二号空间实验室。

它是我国自主研发的第二个空间实验室,标志着我国即将迈入空间站时代。

天宫二号空间实验室运行的轨道高度距离地球米。

数据用科学记数法表示为A。

3.93×106 B。

39.3×104 C。

0.393×106 D。

3.93×1054.下列计算正确的是A。

x2+x2=x4 B。

x2+x3=2x5 C。

3x-2x=1 D。

xy-2xy=-xy25.若代数式-5x6y3与2x2ny3是同类项,则常数n的值A。

4 B。

6 C。

-2 D。

-66.把下列图形折成正方体的盒子,折好后与“考”相对的字是A。

祝 B。

你 C。

顺 D。

利7.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是A。

85° B。

105° C。

125° D。

160°8.已知数a、b在数轴上对应的点如图所示,则下列式子正确的是A。

ab>0 B。

a+b09.关于x的方程2x+5a=3的解与方程2x+2=的解相同,则a的值是A。

1 B。

4 C。

5 D。

-110.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得x/3 + 3(100-x)/1 = 100二、填空题:(每空2分,共18分)11.如图,从A地到B地共有五条路,人们常常选择第③条,请用几何知识解释原因.答案:第③条是最短的,两点之间最短的距离是直线距离。

2018-2019学年七年级人教版数学上学期期末试题(含解析)

2018-2019学年七年级人教版数学上学期期末试题(含解析)

