七年级几何初步知识点和练习
七年级数学几何图形初步认识知识点
七年级数学几何图形初步认识知识点七年级数学几何图形初步认识知识点一、认识几何图形几何图形是数学中重要的一部分,它们是通过点、线、面等基本元素构成的抽象概念。
在七年级数学中,我们将会学习如何分类、识别以及求解各种几何图形。
二、几何图形的分类1、直线型:包括线段、射线、直线。
线段是指两点之间的距离,射线是线段的一个延伸,直线则是线段的两端无限延伸。
2、平面型:包括圆形、三角形、四边形等。
圆形是指所有到定点(圆心)的距离相等的点的集合,三角形是由三个不在同一直线上的点连接而成的图形,四边形则是有四条线段围成的图形。
3、立体型:包括长方体、正方体、圆柱等。
长方体是有六个面、八个顶点和十二条边的立体图形,正方体是长方体的特例,圆柱则是一个旋转的矩形。
三、几何图形的特征和性质1、线段:有两个端点,有一定的长度。
两点之间线段最短。
2、射线:有一个端点,可以向一端无限延伸。
3、直线:没有端点,可以向两端无限延伸。
4、圆形:到定点(圆心)的距离相等的点的集合。
有无数条半径和直径。
5、三角形:具有稳定性,三条边长确定后,形状就不能再改变。
6、四边形:容易变形,四边长度确定后,形状固定。
7、长方体:有六个面,每个面都是矩形。
8、正方体:是长方体的特例,六个面都是正方形。
9、圆柱:上下两个底面是圆,侧面展开后是一个矩形。
四、几何图形的计算1、计算长度:对于线段、弧长、面积等计算,我们通常会用到一些基本的公式。
例如,对于线段,我们可以用尺子直接测量;对于弧长,可以用弧长公式计算;对于面积,可以用面积公式计算。
2、计算角度:对于角度的计算,我们可以用量角器或者三角函数。
例如,对于一个直角三角形,我们可以利用勾股定理来计算角度。
3、计算体积和面积:对于立体图形,我们通常会计算它们的体积和表面积。
例如,对于一个长方体,我们可以利用它的长、宽、高来计算体积和表面积。
五、几何图形的应用几何图形在日常生活中有着广泛的应用。
例如,我们可以用三角形来稳定物品,用圆形来设计优美的曲线,用长方体和正方体来构建房屋和家具。
七年级上册数学几何图形初步知识点梳理+例题详解
七年级上册数学几何图形初步知识点梳理+例题详解几何图形初步知识网络:知识点梳理背诵1. 我们把实物中抽象的各种图形统称为几何图形。
2.有些几何图形(如长方体.正方体.圆柱.圆锥.球等)的各部分不都在同一平面内,它们是立体图形。
3.有些几何图形(如线段.角.三角形.长方形.圆等)的各部分都在同一平面内,它们是平面图形。
4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5.几何体简称为体。
6.包围着体的是面,面有平的面和曲的面两种。
7.面与面相交的地方形成线,线和线相交的地方是点。
8.点动成面,面动成线,线动成体。
9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。
12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
(公理)13.连接两点间的线段的长度,叫做这两点的距离。
14.角∠也是一种基本的几何图形。
15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。
18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
19.等角的补角相等,等角的余角相等。
例题精讲。
人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)一、选择题1.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南D解析:D【分析】 如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D .2.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .3.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个A解析:A【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D .【详解】∵线段AB 的长度是A 、 B 两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A ,B ,C 三点,使得AB=5cm ,BC=2cm ,当C 在B 的右侧时,如图,AC=5+2=7cm当C 在B 的左侧时,如图,AC=5-2=3cm ,综上可得AC=3cm 或7cm ,∴(4)错误;正确的只有1个,故选:A .【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.4.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 5.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π C解析:C【分析】 根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.6.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1A解析:A【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD ,∴AB=1.5CD ,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.对于线段的中点,有以下几种说法:①若AM=MB,则M是AB的中点;②若AM=MB=12AB,则M是AB的中点;③若AM=12AB,则M是AB的中点;④若A,M,B在一条直线上,且AM=MB,则M是AB的中点.其中正确的是()A.①④B.②④C.①②④D.①②③④B 解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB,M不在线段AB上时,则M不是AB的中点,故①错误,若AM=MB=12AB,则M是AB的中点,故②正确;若AM=12AB,M不在线段AB上时,则M不是AB的中点,故③错误;若A,M,B在一条直线上,且AM=MB,则M是AB的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点.8.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.9.如图所示,在∠AOB的内部有3条射线,则图中角的个数为().A.10 B.15 C.5 D.20A解析:A【分析】根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB,直线a.故选C.本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+ 4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.12.如图,记以点A 为端点的射线条数为x ,以点D 为其中一个端点的线段的条数为y ,则x y -的值为________. 【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查 解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.13.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.14.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.15.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若3AC=,1CP=,则线段PN的长为________.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.16.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.17.一个圆的周长是62.8m,半径增加了2m后,面积增加了____2m.( 取3.14)16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.18.若∠B 的余角为57.12°,则∠B=_____°_____’_____”5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键解析:52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.19.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.3或4或6【分析】分三种情况下:①∠AOP =35°②∠AOP =20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP =35°,②∠AOP =20°,③0<x <50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP =12∠AOB =35°时,∠BOP=35° ∴互余的角有∠AOP 与∠COP ,∠BOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共4对;②∠AOP =90°-∠AOB =20°时,∴互余的角有∠AOP 与∠COP ,∠AOP 与∠AOB ,∠AOP 与∠COD ,∠COD 与∠COB ,∠AOB 与∠COB ,∠COP 与∠COB ,一共6对;③0<x <50中35°与20°的其余角,互余的角有∠AOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共3对.则m =3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.20.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.5cm 【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm 求出MB=xcmCN=2xcm 得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm ∵M 是解析:5cm【分析】运用方程的思想,设AB=2xcm ,BC=3xcm ,CD=4xcm ,求出MB=xcm ,CN=2xcm ,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm ,BC=3xcm ,CD=4xcm ,∵M 是AB 的中点,N 是CD 的中点,∴MB=xcm ,CN=2xcm ,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm .故答案为:1.5cm .【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x 的方程.三、解答题21.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠,90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 22.