2018-2019学年新人教版八年级数学上册第一次月考试题
2018-2019初中八年级上册数学第一次月考试题
O D CBA 第11题图班级: 姓名: 学号:………………………密…………………………………封………………………………………线…………………………………………………第10题图F C E B A D 第7题图 ④ ①② ③2018-2019学年八年级上学期数学第一次月考测试卷(考试时间120分钟,满分120分)一、选择题(每小题3分,共30分) 1、下列命题正确的是( ) A .全等三角形是指形状相同的两个三角形 B .全等三角形是指面积相同的两个三角形 C .两个周长相等的三角形是全等三角形 D .全等三角形的周长、面积分别相等 2、如图所示表示三条相互交叉的公路,现要建一个货物中转站, 要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 3、下图中的轴对称图形有( ).A .(1),(2)B .(1),(4)C .(2),(3)D .(3),(4)4、下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等5、如图,AB 垂直平分CD ,若AC=1.6cm ,BC=2.3cm ,则四边形ABCD的周长是( )cm.A.3.9B.7.8C.4D.4.66、如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( ) A .3 B .4 C .5 D .67、如图,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,若BD+CE=9,则线段DE 的长为( ) A .9 B .8 C .7 D .68、下列条件中不能作出唯一直角三角形的是( )A. 已知两个锐角B. 已知一条直角边和一个锐角C. 已知两条直角边D. 已知一条直角边和斜边 9、如图,在直角ABC △中,90C =∠,AB 的垂直平分线交AB 于D , 交AC 于E ,且2EBC EBA =∠∠,则A ∠等于( )A.20 B.22.5 C.25 D.27.5 10、如图,在直角三角形ABC 中,∠C =90°,AC =10cm ,BC =5cm ,线段PQ =AB , P 、Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP = 时,才能使△ABC 和△APQ 全等.二、填空题(每小题3分,共18分) 11、如图,线段AC 与BD 交于点O ,且OA=OC, 请添加一个条件,使△OAB ≌△OCD,这个条件可以是______________________. 12、如图,50ABC AD ∠=,垂直平分线段BC 于点D ABC ∠,的平分线BE 交AD 于点E ,连结EC ,则∠C 的度数是 . 13、如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是14、如图,已知△ABC 的周长是21,OB,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是___________15、如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .16、如图,已知△ABC 的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是 .三.解答题(共72分)座 号C D B E A 第12题图 A B Ca b c 74 41 65 b a 41 甲 74 c b 乙 65 74 a 丙 第13题图 A D F C B E第15题图 第6题图 D CA E 第9题图 A D O CB 第14题图 A B第5题图17、(作图6分)近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确定P 点的位置. 18、(7分)完成下面的证明过程: 如图,已知:AD ∥BC ,AD =CB ,AE =CF. 求证:∠D =∠B. 证明:∵AD ∥BC ,∴∠A =∠ (两直线平行, 相等). ∵AE =CF , ∴AF = . 在△AFD 和△CEB 中,AD _____,A ____,AF _____,⎧=⎪∠=∠⎨⎪=⎩∴△AFD ≌△CEB ( ). ∴∠D =∠B.19、(8分)已知:如图,直线AD 与BC 交于点O ,OA OD =,OB OC =.求证:AB CD ∥.20、(9分)如图,D 是AB 上一点,DF 交AC 于点E,DE=FE,FC//AB.AE 与CE 有什么关系?证明你的结论。
八年级上册数学第一次月考试题、答题卡及答案
八年级数学试题 第 1 页 共 7页ABD CE2018学年八年级上学期数学月考试题一、选择题(每个小题4分,共48分)1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D :2.下列图形中对称轴最多的是( )A :等腰三角形B :正方形C :圆D :线段3、若等腰三角形的底边长为6cm ,一腰上的中线把它的周长分成差为2cm 的两部分,则腰长为( )A :4cmB :8cmC :4cm 或8cmD : 以上都不对 4、如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米, 则∆EBC 的周长为( )厘米A :16B :18C :26D :285 已知三角形的三个外角的度数比为2:3:4,则它的最大内角度数为() A. 90° B .110° C. 100° D .120°6、已知A 、B 两点的坐标分别是(-2,3)和(2,3),则下面四个结论中正确的有 ( ).①A 、B 关于x 轴对称; ②A 、B 关于y 轴对称; ③A 、B 不轴对称; ④A 、B 之间的距离为4. A .1个B .2个C .3个D .4个7.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为( )A :30°或60°B :60°C :120°D :60°和120°AA8. 如图,BO,CO 是∠ABC 和∠ACB 的两条角平分线,∠A=100°,则 ∠BOC 的度数为()A, 80° B,90° C, 120° D , 140° 9.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两个边和其中一边上的中线对应相等的两个三角形全等C.有一边对应相等的两个等边三角形全等D.有两边和一角对应相等的两个三角形全等10、如图在ΔABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,若AB=6cm ,则ΔDBE 的周长是( ) A. 6cm B. 7cm C. 8cm D. 9 cm第10题图 第11题图11、如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ) A :90° B : 75° C :30° D : 60°12.