2019年春七年级数学下册第五章相交线与平行线5.1相交线5.1.1相交线课时作业新版新人教版
临潼区第五中学七年级数学下册第五章相交线与平行线5.1相交线5.1.3同位角内错角同旁内角教案新版新
5.1.3 同位角、内错角、同旁内角明确构成同位角、内错角、同旁内角的条件,了解其命名的含义.重点同位角、内错角、同旁内角的概念.难点各对角之间关系的辨认以及复杂图形的辨认.一、创设情境,引入新课中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的角,这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系.学生能由教师的叙述认真地观察风筝的图形并能抽象出以下图形.二、尝试活动,探索新知教师组织学生讨论:两条直线和第三条直线相交的关系.如图:直线a1、a2被直线a3所截,构成了八个角.学生在教师的组织下完成以下活动:观察∠1与∠5的位置:它们都在第三条直线a3的同侧,并且分别位于直线a1、a2的同一侧,这样的一对角叫做“同位角”.观察∠3与∠5的位置:它们分别在第三条直线a3的异侧,并且都位于两条直线a1、a2之间,这样的一对角叫做“内错角”.观察∠2与∠5的位置:它们都在第三条直线a3的同旁,并且都位于两条直线a1、a2之间,这样的一对角叫做“同旁内角”.学生通过小组合作交流,讨论以下各对角的关系:∠1与∠5;∠2与∠6;∠2与∠5;∠2与∠8;∠3与∠5;∠3与∠7;∠3与∠8;∠4与∠8.教师总结:同位角:∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8.内错角:∠2和∠8,∠3和∠5.同旁内角:∠2和∠5,∠3和∠8.三、尝试反馈,理解新知教师出示以下问题:在下面的同位角、内错角、同旁内角中任选一对,请你说说这对角的四条边与“前提”中的“三线”有什么关系?学生思考,教师总结:四边所在的直线正好是前提中的三线,并且有两条边所在的直线是同一条直线.四、巩固练习找出∠1、∠2、∠3中哪两个是同位角、内错角、同旁内角.【答案】∠1、∠3是同位角,∠2、∠3是内错角,∠1、∠2是同旁内角.五、课堂小结本节课的内容你都掌握了吗?适当地强调有关的知识点.如何确定“三线”构成的“八角”(注意“一个前提”)?如何根据“关系角”确定“三线”(注意找“前提”)?本节课的教学内容量有点大,学生认识角的问题有一定的难度,所以本节课的教学效果一般,小组同学的合作学习效果还可以.通过本节课的学习,大部分学生能明确构成同位角、内错角、同旁内角的条件,并能在各类图形中找出各类角.第六章 实数6.3 实数 课时2 实数的运算1. 了解实数范围内的相反数和绝対值的意义,会求一个实数的相反数和绝対值.2. 学会比拟两个实数的大小.3. 了解在有理数范围内的运算及运算法那么\,运算性质等在实数范围内仍然成立,能熟练地进行实数运算.有理数的大小比拟和运算.带有绝対值的有理数的运算.同学们 , 我们在初一的时候学习了有理数相反数 , 绝対值的概念 , 那么 , 这一法那么能否推广到实数呢 ?答案是肯定的 , 数a 的相反数是-a 〔a 表示任意一个实数 , 一个正实数的绝対值是它本身 , 一个负实数的绝対值是它的相反数 , 0的绝対值是0〕教师讲解课本例1[教学说明]教师可让同学们先计算-6 , 5.8 , 2111 有理数的绝対值与相反数 , 从而导出实数相反数和绝対值的法那么.[教学导语]在数拓展到实数后,有理数范围内的法那么、规律、公式仍然适用于实数范围,请同学们共同回忆,归纳在实数范围内适用的公式,法那么.1.在数轴上表示的数,右边的数总比左边的大.2.两个正实数 , 绝対值较大的值也大;两个负实数 , 绝対值大的值反而小;正数大于0,负数小于0,正数大于负数.3.运算律:(1)加法交换律:a+b=b+a.(2)加法结合律:(a+b)+c=a+(b+c).(3)乘法交换律:ab=ba.(4)乘法结合律:(ab)c=a(bc).(5)分配律:a(b+c)=ab+ac.例1比拟以下各实数的大小 :[教学说明]实数比拟大小常用以下方式:(1)两个负数比拟,绝対值大的反而小;(2)被开方数大,它的算术平方根也大;(3)立方数大原数也大.例2计算以下各题 :分析 : 先逐个化简后,再按照计算法那么计算.[教学说明]实数的运算同有理数的运算律和运算性质、运算顺序一样.[教学说明]教师指导学生归纳得到以下结论 :〔1〕非负数的和等于零的条件是当且仅当每个非负数的值都等于0.〔2〕任何实数的绝対值是一个非负数,任何一个非负数的算术平方根也是一个非负数.例1.〔1〕绝対值等于3的实数是 , 绝対值是22的实数是 . 〔2〕257的相反数是 , 绝対值是 . 例2.比拟2010-1与1949+1的大小.例3.由于水资源缺乏,B,C 两地不得不从河上的抽水站A 处引水,这就需要在A,B,C 之间铺设地下管道.有人设计了三种方案:如以下图甲,图中实线表示管道铺设线路,在图乙中,AD ⊥BC 于D,在图丙中,OA=OB=OC,为减少渗漏\,节约水资源,并降低工程造价,铺设线路尽量缩短.已知△ABC 是一个边长为a 的等边三角形,请你通过计算.判断哪个铺设方案好.[教学说明]第1题较易 , 2、3题稍难 , 教师可引导学生完成.让学生回顾本节知识,思考整个学习过程,看看知道了什么,还有什么疑惑? 从教材〞习题6.3”中选取.二元一次方程组一、填空题(每小题3分,共18分)1.已知42+=a x ,32+=a y ,如果用x 表示y ,则y = _________.2.若直线7+=ax y 经过一次函数1234-=-=x y x y 和的交点,则a 的值是________.3.如果一个二元一次方程的一个解是⎩⎨⎧-==11y x ,请你写出一个符合题意的二元一次方程_________ .4.在等式5×口+3×Δ=4的口和Δ处分别填人一个数,使这两个数互为相反数.5.如果2006200520044321=+-+-+n m n m y x 是二元一次方程,那么32n m +的值是________ .6.如图,点A 的坐标可以看成是方程组___________的解.二、选择题(每小题3分,共27分)7.根据图1所示的计算程序计算y 的值,若输入2=x ,则输出的y 值是( )A.0B.2-C.2D.4 8.将方程121=+-y x 中含的系数化为整数,下列结果正确的是( )A.442-=-y xB.442=-y xC.442-=+y xD.442=+y x9.如果⎩⎨⎧==21y x 是二元一次方程组⎩⎨⎧=+=+21ay bx by ax 的解,那么a ,b 的值是( ) A.⎩⎨⎧=-=01b a B.⎩⎨⎧==01b a C.⎩⎨⎧==10b a D.⎩⎨⎧-==10b a10.如果二元一次方程组⎩⎨⎧=+=-ay x a y x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是( )A.3B.5C.7D.911.