2018-2019学年七年级数学上学期期末试题一、选择题(本大题共16个小题.1-6小题,每小题2分,7-16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2是2的()A.倒数 B.相反数C.绝对值D.平方根2.数轴上表示﹣10与10这两个点之间的距离是()A.0 B.10 C.20 D.无法计算3.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.54.如果a+b>0,且ab<0,则()A.a>0,b>0 B.a<0,b<0C.a>0,b<0,且|a|较大D.a<0,b>0,且|a|较大5.下列计算正确的是()A.3a+2b=5ab B.x+x=x2C.5y2﹣2y2=3 D.﹣x3+3x3=2x36.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5 B.6 C.7 D.87.下列计算正确的是()A.﹣(﹣2)=﹣2 B.C.﹣34=(﹣3)4D.(﹣1)2=128.把方程变形为x=2,其依据是()A.等式的两边同时乘以B.等式的两边同时除以C.等式的两边同时减去D.等式的两边同时加上9.若∠1=37°18′,则∠1的补角度数为()A.52°42′B.53°42′C.142°42′D.163°42′10.下列去括号正确的是()A.﹣(2x+5)=﹣2x+5 B.C.D.11.如图1,线段a、b,图2中线段AB表示的是()A.a﹣b B.a+b C.a﹣2b D.2a﹣b12.减去﹣3x得x2﹣3x+4的式子为()A.x3+4 B.x2+3x+4 C.x2﹣6x+4 D.x2﹣6x13.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1 B.﹣1 C.﹣5 D.514.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm15.“学宫”楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数是()A.m+4 B.m+4n C.n+4(m﹣1)D.m+4(n﹣1)16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3二、填空题(本大题共4个小题;每小题3分,共12分,把答案写在题中横线上)17.方程x+1=0的解是.18.如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是.19.某人以八折的优惠价购买了一件服装省了15元,那么他购买这件服装实际用了.20.下列图形都是由同样大小的棋子按一定规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,第④个图形一共有31颗棋子…,则第⑥个图形中棋子的颗数为三、解答题(本大题共7个小题,共66分,解答应写出必要说明或演算步骤)21.数与式计算:(1)﹣17+(﹣33)﹣(﹣8)+42(2)(3)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(4)(5a2+2b2)﹣3(a2﹣4b2).22.解方程(1)2(x+1)=﹣3(x﹣4)(2)﹣=1.23.按下列程序输入一个数x:(1)若输入的数为x=﹣1,求输出的结果.(2)若输入x后,第一次计算结果为8,求输入的x值.24.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一(1)求收工时距A地多远?(2)当维修小组返回到A地时,若每km耗油0.3升,问共耗油多少升?25.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.26.如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=50°,求∠MON的度数.(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来,若不能,说明为什么?27.某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.2014-2015学年河北省承德市兴隆县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题.1-6小题,每小题2分,7-16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2是2的()A.倒数 B.相反数C.绝对值D.平方根【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2是2的相反数,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.数轴上表示﹣10与10这两个点之间的距离是()A.0 B.10 C.20 D.无法计算【考点】绝对值;数轴.【分析】数轴上两个点之间的距离等于这两个点表示的数的差的绝对值,即较大的数减去较小的数.【解答】解:数轴上表示﹣10与10这两个点之间的距离是|﹣10﹣10|=20.故选C.【点评】考查了数轴上两点之间的距离的求法.3.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.5【考点】一元一次方程的解.【分析】根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.【点评】本题考查了一元一次方程的解,把解代入方程求解即可,比较简单.4.如果a+b>0,且ab<0,则()A.a>0,b>0 B.a<0,b<0C.a>0,b<0,且|a|较大D.a<0,b>0,且|a|较大【考点】有理数的乘法;有理数的加法.【分析】根据异号得负和有理数的加法运算法则判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b>0,∴正数的绝对值较大,负数的绝对值较小,即a、b异号且负数和绝对值较小,a>0,b<0,且|a|较大.故选C.【点评】本题考查了有理数的乘法,有理数的加法,是基础题,熟记运算法则是解题的关键.5.下列计算正确的是()A.3a+2b=5ab B.x+x=x2C.5y2﹣2y2=3 D.﹣x3+3x3=2x3【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键.6.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5 B.6 C.7 D.8【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将6700000用科学记数法表示为6.7×106,故n=6.