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OE 是射线OB 的反向延长线.(1)求射线OC 的方向角;(2)求∠COE 的度数;(3)若射线OD 平分∠COE ,求∠AOD 的度数.解析:(1)射线OC 的方向是北偏东70°;(2)∠COE =70°;(3)∠AOD =90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC 的度数,即可确定OC 的方向;(2)根据∠AOC=55°,∠AOC=∠AOB ,得出∠BOC=110°,进而求出∠COE 的度数; (3)根据射线OD 平分∠COE ,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°即∠NOA =15°,∠NOB =40°,∴∠AOB =∠NOA +∠NOB =55°,又∵∠AOB =∠AOC ,∴∠AOC =55°,∴∠NOC =∠NOA +∠AOC =15°+ 55°70=°,∴射线OC 的方向是北偏东70°.(2)∵∠AOB =55°,∠AOB =∠AOC ,∴∠BOC =∠AOB +∠AOC =55°+55°=110°,又∵射线OD 是OB 的反向延长线,∴∠BOE =180°,∴∠COE =180°-110°=70°,(3)∵∠COE =70°,OD 平分∠COE ,∴∠COD =35°,∴∠AOD =∠AOC +∠COD =55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.23.一个锐角的补角比它的余角的4倍小30,求这个锐角的度数和这个角的余角和补角的度数.解析:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【分析】设这个锐角为x 度,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】设这个锐角为x 度,由题意得:()18049030x x -=--,解得50x =.即这个锐角的度数为50︒.905040︒︒︒-=,18050130︒︒︒-=.答:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【点睛】本题考查了余角与补角,熟记“余角的和等于90°,补角的和等于180°”是解题的关键. 24.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.25.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm). 解析:12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =, ∴19cm 2AM MB AB ===. ∵:2:1MC CB =, ∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=.故答案为:12,9,23,6,MC,9,6,15.【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM,线段的比得出MC是解题关键.26.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.27.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.28.如图,两个直角三角形的直角顶点重合,∠AOC=40°,求∠BOD的度数.结合图形,完成填空:解:因为∠AOC+∠COB=°,∠COB+∠BOD=①所以∠AOC=.②因为∠AOC=40°,所以∠BOD=°.在上面①到②的推导过程中,理由依据是:.解析:90,90,∠BOD,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB=90 °,∠COB+∠BOD=90 ° -﹣﹣﹣①所以∠AOC=∠BOD .﹣﹣﹣﹣②-因为∠AOC=40°,所以∠BOD=40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.。
七年级上册数学第四章几何图形初步知识框架
七年级上册数学第四章几何图形初步知识框架、知识点及中考真题一、知识框架二、具体知识点(一)、几何图形1.平面图形:三角形、四边形、圆等.立体图形,棱柱、棱锥、圆柱、圆锥、球等.2. 立体图形的平面展开图:三视图3. 点、线、面、体:点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. 点动成线,线动成面,面动成体.(二)、直线、射线、线段1、三者的基本区别直线:无端点,表示为直线a或者直线AB 等,不能延长;射线:一个端点,表示为射线AB,能反向延长AB;线段:两个端点,表示为线段AB,能延长线段AB或反向延长线段BA. 2、直线的性质:经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点,叫做线段的中点.6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做两点的距离.8、点与直线的位置关系:(1)点在直线上 (2)点在直线外.(三)角1、角的定义:由公共端点的两条射线所组成的图形叫做角.2、角的度量单位及换算:度、分、秒.'601=o "'601=3、角的表示法:常表示成',,,1AOB ∠∠∠∠βα等.4、角的分类锐角、直角、钝角、平角、周角5、角的比较方法: (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值.7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向三、中考真题(2017广东)已知o A 70=∠,则A ∠的补角为( )A .o 110 B. o 70 C. o 30 D. o 20。
(必考题)七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含答案解析)
一、解答题1.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.2.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.3.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.如图,点B和点C为线段AD上两点,点B、C将AD分成2︰3︰4三部分,M是AD的中点,若MC=2,求AD的长.解析:AD=36.【分析】根据点B、C将AD分成2︰3︰4三部分可得出CD与AD的关系,根据中点的定义可得MD=12AD,利用MC=MD-CD即可求出AD的长度.【详解】∵点B、C将AD分成2︰3︰4三部分,∴CD=49AD,∵M是AD的中点,∴MD=12 AD,∵MC=MD-CD=2,∴12AD-49AD=2,∴AD=36.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.5.(1)如图,AC=DB,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑? 解析:蜗牛需41天才爬到树顶不下滑. 【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答. 【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑. 【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.8.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40° 【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠,∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒,40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 9.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =. (1)若点N 是线段CD 的中点,求BD 的长; (2)若点N 是线段CD 的三等分点,求BD 的长.解析:(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①. 【详解】设AB=2x ,则BC=3x ,CD=4x . ∴AC=AB+BC=5x , ∵点M 是线段AC 的中点, ∴MC=2.5x ,∵点N 是线段CD 的中点, ∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x ∵MN=9,∴4.5x=9,解得x=2, ∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x ,∴MN=MC+CN=54239236x x x +== 解得,5423x =,∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x , ∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.10.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线. [知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可; ②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可. 【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α;(2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能:若在相遇之前,则1805320t t --=, ∴20t =;若在相遇之后,则5318020t t +-=, ∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°; ②相遇之前: (i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠,即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后:(iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()15318018052t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠,即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.11.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数. (2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数.解析:(1)50°;(2)150° 【分析】(1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案. 