如果3251b a 与yx x b a ++-141是同类项,则x ,y 的值是( )A.⎩⎨⎧==31y xB.⎩⎨⎧==22y xC.⎩⎨⎧==21y xD.⎩⎨⎧==32y x12.在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( ) A.1--=x y B.x y -= C.1+-=x y D.1+=x y13.如果⎩⎨⎧=+-=-+0532082z y x z y x ,其中xy z≠0,那么x :y :z=( )A.1:2:3B.2:3:4C.2:3:1D.3:2:114.如果方程组⎩⎨⎧=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )A.1B.2C.3D.415.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A.65,240x y x y =⎧⎨=-⎩B.65,240x y x y =⎧⎨=+⎩C.56,240x y x y =⎧⎨=+⎩D.56,240x y x y =⎧⎨=-⎩ 三、解答题(55分)16.解方程组(每小题4分,共16分)(1)⎩⎨⎧-==+73825x y y x (2)⎩⎨⎧=-=+423732y x y x(3)⎩⎨⎧=-=-;1383,32y x y x (4) ⎩⎨⎧=-=+102322y x y x17.若方程组⎩⎨⎧=+=-31y x y x 的解满足方程组⎩⎨⎧=+=-84by ax by ax ,求a ,b 的值.(8分)18.为了净化空气,美化环境,我县城兴华小区计划投资 1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?(8分)19.某水果批发市场香蕉的价格如下表张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?(8分)20.(8分)为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度y (cm)是椅子的高度x (cm )的一次函数,下表列出两套符合条件的课桌椅的高度:(1)请确定x y 与的函数关系式;(2)现有一把高39cm 的椅子和一张高为78.2cm 的课桌,它们是否配套?为什么?21.(10分)(1)求一次函的坐标的交点的图象与的图象P l x y l x y 2112122-=-=.(2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标;(3)求由三点P 、A.B 围成的三角形的面积.22.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?参考答案一、填空题1、x-1,2、-6,3、略,4、2,-2,5、9,6、⎩⎨⎧+--=512x y x y二、选择题 7~15题分别为DABCCACBD三、16、(1){21=-=x y (2){21==x y (3) ⎩⎨⎧-=-=.2,1y x (4)⎩⎨⎧-==22y x 17、解:解方程组⎩⎨⎧=+=-31y x y x 得:{21==x y将{21==x y 分别代入方程组⎩⎨⎧=+=-84by ax by ax 得{8242=+=-b a b a 解这个方程组得{32==a b 所以3=a 、2=b18、解:设可种玉兰树x 棵,松柏树y 棵,根据题意得,⎩⎨⎧=+=+801800200300y x y x 解这个方程组得{2060==x y所以可种玉兰树20棵,松柏树60棵.19、解:设张强第一次购买了香蕉x 千克, 第二次购买了香蕉y 千克,由题意可025x <<,①当020,40x y <<≤时,由题意可得,⎩⎨⎧=+=+5026456y x y x 解得{1436==x y②当0<x ≤20,y>40时,由题意可得⎩⎨⎧=+=+5026446y x y x 解得{3218==x y (不合题意,舍去)③当20<x<25时,则25<y<30,则张强花的钱数为5x+5y =5×50=250<264(不合题意,舍去)所以张强第一次买14千克香蕉,第二次买36千克香蕉.20、解:(1)设y=kx+b ,根据题意得{750.402.700.37=+=+b k b k 解得{6.111==k b 所以116.1+=k y(2)不配套,因为:当x=39时,由116.1+=k y 得y =1.6×39+11=73.4≠78 所以不配套.21、解:(1)由⎪⎩⎪⎨⎧-=-=22121x y x y 解得:⎪⎩⎪⎨⎧=-=3232x y 所以点P 的坐标为⎪⎭⎫⎝⎛-32,32,(2)当x=0时,由y =2×0-2=-2,所以点A 坐标是(0,-2).当y=0时,由0=-21x-1,得x=2,所以点B 坐标是(2,0).(3)如图322322212221=⨯⨯⨯-⨯⨯=∆PAB22、解:(1)设应安排x 天进行精加工,y 天进行粗加工,根据题意得: ⎩⎨⎧x +y =12,5x +15y =140. 解得⎩⎨⎧x =4,y =8.答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m 吨,则粗加工(140-m )吨,根据题意得:W =2000m +1000(140-m )=1000m +140000 .②∵要求在不超过10天的时间内将所有蔬菜加工完,∴m 5+140-m 15≤10 解得 m≤5.∴0<m≤5.又∵在一次函数W =1000m +140000中,k =1000>0,∴W 随m 的增大而增大,∴当m =5时,Wmax =1000×5+140000=145000.∴精加工天数为5÷5=1,粗加工天数为(140-5)÷15=9.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润.。
七年级数学下册:第五章相交线与平行线5.1相交线5.1.3同位角、内错角、同旁内角教学课件(新版新人教版)
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
A
B
C
人教版七年级数学下册5.1.1《相交线》教案
1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。
七年级数学下册:第五章相交线与平行线5.1相交线5.1.2垂线第2课时垂线段教学课件(新版新人教版)
解:如答图所示, (1)沿 AB 走,两点之间线段最短; (2)沿 AC 走,垂线段最短; (3)沿 BD 走,垂线段最短.
7.如图 5-1-34,为了解决 A,B,C,D 四个小区的缺水问题,市政府准备 投资修建一个水厂.
(1)不考虑其他因素,请你画图确定水厂 H 的位置,使之与四个小区的距离 之和最小;
知识管理
1.垂线段的概念及性质 定 义:从直线外一点引一条直线的 垂 线,这点和 垂足 之间的线
段叫做垂线段. 性 质:连接直线外一点与直线上各点的所有线段中,垂线段最短,简 单说成:垂线段最短.