如图所示,在△ABC 中,AQ=PQ ,PR=PS ,PR⊥AB 于R ,PS⊥AC 于S ,则下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS 中( ) A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确二.填空题(每小题4分,共24分)13、晓彤在平面镜中看到一串数字为“”,则这串数字实际应为 ______14.中,CD 是斜边AB 上的高,,,则AB 的长度是__班级 姓名 考号密 封 线CEBDAAACOAAAAO ADCBAFE第12题图BACA八年级数学试题 第 2 页 共 7 页15. 请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出的依据是__________.16.如图,在△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F .若△AEF 的周长为10cm,则BC 的长为________________ cm第15题17.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF .给出下列结论:①∠1=∠2;②BE=CF; ③△ACN≌△ABM;④CD=DN.其中正确的是 (将你认为正确的结论的序号都填上).18、如图,在∠ABA 1中,∠B=52°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A2,使得A 1A 2=A 1C ,在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A2D ,……,按此做法进行下去,A 7的度数为____________度三、作图题(共10分)19、如图,铁路和公路都经过P地,曲线MN 是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q 的位置.(注意:①保留作图痕迹;②在图中标出点Q)四.解答题(共68分)20. (10分)已知:如图,在Rt△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE⊥AB,垂足为点E ,AE=BE .(1)求∠B 的度数. (2)如果AC=3cm ,CD=2cm ,求△ABD 的面积.21、(10分)如图,在△ABC 中,AD 是高线,AE 、BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠EAD 与∠BOA 的度数.22、(10分)如图,在△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE . 求证:(1)△AEF ≌△CEB ;(2)AF =2CD .(第16题图)第17题图23、(12分)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF,.求证:AD平分.24.(12分)如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC,试猜想∠A与∠C有什么关系?并说明理由。
2018-2019学年人教版八年级(上)第一次月考数学试卷新人教版含答案解析
2018-2019学年人教版八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)(2017•成武县校级模拟)以下列各组线段为边,能组成三角形的是()A.2,3,5B.3,3,6C.2,5,8D.4,5,62.(2分)(2017秋•江海区校级月考)若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|=()A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c3.(2分)(2016•龙岩模拟)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形4.(2分)(2015春•黄州区校级期末)正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.105.(2分)(2008•福州)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm6.(2分)(2014•包头)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种7.(2分)(2018秋•海南区期中)n边形的每个外角都为24°,则边数n为()A.13B.14C.15D.168.(2分)(2017秋•讷河市校级期中)如图,AD是△ABC边BC的中线,E、F分别是AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于()A.18B.24C.48D.369.(2分)(2016春•普宁市期末)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.10.(2分)(2014秋•娄底期末)已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)(2016春•芦溪县期末)一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.(3分)(2013秋•常山县期末)已知等腰三角形的两边长分别为3和6,则其周长为.13.(3分)(2017春•高唐县期末)如图,∠A+∠B+∠C+∠D+∠E+∠F=度.14.(3分)(2004•济宁)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.15.(3分)(2014•广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.16.(3分)(2019•东台市一模)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.17.(3分)(2016•乌鲁木齐)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.18.(3分)(2017秋•前郭县校级月考)已知等腰三角形底边为8,一腰上的中线分此三角形的周长成两部分,其差为2,则腰长为.19.(3分)(2010春•高州市期末)在三角形△ABC中,∠C=90°,∠A=2∠B,则∠A =.20.(3分)(2017春•平川区校级期中)若实数x,y满足|x﹣5|+(y﹣8)2=0,则以x,y 的值为边长的等腰三角形的周长为.三、解答题(本大题共6小题,共30分)21.(5分)(2017秋•前郭县校级月考)如图,△ABC≌△DEF,CF=3cm,求EB的长.22.(5分)(2017秋•前郭县校级月考)如图,CE是△ABC的外角∠ACD的平分线,若∠B =35°,∠ACE=60°,求∠A的度数.23.(5分)(2018秋•江城区校级月考)如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.(5分)(2017秋•邵阳县校级期中)已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.