【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒. 答:这个角的度数为50︒. (2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒. ∴ 150αβ∠+∠≡︒. 【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.12.如图,已知平面上有四个村庄,用四个点A ,B ,C ,D 表示.(1)连接AB ,作射线AD ,作直线BC 与射线AD 交于点E ;(2)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出点M 的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M 应建在AC 与BD 的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.13.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.解析:120°【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.18.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.19.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.20.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点,所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =. (3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 21.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.解析:8cm【分析】先由中点的定义求出AM ,BM 的长,再根据MC :CB=1:2的关系,求MC 的长,最后利用AC=AM+MC 得其长度.【详解】∵线段AB 的中点为M ,∴AM=BM=6cm设MC=x ,则CB=2x ,∴x+2x=6,解得x=2即MC=2cm .∴AC=AM+MC=6+2=8cm .故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.23.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,24.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD ,∠BOC ;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE ,∠COD ,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD 的补角是∠BOD ;∠AOC 的补角是∠BOC ;(2)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠COD= 12∠AOC ,∠COE=12∠BOC . 由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°. 【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解. 25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b .MN=2b . 【点睛】 本题考查两点间的距离.26.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.27.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ; (2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB 平分∠COD 得出∠BOC 及∠AOC 的度数,进而可得出结论; (2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC.∵∠AOD=4(90°﹣∠BOC),∴180°﹣∠BOC=4(90°﹣∠BOC),∴∠BOC=60°.考点:余角和补角;角平分线的定义.28.如图,已知OE是∠AOB的平分线,C是∠AOE内的一点,若∠BOC=2∠AOC,∠AOB =114°,则求∠BOC,∠EOC的度数.解析:∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.29.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.30.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.。
七年级数学第四章图形的初步认识(知识点归纳+达标检测)
第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
人教版七年级数学上册第四章《几何图形初步》知识点汇总
⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。
七年级几何初步知识点
七年级几何初步知识点几何学是高中数学重要的学科之一,而几何初步知识点则是打好几何学基础的关键。
本文将重点介绍七年级几何初步知识点,希望对初学者有所帮助。
一、点、线、面几何的基本元素为点、线、面。
点是没有长度、宽度和高度的最基本图形元素。
而线是由两个点组成的,没有宽度和高度,但具有长度。
面则是由三条或以上的线组成的,具有宽度和高度。
二、角角是由两条射线公共端点构成的图形,射线的端点为角的顶点。
在角是平面上的图形时,角的大小是介于0到360度之间的。
当角是立体上的图形时,角的大小是介于0到180度之间的。
三、三角形三角形是由三条线段所围成的图形。
三角形的三边可以分别称作为a、b、c,它们的对应角可以分别称为A、B、C。
三角形的周长可以通过所有三边的长度之和来计算,即P=a+b+c。
而三角形的面积可以以b为底,最高处为h计算,即A=1/2bh。
四、直角三角形直角三角形是一种特殊的三角形,其中一个角度为90度。
直角三角形的 hypothenuse(斜边)长度等于a²+b²开方,而其面积等于1/2ab。
五、相似当两个图形形状相同但大小不同时,我们称这两个图形为相似。
比例因子就是一个图形放大或缩小的比例。
例如,当两个图形A和B相似时,我们可以这样表示它们的比例因子k=AB/A'B'。
六、平行四边形平行四边形是四边形,它们的对边是平行的。
平行四边形的周长可以通过a和b的长度之和乘以2,即P=2(a+b)来计算。
而平行四边形的面积可以通过底和高的乘积来计算。
七、圆圆是由一个点到平面上所有其他点的距离相等的点的集合。
圆的半径为r,直径为2r。
圆的周长可以通过公式C=2πr来计算,而圆的面积则可以用公式A=πr²来计算。
总结以上是七年级几何初步知识点的介绍。
尽管这些概念看起来简单,但是它们是几何的基础,对学生的思维发展至关重要。
如果您对初步几何知识有更多的疑问或需要更多的练习,请不要犹豫,尽快寻找老师或同学帮助,这将有助于您更好地掌握这些概念。
人教版七年级数学第四章《几何图形初步》知识点汇总
人教版七年级数学第四章《几何图形初步》知识点汇总七年级数学期末复第四章《几何图形初步》知识点汇总1.几何图形①定义:几何图形是从实物中抽象出来的各种图形。
②分类:几何图形分为平面图形和立体图形。
③平面图形:图形所表示的各个部分都在同一平面内,如直线、三角形等。
④立体图形:图形所表示的各个部分不在同一平面内,如圆柱体。
2.常见的立体图形①柱体:A棱柱,B圆柱。
②椎体:A棱锥,B圆锥,球体等。
3.立体图形的三视图从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、左视图),这样就可以把立体图形转化为平面图形。
①会观察小正方体堆积图形画出三视图。
②会根据三视图知道堆积的小正方体的个数。
4.立体图形的展开图①圆柱的平面展开图是矩形。
②圆锥的平面展开图是扇形。
③ n棱柱的侧面展开图是n个形,n棱柱有个底面,都是n边形,n棱柱的平面展开图是多边形。
④ n棱锥的侧面展开图是n个形,n棱锥有个底面,是n 边形,n棱锥的平面展开图是多边形。
⑤正方体的展开图共分四类。
①掌握在正方体展开图中找相对面的方法。
②会根据展开图中的图案判断是哪个图形的展开图。
5.点、线、面、体几何图形的组成:由点、线、面、体组成。
点是构成图形的基本元素,点动成线,线动成面,面动成体。
6.直线①点与直线的位置关系:第一种关系:点在直线上,或者说直线经过点;第二种关系:点在直线外,或者说直线不经过点。
②直线公理:经过两点有且只有一条直线(简称:两点确定一条直线)。
7.直线与直线的位置关系①同一平面内,两条直线的位置关系分为平行和相交。
②当两条不同的直线相交时,我们就称这两条直线相交,这个点叫做它们的交点。
8.射线①表示方法:端点字母必须写在前。
②判断两条射线是同一条射线的方法:它们有一个公共端点,并且在这个公共端点的一侧的点相同。
9.线段①基本性质:线段是有限长的直线段,有两个端点。
②两点之间的距离是线段的长度。
七年级上册几何初步知识点
七年级上册几何初步知识点几何是数学的一个分支,是研究空间形状、大小、位置、变形等问题的数学学科。
在初中阶段,几何学习是数学教育中的重要部分,也是学生数学素养的基础。
本文旨在介绍七年级上册几何初步知识点,供学生参考。
一、平面图形的认识1.1 点、线、面的基本概念点是几何中最简单的基本概念,用“A”、“B”、“C”等字母表示。
线是由无数个点组成的,在几何中用一条直线表示,如“AB”表示以点A、B为端点的直线。
面是由无数个线组成的,通常表示为一个不闭合的图形,如三角形、矩形等。
1.2 三角形、四边形、多边形三角形是由三个顶点和三条边组成的平面图形,可以分为等腰三角形、等边三角形、直角三角形等。
四边形是由四个顶点和四条边组成的平面图形,可以分为矩形、正方形、菱形等。
多边形是由多个顶点和边组成的平面图形,根据边数可以分为五边形、六边形等。
多边形可以分为凸多边形和凹多边形,凸多边形的内角和总和为180度以下,而凹多边形的内角和总和为180度以上。
二、平面图形的性质2.1 角的概念角是由两条射线共同起点按一定方向转动形成的图形。
一个角包含两个部分,即顶点和两条边。
角可以分为锐角、直角、钝角等。
2.2 直线、线段和射线的定义及其性质直线是不断延伸而不断接近的线,没有两个端点。
线段是由两个端点和这两个端点之间的线段组成的线。
射线是由一个端点和一个方向组成的线段。
直线图形具有平移不变性、旋转不变性、翻转不变性等特点。
线段与射线也具有相似的性质。
2.3 物体的转动物体的转动分为旋转和翻折。
旋转是指物体绕一个固定点旋转,可以分为顺时针旋转和逆时针旋转。
翻折是指物体沿一个平面反转,可以分为对称轴翻折和不对称轴翻折。
三、坐标系和图形的位置关系3.1 直角坐标系直角坐标系是由x轴和y轴两条互相垂直的直线组成的平面,用来表示平面内的点的位置关系。
坐标系原点是两条直线的交点。
3.2 图形的位置关系在直角坐标系中,通过比较两个平面图形各点的坐标,可以判断它们的位置关系。