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列计算正确的是()A.﹣(﹣2)=﹣2 B.C.﹣34=(﹣3)4D.(﹣1)2=12【考点】有理数的乘方;相反数;有理数的乘法.【分析】根据有理数的乘方和有理数的乘法进行计算解答即可.【解答】解:A、﹣(﹣2)=2,错误;B、,错误;C、34=(﹣3)4,错误;D、(﹣1)2=12,正确;故选D.【点评】此题考查有理数乘方问题,关键是根据法则进行计算.8.把方程变形为x=2,其依据是()A.等式的两边同时乘以B.等式的两边同时除以C.等式的两边同时减去D.等式的两边同时加上【考点】等式的性质.【分析】根据等式的性质:等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立,可得答案.【解答】解:由方程变形为x=2,得等式的两边都乘以2(除以),故选:B.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.9.若∠1=37°18′,则∠1的补角度数为()A.52°42′B.53°42′C.142°42′D.163°42′【考点】余角和补角.【分析】根据互补两个角的和为180°可得∠1的补角度数.【解答】解:180°﹣37°18′=142°42′,故选:C.【点评】此题主要考查了补角,关键是掌握如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.10.下列去括号正确的是()A.﹣(2x+5)=﹣2x+5 B.C.D.【考点】去括号与添括号.【专题】常规题型.【分析】去括号时,若括号前面是负号则括号里面的各项需变号,若括号前面是正号,则可以直接去括号.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、(2m﹣3n)=m﹣n,故本选项错误;D、﹣(m﹣2x)=﹣m+2x,故本选项正确.故选D.【点评】本题考查去括号的知识,难度不大,注意掌握去括号的法则是关键.11.如图1,线段a、b,图2中线段AB表示的是()A.a﹣b B.a+b C.a﹣2b D.2a﹣b【考点】直线、射线、线段.【专题】探究型.【分析】根据图形可以看出线段AB是线段AC与线段BC的差,从而可以得到AB如何表示.【解答】解:由图可得,AB=AC﹣BC=a+a﹣b=2a﹣b.故选D.【点评】本题考查直线、射线、线段,解题的关键是利用数形结合的思想,根据图形解答.12.减去﹣3x得x2﹣3x+4的式子为()A.x3+4 B.x2+3x+4 C.x2﹣6x+4 D.x2﹣6x【考点】整式的加减.【分析】根据题意列出关系式﹣3x+(x2﹣3x+4),去括号合并即可得到结果.【解答】解:﹣3x+(x2﹣3x+4)=﹣3x+x2﹣3x+4=x2﹣6x+4.故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.13.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1 B.﹣1 C.﹣5 D.5【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=3,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣3+2=﹣1,故选B【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.14.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【考点】两点间的距离.【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.“学宫”楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数是()A.m+4 B.m+4n C.n+4(m﹣1)D.m+4(n﹣1)【考点】列代数式.【专题】规律型.【分析】根据题意知,第一排有m个座位,第二排有m+4个座位,第三排有m+8个座位,则根据规律可求出第n排的座位数表达式.【解答】解:由于第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数为:m+4(n﹣1).故选D.【点评】本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式.16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3【考点】展开图折叠成几何体.【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【解答】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点评】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.二、填空题(本大题共4个小题;每小题3分,共12分,把答案写在题中横线上)17.方程x+1=0的解是x=﹣1 .【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程移项即可求出解.【解答】解:方程x+1=0,解得:x=﹣1.故答案为:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是50°.【考点】余角和补角.【分析】由三角板的直角顶点在直线l上,根据平角的定义可知∠1与∠2互余,又∠1=40°,即可求得∠2的度数.【解答】解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.【点评】本题考查了余角及平角的定义,正确观察图形,得出∠1与∠2互余是解题的关键.19.某人以八折的优惠价购买了一件服装省了15元,那么他购买这件服装实际用了60元.【考点】一元一次方程的应用.【分析】设这件衣服的原价为x元,则降价后的价格为0.8x元,根据前后的价格差为15元建立方程求出其解即可.【解答】解:设这件衣服的原价为x元,则降价后的价格为0.8x元,由题意,得x﹣0.8x=15,解得:x=75.他购买这件服装实际用了:75×80%=60(元)故答案为:60元【点评】本题考查了销售问题的运用,列一元一次方程解实际问题的运用,解答时根据前后的价格差为15元建立方程是关键.20.下列图形都是由同样大小的棋子按一定规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,第④个图形一共有31颗棋子…,则第⑥个图形中棋子的颗数为76【考点】规律型:图形的变化类.