(5分)(2018•昆明二模)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.26.(5分)(2017秋•安图县月考)如图,已知AB=AC,AD=AE,BD=CE,且B,D,E 三点共线,求证:∠3=∠1+∠2.四、解答题(本大题共5小题,共40分)27.(7分)(2017秋•前郭县校级月考)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF,∠A=∠D=90°.求证:AB∥DE.28.(7分)(2017秋•前郭县校级月考)如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.29.(8分)(2018秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.30.(8分)(2013秋•永定县校级期中)(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.31.(10分)(2017秋•前郭县校级月考)如图,∠CBF、∠ACG是△ABC的外角,∠ACG 的平分线所在的直线分别与∠ABC、∠CBF的平分线BD、BE交于点D、E.(1)求∠DBE的度数;(2)若∠A=70°,求∠D的度数;(3)若∠A=a,则∠D=,∠E=(用含a的式子表示)2017-2018学年人教版八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)(2017•成武县校级模拟)以下列各组线段为边,能组成三角形的是()A.2,3,5B.3,3,6C.2,5,8D.4,5,6【解答】解:A、2+3=5,故不能构成三角形,故选项错误;B、3+3=6,故不能构成三角形,故选项错误;C、2+5<8,故不能构成三角形,故选项错误;D、4+5>6,故,能构成三角形,故选项正确.故选:D.2.(2分)(2017秋•江海区校级月考)若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|=()A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c【解答】解:|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|,=﹣a+b+c﹣(﹣b+c+a)+(a+b﹣c),=﹣a+b+c+b﹣c﹣a+a+b﹣c,=﹣a+3b﹣c,故选:B.3.(2分)(2016•龙岩模拟)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【解答】解:∵∠A=20°,∴∠B=∠C(180°﹣20°)=80°,∴三角形△ABC是锐角三角形.故选:A.4.(2分)(2015春•黄州区校级期末)正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.10【解答】解:由题意可得:(n﹣2)×180°=1080°,解得n=8.故选:B.5.(2分)(2008•福州)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.6.(2分)(2014•包头)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.7.(2分)(2018秋•海南区期中)n边形的每个外角都为24°,则边数n为()A.13B.14C.15D.16【解答】解:∵一个多边形的每个外角都等于24°,∴多边形的边数为360°÷24°=15.故选:C.8.(2分)(2017秋•讷河市校级期中)如图,AD是△ABC边BC的中线,E、F分别是AD、BE的中点,若△BFD的面积为6,则△ABC的面积等于()A.18B.24C.48D.36【解答】解:∵F是BE的中点,∴BF=EF,∴S△EFD=S△BFD,又∵S△BDE=S△EFD+S△BFD,∴S△BDE=2S△BFD=2×6=12.同理,S△ABC=2S△ABD=2×2S△BDE=4×12=48.故选:C.9.(2分)(2016春•普宁市期末)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【解答】解:A选项中,BE与AC不垂直;B选项中,BE与AC不垂直;C选项中,BE与AC不垂直;∴线段BE是△ABC的高的图是D选项.故选:D.10.(2分)(2014秋•娄底期末)已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF【解答】解:A、∵△ABC≌△DEF,∴AC=DF,故此结论正确;B、∵△ABC≌△DEF,∴AB=DE;∵DB是公共边,∴AB﹣BD=DE﹣BD,即AD=BE;故此结论正确;C、∵△ABC≌△DEF,∴AC=DF,故此结论DF=EF错误;D、∵△ABC≌△DEF,∴BC=EF,故此结论正确;故选:C.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)(2016春•芦溪县期末)一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.故答案为:三角形的稳定性.12.(3分)(2013秋•常山县期末)已知等腰三角形的两边长分别为3和6,则其周长为15.【解答】解:当等腰三角形的腰为3时,三边为3,3,6,3+3=6,三边关系不成立,当等腰三角形的腰为6时,三边为3,6,6,三边关系成立,周长为3+6+6=15.故答案为:15.13.(3分)(2017春•高唐县期末)如图,∠A+∠B+∠C+∠D+∠E+∠F=360度.【解答】解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.14.(3分)(2004•济宁)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.15.(3分)(2014•广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.16.(3分)(2019•东台市一模)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.17.(3分)(2016•乌鲁木齐)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.18.(3分)(2017秋•前郭县校级月考)已知等腰三角形底边为8,一腰上的中线分此三角形的周长成两部分,其差为2,则腰长为6或10.【解答】解:如图,设等腰三角形的腰长是x.当AD+AC与BC+BD的差是2时,即x+x﹣(x+8)=2,解得:x=10,10,10,8能够组成三角形,符合题意;当BC+BD与AD+AC的差是2时,即8x﹣(x+x)=2,解得:x=6,6,6,8能够组成三角形,符合题意.综上所述,腰长是6或10.故答案为6或10.19.(3分)(2010春•高州市期末)在三角形△ABC中,∠C=90°,∠A=2∠B,则∠A=60°.【解答】解:设∠B为x,则∠A=2x,根据三角形内角和定理,x+2x=90°,∴x=30°∴∠A=60°.