七年级数学上册第四章几何图形初步知识点总结全面整理
(名师选题)七年级数学上册第四章几何图形初步知识点总结全面整理单选题1、如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁答案:B分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.2、将一张长方形纸片ABCD按如图所示方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=8°,则∠EAF的度数为()A.40.5°B.41°C.41.5°D.42°答案:B分析:由长方形和折叠的性质结合题意可求出∠EAB′+∠FAD′=49°.再根据∠EAF=∠EAB′+∠FAD′−∠B′AD′,即可求出答案.由长方形的性质可知:∠BAE+∠EAD′+∠B′AD′+∠B′AF+∠DAF=90°.∴∠BAE+∠EAD′+∠B′AD′+∠B′AF+∠B′AD′+∠DAF=90°+∠B′AD′,即∠BAE+∠EAB′+∠FAD′+∠DAF=98°.由折叠的性质可知∠BAE=∠EAB′,∠FAD′=∠DAF,∴∠EAB′+∠FAD′=49°.∵∠EAF=∠EAB′+∠FAD′−∠B′AD′,∴∠EAF=49°−8°=41°.故选B.小提示:本题考查长方形的性质,折叠的性质.利用数形结合的思想找到角之间的关系是解题关键.3、下列图形属于平面图形的是()A.正方体B.圆柱体C.圆D.圆锥体答案:C分析:根据题意可知,正方体、圆柱体、圆锥体都是立体图形,圆是平面图形,据此即可求解.解:圆是平面图形,正方体、圆柱体、圆锥体都是立体图形故选C小提示:本题考查了平面图形与立体图形的认识,正确的区分是解题的关键.4、如图,该立体图形的左视图是()A.B.C.D.答案:D分析:根据从左边看得到的图形是左视图,可得答案.解:该立体图形的左视图为D选项.故选:D.小提示:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5、体育课上,蒋老师给同学们分发了篮球、足球、乒乓球和羽毛球,这些球类中的“球”不属于球体的是()A.篮球B.足球C.乒乓球D.羽毛球答案:D分析:根据球体的特征判断即可得到答案.半圆面以它的直径为旋转轴,旋转所成的空间物体就是球,球体的三视图都是圆,篮球、足球、乒乓球和羽毛球中,只有羽毛球不是球体,故选:D.小提示:本题考查了空间立体图形的识别,结合实际生活中球体的特征判断是解决问题的关键.6、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表答案:A分析:根据正方体展开图的对面,逐项判断即可.解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故选:A.小提示:本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.7、如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cm.A.4B.3C.2D.1答案:C分析:由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD−AM,于是得到结论.解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,AC=7cm;∴AD=12∵M是AB的中点,AB=5cm,∴AM=12∴DM=AD−AM=2cm.故选:C.小提示:此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.8、如图所示,正方体的展开图为()A. B.C. D.答案:A分析:根据正方体的展开图的性质判断即可;A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.小提示:本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.9、粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线答案:B分析:点动线,线动成面,将滚筒看做线,在运动过程中形成面.解:滚筒看成是线,滚动的过程成形成面,故选:B.小提示:本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.10、如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+⋯+M 10N 10=( )A .20−1029B .20+1029C .20−10210D .20+10210答案:A分析:根据MN =20,M 1、N 1分别为AM 、AN 的中点,求出M 1N 1的长度,再由M 1N 1的长度求出M 2N 2的长度,找到M n N n 的规律即可求出M 1N 1+M 2N 2+⋯+M 10N 10的值.解:∵MN =20,M 1、N 1分别为AM 、AN 的中点,∴M 1N 1=AM 1−AN 1=12AM −12AN =12(AM −AN )=12×20=10,∵M 2、N 2分别为AM 1、AN 1的中点,∴M 2N 2=AM 2−AN 2=12AM 1−12AN 1=12(AM 1−AN 1)=12×10=5,根据规律得到M n N n =202n ,∴M 1N 1+M 2N 2+⋯+M 10N 10=202+2022+⋯+20210=20(12+122+⋯+1210)=20−1029,故选A. 小提示:本题是对线段规律性问题的考查,准确根据题意找出规律是解决本题的关键,相对较难. 填空题11、如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,若∠1=25°40′,则∠2=______.答案:55°40′分析:根据题目的已知可求出∠EAC 的度数,再利用90°减去∠EAC 的度数即可解答.解:∵∠BAC=60°,∠1=25°40',∴∠EAC=∠BAC-∠1=60°-25°40′=59°60′-25°40′=34°20′,∵∠EAD=90°,∴∠2=∠EAD-∠EAC=90°-34°20′=89°60′-34°20′=55°40′,所以答案是:55°40′.小提示:本题考查了角的计算,理解∠1、∠EAC、∠2之间的关系是解决问题的关键.12、将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=_________.答案:72°.分析:由∠AOB=∠COD=90°,∠AOC=∠BOD,进而∠AOC=∠BOD=108°-90°=18°,由此能求出∠BOC.解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,又∠AOD=108°,∴∠AOC=∠BOD=108°-90°=18°,∴∠BOC=90°-18°=72°.所以答案是:72°.小提示:本题考查的是角的和差,两锐角的互余,掌握以上知识是解题的关键.13、如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=_____°.答案:45°.分析:根据角平分线的定义得到∠DOC=12∠AOC,∠COE=12∠BOC,根据角的和差即可得到结论.解:∵OD平分∠AOC,∴∠DOC=12∠AOC,∵OE平分∠BOC,∴∠COE=12∠BOC,∴∠DOE=∠DOC+∠COE=12(∠AOC+∠BOC)=12∠AOB=45°.所以答案是:45°.小提示:本题考查了角平分线的定义以及有关角的计算,解题关键是熟练掌握角平分线的定义.14、已知∠A=20°18',则∠A的余角等于__.答案:69°42′分析:根据互为余角的两个角之和为90°解答即可.解:∵∠A=20°18',∴∠A的余角为90°﹣20°18′=69°42′.所以答案是:69°42′.小提示:本题考查余角定义,熟知互为余角的两个角之和为90°是解答的关键.15、如图所示,∠AOC与∠BOD都是直角,且∠AOB:∠AOD=2:11,则∠AOB=_______.答案:20°分析:由∠AOB+∠BOC=∠BOC+∠COD知∠AOB=∠COD,设∠AOB=2α,则∠AOD=11α,故∠AOB+∠BOC=5α=90°,解得α即可.解:∵∠AOB+∠BOC=∠BOC+∠COD,∴∠AOB=∠COD,设∠AOB=2α,∵∠AOB:∠AOD=2:11,∴∠AOB+∠BOC=9α=90°,解得α=10°,∴∠AOB=20°.故答案为20°.小提示:此题主要考查了角的计算以及余角和补角,正确表示出各角度数是解题关键.解答题16、如图,点B在线段AC上.按要求完成下列各小题.(1)尺规作图:在图中的线段AC的延长线上找一点D,使得CD=AB;(2)在(1)的基础上,图中共有______条线段,比较线段大小:AC______BD(填“>”“<”或“=”);(3)在(1)的基础上,若BC=2AB,BD=6,求线段AD的长度.答案:(1)作图见解析(2)6;=(3)AD=8分析:(1)根据要求画出图形即可;(2)根据线段的定义,判断即可;(3)利用线段和差定义解决问题即可.(1)解:如图,线段CD即为所求;(2)解:图中共有6条线段,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,所以答案是:6,=;(3)解:由(1)知AB=CD.因为BC=2AB,所以BC=2CD,所以BD=BC+CD=3CD=6,所以CD=2=AB,所以AD=2+6=8.小提示:本题考查作图﹣复杂作图,直线,射线,线段的定义等知识,解题的关键是理解直线,射线,线段的定义.17、如图,C是线段AB外一点,用没有刻度的直尺和圆规画图.(1)画射线CB;(2)画直线AC;(3)①延长线段AB到点E,使AE=3AB;②在①的条件下,如果AB=5cm,那么BE的长为__________.答案:10cm.分析:(1)根据射线的概念作图可得;(2)根据直线的概念作图可得;(3)①在射线AB上用圆规截取AE=3AB即可;②先求出AE的长,再根据BE=AE-AB求解即可.解:(1)如图所示,射线CB即为所求;(2)如图所示,直线AC即为所求;(3)①如图所示,线段AE即为所求;②∵AB=5cm,AE=3AB,∴AE=15cm.则BE=AE﹣AB=10cm.所以答案是:10cm.小提示:本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,要求同学们一定要认真作图,特别是直线向两方无限延伸,不需要延长,射线向一方无限延伸,不需延长,但可以反向延长;而线段不延伸,既可以延长,也可以反向延长.18、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.答案:(1)填表见解析,V+F-E=2;(2)20;(3)14分析:(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F-36=2,解得F=14,∴x+y=14.小提示:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.。
七年级数学初步几何知识点
七年级数学初步几何知识点初步几何知识点是数学中的重要内容,尤其在七年级,它是基础而重要的学科。
在初步几何中,会涉及到一些基本概念和方法,如点、线、面、角等等。
此外,初步几何还会与初步代数相结合,常出现优美的图形、无比复杂的构造和计算问题。
在本文中,我们将介绍七年级初步几何知识点的相关内容。
1. 点、线、面在初步几何中,点、线、面是最基本也是最常见的几何概念。