【分析】通过观察图形得到:第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×(1+2)=16;…由此得出第n个图形中棋子的个数为1+5(1+2+…+n﹣1)=1+n(n﹣1),然后把n=6代入计算即可.【解答】解:∵第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×(1+2)=16;…∴第n个图形中棋子的个数为1+5(1+2+…+n﹣1)=1+n(n﹣1);∴第⑥个图形中棋子的颗数为1+×6×(6﹣1)=76.故答案为:76.【点评】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、解答题(本大题共7个小题,共66分,解答应写出必要说明或演算步骤)21.数与式计算:(1)﹣17+(﹣33)﹣(﹣8)+42(2)(3)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(4)(5a2+2b2)﹣3(a2﹣4b2).【考点】有理数的混合运算;整式的加减.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣17﹣33+8+42=﹣50+50=0;(2)原式=﹣27+9+3=﹣15;(3)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(4)(5a2+2b2)﹣3(a2﹣4b2)=5a2+2b2﹣3a2+12b2=2a2+14b2.【点评】此题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解本题的关键.22.解方程(1)2(x+1)=﹣3(x﹣4)(2)﹣=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+2=﹣3x+12,移项合并得:5x=10,解得:x=2;(2)方程两边同时乘以6得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.按下列程序输入一个数x:(1)若输入的数为x=﹣1,求输出的结果.(2)若输入x后,第一次计算结果为8,求输入的x值.【考点】有理数的混合运算.【专题】图表型;实数.【分析】(1)把x=﹣1代入程序中计算得到输出解即可;(2)根据第一次计算结果为8,确定出输入x的值即可.【解答】解:(1)根据题意得:﹣1×(﹣2)﹣4=﹣2<0,﹣2×(﹣2)﹣4=0,0×(﹣2)﹣4=﹣4<0,﹣4×(﹣2)﹣4=4>0,则输出结果为4;(2)根据题意得:x×(﹣2)﹣4=8,则x=﹣6,即输入的数﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣4 +7 ﹣9 +8 +6 ﹣5 ﹣2(1)求收工时距A地多远?(2)当维修小组返回到A地时,若每km耗油0.3升,问共耗油多少升?【考点】正数和负数.【专题】探究型.【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,最后再加上1,因为维修小组还要回到A地,然后即可解答本题.【解答】解:(1)(﹣4)+7+(﹣9)+8+6+(﹣5)+(﹣2)=1,即收工时在A地东1千米处;(2)(4+7+9+8+6+5+2+1)×0.3=42×0.3=12.6(升).即当维修小组返回到A地时,共耗油12.6升.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际含义,注意在第二问的计算中,要加1.25.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.【考点】一元一次方程的应用.【分析】设甲队整治了x天,则乙队整治了(20﹣x)天,由两队一共整治了360m为等量关系建立方程求出其解即可.【解答】解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.【点评】本题是一道工程问题,考查了列一元一次方程解实际问题的运用,设间接未知数解应用题的运用,解答时设间接未知数是解答本题的关键.26.如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=50°,求∠MON的度数.(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来,若不能,说明为什么?【考点】角平分线的定义;角的计算.【专题】计算题.【分析】(1)根据已知的度数求∠BOC的度数,再根据角平分线的定义,求∠MOC和∠NOC的度数,利用角的和差可得∠MON的度数.(2)结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON 的度数.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(90°+50°﹣50°)=45°.(2)同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=45°.【点评】此类问题,注意结合图形,运用角的和差和角平分线的定义求解.27.某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.【考点】一元一次方程的应用.【分析】(1)设45座的客车每辆每天的租金为x元,则60座的客车每辆每天的租金为(x+100)元,根据题意可得等量关系:2辆60座的一天的租金+5辆45座的一天的客车的租金=一天的租金为1600元;根据等量关系列出方程,再解即可;(2)设这个学校七年级共有y名学生,由题意可得等量关系:租用45座的客车的数量=租用60座客车的数量+2,根据等量关系列出方程,可得y的值,然后再根据学生数计算费用.【解答】解:(1)设45座的客车每辆每天的租金为x元,则60座的客车每辆每天的租金为(x+100)元,则:2(x+100)+5x=1600,解得:x=200,∴x+100=300,答:设45座的客车每辆每天的租金为200元,则60座的客车每辆每天的租金为300元;(2)设这个学校七年级共有y名学生,则:,解得:y=240,租45座客车数量:甲方案的费用:(240+30)×45×200=1200(元),乙的方案费用:240÷60×300=1200(元),共240人,可以租用45座的客车4辆,60座的客车1辆,费用:4×200+300=1100(元),答:甲和乙的方案的费用为1200元,比甲和乙更经济的方案是:租用45座的客车4辆,60座的客车1辆.这个方案的费用为1100元,且能让所有同学都能有座位.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.。