故答案为60°.20.(3分)(2017春•平川区校级期中)若实数x,y满足|x﹣5|+(y﹣8)2=0,则以x,y 的值为边长的等腰三角形的周长为18或21.【解答】解:根据题意得,x﹣5=0,y﹣8=0,解得x=5,y=8,①5是腰长时,三角形的三边分别为5、5、8,∵5+5>8,∴不组成三角形,周长为18;②5是底边时,三角形的三边分别为5、8、8,能组成三角形,周长=8+8+5=21.综上所述,等腰三角形的周长是18或21.故答案为:18或21.三、解答题(本大题共6小题,共30分)21.(5分)(2017秋•前郭县校级月考)如图,△ABC≌△DEF,CF=3cm,求EB的长.【解答】解:∵△ABC≌△DEF,∴BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF=3cm.22.(5分)(2017秋•前郭县校级月考)如图,CE是△ABC的外角∠ACD的平分线,若∠B =35°,∠ACE=60°,求∠A的度数.【解答】解:∵∠ACE=60°,CE是△ABC的外角∠ACD的平分线,∠ACD=2∠ACE=120°,∵∠ACD=∠A+∠B,∠B=35°,∴∠A=∠ACD﹣∠B=85°.23.(5分)(2018秋•江城区校级月考)如图,AC=AD,BC=BD,求证:AB平分∠CAD.【解答】证明:在△ABC和△ABD中,,∴△ABC≌△ABD,∴∠CAB=∠DAB,∴AB平分∠CAD,24.(5分)(2017秋•邵阳县校级期中)已知:如图,AB=DC,AB∥DC,求证:AD=BC.【解答】证明:∵AB∥DC,∴∠BAC=∠DCA,在△BAC和△DCA中,,∴△BAC≌△DCA(SAS),∴BC=AD.25.(5分)(2018•昆明二模)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【解答】证明:∵∠1=∠2,∴∠CAB=∠EAD在△CAB和△EAD中,∴△CAB≌△EAD(SAS)26.(5分)(2017秋•安图县月考)如图,已知AB=AC,AD=AE,BD=CE,且B,D,E 三点共线,求证:∠3=∠1+∠2.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.四、解答题(本大题共5小题,共40分)27.(7分)(2017秋•前郭县校级月考)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF,∠A=∠D=90°.求证:AB∥DE.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.28.(7分)(2017秋•前郭县校级月考)如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.【解答】证明:∵CE=FB,∴CE+EF=FB+EF,即CF=BE,在△ABE和△DCF中,∵,∴△ABE≌△DCF(SSS),∴∠B=∠C,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴AF=DE.29.(8分)(2018秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC=90°,即CE⊥AD.30.(8分)(2013秋•永定县校级期中)(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【解答】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)BD=DE﹣CE;∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE.31.(10分)(2017秋•前郭县校级月考)如图,∠CBF、∠ACG是△ABC的外角,∠ACG 的平分线所在的直线分别与∠ABC、∠CBF的平分线BD、BE交于点D、E.(1)求∠DBE的度数;(2)若∠A=70°,求∠D的度数;(3)若∠A=a,则∠D=α,∠E=90°α(用含a的式子表示)【解答】解:(1)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC ABC,∠CBE CBF,∴∠DBC+∠CBE(∠ABC+∠CBF)=90°,∴∠DBE=90°;(2)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG ACG,∠DBC ABC,∵∠ACD=∠A+∠ABC,∴2∠DCG=∠ACF=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D A=35°;(3)由(2)知∠D A,∵∠A=α,∴∠D,∵∠DBE=90°,∴∠E=90°α.故答案为:,90°.。
2018-2019学年度数学第一次月考试题(含答案)
2018-2019学年度数学第一次月考试题(含答案)D参考答案及评分意见一、选择题(本大题共10小题,每小题4分,满分40分)1--5 C D C A B; 6--10 C A B D A二、填空题(本大题共4小题,每小题5分,满分20分)11.(-5,-3) 12.-1 13. x=4 14.y 1=y 2>y 3三、(本大题共2小题,每小题8分,满分16分)15. 由题意得+c =642+b•4+c =1 ……………3分解这个方程组得c=1b=-4, ……………7分 所以所求二次函数的解析式是y=x 2-4x+1; ……………8分16.(参考) 解:(1)移项,得, ……………1分二次项系数化为1,得, ……………2分配方,得, ……………4分即……………6分∴或,∴,……………8分四、(本大题共2小题,每小题8分,满分16分)17. 解:由题意,得=(-4)2-4(m -)=0,即16-4m+2=0,解得m =.……………4分当m =时,方程有两个相等的实数根x1=x2=2.……………8分18. 解:设AB为x m,则BC为(50-2x)m. ……………1分x(50-2x)=300.……………4分解得x1=10,x2=15.……………6分当x=10时,AD=BC=50-2x=30>25,不合题意,舍去;当x=15时,AD=BC=50-2x=20<25. ……………7分答:AB的长15 m.……………8分五、(本大题共2小题,每小题10分,满分20分)19.解:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,……………1分950(1+x)2=1862.……………4分解得,x1=0.4,x2=-2.4(舍去),……………6分所以这两年该市推行绿色建筑面积的年平均增长率为40%. ……………8分(2)1862(1+40%)=2606.8.∵2606.8>2400,∴2018年我市能完成计划目标.所以如果2018年仍保持相同的年平均增长率,2018年该市能完成计划目标………10分.20.解:(1)由图象可知:B(2,4)在二次函数y 2=ax 2图象上, ∴4=a·22.∴a = 1.则y 2=x 2. ……………4分又∵A(-1,n)在二次函数y 2=x 2图象上, ∴n =(-1)2.∴n =1.则A(-1,1).又∵A ,B 两点在一次函数y 1=kx +b 图象上,∴4=2k +b.1=-k +b ,解得b =2.k =1,则y 1=x +2.∴一次函数解析式为y 1=x +2,二次函数解析式为y 2=x 2. ……………8分(2)根据图象可知:当-1<x<2时,y 1>y 2. ……………10分六、(本题满分12分)21.(1)∵二次函数y=-x 2 +2x+m 的图象与x 轴的一个交点为A (3,0),∴-9+2×3+m=0,解得:m=3; ……………2分(2)∵二次函数的解析式为:y=-x 2 +2x+3,∴当y=0时,-x 2 +2x+3=0,解得:x=3或x=-1,∴B(-1,0);……………6分(3)如图,连接BD、AD,过点D 作DE⊥AB,∵当x=0时,y=3,∴C(0,3),若S △ABD =S △ABC ,则可得OC=DE=3,∴当y=3时,-x 2 +2x+3=3,解得:x=0或x=2,∴点D的坐标为(2,3). (12)分七、(本题满分12分)22.解:(1)10或18元(6分)(2)14元。