2.点到直线的距离 定 义:直线外一点到这条直线的 垂线段 的长度,叫做点到直线的距离.
注 意:垂线、垂线段和点到直线的距离是三个不同的概念,不能混淆.垂 线是直线;垂线段是一条线段;点到直线的距离是垂线段的长度,是一个数 量,不能说垂线段是点到直线的距离.
7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。
9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。 6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。
7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。 8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。 9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
5.1.1相交线课件(新人教版七年级数学下)
尝试应用
学习体会
1.本节课你有哪些收获?
2.预习时的疑难问题解决了吗?你还有哪些疑惑?
3.你认为本节还有哪些需要注意的地方?
当堂达标
当堂达标
3.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求 ∠2的度数.
作业布置
必做题:1.课本第7---8页习题5.1第1、2题; 2.课本第9---10页习题5.1第8、9题. 选做题:《同步探究》第2页第2、3题.
课中探究
对顶角的性质: ___________________________
尝试应用
1.如图1所示,∠1和∠2是对顶角的图形有( ) A.1个 B.2个 C.3个 D.4个 2.如图2所示,AB与CD相交所成的四个角中,∠1的 邻补角是____,∠1的对顶角是___;若∠1=40°, 则∠2=___,∠3=__,∠4=___;若∠1=90°,则 ∠2=___,∠3=___,∠4= __.
课中探究
活动(二)观察图形,回答问题: 问题5:如图所示,任意两条相交的直线形成的4个
角中,两两相配共能组成几对角?
问题6:这些角有什么位置关系?
课中探究
结论: 邻补角的性质 问题7:对顶角大小有什么关系? 猜想:对顶角____________ 问题8:你能根据“同角的补角相等” 来说说你的发现是正确的吗? 说理过程:
人教版初中数学七年级下册
第五章
相交线与平行线
5.1.1 相交线
创设情景
情境引入
从图片中你能发现哪些几何图形? 你还能列举出生活中相交线的例子吗?
课中探究
探究一:邻补角,对顶角的概念 活动(一)根据问题,说一说、画一画:
问题1:一把张开的剪刀,你能联想出什么几何图形?
人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)
变式2:若∠2是∠1的3倍,求∠3的度数? 解:设∠1=x°,则∠2=3x°
根据邻补角的定义,得 x+3x=180 所以 x=45 则∠1=45°
根据对顶角相等,可得 ∠3=∠1=45°
今天我们学了什么?
邻补角、对顶角概念 邻补角、对顶角性质
今天我们学了什么?
两直线相交
C
2
B
1
3
4
A
D
位置 特征
1、两直线相交,形成小于平角的角有哪几个?
2、以∠1和∠2为例分析这两个角存在怎样的
位置关系和大小关系?像这样的角还有哪些?
3、以∠1和∠3为例分析这两个角存在怎样的
位置关系?像这样的角还有哪些?
C
2
B
1 o3
4
A
D
动手画出两条相交直线
1、两条直线相交,形成的小于平角的角
有哪几个?
C
2
B
1
o3
4
A
1 2
(1)不是
1 2
(2) 是
1 2
(3) 不是
1
2
(4) 不是
2 1
(5)是
7、你能得到对顶角∠1和∠3的大小关系吗?
C
2
B
动动手:(1)、用量角器测
1
o3
量对顶角∠1和∠3,比较他们
4
的大小
A
D
(2)将对顶角∠1和∠3
进行翻折,比较它们的大小?
4、你能得到对顶角∠1和∠3的大小关系吗?
猜猜看:若直线CD绕点O转 C
例、如图,直线a、b相交,∠1=40°,求
∠2、∠3、∠4的度数。
b
解:由邻补角的定义可知 ∠2=180°-∠1
5.1.1相交线
5.1.1 相交线
7.如图5-1-1-4,已知直线a、b、c相交于点O,∠1=30°,∠2=70°,则∠3= .
拓展延伸
(1)两条直线相交形成两对对顶角. (2)判断两个角是否为对顶角,应抓住两点:一是两个角是否有公共顶点,二是 两角的两边是否互为反向延长线,即是否构成两条相交直线.
温馨提示 对顶角相等,但相等的角不一定是对顶角.
5.1.1 相交线
例2 如图5-1-1-2,直线AB、CD相交于O点,若∠AOD+∠BOC=280°,求 ∠BOD的度数.
5.1.1 相交线
知识点一 邻补角及其性质 1.(2016江西南昌二中月考)如图5-1-1-1,点O在直线AB上,若∠1=40°,则 ∠2的度数是 ( )
图5-1-1-1 A.50° B.60° C.140° D.150° 答案 C 由题意知∠AOB是平角,即∠1+∠2=180°,又因为∠1=40°,所 以∠2=180°-∠1=140°.
初中数学人教版 七年级下册
第五章5.1相.1交相线交与线平行线
5.1.1 相交线
知识点一 邻补角及其性质
定义
性质
图例
邻补角
两个角有一条公共边,它们的另 一边互为反向延长线,具有这种 关系的两个角,互为邻补角.
邻补角互补.如图, ∠1+∠2=180°,∠1+∠4=180°, ∠2+∠3=180°,∠3+∠4=180°.
图5-1-1-4
5.1.1 相交线
人教版七年级下册数学第5章《相交线》图文讲解课件
知2-讲
∠1=∠3 (或 ∠2=∠4)
解:直线AB与CD相交于O点 由邻补角的定义,可得 ∠1+∠2=180° ∠2+∠3=180 所以:∠1=∠3 同样的道理 ∠2=∠4
C 2O
B
1 ( ( )3 )
4 A
D
例2 如图,∠1与∠2是对顶角的是( C )
知2-讲
导引:判断两个角是不是对顶角,要紧扣对顶角的定义, A图中∠1和∠2的顶点不同;B图中∠1和∠2的两 边都不是互为反向延长线;C图中的∠1和∠2符合 定义;D图中∠1和∠2有一条公共边.
总结
知2-讲
判断两个角是否互为对顶角的方法: 一看它们有没有公共顶点; 二看这两个角的两边是否互为反向延长线,实质就 是看这两个角是否是两条直线相交所成的没有公共 边的两个角.
知2-讲
例3 如图,直线a, b相交,∠1 = 40°, 求∠2, ∠3, ∠4的度数.
解:由邻补角的定义,得 ∠2 = 180°-∠1 = 180°-40°=140°; 由对顶角相等,得 ∠3= ∠1=40° , ∠4= ∠2 = 140°.