点是几何的基本单元,不可再分,通常用大写字母A、B、C等表示。
线由无数点连成,表示一个直线,通常用小写字母a、b、c等表示。
面是由无数线构成,表示一个平面,通常用大写字母P、Q、R等表示。
2. 角角是由两条射线沿着同一端点的形成的区域。
角度通常用度数来表示,以小圆圈的形式标记。
圆周角度数是360度,因此一个弧所对的角度数是它所处的圆周角度数的$1/360$。
3. 三角形三角形是由三个线段,也就是三边所环绕的图形。
三角形分为等边三角形、等腰三角形和一般三角形。
等边三角形的三边均相等,等腰三角形的两边相等,一般三角形的三边均不相等。
4. 四边形四边形是由四边所环绕的图形,包括矩形、正方形、平行四边形和梯形。
正方形是一种特殊的矩形,其中的四边相等且四个角度数均为90度。
5. 圆形圆形是由半径为$r$的固定点到固定点之间所有点的集合。
圆形中心是由圆中的所有点到圆心的距离相等的点。
圆周长是由圆周上的所有点之间的直线段长度之和。
圆的面积等于圆周长的平方除以$4\pi$。
6. 相似图形相似图形是指在比例尺下尺寸相同,形状比例相同的几何图形。
如果两个图形是相似的,那么它们的长度比例是相等的。
综上所述,初步几何知识点在数学中具有重要意义,在七年级学习初步几何知识可以为以后的数学学习打下坚实的基础。
掌握好初步几何知识,往往可以在现实生活中获得帮助,如绘制平面图、计算体积等等。
我们希望本文的介绍能对广大七年级学生和初学数学的人有所帮助。
七年级数学上册人教版几何图形初步复习(解析版)(课堂学案及配套作业)
几何图形初步复习(解析版)【知识点一】立体图形与平面图形区别:立体图形各部分不都在同一平面内;平面图形各部分都在同一平面内.联系:立体图形可以展开成平面图形,平面图形可以旋转成立体图形.考点:(1)从不同方向看立体图形.(2)立体图形的平面展开图.例1(2022秋•即墨区校级月考)如图所示的几何体是由4个相同的小正方体组成.从左面看到的几何体的形状图为()A.B.C.D.思路引领:根据解答组合体三视图的画法画出该组合体从左面看到的图形即可.解:从左面看这个几何体,所得到的图形为:故选:D.解题秘籍:本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体三视图的画法是正确解答的前提.针对练习1.(2020秋•江门期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是.思路引领:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“会”是相对面.故答案为:会.解题秘籍:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2021•东明县二模)如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.思路引领:将A、B、C、D分别展开,能和原图相对应的即为正确答案.解:A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选:B.解题秘籍:本题考查了展开图折叠成几何体,熟悉其侧面展开图是解题的关键.3.(2020秋•秦淮区期末)如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.思路引领:由平面图形的折叠及立体图形的表面展开图的特点解题.解:因圆柱的侧面展开面为长方形,AC展开应该是两线段,且有公共点C.故选:A.解题秘籍:此题主要考查圆柱的侧面展开图,以及学生的立体思维能力.4.(2021秋•天台县期末)如图1,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,怎样爬行路线最短?如果要爬行到顶点C呢?请完成下列问题:(1)图2是将立方体表面展开的一部分,请将图形补充完整;(画一种即可)(2)在图2中画出点A到点B的最短爬行路线;(3)在图2中标出点C,并画出A、C两点的最短爬行路线(画一种即可).思路引领:(1)根据题意画出正方体的展开图即可;(2)根据线段的性质画出图形即可;(3)根据线段的性质画出图形即可.解:(1)如图所示,(2)如图所示,连接AB,线段AB的即为点A到点B的最短爬行路线;(3)如图所示,线段AC即为A、C两点的最短爬行路线.解题秘籍:此题主要考查了平面展开﹣最短路径问题,几何体的展开图,线段的性质:两点之间线段最短,正确的画出图形是解题的关键.【知识点二】直线、射线、线段1.直线、射线、线段的区别和联系:区别:(1)端点个数不同:直线没有端点,射线一个端点,线段两个端点.(2)延伸方向不同,直线向两方延伸,射线向一个方向延伸,线段无延伸.联系:(1)都可以用两个点的大写字母表示,直线是用任意两点字母,没有先后顺序;射线是用一个端点字母和任一点字母,端点字母在前;线段只能用两端点字母,没有先后顺序.(2)线段可以度量,直线和射线不可度量.2.两个性质、一个中点:(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.(3)线段的中点:把一条线段平均分成两条相等线段的点.例2(2020秋•永嘉县校级期末)如图,直线l上有A、B两点,AB=24cm,点O是线段AB 上的一点,OA=2OB.(1)OA=cm,OB=cm.(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=8.②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为48cm.思路引领:(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O 右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.解:(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设CO=x,则AC=16﹣x,BC=8+x,∵AC=CO+CB,∴16﹣x=x+8+x,∴x=8 3,∴CO=8 3.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t=16 5,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,∴t=165或16s时,2OP﹣OQ=8.②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.解题秘籍:本题考查一元一次方程的应用,两点之间距离的概念,找等量关系列出方程是解决问题的关键,属于中考常考题型.针对练习1.(南充模拟)已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC=.思路引领:由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解:由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm,故答案为:11cm或5cm.解题秘籍:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.2.(2019秋•鄞州区期末)已知点C是线段AB的中点,点D是线段BC上一点,下列条件不能确定点D是线段BC的中点的是()A.CD=DB B.BD=13AD C.2AD=3BC D.3AD=4BC思路引领:解:如图,∵CD=DB,∴点D是线段BC的中点,A不合题意;∵点C是线段AB的中点,∴AC=BC,又∵BD=13AD,∴点D是线段BC的中点,B不合题意;∵点C是线段AB的中点,∴AC=BC,2AD=3BC,∴2(BC+CD)=3BC,∴BC=2CD,∴点D是线段BC的中点,C不合题意;3AD=4BC,不能确定点D是线段BC的中点,D符合题意.故选:D.解题秘籍:本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.3.(2021秋•德江县期末)如图,C是线段AB上的一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2cm B.3cm C.4cm D.6cm思路引领:由图形可知AC=AB﹣BC,依此求出AC的长,再根据中点的定义可得MC 的长.解:由图形可知AC=AB﹣BC=8﹣2=6cm,∵M是线段AC的中点,∴MC=12AC=3cm.故MC的长为3cm.故选:B.解题秘籍:考查了两点间的距离的计算;求出与所求线段相关的线段AC的长是解决本题的突破点.4.(2021秋•长乐区期末)如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短D.垂线段最短思路引领:根据线段的性质:两点之间线段最短进行解答.解:把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是两点之间线段最短,故选:B.解题秘籍:此题主要考查了线段的性质,关键是掌握两点之间线段最短,是需要记忆内容.5.如图,在四边形ABCD内找一点O,使它到四边形四个顶点的距离和OA+OB+OC+OD最小,并说出你的理由,由本题你得到什么数学结论?举例说明它在实际中的应用.思路引领:连接AC、BD相交于点O,则点O就是所要找的点;取不同于点O的任意一点P,连接P A、PB、PC、PD,根据两点之间,线段最短,即可得到P A+PB+PC+PD>OA+OB+OC+OD,从而可得点O就是所要找的四边形ABCD内符合要求的点.解:要使OA+OB+OC+OD最小,则点O是线段AC、BD的交点.理由如下:如果存在不同于点O的交点P,连接P A、PB、PC、PD,因为点P有可能在AC上,所以P A+PC也有可能等于AC,即P A+PC≥AC,同理,PB+PD≥BD,但因为点P不同于点O,所以点P不可能同时在AC、BD上,所以“P A+PC=AC“与“PB+PD=BD“不可能同时出现,所以P A+PB+PC+PD>OA+OB+OC+OD,由本题得到:两点之间,线段最短.实际应用:把弯曲的公路改直,就能缩短路程.解题秘籍:本题考查了两点之间,线段最短,作出图形更助于问题的解决,把问题转化为求两条线段的和是解决问题的关键.6.点O是线段AB=28cm的中点,而点P将线段AB分为两部分,AP:PB=23:415,求线段OP的长.思路引领:根据线段的比例的性质,可得AP:PB=10:4,根据按比例分配,可得AP 的长,根据线段中点的性质,可得AO的长,根据线段的和差,可得答案.解:由比例的性质,得AP:PB=10:4.按比例分配,得AP :28×1010+4=20(cm ). 由线段中点的性质,得 AO =12AB =14(cm ). OP =AP ﹣AO =20﹣14=6(cm ).解题秘籍:本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.7.(2017春•太谷县校级期末)如图,已知C ,D 两点在线段AB 上,AB =10cm ,CD =6cm ,M ,N 分别是线段AC ,BD 的中点,则MN = cm .思路引领:结合图形,得MN =MC +CD +ND ,根据线段的中点,得MC =12AC ,ND =12DB ,然后代入,结合已知的数据进行求解. 解:∵M 、N 分别是AC 、BD 的中点,∴MN =MC +CD +ND =12AC +CD +12DB =12(AC +DB )+CD =12(AB ﹣CD )+CD =12×(10﹣6)+6=8. 故答案为:8.