2 018-2019 学年八年级数学 上第一次月考试题含答案
AyxO ByxO CyxO DyxO 2018-2019学年度第一学期八年级第一次段考数学试卷时间:100分钟 满分:100分 得分__________一、选择题:请将每小题的正确选项填在选择题后面的答题卡内。
(每题3分,共计30分)1、气象台为预报台风,给出台风位置的几种说法①北纬46°,东经142°。
②上海东北方向100km处。
③日本与韩国之间。
④大西洋。
⑤大连正东方向。
其中能确定台风位置的有( ) A. 一个 B. 二个 C. 三个 D. 四个2、 如图,已知点M 在平面直角坐标系的位置,其坐标可能是( )A. (-1,2)B. (1,2)C. (-2,-1)D. (1,-3)3、已知点A (﹣1,2),将它先向左平移2个单位, 再向上平移3个单位后得到点B ,则点B 的坐标是( )A .(﹣3,-1)B .(1,5)C .(﹣3,5)D .(1,﹣1)4、点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A .(﹣4,3) B .(﹣3,﹣4) C .(﹣3,4) D .(3,﹣4)5、 在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是( )A .(﹣1,1)B .(﹣1,2)C .(﹣2,1)D .(﹣2,2)6、已知正比例函数)0(≠=k kx y 的函数值随的增大而增大,则一次函数k x y +=的图象大致是( )7、函数y=kx+b 的图像与函数y=12x+3的图像平行,且与y 轴的交点为M (0,2),•则其函数表达式为( )A .y=12x+3B .y=12x+2C .y=-12x+3D .y=-12x+28、 点A (1x ,1y )和点B (2x ,2y )在同一直线bx y +-=21上.若12x x >, 则1y ,2y 的关系是( )A 、12y y > B 、12y y < C 、12y y = D 、无法确定.9、已知直线6-=kx y 与直线3+-=x y 相交于x 轴上一点,则=k ()y X。
人教版八年级上册数学第一次月考试卷(含答案解析)
人教版八年级上册数学第一次月考试卷一.选择题(每小题3分,共30分)1.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.82.下列说法正确的是()A.在一个三角形中至少有一个直角B.三角形的中线是射线C.三角形的高是线段D.一个三角形的三条高的交点一定在三角形的外部3.下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④4.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC =6,则CD的长为()A.2B.4C.4.5D.36.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.707.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE =2,则AC的长是()A.4B.3C.6D.58.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个9.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD10.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()。
2018-2019学年最新人教版八年级数学上册第一次月考统考试题及答案-精品试题
八年级第一次月考数学试卷一.选择题(每小题3分,共30分)1.下列说法正确的是……………………………………………………………………………【 】 A 、全等三角形是指形状相同大小相等的三角形 B 、全等三角形是指面积相等的三角形 C 、周长相等的三角形是全等三角形D 、所有的等边三角形都是全等三角形 2. 已知,如图,△ABC ≌△DEF,AC ∥DF,BC ∥EF.则不正确的等式是………………………【 】A.AC=DFB.AD=BEC.DF=EFD.BC=EF3.下列各组图形中,是全等形的是…………………………………………………………【 】A 、两个含60°角的直角三角形;B 、腰对应相等的两个等腰直角三角形;C 、边长为3和5的两个等腰三角形;D 、一个钝角相等的两个等腰三角形4.如图所示,在△ABD 和△ACE 都是等边三角形,则ΔADC ≌ΔABE 的根据是……………【 】A. SSSB. AASC. ASAD. SAS5.如图所示,在下列条件中,不能作为判断△ABD ≌△BAC 的条件是…………………【 】 A. ∠D =∠C ,∠BAD =∠ABC B .∠BAD =∠ABC ,∠ABD =∠BAC C .BD =AC ,∠BAD =∠ABC D .AD =BC ,BD =AC6. 如图所示,E 、B 、F 、C 四点在一条直线上,EB=CF ,∠A=∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是………………………………………………………………………【 】A.AB=DEB. DF ∥ACC. ∠E=∠ABCD. AB ∥DE7. △ABC 中,AC=5,中线AD=7,则AB 边的取值范围是…………………………………【 】A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<19 8.如图所示,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CA =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是……………【 】A .1个B .2个C .3个D .4个9.在Rt ΔABC 中,∠ACB=90°,E 是AB 上一点,且BE=BC ,过E 作DE ⊥AB 交AC 于D ,如果AC=5cm ,则AD+DE 等于…………………………………………………………………【 】A .3 cm B. 4 cm C. 5 cm D. 6 cm10.