2018-2019年人教版七年级上期末数学考试题及答案(8)

2018-2019年人教版七年级上期末数学考试题及答案(8)

第一学期期末测试卷初一数学注意1.本试卷共 6 页 , 共八道大题,31 道小题 , 满分为 120 分.考试时间120 分钟 .2.在试卷和答题卡上正确填写学校名称、班级、姓名.事项3.试题选择题答案填涂在答题卡上, 非选择题书写在答题纸上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其余试题用黑色笔迹署名笔作答.5.考试结束,将本试卷、答题卡和底稿纸一并交回.一、选择题(每题 3 分,此题共30 分)1.天安门广场位于北京市中心,南北长880 米,东西宽500 米,面积达440 000 平方米,是现在世界上最大的城市广场. 将 440 000 用科学记数法表示应为A .4.4 ×105B .4.4 ×104C. 44×104 D .0.44 ×1062.假如向右走 5 步记为 +5 ,那么向左走 3 步记为1 1A .+3B.﹣ 3C.D.3 33.如图,数轴上有 A,B,C,D 四个点,此中表示互为相反数的点是A.点 A与点 B B.点 B与点 C C.点 B与点 D D.点 A与点 DA B C D -2 -1 01 24.如下图,用量角器胸怀∠ AOB,能够读出∠ AOB 的度数为A .45°B.55°C. 125°D.135°5.以下各式中运算正确的选项是9a 8a 1 B .a 2a22a4C.3a4b 5a4b 2a4b D.3a22a36a5A .6.以下几何体中,主视图同样的是A .①②B.①④C .①③D.②④7.以下图形中,能用∠ 1,∠ AOB ,∠ O 三种方法表示同一个角的图形是....8. 如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔挺的墨线,并且只好弹出一条墨线,能解说这一实质应用的数学知识是BAA. 两点确立一条直线B. 两点之间线段最短C.垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直x 1 2x 3 时,去分母正确的选项是 9. 在解方程213A . 3 x 1 2 2x 3 1B . 3 x 1 2 2x 3 3C . 2 x 1 3 2x 3 6D . 3 x 1 2 2x 3 610.商场为了促销,推出两种促销方式:方式①:全部商品打 8折销售.方式②:购物每满 100 元送 30 元现金.杨奶奶同时选购了标价为120 元和 280 元的商品各一件,现有四种购置方案:方案一: 120 元和 280 元的商品均按促销方式①购置;方案二: 120 元的商品按促销方式①购置,280 元的商品按促销方式②购置;方案三: 120 元的商品按促销方式②购置,280 元的商品按促销方式①购置;方案四: 120 元和 280 元的商品均按促销方式②购置.你给杨奶奶提出的最省钱的购置方案是A. 方案一B.方案二C.方案三D.方案四二、填空题(每题 3 分, 此题共 30 分)11. 57.32 = _______ _______' ______ "12. 若 x=5是对于x的方程 2 x+3k-5=0的解,则 k=.13. 单项式ab2c4 的系数是,次数是,多项式 3x2 y 8x2 y2 93的最高次项为.14. 1 2比较大小:3 515. 利用等式的性质解方程:2x+13=12第一步:在等式的两边同时,第二步:在等式的两边同时,解得:x=16.如图, C, D 是线段 AB 上两点, CB=3cm, DB= 5cm, D 是 AC 的中点,则线段 AB 的长为cm.17.教材中《一元一次方程》一章的知识构造如下图,则A 和B 分别代表的是A 代表,B代表.a b18. a,b, c, d为有理数,现规定一种运算:= ad bc,c d2 4那么当=18 时x的值是.(1 x) 519.《孙子算经》是中国传统数学的重要著作之一,此中记录的“荡杯问题”很风趣.《孙子算经》记录“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“ 2 人同吃一碗饭, 3 人同吃一碗羹, 4 人同吃一碗肉,共用65 个碗,问有多少客人?”设共有客人x 人,可列方程为____________.20.有这样一个数字游戏,将 1, 2, 3, 4, 5, 6, 7, 8,9 这九个数字分别填在如下图的九个空格中,要求每一行从左到右的数字渐渐增大,每一列从上到下的数字也渐渐增大.当数字 3 和 4 固定在图中所示的地点时,x 代表的数字是 _______ ,此时按游戏规则填写空格,全部可能出现的结果共有_______种.三、计算:(共 4 个小题,每题 5 分,共 20 分)21. - 14 - 5+30- 2 22. (- 5 ) 8 (- 3 )1215 223. (157) ( 36)24. 14(1 0.5)12 (3)226 123四、化简求值 (共 2 个小题,每题5 分,共 10 分)25. 化简: 6 2b 5 ab 2 4 ab 2 7 2 . aa b26. 先化简 ,再求 4x 2y -[6 xy -3(4 xy -2)-x 2y ]+1 的值,此中 x =2, y =-12五、解方程 (共 2 个小题,每题 5 分,共 10 分)27. 5(x 2)2(3 4x)28.3x 1 1 x 846六、请按以下步骤绘图: (用圆规、三角板或量角器绘图,不写画法、保存作图印迹)29. (每题 1 分 ,共 4 分)如图,已知平面上的三个点 A 、B 、C .( 1)连结AB;(2)画射线AC;( 3)画直线;( 4)过点 A 作 BC 的垂线,垂足为 D .BC七、列方程解应用题(此题8 分)30.