角
个公共顶点③有 一条公共边
互补 成对出现.
两个.
2 易错小结
如图,点O是直线AB上的任意一点,OC,OD,OE是过点O 的三条射线,若∠AOD=∠COE=90°,则下列说法:①与 ∠AOC互为邻补角的角只有一个;②与∠AOC互为补角的角 只有一个;③与∠AOC互为邻补角的角有两个;④与∠AOC 互为补角的角有两个.其中正确的是( D )
(来自《典中点》)
知识点 2 对顶角的定义及性质
知2-讲
对顶角:有一个公共顶点一 个角的两边是另一个角的 两边的反向延长线,那么 这两个角互为对顶角.
七年级数学下册第五章相交线与平行线知识点总结
相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b 。
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
同位角、内错角、同旁内角5。
2 平行线及其判定5。
2。
1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果b a,c a,那么b c。
5。
2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.同位角相等,两直线平行.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.内错角相等,两直线平行。
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
同旁内角互补,两直线平行。
5。
3 平行线的性质5.3。
1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补.两直线平行,同旁内角互补。
5。
3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。
如果题设成立,那么结论一定成立,这样的命题叫做真命题.题设成立时,不能保证结论一定成立,这样的命题中做假命题.在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.5。
人教版七年级数学下册5.1.1《相交线》说课稿
人教版七年级数学下册5.1.1《相交线》说课稿一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍了相交线的定义、性质和应用。
本节课的内容是学生学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
在教材中,通过生动的实例和丰富的图片,引导学生认识相交线,理解相交线的性质,并学会运用相交线解决实际问题。
教材内容由浅入深,循序渐进,既注重了知识的传授,又重视了学生的动手实践和合作交流。
二. 学情分析七年级的学生已经掌握了平行线的知识,对于图形的认知和观察能力有一定的基础。
但是,对于相交线的定义和性质,学生可能还存在一定的模糊认识。
此外,学生的空间想象能力和逻辑思维能力还有待提高。
三. 说教学目标1.知识与技能目标:学生能够理解相交线的定义,掌握相交线的性质,并能够运用相交线解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,体验成功,培养自信心和合作精神。
四. 说教学重难点1.教学重点:相交线的定义、性质和应用。
2.教学难点:相交线的性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和启发式教学法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受和动手实践能力。
六. 说教学过程1.导入:通过展示生活中常见的相交线的例子,如交叉的电线、道路等,引导学生思考相交线的特点,激发学生的学习兴趣。
2.新课导入:介绍相交线的定义,引导学生观察和描述相交线的性质。
3.实例分析:通过几何画板展示相交线的性质,让学生直观地感受相交线的特点。
4.小组讨论:学生分组讨论相交线的性质,总结出相交线的性质定理。
5.练习巩固:设计一些相关的练习题,让学生运用所学的知识解决实际问题。
6.课堂小结:引导学生总结本节课所学的知识,巩固对相交线的理解。
人教版初中数学七年级下册精品教学课件 第5章 相交线与平行线 5.1.1 相交线
3.如图,直线AB和CD相交于点O,则∠AOC的对顶角 是 ∠BOD ,∠BOC的邻补角是 ∠AOC和∠BOD .
学前温故
新课早知
快乐预习感知
4.如图,两直线交于点O,若∠1+∠2=76°,则∠1=
快乐预习感知
1
2
3
4
5
6
1.如图,∠1和∠2是对顶角的是( )
关闭
C
答案
快乐预习感知
1
2
3
4
5
6
2.下列说法正确的是( )
A.对顶角的角平分线在一条直线上
B.邻补角相等
C.一个角的邻补角只有一个
D.补角即为邻补角
A
关闭
答案
快乐预习感知
1
2
3
4
5
6
3.如图,直线a,b与直线c相交,若∠1=∠2,则与∠3相等的角有( )
38.°
5.下列说法正确的是( C ) A.有公共顶点的角是对顶角 B.相等的角是对顶角 C.对顶角一定相等 D.不是对顶角的角一定不相等
1
2
快乐预习感知
【例1】 如图,直线AB,CD,EF相交于点O,写出图中所有的对顶角.
分析该图可以看作:直线AB,CD相交于点O;直线AB,EF相交于点 O;直线CD,EF相交于点O.因为每两条直线相交组成两对对顶角,所 以图中共有6对对顶角.
第五章 相交线与平行线
5.1 相交线
5.1.1 相交线
学前温故
新课早知
快乐预习感知
1.直线向 两方 无限延伸, 无 端点. 2.直角、平角、周角的度数分别为90°, 180°,360°.
七年级数学下册《5.1.1相交线与平行线》课件
位置关系 名称
数量关系
1.有公共顶点 2.有一条公共边 3.另一边互为反 向延长线
1.有公共顶点 2.没有公共边 3.两边互为反向 延长线
邻
邻补角互补
补
角
对
对顶角相等
顶 ∵直线AB与CD相交于O点
角 ∴∠1=∠3,∠2=∠4.
实战演练 运用新知
1.下列各图中, ∠1 ,∠2是对顶角吗?
1( 2
1( 2
C
B
2
A
(
1( 4 O 3
(
D
预 习反 馈
阅读教材第2至3页,理解对顶角的性质,体会例1的解答过程,并完成
下列预习内容: 1.在同一平面内不重合的两条直线之间位置关系为相交或平行. 2.两条直线相交所成的四个角中, 相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反 向延长线,性质是邻补角互补; 相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线,性质 是对顶角相等.
邻
邻补角互补
补
角
对
对顶角相等
顶 ∵直线AB与CD相交于O点
角 ∴∠1=∠3,∠2=∠4.
课课后堂作小业结
1、熟练背诵邻补角和对顶角的性质(含几何语言); 2、做课本练习
二、邻补角与对顶角的性质
1、互为邻补角的两个角和为180°
C
B
2
A
(
1( 4 O 3
(
D
问题:∠1 与∠3在数量上又有什么关系呢?
2、对顶角相等
已知:直线AB与CD相交于O点(如图),试说明思:∠考1=:∠3, ∠2=∠4. 证明:∵直线AB与CD相交于你O能点利, 用有关知识来验证∠1 与∠3的数量关系吗?