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1→C 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°.下列各组合同三角形中,是镜面合同三角形的是……………………………………【 】ABCDE 第2题图第4题图AB FECD第6题第6题 第5题图第6题图第10题图-1第9题图第8题图AC BDE二、填空题(每小题4分,共16分)11. 能够完全重合的两个图形叫做_____________12. 如图,△ABC ≌△DEF ,A 与D ,B 与E 分别是对应顶点,∠B=32,∠A=68,AB=13cm , 则∠F=度,DE= cm .13. 如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为 .14.如图,△ABC 是不等边三角形,DE=BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出 个.三. 解答题:(共54分)15. (本小题满分6分)在如图所示的方格纸中,动手画出△DEF 和△DEG(F 、G 不能重合),使得 △ABC ≅△DEF ≅△DEG .【解】16.(本小题满分8分)如图,△ABE ≌△ACD ,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角. 【解】17. (本小题满分8分)如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)【解】18. (本小题满分10分)如图所示,已知,AB//CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F. 求证:AB=CF.(12分)第5题图 2第15题图ABCDEABCDEF第12题图第13题图第14题图第17题图第18题图【证明】19. (本小题满分10分)请用三角形全等的知识自行设计一种如图所示测量池塘两端A 、B 的距离的方案,并加以证明. 【解】20. (本小题满分12分)已知:∠AOB =90°,OM 是∠AOB 的平分线,将三角板的直角顶P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 有怎样的数量关系是_________(2)请你证明(1)得出的结论. 【证明】参考答案:1A 2C 3B 4D 5C 6A 7D 8B 9C 10D11.全等形 12.80°,13 13.2cm 14.415.每画一个3分,答案不唯一,只要正确均给分.16.BE 和CD ……………………2分 AE 和=AD ……………………4分∠BAE 和∠CAD ……………6分 ∠AEB 和∠ADC ……………8分17.∠1=∠2,∠3=∠4,DE=BE ,DB ⊥AC 等MBAD O PC第20题图每给出一个2分,本题是开放题答案不唯一,只要正确均给分.18.∵AB ∥CD∴∠F=∠BAE ,∠ECF=∠EBA.…………3分 又∵E 是BC 中点∴CE=BE ……………………………………6分 在△ECF 和△EBA 中F BAEECF EBA CE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ECF ≌△EBA(AAS)…………………8分 ∴AB=CF …………………………………10分19.【方案】在平地上选取一个可直接到达A 和B 的点C ,连接并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,量出DE 的长,就是A ,B 的距离.……………4分 【证明】∵CD=CA ,EC=BC又∵∠ACB=∠DCE …………………………6分 在△ACB 和△DCE 中CD CA ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△DCE(SAS)…………………8分 ∴AB=DE …………………………………10分20.(1)PC=PD ……………………………4分 (2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴∠CFP=∠DEP=90°……………………6分∵OM 是∠AOB 的平分线,∴PE=PF …………………7分 ∵∠1+∠FPD=90°(直角三角板) 又∵∠AOB=90° ∴∠FPE=90° ∴∠2+∠FPD=90°∴∠1=∠2…………………………………9分 在△CFP 和△DEP 中第18题图第17题图12CFP DEP PE PF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CFP ≌△DEP(ASA)…………………10分 ∴PC=PD …………………………………12分。
2018-2019学年度八年级上第一次月考数学试卷
八年级上学期第一次月考数学试卷一、填空题(每题2分,共24分)1.(2分)(1997•吉林)|2﹣|=.2.(2分)下列各数:①,②0,③,④,⑤0.1010010001…(相邻两个1之间0的个数逐次增加1),⑥,⑦,无理数有(填序号)3.(2分)一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距km.4.(2分)一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是三角形.5.(2分)估算:≈.(精确到0.1)6.(2分)如图,64、400分别为所在正方形的面积,则图中字母所代表的正方形面积是.7.(2分)如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.8.(2分)在△ABC中,∠C=90°,周长为60,斜边与一直角边比是13:5,则这个三角形斜边是.9.(2分)已知直角三角形的三边长为6,8,x,则以x为边长的正方形的面积为.10.(2分)已知某正数有两个平方根分别是a+3与2a﹣15,则a=,这个正数为.11.(2分)已知,|a﹣1|+=0,则a+b=.12.(2分)如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…S n(n为正整数),那么第8个正方形面积S8=.二、选择题(每题3分,共24分)13.(3分)下列说法错误的是()A.(﹣4)2的平方根是4 B.﹣1的立方根是﹣1C.是2的平方根D.5是25的算术平方根14.(3分)﹣27的立方根与的算术平方根的和是()A.0 B.6 C.6或﹣12 D.0或615.(3分)下列各式中正确的是()A.B.C.D.16.(3分)已知一直角三角形的木版,三边的平方和为1800cm,则斜边长为()A.80cm B.30cm C.90cm D.120cm17.(3分)下列数组中,不是勾股数的是()A.3、4、5 B.9、12、15 C.7、24、25 D.12、18、2218.(3分)若a2=4,b3=27且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣519.(3分)在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或8420.