八达岭丛林体验中心 , 由八达岭丛林体验馆和 450 公顷的户外体验区组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期末测试卷初一数学 注 意 事 项 1.本试卷共6页,共八道大题,31道小题,满分为120分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题选择题答案填涂在答题卡上,非选择题书写在答题纸上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(每小题3分,本题共30分)1.天安门广场位于北京市中心,南北长880米,东西宽500米,面积达440 000平方米, 是当今世界上最大的城市广场. 将440 000用科学记数法表示应为A .4.4×105B .4.4×104C .44×104D .0.44×1062. 如果向右走5步记为+5,那么向左走3步记为A .+3B .﹣3C .31+D .31- 3. 如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .B .C .D .A .点A 与点B B .点B 与点C C .点B 与点D D .点A 与点D4. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为A .45°B .55°C .125°D .135°5. 下列各式中运算正确的是A .189=-a aB .4222a a a =+C .b a b a b a 444253-=-D .532623a a a =+6. 下列几何体中,主视图相同的是A .①②B .①④C .①③D .②④7. 下列图形中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是C D B A-2-12108. 如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条 墨线,能解释这一实际应用的数学知识是 A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直9. 在解方程133221=+--x x 时,去分母正确的是 A .()()132213=+--x x B .()()332213=+--x xC .()()632312=+--x xD .()()632213=+--x x10.商场为了促销,推出两种促销方式:方式①:所有商品打8折销售.方式②:购物每满100元送30元现金. AB杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案:方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买;方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买;方案四:120元和280元的商品均按促销方式②购买.你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四二、填空题(每小题3分,本题共30分)11.57.32︒ = _______︒ _______' ______ "12.若x =5是关于x 的方程2x +3k -5=0的解,则k = .13.单项式243ab c -的系数是 ,次数是 ,多项式222389x y x y -- 的最高次项为 .14.比较大小:31- 52- 15.利用等式的性质解方程:2x +13=12第一步:在等式的两边同时 ,第二步:在等式的两边同时 , 解得:x =16.如图,C ,D 是线段AB 上两点,CB =3cm ,DB =5cm ,D 是AC 的中点,则线段AB 的长为 cm .17.教材中《一元一次方程》一章的知识结构如图所示,则A 和B 分别代表的是A 代表 ,B 代表 .18. ,,,a b c d 为有理数,现规定一种运算:a c b d=ad bc , A BD C BA那么当2(1)x - 45=18时x 的值是 . 19.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣. 《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为 __________ __.20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、计算:(共4个小题,每小题5分,共20分)21. -14 -5+30-2 22. (-125)⨯158÷(-23)23. )36()1276521(-⨯-+ 24. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦四、化简求值(共2个小题,每小题5分,共10分)25. 化简:.74562222b a ab ab b a --+26. 先化简,再求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值,其中x =2,y =-21五、解方程(共2个小题,每小题5分,共10分)27. )43(2)2(5x x --=- 28. 318146x x -+=-六、请按下列步骤画图:(用圆规、三角板或量角器画图,不写画法、保留作图痕迹)29. (每小题1分,共4分)如图,已知平面上的三个点A 、B 、C .(1)连接AB;(2)画射线AC;(3)画直线BC;(4)过点A作BC的垂线,垂足为D.七、列方程解应用题(本题8分)CAB30.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成。