解题秘籍:此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.8.(2019秋•北仑区期末)如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P 、Q两点分别从A 、B 两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB 上沿AB 方向运动,当点P 运动到点B 时,两点同时停止运动,运动时间为t (s ),M 为BP 的中点,N 为MQ 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当BP =12BQ 时,t =12;④M ,N 两点之间的距离是定值.其中正确的结论 (填写序号)思路引领:根据线段中点的定义和线段的和差关系即可得到结论. 解:∵AB =30,AC 比BC 的14多5,∴BC =20,AC =10, ∴BC =2AC ;故①正确;∵P ,Q 两点分别从A ,B 两点同时出发,分别以2个单位/秒和1个单位/秒的速度, ∴BP =30﹣2t ,BQ =t ,∵M 为BP 的中点,N 为MQ 的中点,∴PM=12BP=15﹣t,MQ=MB+BQ=15,NQ=12MQ=7.5,∴AB=4NQ;故②正确;∵BP=30−2t,BQ=t,BP=12 BQ,∴30−2t=t2,解得:t=12,故③正确,∵BP=30﹣2t,BQ=t,∴BM=12PB=15﹣t,∴MQ=BM+BQ=15﹣t+t=15,∴MN=12MQ=152,∴MN的值与t无关是定值,故答案为:①②③④.解题秘籍:本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P 与Q重合时的时间,涉及分类讨论的思想.9.(2021秋•易县期末)如图,在数轴上有A,B两点,且AB=8,点A表示的数为6;动点P从点O出发,以每秒2个单位长度的速度沿数轴正方向运动,点Q从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)写出数轴上点B表示的数是;(2)当t=2时,线段PQ的长是;(3)当0<t<3时,则线段AP=;(用含t的式子表示)(4)当PQ=14AB时,求t的值.思路引领:(1)根据两点间的距离公式即可求出数轴上点B表示的数;(2)先求出当t=2时,P点对应的有理数为2×2=4,Q点对应的有理数为6+1×2=8,再根据两点间的距离公式即可求出PQ的长;(3)先求出当0<t<3时,P点对应的有理数为2t<6,再根据两点间的距离公式即可求出AP的长;(4)由于t秒时,P点对应的有理数为2t,Q点对应的有理数为6+t,根据两点间的距离公式得出PQ=|2t﹣(6+t)|=|t﹣6|,根据PQ=14AB列出方程,解方程即可求解.解:(1)6+8=14.故数轴上点B表示的数是14;(2)当t=2时,P点对应的有理数为2×2=4,Q点对应的有理数为6+1×2=8,8﹣4=4.故线段PQ的长是4;(3)当0<t<3时,P点对应的有理数为2t<6,故AP=6﹣2t;(4)根据题意可得:|t﹣6|=14×8,解得:t=4或t=8.故t的值是4或8.故答案为:14;4;6﹣2t.解题秘籍:此题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,(4)中解方程时要注意分两种情况进行讨论.【知识点三】角的比较与运算1.比较角大小的方法:度量法、叠合法.2.互余、互补反映两角的特殊数量关系.3.方位角中经常涉及两角的互余.4.计算两角的和、差时要分清两角的位置关系.例3(2020秋•和平区期末)如图:∠AOB:∠BOC:∠COD=2:3:4,射线OM、ON,分别平分∠AOB与∠COD,又∠MON=84°,则∠AOB为()A.28°B.30°C.32°D.38°思路引领:首先设出未知数,然后利用角的和差关系和角平分线的定义列出方程,即可求出∠AOB的度数.解:设∠AOB=2x°,则∠BOC=3x°,∠COD=4x°,∵射线OM、ON分别平分∠AOB与∠COD,∴∠BOM=12∠AOB=x°,∠CON=12∠COD=2x°,又∵∠MON=84°,∴x+3x+2x=84,x=14,∴∠AOB=14°×2=28°.故选:A.解题秘籍:本题主要考查了角平分线的定义和角的计算,解题时要能根据图形找出等量关系列出方程,求出角的度数.例4(2021秋•北辰区期末)如图所示,∠AOC=90°,点B,O,D在同一直线上,若∠1=26°,则∠2的度数为.思路引领:由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB 互补,即可求出∠2的度数.解:∵∠1=26°,∠AOC=90°,∴∠BOC=64°,∵∠2+∠BOC=180°,∴∠2=116°.故答案为:116°.解题秘籍:此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.针对练习1.(2019•隆化县二模)如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°思路引领:根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:C.解题秘籍:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.2.(通辽中考)4点10分,时针与分针所夹的小于平角的角为()A.55°B.65°C.70°D.以上结论都不对思路引领:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.解:∵4点10分时,分针在指在2时位置处,时针指在4时过10分钟处,由于一大格是30°,10分钟转过的角度为1060×30°=5°,因此4点10分时,分针与时针的夹角是2×30°+5°=65°.故选:B.解题秘籍:本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.3.(渝北区期末)如图,直角三角板的直角顶点在直线上,则∠1+∠2=()A.60°B.90°C.110°D.180°思路引领:由三角板的直角顶点在直线l上,根据平角的定义可知∠1与∠2互余,从而求解.解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°.故选:B.解题秘籍:本题考查了余角及平角的定义,正确观察图形,得出∠1与∠2互余是解题的关键.4.(2021春•未央区月考)如图,要测量两堵围墙形成的∠AOB的度数,但人不能进入围墙,可先延长BO得到∠AOC,然后测量∠AOC的度数,再计算出∠AOB的度数.其中依据的原理是()A.对顶角相等B.同角的余角相等C.等角的余角相等D.同角的补角相等思路引领:根据邻补角的定义以及同角的补角相等得出答案.解:如图,由题意得,∠AOC+∠AOB=180°,即∠AOC与∠AOB互补,因此量出∠AOC的度数,即可求出∠AOC的补角,根据同角的补角相等得出∠AOB的度数,故选:D.解题秘籍:本题考查邻补角的定义、同角的补角相等,理解同角的补角相等是正确判断的前提.5.(2015秋•庆云县期末)计算:①33°52′+21°54′=;②36°27′×3=.思路引领:①利用度加度,分加分,再进位即可;②利用度和分分别乘以3,再进位.解:①33°52′+21°54′=54°106′=55°46′;②36°27′×3=108°81′=109°21′;故答案为:55°46′;109°21′.解题秘籍:此题主要考查了度分秒的计算,关键是掌握在进行度、分、秒的运算时也应注意借位和进位的方法.6.如图,将一副三角尺按不同位置摆放,在哪种摆放方式中∠α与∠β互余?在哪种摆放方式中∠α与∠β互补?在哪种摆放方式中∠α与∠β相等?思路引领:根据每个图中的三角尺的摆放位置,容易得出∠α与∠β的关系.解:(1)根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°,即∠α与∠β互余;(2)根据两个直角的位置得:∠α=∠β;(3)根据三角尺的特点和摆放位置得:∠α+45°=180°,∠β+45°=180°,∴∠α=∠β;(4)根据图形可知∠α与∠β是邻补角,∴∠α+∠β=180°;综上所述:(1)中∠α与∠β互余;(4)中∠α与∠β互补;(2)(3)中,∠α=∠β.解题秘籍:本题考查了余角和补角的定义;仔细观察图形,弄清两个角的关系是解题的关键.7.(2012秋•襄城区期末)如图,A地和B地都是海上观测站,从A地发现它的北偏东60°方向有一艘船,同时,从B地发现这艘船在它北偏东30°的方向上,试在图中确定这艘船的位置.思路引领:根据方向角的概念分别画出过点A与点B的射线,两条射线的交点即为这艘船的位置.解:如图所示:作∠1=60°,∠2=30°,两射线相交于P点,则点P即为所求.解题秘籍:本题考查的是方位角的画法,解答此题的关键是熟知方向角的描述方法,即用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西,偏多少度.8.(2019秋•东莞市期末)直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF 与∠ACE的度数.思路引领:(1)、(2)结合平角的定义和角平分线的定义解答; (3)根据角平分线的定义、平角的定义以及角的和差关系解答即可. 解:(1)如图1,∵∠ACB =90°,∠BCE =40°,∴∠ACD =180°﹣90°﹣40°=50°,∠BCD =180°﹣40°=140°, 又CF 平分∠BCD ,∴∠DCF =∠BCF =12∠BCD =70°,∴∠ACF =∠DCF ﹣∠ACD =70°﹣50°=20°; 故答案为:20°;(2)如图1,∵∠ACB =90°,∠BCE =α°,∴∠ACD =180°﹣90°﹣α°=90°﹣α,∠BCD =180°﹣α, 又CF 平分∠BCD ,∴∠DCF =∠BCF =12∠BCD =90°−12α, ∴∠ACF =90°−12α﹣90°+α=12α; 故答案为:12α;(3)如图2,∵∠BCE =150°, ∴∠BCD =30°, ∵CF 平分∠BCD , ∴∠BCF =12∠BCD =15°, ∴∠ACF =90°﹣∠BCF =75°, ∠ACD =90°﹣∠BCD =60°, ∴∠ACE =180°﹣∠ACD =120°.解题秘籍:考查了角的计算和角平分线的定义,主要考查学生的计算能力,求解过程类似.9.(2019秋•梁园区期末)如图,已知∠AOB=60°,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO、射线OB运动,速度为2cm/s;动点Q从点O 出发,沿射线OB运动,速度为1cm/s;P、Q同时出发,同时射线OC绕着点O从OA 上以每秒5°的速度顺时针旋转,设运动时间是t(s).(1)当点P在MO上运动时,PO =cm(用含t的代数式表示);(2)当点P在线段MO上运动时,t为何值时,OP=OQ?此时射线OC是∠AOB的角平分线吗?如果是请说明理由.(3)在射线OB上是否存在P、Q相距2cm?若存在,请求出t的值并求出此时∠BOC 的度数;若不存在,请说明理由.思路引领:(1)先确定出PM=2t,即可得出结论;(2)先根据OP=OQ建立方程求出t=6,进而求出∠AOC=30°,即可得出结论;(3)分P、Q相遇前相距2cm和相遇后2cm两种情况,建立方程求解,接口得出结论.