平泉县二中七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线(2)教案新版新人教版3
5.1.2 垂线(2)1.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义.2.学会度量点到直线的距离.重点垂线段最短的性质,点到直线的距离的概念及其简单应用.难点对点到直线的距离的概念的理解.一、创设情境,引入新课教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?学生看图、思考.教师以问题的形式,启发学生思考.问题1:上学期我们曾经学过什么最短的知识,还记得吗?问题2:如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线l,那么原问题就是怎么连线的数学问题.学生说出:两点之间,线段最短.二、尝试活动,探索新知学生能在教师的引导下用数学眼光思考:在连接直线l外一点P与直线l上各点的线段中,哪一条最短?教师演示教具,给学生直观的感受.如图:在硬纸板上固定木条l,l外有一点P,转动的木条a一端固定在点P.使木条l与a相交,左右摆动木条a,l与a的交点A随之变化,线段PA的长度也随之变化.PA最短时,a与l的位置关系如何?用三角尺检验.教师引导学生画图操作:学生看图总结,得出结论:(1)画出直线l及l外的一点P;(2)过P点作PO⊥l,垂足为O;(3)点A1、A2、A3……在l上,连接PA1、PA2、PA3……(4)用叠合法或度量法比较PO、PA1、PA2、PA3……的长短.教师请同学们与组内的同学进行充分的配合,讨论相应的结论,并选派代表发言.教师引导学生交流,得出垂线的另一个性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.三、尝试反馈,理解新知关于垂线段,教师引导学生思考:(1)垂线段与垂线的区别与联系;(2)垂线段与线段的区别与联系.结合课本图形(图5.1-9),深入认识垂线段PO: PO⊥l,∠POA1=90°,O为垂足,垂线段PO与其他线段PA1、PA2……相比,长度是最短的.教师根据两点间的距离的意义给出点到直线的距离命名.教师板书:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.教师强调,在图5.1-9中,PO的长度是点P到直线l的距离,PA1、PA2……的长度都不是点P到直线l的距离.四、提升练习判断下列说法是否正确,如果正确,请说明理由;如果错误,请订正.(1)直线外一点与直线上一点间的线段的长度是这一点到这条直线的距离;(2)如图,线段AE的长是点A到直线BC的距离;(3)如图,线段CD是点C到直线AB的距离.【答案】(1)错误,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;(2)正确;(3)错误,线段CD的长是点D到直线BC的距离.五、课堂小结本节课学习了哪些新的知识,对于垂线段的理解有没有什么收获?是不是学会了如何作出垂线段?你还有哪些没有解决的问题呢?大部分学生经历观察、操作、想象、归纳、交流等活动,进一步发展空间观念,培养用几何语言准确表达的能力并且了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,但是度量点到直线的距离的方法掌握得还不够好.1.4 有理数的加法和减法第1课时有理数的加法【知识与技能】1.经历探索有理数加法法则的过程,理解有理数的加法法则.2.运用有理数加法法则熟练地进行加法运算.【过程与方法】在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力.【情感态度】通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质.【教学重点】理解和运用有理数的加法法则.【教学难点】理解有理数加法法则,尤其是理解异号两数相加的法则.一、情景导入,初步认知1.下列各组数中,哪一个较大?-3与-2;3与-3;-3与0;-2与+1;-4与-3.2.一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 .【教学说明】我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.这里先让学生回顾在具体问题中感受正数和负数的加法运算.二、思考探究,获取新知1.动脑筋:如下图,在一条东西向的笔直的马路上,任取一个点O,若把向东走1km 记为1,则向西走1km记为-1.小丽从点O出发,先向西走了2km,然后继续向西走了3km,两次行走后,小丽从O点向哪个方向走了多少千米?2.根据你所列出的等式,观察等号两边的两个加数的符号、绝对值与结果的符号、绝对值之间有什么关系.你能归纳两个负数相加的运算法则吗?【归纳结论】两个负数相加,结果是负数,并且把它们的绝对值相加.3.计算:(1)(-8)+(-12)(2)(-3.75)+(-0.25)4.探究:在一条东西向的笔直的马路上,任取一个点O,若把向东走1km记为1,则向西走1km 记为-1.(1)小亮从点O出发,先向东走了4km,然后掉头向西走了1km,小亮两次走的效果等于从点O向哪个方向走了多少千米?(2)小刚从点O出发,先向东走了1km,然后掉头向西走了3km,小刚两次走的效果等于从点O向哪个方向走了多少千米?(3)根据具体的情境列出算式,并利用数轴写出这两个算式的结果.5.上面我们列出了两个有理数相加的算式,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这2个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?【归纳结论】异号两数相加,当两数的绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.6.说一说:(1)互为相反数的两个数相加,和为多少?(2)一个数与0相加,和为多少?【归纳结论】互为相反数的两个数相加得0;一个数与0相加,得这个数.7.你能根据有理数的加法推出相反数的另一种说法吗?【归纳结论】如果两个数的和等于0,那么这两个数互为相反数.【教学说明】引导学生借助数轴分析,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识.三、运用新知,深化理解1.教材P21例2.2.下列说法正确的是(B)A.两数之和必大于任何一个加数B.同号两数相加,符号不变,并把绝对值相加C.两负数相加和为负数,并把绝对值相减D.异号两数相加,取绝对值较大的加数的符号,并把绝对值相加3.如果│a+b│=│a│+│b│成立,那么(D)A.a,b同号B.a,b为一切有理数C.a,b异号D.a,b同号或a,b中至少有一个为零4.计算:(1)15+(-22)(2)(-13)+(-8)(3)(-0.9)+1.51 (4)12 23⎛+-⎫⎪⎝⎭解:-7,-21,0.61,-1 67.数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次共向左移动了几个单位?解:(-2)+(-4)=-6.答:这个点共向左移动了6个单位.9.