【全国校级联考】福建省数学基地校2017届高三毕业班总复习 概率与统计平行性测试数学(理)试题(原卷版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《计数原理、概率与统计(理)》平行性测试卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 《九章算术》是人类科学史上应用数学的最早巅峰,在研究比率方面的应用十分丰富,其中有“米谷粒分”问题:粮仓开仓收粮,粮农送来1 534石,验其米内杂谷,随机取米一把,数得254粒内夹谷28粒,则这批米内夹谷约( )
A. 134石
B. 169石
C. 268石
D. 338石
2. 某校在2016年的中学数学挑战赛中有1 000人参加考试,数学考试成绩ξ~N(90,σ2)(σ>0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的考生人数约为( )
A. 200
B. 400
C. 600
D. 800
3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
.........
A. 56
B. 60
C. 120
D. 140
4. 将1,2,3,…,9这九个数字填在如图所示的9个空格中,要求每一行从左到右,每一列从上到下增大,当3,4固定在图中的位置时,填写空格的方法有( )
A. 6种
B. 12种
C. 18种
D. 24种
5. 已知甲、乙两名同学在五次数学单元测验中得分如下:
则甲、乙两名同学数学成绩( )
A. 甲比乙稳定
B. 甲、乙稳定程度相同
C. 乙比甲稳定
D. 甲平均分比乙低
6. 如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛一枚幸运小花朵,则小花朵落在小正方形内的概率为( )
A.
B.
C.
D.
7. 已知数据的平均数为,数据的平均数为,且,若
,的平均数,当时,的大小关系为( )
A. B. C. D.
8. 在的展开式中的x3的系数为( )
A. 210
B. -210
C. -910
D. 280
9. 某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为( )
A. 117
B. 118
C. 118.5
D. 119.5
10. 某盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球
的条件下,第二次也取到新球的概率为( )
A.
B.
C.
D.
11. 已知(),设展开式的二项式系数和为
,(),与的大小关系是( )
A. B.
C. 为奇数时,,为偶数时,
D.
12. 甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点
连成直线,则所得的两条直线相互垂直的概率是( )
A.
B.
C.
D.
二、填空题:本大题共4小题,每小题5分.
13. 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图所示:
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为______人.
14. 有10件产品,其中3件是次品,从中任取2件,若表示取到次品的件数,则______.
15. 某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:
每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射满3次为止.设甲每次击中的概率为p(p≠0),射击次数为η,若η的均值E(η)>,则p的取值范围是________.
16. 已知等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定义映射
f:(a1,a2,a3,a4)→(b1,b2,b3,b4),则f(4,3,2,1)=____________.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17. 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标
准煤)的几组对照数据.
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:.
18. 某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”
(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为,求的分布列和数学期望;
(II)根据频率分布直方图填写下面2 x2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有
关.
附:
19. 某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员到篮筐中
心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:
(I)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(II)在某场比赛中,考察他前4次投篮命中时到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,
他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和均值.
20. 甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛
就此结束.因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛可获得门票
收入40万元,以后每场比赛门票收入比上一场增加10万元.
(I)求总决赛中获得门票总收入恰好为300万元的概率;
(II)设总决赛中获得门票总收入为X,求X的均值E(X).
21. 在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图.
(I)若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(II)若从甲的6次模拟测试成绩中随机选择2个,记选出的成绩中超过87分的个数为随机变量ξ,求ξ的分布列和均值.
22. 某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,
获利1 000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B产品的
产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取
的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(I)求Z的分布列和均值;
(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.。