解:(1)当点P在MO PM=2t,∵OM=18cm,∴PO=OM﹣PM=(18﹣2t)cm,故答案为:(18﹣2t);(2)由(1)知,OP=18﹣2t,当OP=OQ时,则有18﹣2t=t,∴t=6即t=6时,能使OP=OQ,∵射线OC绕着点O从OA上以每秒5°的速度顺时针旋转,∴∠AOC=5°×6=30°,∵∠AOB=60°,∴∠BOC=∠AOB﹣∠AOC=30°=∠AOC,∴射线OC是∠AOB的角平分线,(3)分为两种情形.当P、Q相遇前相距2cm时,OQ﹣OP=2∴t﹣(2t﹣18)=2解这个方程,得t=16,∴∠AOC=5°×16=80°∴∠BOC=80°﹣60°=20°,当P、Q相遇后相距2cm时,OP﹣OQ=2∴(2t﹣18)﹣t=2解这个方程,得t=20,∴∠AOC=5°×20=100°∴∠BOC=100°﹣60°=40°,综合上述t=16,∠BOC=20°或t=20,∠BOC=40°.解题秘籍:此题是几何变换综合题,主要考查了角平分线的定义,旋转的性质,用方程的思想解决问题是解本题的关键.配套作业1.(2021•芜湖模拟)如图,甲、乙都是由大小相同的小正方体搭成的几何体,关于它们的视图,判断正确的是()A.仅主视图相同B.左视图与俯视图相同C.主视图与左视图相同D.主视图与俯视图相同思路引领:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,依据三视图进行判断即可.解:如图所示:由图可得,主视图与俯视图相同.故选:D.解题秘籍:本题考查简单组合体的三视图,掌握三视图的定义是解答本题的关键.2.(2020秋•大丰区月考)如图,三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂绿色的对面是色.思路引领:根据与“白”相邻的是黄、黑、红、绿判断出“白”的对面是“蓝”,与“黄”相邻的是白、黑、蓝、红判断出“绿”的对面是“黄”.解:由图可知,与“白”相邻的是黄、黑、红、绿,所以,“白”的对面是“蓝”,与“黄”相邻的是白、黑、蓝、红,所以,“绿”的对面是“黄”.故答案为:黄.解题秘籍:此题考查了正方体相对两个面上的文字,注意正方体的空间图形,此题关键是抓住图中出现了2次的颜色红和黄的邻面颜色的特点,推理得出它们的对面颜色分别是黑和绿.3.(2010秋•洛江区期末)如图,把左边的图形折叠起来,它会变为()A.B.C.D.思路引领:本题以小立方体的侧面展开图为背景,考查学生对立体图形展开图的认识.在本题的解决过程中,学生可以动手进行具体折纸、翻转活动,也可以.解:通过实际动手操作可知正确的为B.故选:B.解题秘籍:本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.另外,本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.4.(2021秋•成都期中)下列图形是正方体的表面展开图的是()A.B.C.D.思路引领:正方体共有11种表面展开图,利用正方体及其表面展开图的特点判断即可.解:A选项能围成正方体;B和C折叠后缺少一个面,故不能折成正方体;D出现了“田”字格,故不折成正方体能.故选:A.解题秘籍:本题考查了几何体的展开图,同时考查了学生的立体思维能力.解题时注意,只要有“田”字格的展开图都不是正方体的表面展开图.5.(2017秋•江岸区校级期末)如图,线段AB上有E、D、C、F四点,点E是线段AC的中点,点F是线段DB的中点,有下列结论:①EF=12AB;②EF=12(AB﹣CD);③DE=12(DA﹣DC);④AF=12(DA+AB),其中正确的结论是.思路引领:根据中点定义可得:AE=EC=12AC,DF=FB=12DB;对于①②,结合图形,依据线段的和差关系即可判断正误;同理再判断③和④的正误.解:如图,∵点E是线段AC的中点,点F是线段DB的中点,∴AE=EC=12AC,DF=FB=12DB,∴EF=AB﹣AE﹣FB=AB−12(AC+DB)=AB−12(AB+CD)=12(AB﹣CD),故结论①错误,结论②正确;DE=EC﹣DC=12AC﹣DC=12(AD +DC )﹣DC =12(AD ﹣DC ), 故结论③正确; AF =AB ﹣BF =AB −12BD=AB −12(AB ﹣DA ) =12(AB +DA ), 故结论④正确. 故答案为:②③④.解题秘籍:本题主要考查了线段中点定义及线段和差的计算,解题时要结合图形认真观察分析,数形结合,理清相关线段之间的关系是解题关键.6.(2020秋•奉化区校级期末)如图,已知线段AB =8,点C 是线段AB 是一动点,点D 是线段AC 的中点,点E 是线段BD 的中点,在点C 从点A 向点B 运动的过程中,当点C 刚好为线段DE 的中点时,线段AC 的长为( )A .3.2B .4C .4.2D .167思路引领:由已知条件可得:AD =CD =CE ,CD =CE ,则AB =AD +DC +CE +BE =3AD +BE =3AD +DE =3AD +2CD =5AD 即可求. 解:∵点D 是线段AC 的中点, ∴AD =CD ,∵点E 是线段BD 的中点, ∴BE =DE ,∵点C 为线段DE 的中点, ∴CD =CE , ∴AD =CD =CE ,∵AB =AD +DC +CE +BE =3AD +BE =3AD +DE =3AD +2CD =5AD , ∴AD =1.6, ∴AC =2AD =3.2, 故选:A .解题秘籍:本题考查了线段中点的定义,熟悉线段的和差关系是解题的关键. 7.(2021秋•济南期末)如图,线段AB =16cm ,在AB 上取一点C ,M 是AB 的中点,N 是AC中点,若MN=3cm,则线段AC的长是()A.6B.8C.10D.12思路引领:设CM=a,可得CN=CM+MN=a+3,由M是AB的中点,N是AC中点,可得AM=12AB,AN=CN=a+3,由AM=AN+MN=8,即可算出a的值,根据AC=AM+CM代入计算即可得出答案.解:设CM=a,CN=CM+MN=a+3,∵M是AB的中点,N是AC中点,∴AM=12AB=12×16=8,AN=CN=a+3,∵AM=AN+MN=8,即a+3+3=8,∴a=2,∴AC=AM+CM=8+2=10.故选:C.解题秘籍:本题主要考查了两点间的距离,熟练掌握两点的距离计算的方法进行计算是解决本题的关键.8.(2006•巴中)巴广高速路的设计者准备在西华山再设计修建一个隧道,以缩短两地之间的里程,其主要依据是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.过直线外一点有且只有一条直线平行于已知直线思路引领:此题为数学知识的应用,由题意设计巴广高速路,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:B.解题秘籍:此题考查知识点两点间线段最短.9.如图,公路上有A1、A2、A3、A4、A5、A6、A7七个村庄,现要在这段公路上设一车站,使这七个村庄到车站的路程总和最小,车站应建在何处?思路引领:根据“当点数为奇数个点时,应设在中点上;当点数为偶数时,应设在中间相邻的两点或其两点之间的任何地方,距离之和为最小”的规律,本题有7个村庄,应设在中点A4上.解:因为有7个村庄,是奇数个点,所以应设在中间点上,即设在A4点上.。
人教版七年级数学上册第四章《几何图形初步》知识点汇总
⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看; 2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=12AB ,AB=2AM=2BM. 6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; α∠ ; β∠ ; ABC ∠.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。
(完整版)初中几何初步知识点归纳
(完整版)初中几何初步知识点归纳几何是关于图形的研究,它是数学的一个重要分支。
初中几何是初中数学教学的一个重要内容,涉及到多个基本概念和知识点。
本文旨在对初中几何的初步知识点进行归纳和总结。
1. 点、线段和直线- 点:没有长度和宽度的基本图形要素。
点:没有长度和宽度的基本图形要素。
- 线段:由两个不同点构成的线段,它具有长度。
线段:由两个不同点构成的线段,它具有长度。
- 直线:由无数个点连成的线,它没有端点,可延伸到无穷远。
直线:由无数个点连成的线,它没有端点,可延伸到无穷远。
2. 角- 角:由两条射线共享一个端点组成的图形。
角:由两条射线共享一个端点组成的图形。
- 三角形:由三条线段组成的多边形,它有三个内角和三个外角。
三角形:由三条线段组成的多边形,它有三个内角和三个外角。
- 四边形:由四条线段组成的多边形,它有四个内角和四个外角。
四边形:由四条线段组成的多边形,它有四个内角和四个外角。
3. 相关定理和性质- 垂直角定理:垂直相交的两条直线所形成的四个角互为垂直角,垂直角相等。
垂直角定理:垂直相交的两条直线所形成的四个角互为垂直角,垂直角相等。
- 相邻角定理:相邻角是指一个角的两边分别是另一个角的一条边,相邻角补角和为直角。
相邻角定理:相邻角是指一个角的两边分别是另一个角的一条边,相邻角补角和为直角。
- 同位角定理:同位角是指两条平行线被一直线截断所形成的对应角,同位角相等。
同位角定理:同位角是指两条平行线被一直线截断所形成的对应角,同位角相等。
4. 图形- 平行四边形:具有两组对边平行的四边形。
平行四边形:具有两组对边平行的四边形。
- 正方形:具有四条边相等且四个内角均为直角的四边形。
正方形:具有四条边相等且四个内角均为直角的四边形。
- 矩形:具有四条边两两相等且四个内角均为直角的四边形。
矩形:具有四条边两两相等且四个内角均为直角的四边形。
- 三角形分类:根据边长和角度特征,三角形可分为等边三角形、等腰三角形和普通三角形。
(完整版)几何图形初步知识点
几何图形初步知识点归纳1.几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2、立体图形:这些几何图形的各部分不都在同一个平面内。
3、平面图形:这些几何图形的各部分都在同一个平面内。
4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
立体图形中某些部分是平面图形。
5、三视图:从左面看,从正面看,从上面看6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小,线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线,线动成面,面动成体;⑸点:是组成几何图形的基本元素。
练习:1、下列叙述正确的有 ( )(1)棱柱的底面不一定是四边形;(2)棱锥的侧面都是三角形;(3)柱体都是多面体;(4)锥体一定不是多面体A.1个B.2个C.3个D.4个2、若一个多面体的顶点数20,面数为12,则棱数为 ( )A.28B.32C.30D.263、在世界地图上,一个城市可以看作 ( )A.一个点B.一条直线C.一个面D.一个几何体4、直线AB 上有一点C ,直线AB 外有一点D ,则A 、B 、C 、D 四点能确定的直线有( )A.3条B.4条C.1条或4条D.4条或6条5、C 为线段AB 延长线上的一点,且AC=AB ,则BC 为AB 的 ( )23A.B.C. D. 323121236、如图中是正方体的展开图的有( )个A 、2个B 、3个D 1、底面是三角形的棱柱有 个面, 个顶点, 条棱。
2、手电筒发出的光给我们的形象是 。
3、下列说法中:①直线是射线长度的2倍;②线段AB 是直线AB 的一部分;③延长射线OA 到B 。