用算式表示:温度由-5℃上升8℃后所达到的温度.解:-5+8=3(℃)10.已知|2a-1|+|5b-4|=0,计算下题:(1)a的相反数与b的倒数的相反数的和;(2)a的绝对值与b的绝对值的和.解:略.【教学说明】通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第1、2题.在课上学生基本能掌握有理数加法法则并能运用,但是做题时很不理想,主要表现在:1.个别学生的书写很乱.2.符号不确定.3.对绝对值的相加减不是很清楚.4.对绝对值和相反数会混为一谈.5.个别学生的计算结果错误.针对这种原因的措施:首先在讲解时特别强调计算步骤,首先要确定最终得数的符号,其次再算绝对值(同号相加,异号相减),并且确定好的符号一定要带到最后,做题时一定要细心,其次在学生的书写上下功夫,再次在课上让学生多上黑板展示,讲解,尽量让学生在课上就把所学知识掌握,课后再加练习,出现做题问题及时纠正引导,加深学生对有理数加法法则的理解,课后练习中出现的问题做个别指导.第2章有理数【基本目标】引导学生自己回顾本章内容,以独立思考和小组讨论的学习方式,以便学生自己梳理知识,形成知识的联系,使新旧知识成为一个有机的整体.【过程与方法】通过小结与复习加深对正负数、相反数、绝对值概念的理解,通过练习,进一步提高学生的计算能力和解决简单实际问题的能力.【情感态度】培养学生反思意识,进一步体会数学来源于生活,应用于生活.【教学重点】1.相关概念、法则、运算律的理解与掌握;2.有理数混合运算的法则的应用及有理数的混合运算技巧.【教学难点】1.应用有理数的运算解决实际问题.2.解题技巧的灵活性和解题思路的全面性和多样性.一、知识框图,整体把握【教学说明】以框图的形式对本章内容做一个形象的解读,便于学生对本章的知识脉络有一个形象的了解,对各知识点之间的关系有一个形象的把握.二、释疑解惑,加深理解通过提问的方式回顾本章的主要内容,采用独立思考与同伴讨论的学习方式,让学生通过思考回答问题,加深对本章知识的理解.根据学生实际情况,教师给予适当的引导、归纳.1.为什么要引入负数?举出实例说明正数和负数在表示相反意义的量时的作用.现实生活中存在很多个有相反意义的量,如:向东5米与向西5米,零上2℃与零下2℃,收入100元与支出100元,低于海平面150米与高出海平面800米……用正数表示其中一种量,负数表示和它相反意义的量,这样既简单又明白.例如吐鲁番盆地的海拔高度为-155m,表示吐鲁番盆地的海拔高度是低于海平面155m.2.数的范围从正整数、零和正分数扩充到有理数后,增加了哪些数?减法中哪些原来不能进行的运算可以进行了?增加了负整数、负分数,解决了原来“小数不能减去大数”的问题,现在任何有理数都可以进行减法运算.3.怎样用数轴表示有理数?数轴与普通直线有什么不同?怎样用数轴解释绝对值和相反数?任何一个有理数都可以用数轴上的一个点表示,但数轴上的点不是都表示有理数,这一点,以后我们将要学习.数轴是一条特殊的直线,是规定了正方向、原点和单位长度的直线.原点、正方向、单位长度也称数轴的三要素,缺一不可.数轴上与原点的距离相等的两个点所表示的数是互为相反数.4.怎样比较有理数的大小?有理数的大小比较方法有两种;一是利用数轴,在数轴上较左边的点比右边的点所表示的数小;二是用绝对值,两个负数,绝对值大的反而小.正数大于零,负数小于零.5.有理数的加法与减法有什么关系?乘法与除法呢?有理数的减法可以转化为加法,转化的桥梁是相反数,减去一个数等于加上这个数的相反数,同样,除法可以转化为乘法,转化的桥梁是倒数,除以一个数(不为0),等于乘以这个数的倒数.有理数的混合运算都可以转化为加法与乘法.6.有理数满足哪些运算律?交换律:a+b=b+a,ab=ba结合律:(a+b)+c=a+(b+c)(a·b)·c=a(bc)分配律:(a+b)·c=ac+bc其中a、b、c表示任意有理数.合理使用运算律,可以使计算更简便.三、典例精析,温故知新例1 填空:(1)在知识竞赛中,如果+10分表示加10分,那么扣20分可表示成;(2)某人转动转盘,如果沿逆时针转5圈记作+5圈,那么沿顺时针转12圈可表示成;(3)某次乒乓球质量检测中,一只乒乓球超出标准0.02g记作+0.02g,那么-0.03g 可表示成 .分析:本题主要是考查同学们运用正负数表示相反意义的量的能力.点评:怎样利用生活中的常见量表示正负数,理解正负数,练习本题时还需要再做一次认真的总结.例2 填空:(1)若m,n互为相反数,则m+ n =;(2)-2006的倒数是;(3)-(-3)= ;(4)-|-2|的倒数是 .分析:相反数、倒数的概念,注意符号.点评:初学代数,首先必须确保性质符号的准确.例3 如图,数轴上两点所表示的两数()A.和为正数B.和为负数C.积为正数D.积为负数分析:本题重在考查能否应用数形结合思想及数轴上的点所提供的信息进行判别.点评:本题考查的是数轴的知识及运算符号的确定.例4 下列四个运算中,结果最小的是()A.1+(-2)B.1-(-2)C.1×(-2)D.1÷(-2)分析:注意在计算时要先确定符号,再按法则进行计算.点评:本题考查的是有理数的加减乘除运算法则以及有理数大小的比较.例5 如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-aB.a>-a>b>-bC.b>a>-b>-aD.-a>b>-b>a分析:本题可利用特殊值法,根据条件可令a和b等于某数.点评:本题也可以运用画数轴的方法,利用数形结合的思想来解决问题. 例6 计算下列各题:(1)-1+5×(-2)-(-4)2÷(-8);(2)34-83-81+21-14.分析:对于有理数的混合运算,要注意运算顺序和运算法则.点评:在进行混合运算时,能用运算律简便运算的一定要用运算律来进行运算.例7计算下列各题:分析:本题主要考查有理数乘法的交换律、结合律、分配律的运用.应用运算律可以简化运算,同时也可提高做题的速度,减少计算量.点评:对于乘法分配律a(b+c)=ab+ac有两种运用方法,一种是顺用公式,如上题中的(1),另一种是逆用公式,如上题中的(2),在做题时,应具体问题具体分析.例8神舟六号飞船,在平安飞行115小时23分后重返神州. 用科学记数法表示神舟六号飞船飞行的时间是秒(精确到千位).分析:a×10x中a的取值范围是1≤a<10,底数10的指数n等于所表示的整数位数减去1.点评:本题考查的是科学记数法及其运算,由于数字较大,计算时很容易出错,因此一定要特别当心,没有特别说明的话,建议此题用计算器来解决.例9(-8)2014+(-8)2013能被下列数整除的是()A.3B.5C.7D.9分析:本题重在考查转化思想,因为直接计算显然不大可能,因此可把原式转化为82014-82013,运用了乘方的意义及乘法分配律.点评:从(-8)2014+(-8)2013到7×82013的运算,只要掌握了乘方的概念,我们就会发现这是一道看似超纲的,其实却没超纲的好题.四、拓展训练,巩固提高1.如果x<0,y>0,且x2=4,y2=9,则x+y= .2.大于-4而小于+3的整数是 .3.a为最小的正整数,b为a的相反数的倒数,c为相反数等于本身的数,则(a+b)×5+4c= .4.已知|a-1|+|2-b|=0,则a100-5b .5.认真算一算:6.已知有理数a,b,c 在数轴上的位置如图所示且|a|=|b|.(1)求a+b 与b a 值; (2)判断b+c,a-c,bc,ac 及c b c a --的符号; (3)化简|a|-|a+b|-|c-a|+|c-b|.【教学说明】学生独立完成练习,体会知识点的运用变化,提高思维和解题能力,提高综合解题能力.完成本课时对应的练习.全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力.因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点.本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和有理数的运算这两个主要内容.这是有理数的基础知识,也是复习的重点.此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力.。