森林体验馆包括"八达岭森林变迁"、"八达岭森林大家族"、"森林让生活更美好"等展厅,户外游憩体验系统根据森林生态旅游最新理念,采取少设施、设施集中的点线布局模式,突破传统的"看风景"旅游模式,强调全面体验森林之美。

在室内展厅内,有这样一个可以动手操作体验的仪器,如图小明在社会大课堂活动中,记录了这样一组数字:交通工具行驶100公里的碳足迹(Kg)100公里碳中和树木棵树飞机13.90.06小轿车22.5 0.10公共汽车 1.3 0.005根据以上材料回答问题:A,B两地相距300公里,小轿车以90公里/小时的速度从A地开往B地;公共汽车以60公里/小时的速度从B开往A地,两车同时出发相对而行,两车在C地相遇,相遇后继续前行到达各自的目的地。

(1)多少小时后两车相遇?(2)小轿车和公共汽车分别到达目的地,计算小轿车的碳足迹为多少?公共汽车的碳中和树木棵数为多少?(3)根据观察或计算说明,为了减少环境污染,我们应该选择哪种交通工具出行更有利于环保呢?八、解答题(本题8分)31. 阅读下面材料:点A、B在数轴上分别表示实数a、b, A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时, 不妨设点A在原点, 如图甲, AB=OB=∣b∣=∣a b∣;bO (A) B 图甲当A 、B 两点都不在原点时,① 如图乙, 点A 、B 都在原点的右边,AB = OB - OA = | b | - | a | = b - a = | a -b |;② 如图丙, 点A 、B 都在原点的左边,AB = OB - OA = | b | - | a | = - b - (-a ) = | a -b | ;③ 如图丁, 点A 、B 在原点的两边AB = OA + OB = | a | + | b | = a + (-b ) = | a -b |.综上, 数轴上A 、B 两点之间的距离AB =∣a - b ∣.(2) 回答下列问题:① 数轴上表示2和5的两点之间的距离是______ ,数轴上表示 -2和 -5的两点之间的距离是______ ,数轴上表示1和 -3的两点之间的距离是______ ;② 数轴上表示x 和 -1的两点分别是点A 和B ,则A 、B 之间的距离是______ ,如果AB =2, 那么x =________ ;③ 当代数式∣x +2∣+∣x -5∣取最小值时, 相应的x 的取值范围是____________.④ 当代数式521-+++-x x x 取最小值时, 相应的x 的值是_________.baO 0 B A 图乙O ab 0B A图丙aOb A B 0图丁⑤ 当代数式25+--x x 取最大值时, 相应的x 的取值范围是_________________.第一学期期末考试参考答案初一数学阅卷说明:本试卷72分及格,102分优秀.一、选择题:(每小题3分,本题共30分)题号 1 2 3 4 5 6 7 8 9 10答案 A B D B C C B A D D二、填空题(每小题3分,本题共30分)题号 11 12 13 14 15答案 57,19,12 35-13-,7,228x y ->减去13,除以2,21-题号 16 17 18 19 20答案 7 多项式,解法 365413121=++x x x2,6三、计算题:(每小题5分,共20分)21.原式= -19+30-2----------------2分= 11—2 -----------------------4分= 9------------------------------5分 22. (-125)⨯158÷(-23)解:(-125)⨯158÷(-23)=125⨯158÷23-------------2分 =125⨯158⨯32-------------4分 =274---------------------5分 【评分标准】过程与结论无误,满分5分。

如果结论错误,符号正确,得1分;体现“除以分数,等于乘以分数的倒数”得1分。

23. 解:原式()157362612⎛⎫=+-⨯-⎪⎝⎭1573636362612=-⨯-⨯+⨯ ---------2分 183021=--+ -------------- --------4分27=- ---------------------------5分24.解:原式()1112923=--⨯⨯- ------------------2分 ()1176=--⨯- -----------------------3分 716=-+ ----------------------4分 16=----------------------------5分 四、化简求值(每小题5分,共10分)25. 原式 = 22)45()76(ab b a -+--------------------------------3分.= 22ab b a +-------------------------------------------------5分.26.求4x 2y-[6xy-3(4xy-2)-x 2y]+1的值,其中x=2,y=-21 解:原式化简:4x 2y-[6xy-3(4xy-2)-x 2y]+1=4x 2y-(6xy-12xy+6-x 2y)+1------------1分 =4x 2y-6xy+12xy-6+x 2y+1--------------2分 =5x 2y+6xy-5-------------------------3分 当x=2,y=-21时 4x 2y-[6xy-3(4xy-2)-x 2y]+1 =5x 2y+6xy-5=5⨯22⨯(-21)+6⨯2⨯(-21)-5-----------4分 =-10-6-5=-21--------------------------------5分【评分标准】化简式子,正确,得3分;代入值,得1分;结论正确,得1分;有先化简、后代入的过程,得1分。

相关文档
最新文档