正确的序号是 。
aA B4、已知:线段AC和BC在同一直线上,如果AC=10㎝,BC=6㎝,D为AC的中点,E为BC的中点,则DE= 。
七年级上册数学几何图形初步认识的知识点
七年级上册数学几何图形初步认识的知识点七年级上册数学几何图形初步认识的知识点初一(七年级)上册数学知识点:几何图形初步是由数学网整理的,供大家参考,下面来看一下初一(七年级)上册数学知识点:几何图形初步吧!本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。
通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。
在此基础上,认识一些简单的平面图形直线、射线、线段和角。
一、目标与要求1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。
2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。
3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
二、知识框架三、重点从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质两点之间,线段最短是另一个重点。
四、难点立体图形与平面图形之间的转化是难点;探索点、线、面、体运动变化后形成的图形是难点;画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。
五、知识点、概念总结1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各部分不在同一平面内,叫做立体图形。
有些几何图形的各部分都在同一平面内,叫做平面图形。
几何初步例题和知识点总结
几何初步例题和知识点总结在数学的世界里,几何是一个充满魅力和挑战的领域。
对于初学者来说,理解几何的初步知识是打下坚实基础的关键。
接下来,让我们一起通过一些例题来深入学习几何初步的重要知识点。
一、点、线、面、体点是几何中最基本的元素,没有大小和形状。
线由无数个点组成,分为直线、射线和线段。
直线没有端点,可以向两端无限延伸;射线有一个端点,只能向一端无限延伸;线段有两个端点,长度是固定的。
例如:在纸上画一个点 A,然后从点 A 出发画一条直线,可以无限延伸;再从点 A 出发画一条射线,只有一端能无限延伸;最后连接点A 和另一个点 B,得到线段 AB。
面是由线围成的,有平面和曲面之分。
体则是由面围成的,常见的体有正方体、长方体、圆柱体、圆锥体等。
二、角角是由两条有公共端点的射线组成的图形。
这个公共端点叫做角的顶点,这两条射线叫做角的边。
角的度量单位是度,用符号“°”表示。
例 1:已知∠AOB = 60°,OC 是∠AOB 的平分线,求∠AOC 的度数。
因为 OC 是∠AOB 的平分线,所以∠AOC = 1/2∠AOB = 1/2×60°= 30°。
角可以分为锐角(小于 90°)、直角(等于 90°)、钝角(大于 90°小于 180°)、平角(等于 180°)和周角(等于 360°)。
例 2:一个角的补角比它的余角大多少度?设这个角为 x°,它的补角为(180 x)°,余角为(90 x)°。
则补角减去余角为:(180 x)(90 x)= 180 x 90 + x = 90°所以一个角的补角比它的余角大 90 度。
三、相交线与平行线两条直线相交,会形成对顶角和邻补角。
对顶角相等,邻补角互补。
例如:直线 AB 和直线 CD 相交于点 O,∠AOC 和∠BOD 是对顶角,∠AOC =∠BOD;∠AOC 和∠AOD 是邻补角,∠AOC +∠AOD = 180°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何图形初步
一:知识要点
1、几何图形
从实物中抽象出来的各种图形,包括立体图形与平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们就是立体图形。
比如:正方体、长方体、圆柱等
平面图形:有些几何图形的各个部分都在同一平面内,它们就是平面图形。
比如:三角形、长方形、圆等
2、点、线、面、体
(1)几何图形的组成
点:线与线相交的地方就是点,它就是几何图形中最基本的图形。
线:面与面相交的地方就是线,分为直线与曲线。
面:包围着体的就是面,分为平面与曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面就是相同的多边形,直棱柱的侧面就是长方形。
棱柱的侧面有可能就是长方形,也有可能就是平行四边形。
5、正方体的平面展开图:11种
6、截一个正方体:用一个平面去截一个正方体,截出的面可能就是三角形,四边形,五边形,六边形。
7、三视图,如:
1、
2、
物体的三视图指主视图、俯视图、左视图。
主视图:从正面瞧到的图,叫做主视图。
左视图:从左面瞧到的图,叫做左视图。
俯视图:从上面瞧到的图,叫做俯视图。
二、经验之谈
本节知识比较重要的就是我们要对常见的立体图形有个概念性的认识,很多图形在小学就学习过,我们要巩固其相关求法。
其次画立体图形的三视图的时候要小心,多在脑子里形成空间想象。
第四章几何图形初步提高题
一、判断题
1、经过一点可以画无数条直线,经过两点可以画一条直线,经过三点可以画三条直线( )
2、两条直线如果有两个公共点,那么它们就有无数个公共点( )
3、O、A、B三点顺次在同一条直线上,那么射线OA与射线AB就是相同的射线( )
4、如果α与β两角互补,α与γ两角互余,那么α=βγ2-( )
二、填空题
1、下列图形就是某些多面体的平面展开图,说出这些多面体的名称、
_________ _________ _________ _________
_________
2、如图,点C,D在线段AB 上.AC=6 cm,CD=4 cm,AB=12 cm,则图中所有线段的与就是—
3、如果79°-2x与21°+6x互补,那么x=_____、
4、由2点30分到2点55分,时钟的时针旋转了________度,分针
旋转了________度,此刻时针与分针的夹角就是________度.
5、不在同一直线上的四点最多能确定条直线。
6、已知线段AB,延长AB到C,使BC=2AB,D为AB的中点,若BD=3cm,则AC的长为
7、如图,已知点O就是直线AD上的点,∠AOB、∠BOC、∠COD三个角从小到大依次相差25°,则这三个角的度数分别为_____________、
8、一条直线上顺次取A,B,C三点,使得AB=5cm,BC=3cm。
如果点D就是线段AC的中点,那么线段DB的长度就是__________cm。
9、∠A与∠B互补,∠A与∠C互余,则2∠B-2∠C=________°
10、如图所示的几何体就是由棱长为1的小立方体按一定规律在地面上摆成的, 若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中只有两个面
...涂色的小立方体共有个.
三、选择题
1、对于直线AB,线段CD,射线EF,在下列各图中能相交的就是( )
2、下列图中,能用∠1、∠AOB、∠O三种方法表示同一个的就是( )
3、下列说法中正确的就是( ).
A、若∠AOB=2∠AOC,则OC平分∠AOB
B、延长∠AOB的平分线OC
A
B
C
D
N
M
1
乙甲
N M P
D C B A B ()D C A D C B
A C 、若射线OC 、OD 三等份∠AOB,则∠AOC =∠DOC D 、若OC 平分∠AOB,则∠AOC =∠BOC
4、如图,∠AOB =∠BOC =∠COD =∠DOE =30°.图中互补的角有 ( ) (A)10对 (B)4对 (C)3对 (D)6对
5、一条直线可以将平面分成两部分,两条直线最多可以将平面分成四部分,三条直线最多可以将平面分成n 部分,则n 等于( )
(A)6 (B)7 (C)8 (D)9
6、如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的就是( )
7 、已知线段AB =10 cm,AC +BC =12 cm,则点C 的位置就是在:①线段AB 上;②线段AB 的延长线上;③线段BA 的延长线上;④直线AB 外.其中可能出现的情况有( )
(A)0种 (B)1种 (C)2种 (D)3种
8、在线段MN 的延长线与MN 的反向延长线上取点P 、Q,使MP =2NP.MQ =2MN.则线段MP 与NQ 的比就是( ) 9、(A )
31 (B)32 (C)2
1 (D)23
9、下列语句中,正确的个数就是( )个
①两条直线相交,只有一个交点、 ②在∠ABC 的边BC 的延长线上取一点D 、
③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余、 ④一个角的余角比这个角的补角小、 A 、 1 B 、 2 C 、 3 D 、 4 10、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下: 甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°;
乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P,则∠MAN =45°
对于两人的做法,下列判断正确的就是( ).
A. 甲乙都对 B 、 甲对乙错 C 、 甲错乙对 D 、 甲乙都错
四、解答题
1如图,已知∠AOB =90 o ,∠AOC 就是60 o
,OD 平分∠BOC,OE 平分∠AOC 。
求∠DOE 。
2、如图,M 就是AB 的中点,AB =3
BC,N 就是BD 的中点,且BC =2CD,如果
AB =2cm,求AD 、AN 的长、
A E D B
F
C
3、如图,AD=12DB, E 就是BC 的中点,BE=1
5
AC=2cm,求线段DE 的长、
4、如图,已知线段AB 与CD 的公共部分BD=
13AB=1
4
CD,线段AB 、CD 的中点E 、F 之间距离就是10cm,求AB 、CD 的长
5、如图,O 就是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC,OE 平分∠AOC 、 (1)指出图中∠AOD 的补角,∠BOE 的补角; (2)若∠BOC=68°,求∠COD 与∠EOC 的度数; (3)∠COD 与∠EOC 具有怎样的数量关系?
6、如图,∠AOB=∠COD=90°,OC 平分∠AOB,∠BOD=3∠DOE. 求:∠COE 的度数.
O A
C B
E D A
B
D
7、如图,已知O为AD上一点,AOC
∠与AOB
∠互补,OM,ON分别为
AOC
∠,AOB
∠的平分线,若40
MON
∠,试求AOC
∠与AOB
∠的度数.
8、如图,O就是直线AC上一点,OB就是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE =
1
2
∠
EOC ,∠DOE=70°.
(1)图中互补的角共有对;
(2) 求∠AOD与∠EOC的度数;
9、如图,点O就是直线AB上的一点,OD就是∠AOC的平分线,OE就是∠COB的平分线,
若∠AOD=14°, 求∠DOE、∠BOE的度数.
10、如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠AC
F的度数.
11、把一张正方形纸条按图中那样折叠后,若得到∠AOB/=700,则∠B/OG=______.
图10
A
C
B E
F
B'
第11题。