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π三、解答题(共52分)21.(16分)计算题(1)﹣+;(2)(+)(﹣)﹣;(3)﹣•;(4)(1﹣)2+2.22.(4分)已知(x+1)2﹣1=24,求x的值.23.(5分)如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)24.(5分)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?25.(5分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;(1)使三角形的三边长分别为2,3,,(在图①中画出一个即可);(2)使三角形为钝角三角形且面积为4(在图②中画出一个即可),并计算你所画三角形的三边的长.26.(5分)已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.27.(6分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,求:(1)EC的长;(2)AE的长.28.(6分)如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC 方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?福建省宁德市古田县新城中学2014-2015学年八年级上学期第一次月考数学试卷参考答案与试题解析一、填空题(每题2分,共24分)1.(2分)(1997•吉林)|2﹣|=2﹣.考点:实数的性质;绝对值.专题:计算题.分析:判断2和的大小,再去绝对值符号即可.解答:解:|2﹣|=2﹣.故答案为:2﹣.点评:本题考查了实数的性质,绝对值的应用,再判断2﹣的正负是解此题的关键.2.(2分)下列各数:①,②0,③,④,⑤0.1010010001…(相邻两个1之间0的个数逐次增加1),⑥,⑦,无理数有①⑤⑦(填序号)考点:无理数.专题:计算题.分析:先根据了平方根与立方根的定义得到﹣=﹣2;=﹣5;=;然后根据无理数的定义得7个数中无理数有:﹣;0.1010010001…(相邻两个1之间0的个数逐次增加1);﹣.解答:解:∵﹣=﹣2;=﹣5;=;∴在所给的数中无理数有:﹣;0.1010010001…(相邻两个1之间0的个数逐次增加1);﹣.故答案为①⑤⑦.点评:本题考查了无理数的定义:无限不循环小数叫无理数,常见表现形式有:①开方开不尽的数,如等;②无限的不循环的小数,如0.1010010001…等;③字母表示无理数,如π等.也考查了平方根与立方根的定义.3.(2分)一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距10km.考点:勾股定理的应用.专题:计算题.分析:根据题意,画出图形,且东北和东南的夹角为90°,根据题目中给出的半小时后和速度可以计算AC,BC的长度,在直角△ABC中,已知AC,BC可以求得AB的长.解答:解:作出图形,因为东北和东南的夹角为90°,所以△ABC为直角三角形.在Rt△ABC中,AC=16×0.5km=8km,BC=12×0.5km=6km.则AB=km=10km故答案为 10.点评:本题考查了勾股定理在实际生活中的应用,本题中确定△ABC为直角三角形,并且根据勾股定理计算AB是解题的关键.4.(2分)一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是直角三角形.考点:勾股定理的逆定理.分析:化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.解答:解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,所以a2+b2=c2,则这个三角形为直角三角形.故答案为:直角.点评:考查了勾股定理逆定理的运用,是基础知识比较简单.5.(2分)估算:≈5.1.(精确到0.1)考点:计算器—数的开方.分析:首先熟悉计算器的求算术平方根的键,然后即可利用计算器求出结果,根据有效数字的概念用四舍五入法取近似数即可.解答:解:≈5.1.故答案为:5.1.点评:本题主要考查了无理数的估算,关键是把估算的数保留到0.1是本题的关键.6.(2分)如图,64、400分别为所在正方形的面积,则图中字母所代表的正方形面积是336.考点:勾股定理.分析:要求图中字母所代表的正方形面积,根据面积=边长×边长=边长的平方,设A的边长为a,直角三角形斜边的长为c,另乙直角边为b,则c2=400,b2=64,已知斜边和以直角边的平方,由勾股定理可求出A的边长的平方,即求出了图中字母所代表的正方形的面积.解答:解:设A的边长为a,直角三角形斜边的长为c,另乙直角边为b,则c2=400,b2=64,如图所示,在该直角三角形中,由勾股定理得:a2=c2﹣b2=400﹣64=336,所以,图中字母所代表的正方形面积是a2=336.点评:本题主要考查勾股定理的应用和正方形的面积公式,关键在于熟练运用勾股定理求出正方形的边长的平方.7.(2分)如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.考点:勾股定理的应用.专题:应用题.分析:本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.解答:解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.点评:本题就是一个简单的勾股定理的应用问题.8.(2分)在△ABC中,∠C=90°,周长为60,斜边与一直角边比是13:5,则这个三角形斜边是26.考点:勾股定理.分析:由斜边与一直角边比是13:5,设斜边是13k,则直角边是5k.根据勾股定理,得另一条直角边是12k.根据题意,求得斜边的长即可.解答:解:∵斜边与一直角边比是13:5,∴设斜边是13k,直角边是5k,∴另一直角边==12k.、∵周长为60,∴13k+5k+12k=60,解得k=2,∴斜边长=13×2=26.故答案为:26.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.(2分)已知直角三角形的三边长为6,8,x,则以x为边长的正方形的面积为100或28.考点:勾股定理.专题:分类讨论.分析:以x为边长的正方形的面积是x2,所以只需求得x2即可.但此题应分8为直角边和为斜边两种情况考虑.解答:解:当较大的数8是直角边时,根据勾股定理,得x2=36+64=100;当较大的数8是斜边时,根据勾股定理,得x2=64﹣36=28.所以以x为边长的正方形的面积为100或28.点评:此题一定要注意分两种情况,不要漏解.10.(2分)已知某正数有两个平方根分别是a+3与2a﹣15,则a=4,这个正数为49.考点:平方根.分析:根据正数有两个平方根,分别是a+3与2a﹣15,所以,a+3与2a﹣15互为相反数;即a+3=﹣(2a ﹣15),解答可求出a;根据(a+3)2,代入可求出正数的值.