人教版七年级下数学5.1.1相交线教案
二、合作探究探究点1:邻补角与对顶角的概念【找一找】(1)∠1的邻补角是什么?一个角的邻补角一般有几个?(2)∠3的对顶角是什么?图中有几组对顶角?分别把它们找出来.例1.下列各图中,∠1与∠2是对顶角的是()归纳:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.探究点2:邻补角与对顶角的性质问题1:互为邻补角的两个角和是多少度?问题2:你能否利用问题1中的结论推导出互为对顶角的两个角之间具有相等关系?已知:直线AB与CD相交于O点(如图),试说明:∠1=∠3,∠2=∠4.解:例2.(教材P3例1变式)如图,直线a,b相交于点O.(1)若∠1+∠3= 60º,则∠1,∠2,∠3,∠4各个角的度数分别为__________________;(2)若∠2是∠1的 3倍,则∠1,∠2,∠3,∠4各个角的度数分别为________________________;(3)若1:2 = 2: 7 ,则∠1,∠2,∠3,∠4各个角的度数分别为__________________.归纳:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.方法总结:关键是找出图中隐含的角之间的关系,然后利用方程思想解决.在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.例3..如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数..方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.找一找1.如图,直线AB、CD、EF相交,若∠1 +∠5=180°,找出图中与∠1 相等的角.2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.三、课堂练习1.下列各图中,∠1 ,∠2是对顶角吗?2.找出图中∠AOE的邻补角及对顶角,若没有请画出.3.如图,直线AB,CD,EF相交于点O.(1)写出∠AOC, ∠BOE的邻补角;(2)写出∠DOA, ∠EOC的对顶角;(3)如果∠AOC =50°,求∠BOD ,∠COB的度数.4.(应用题)在下图中,花坛转角按图纸要求这个角(红色标注的角)为135°;施工结束后,要求你检测它是否合格?请你设计检测的方法.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化. 5.如图,直线AB,CD 相交于点O , ∠EOC=70°,OA 平分∠EOC ,求∠BOD 的度数.6.【拓展题】观察下列各图,寻找对顶角(不含平角)A BCD Oa b c A A B B CCD DO OEFG H⑴ 如图a ,图中共有 对对顶角; ⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有10条直线相交于一点,则可形成 对对顶角.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).利用(1)中规律得出答案即可.由(1)得n(n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4=n(n -1). 方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征. 四、课堂小结两直线相交归类位置关系名称 数量关系 ∠1和∠2、∠2和∠3、∠3和∠4、 1.有公共顶点 2.有一条公共边3.另一边互为反向延长线邻补角邻补角互 补。
人教版七年级下册(新)第五章《5.1.1相交线》教案
1.教学重点
-重点一:理解相交线的定义,掌握两条直线相交形成的四个角及其名称。
-举例:通过观察图形,让学生识别出两条直线相交形成的四个角,即相邻角、对顶角、补角等,并理解这些角的性质。
-重点二:掌握垂直与平行的性质,并能运用这些性质解决实际问题。
-举例:讲解垂直与平行的定义,引导学生通过观察生活中的实例,如墙面与地面的关系,理解这些性质的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-重点三:学会通过画图和推理来分析几何问题,培养几何直观和逻辑思维能力。
-举例:在解决几何问题时,要求学生先画出相应的图形,再运用几何性质进行分析,从而培养他们解决问题的方法。
2.教学难点
-难点一:对顶角和相邻角的区分。
-举例:在讲解对顶角和相邻角时,通过对比记忆,让学生理解这两种角的不同之处,并运用到实际问题中。
人教版七年级下册(新)第五章《5.1.1相交线》教案
5.1.1相交线(共35张ppt)
所以 ∠1 =∠3(同角的补角相等).
同理 ∠2 =∠4 .
例 如图,直线 a,b 相交,∠1 = 40°,求 ∠2 ,∠3 ,∠4 的度数.
解:由邻补角定义,可得
∠2 = 180°- ∠1
b
= 180°- 40°
= 140°;
a
由对顶角相等,得
12 43
∠3 = ∠1 = 40°,∠4 = ∠2 = 140°.
如果把剪子的构造抽象成一个几何图形,会 是什么样的图形?请你在笔记本上画出.
探究
仔细观察你所画的图形,当两条直线相交时, 所形成的四个角中,∠1 与∠2 有怎样的位置关系?
C
∠1 与∠2 的顶点所 在的位置有什么特点? A
23
1 4O
B
D
探究
仔细观察你所画的图形,当两条直线相交时, 所形成的四个角中,∠1 与∠2 有怎样的位置关系?
(5)对顶角有__∠__1_和__∠__3_,__∠__2_和__∠__4_,_
_∠__5_和__∠__7_,__∠__6__和__∠__8__.
2.如图,直线AB、CD 相交于点O,∠AOE= 90°,如果∠1=20°,那么∠2=__2_0_°__,∠3= __7_0_°__,∠4=_1_6_0_°__.
(2)当 a 与 b 所成角 α 为 90° 时,其余的
角分别为多少? 均为90°
误区一 不能准确判断对顶角 1.下列图形中,∠1 与∠2 是对顶角的是( )
错解 A或C或D 正解 B
错因分析 不理解互为对顶角的条件:(1)有公 共顶点;(2)角的两边互为反向延长线. A,C 或 D 中的∠1 和∠2 不符合对顶角的条件.判断对顶角 一定要抓住对顶角形成的前提条件是两直线相交.
相交线听课手册
理由:因为 OF 平分∠BOD(已知), 所以∠BOF=∠DOF(角平分线的定义). 因为∠AOE=∠BOF,∠COE=∠DOF(对顶角相等), 所以∠AOE=∠COE(等量代换), 相交线
【归纳总结】 几何说理的注意点 (1)要有条理地说出由已知到结论的过程; (2)每一步由“因为……所以……”组成,且用括号注明推理的根 据.
5.1.1
总结反思
相交线
知识点一
邻补角、对顶角的概念
一 1.邻补角:若两角有________ 条公共边,它们的另一边互为 反向延长线 ______________ ,具有这种位置关系的两个角,互为邻补角. 顶点 ,并且两角的两边互 2.对顶角:若两角有一个公共________ 反向延长线 为______________ ,具有这种位置关系的两个角,互为对顶角.
相交线
【归纳总结】 识别对顶角的方法 一看它们有没有公共顶点 对顶角的识别 二看这两个角的两边是否互 为反向延长线 邻补角与对顶 对顶角无公共边, 邻补角有公 角的区别 共边
5.1.1
目标二
相交线
如图 5-1-3,直线 AB,CD 相交于点 O,
会进行与对顶角、邻补角有关的计算与说理
例3
教材例 1 变式
∠AOC=40°,OE 平分∠BOC,求∠DOE 的度数.
图 5- 1-3
5.1.1
解:
相交线
由邻补角的定义,得∠BOC=180°-∠AOC=180°-40°=140°.
因为 OE 平分∠BOC, 1 所以∠BOE= ∠BOC=70°. 2 由对顶角相等,得∠BOD=∠AOC=40°, 所以∠DOE=∠BOE+∠BOD=70°+40°=110°.
数 学
七年级 下册
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1 相交线
知识要点基础练
知识点1邻补角
1.下面各图中,∠1与∠2是邻补角的是(D)
2.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOE的大小为(D)
A.100°
B.110°
C.120°
D.130°
知识点2对顶角
3.如图,在所标识的角中,互为对顶角的两个角是(D)
A.∠1和∠2
B.∠1和∠4
C.∠2和∠3
D.∠3和∠4
【变式拓展】三条直线AB,CD,EF相交于同一点O,则图中对顶角有(A)
A.6对
B.5对
C.4对
D.3对
4.如图,已知直线AB与CD相交于点O,若∠AOC+∠BOD=140°,则∠AOC的度数为(B)
A.40°
B.70°
C.110°
D.140°
综合能力提升练
5.如图,直线l1,l2,l3相交于一点,则下列选项中,正确的是(D)
A.∠1=90°,∠2=30°,∠3=∠4=60°
B.∠1=∠3=90°,∠2=∠4=30°
C.∠1=∠3=90°,∠2=∠4=60°
D.∠1=∠3=90°,∠2=60°,∠4=30°
6.如图,下列各组角中,互为对顶角的是(A)
A.∠1和∠2
B.∠1和∠3
C.∠2和∠4
D.∠2和∠5
7.如图,直线AB与CD相交于点O,∠1=∠2,若∠AOE=140°,则∠AOC为80°.
8.如图,直线AB,CD相交于点O.如果∠AOC=2x°,∠BOC=(x+90)°,∠BOD=(y+4)°,则x=30,y=56.
9.如图,直线a,b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=78°.
10.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=40或80.
11.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°.
(1)求∠3的度数;
(2)求∠2的度数.
解:(1)∵∠AOB=180°,∴∠1+∠3+∠FOC=180°,∵∠FOC=90°,∠1=40°,
∴∠3=180°-∠1-∠FOC=50°.
(2)∵∠BOC=∠1+∠FOC=130°,
∴∠AOD=∠BOC=130°,
∵OE平分∠AOD,∴∠2=∠AOD=65°.
12.如图,直线AB,CD相交于点O,OM平分∠AOB.
(1)若∠1=∠2,求∠NOD的度数;
(2)若∠BOC=4∠1,求∠AOC与∠MOD的度数.
解:(1)∵OM平分∠AOB,∴∠1+∠AOC=90°,
∵∠1=∠2,∴∠2+∠AOC=90°,
∴∠NOD=180°-90°=90°.
(2)∵∠BOC=4∠1,∴90°+∠1=4∠1,∴∠1=30°,
∴∠AOC=90°-30°=60°,∠MOD=180°-30°=150°.
13.如图,已知直线AB与直线CD相交于点O,∠BOE=90°,FO平分∠BOD,∠BOC∶∠AOC=1∶3.
(1)求∠DOE,∠COF的度数.
(2)若射线OF,OE同时绕点O分别以2°/s,4°/s的速度,顺时针匀速旋转,当射线OE,OF的夹角为90°时,两射线同时停止旋转.设旋转时间为t s,试求t的值.
解:(1)∵∠BOC∶∠AOC=1∶3,
∴∠BOC=180°×=45°,∴∠AOD=45°.
∵∠BOE=90°,∴∠AOE=90°,
∴∠DOE=45°+90°=135°,∠BOD=180°-45°=135°,
∵FO平分∠BOD,∴∠DOF=∠BOF=67.5°,
∴∠COF=180°-67.5°=112.5°.
(2)∠EOF=90°+67.5°=157.5°,依题意有4t-2t=157.5-90,解得t=33.75.
故t的值为33.75.
拓展探究突破练
14.如图1,直线AB,CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE=∠EOC.
(1)求∠AOE的度数;
(2)将射线OE绕点O逆时针旋转α(0°<α<360°)到OF.
①如图2,当OF平分∠BOE时,求∠DOF的度数;
②若∠AOF=120°时,直接写出α的度数.
解:(1)∵∠AOE=∠EOC,
即∠AOE∶∠EOC=2∶3,设∠AOE=2x,
∴∠EOC=3x,∴∠AOC=5x,
∵∠AOC=∠BOD=75°,∴5x=75°,解得x=15°,∴2x=30°,∴∠AOE=30°.
(2)①∵∠AOE=30°,
∴∠BOE=180°-∠AOE=150°.
∵OF平分∠BOE,∴∠BOF=75°.
∵∠BOD=75°,∴∠DOF=75°+75°=150°.
②90°或210°.提示:分两种情况:当OF在∠BOC的内部时,如题图2,∵∠AOF=120°,∠AOE=30°,∴α=∠EOF=120°-30°=90°;当OF在∠BOD的内部时,如答图所示,
∴α=360°-∠AOF-∠AOE=360°-120°-30°=210°.综上所述,α的度数为90°或210°.。