解答:解:∵正数有两个平方根,分别是a+3与2a﹣15,∴a+3=﹣(2a﹣15),得,a=4;所以,正数=(a+3)2=(4+3)2=49.故答案为:4,49.点评:本题主要考查了平方根的定义和性质,以及根据平方根求被开方数;注意:一个正数有两个平方根,它们互为相反数.11.(2分)已知,|a﹣1|+=0,则a+b=﹣6.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:,则a+b=1﹣7=﹣6.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.(2分)如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…S n(n为正整数),那么第8个正方形面积S8=128.考点:正方形的性质.专题:压轴题;规律型.分析:根据已知可发现第n个正方形的边长是第(n﹣1)个的倍,则面积是第(n﹣1)个的2倍,从而就不难求得第8个正方形面积的面积了.解答:解:根据题意可得:第n个正方形的边长是第(n﹣1)个的倍;故面积是第(n﹣1)个的2倍,已知第一个面积为1;则那么第8个正方形面积S8=27=128.故答案为128.点评:主要考查了正方形的性质和相似多边形的性质.要注意相似形的面积比是相似比的平方.二、选择题(每题3分,共24分)13.(3分)下列说法错误的是()A.(﹣4)2的平方根是4 B.﹣1的立方根是﹣1C.是2的平方根D.5是25的算术平方根考点:立方根;平方根;算术平方根.专题:计算题.分析:利用平方根,立方根的定义计算得到结果,即可做出判断.解答:解:A、(﹣4)2的平方根是±4,错误;B、﹣1的立方根为﹣1,正确;C、是2的平方根,正确;D、5是25的算术平方根,正确,故选A点评:此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.14.(3分)﹣27的立方根与的算术平方根的和是()A.0 B.6 C.6或﹣12 D.0或6考点:实数的运算;算术平方根;立方根.分析:先求出﹣27的立方根与的算术平方根,再求出其和即可.解答:解:∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3;∵=9,32=9,∴的算术平方根是3,∴﹣3+3=0.故选A.点评:本题考查的是实数的运算,熟知算术平方根及立方根的定义是解答此题的关键.15.(3分)下列各式中正确的是()A.B.C.D.考点:实数的运算;算术平方根.专题:计算题.分析:A、原式利用二次根式的化简公式计算得到结果,即可做出判断;B、原式利用平方根的定义化简得到结果,即可做出判断;C、原式为最简结果,错误;D、原式化简合并得到结果,即可做出判断.解答:解:A、=|﹣3|=3,故选项错误;B、=5,故选项错误;C、2+为最简结果,故选项错误;D、﹣=﹣2=﹣,故选项正确.故选D.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(3分)已知一直角三角形的木版,三边的平方和为1800cm,则斜边长为()A.80cm B.30cm C.90cm D.120cm考点:勾股定理.分析:设此直角三角形的斜边是c,根据勾股定理及已知不难求得斜边的长.解答:解:设此直角三角形的斜边是c,根据勾股定理知,两条直角边的平方和等于斜边的平方.所以三边的平方和即2c2=1800,c=±30(负值舍去),取c=30.故选B.点评:熟练运用勾股定理进行计算,从而求出斜边的长.17.(3分)下列数组中,不是勾股数的是()A.3、4、5 B.9、12、15 C.7、24、25 D.12、18、22考点:勾股数.分析:判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方,从而得出答案.解答:解:A、32+42=52,是勾股数,故本选项不符合题意.B、92+122=152,是勾股数,故本选项不符合题意.C、72+242=252,是勾股数,故本选项不符合题意.D、122+182≠222,不是勾股数,故本选项符合题意.故选D.点评:此题考查了勾股数,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.18.(3分)若a2=4,b3=27且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5考点:有理数的乘方.分析:根据有理数的乘方求出a、b,再根据异号得负判断出a的值,然后代入代数式进行计算即可得解.解答:解:∵a2=4,b3=27,∴a=±2,b=3,∵ab<0,∴a=﹣2,∴a﹣b=﹣2﹣3=﹣5.故选D.点评:本题考查了有理数的乘方,有理数的乘方,有理数的减法运算,熟记运算法则并确定出a=﹣2是解题的关键.19.(3分)在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或84考点:勾股定理.专题:分类讨论.分析:由于高的位置是不确定的,所以应分情况进行讨论.解答:解:(1)△ABC为锐角三角形,高AD在△ABC内部.BD==9,CD==5∴△ABC的面积为×(9+5)×12=84;(2)△ABC为钝角三角形,高AD在△ABC外部.方法同(1)可得到BD=9,CD=5∴△ABC的面积为×(9﹣5)×12=24.故选C.点评:本题需注意当高的位置是不确定的时候,应分情况进行讨论.20.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π考点:勾股定理.分析:根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.解答:解:S1=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故选A.点评:此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.三、解答题(共52分)21.(16分)计算题(1)﹣+;(2)(+)(﹣)﹣;(3)﹣•;(4)(1﹣)2+2.考点:实数的运算.分析:(1)先进行二次根式的化简,然后合并;(2)先进行平方差公式的运算和二次根式的化简,然后合并;(3)先进行二次根式的化简,然后合并;(4)先进行完全平方公式的运算,然后合并.解答:解:(1)原式=3﹣6+5=2;(2)原式=7﹣3+2=6;(3)原式=1﹣1=0;(4)原式=1﹣2+10+2=11.点评:本题考查了实数的运算,解答本题的关键是掌握二次根式的化简与合并.22.(4分)已知(x+1)2﹣1=24,求x的值.考点:平方根.分析:化成(x+1)2=25的形式,推出x+1=±5,求出即可.解答:解:移项得:(x+1)2=25,∴x+1=±5,即x=4或﹣6.点评:本题主要考查对平方根的理解和掌握,能推出关于x的一元一次方程是解此题的关键.23.(5分)如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)考点:勾股定理的应用.分析:滑行的距离最短,即是沿着AE的线段滑行,我们可将半圆展开为矩形来研究,展开后,A、D、E 三点构成直角三角形,AE为斜边,AD和DE为直角边,写出AD和DE的长,根据题意,写出勾股定理等式,代入数据即可得出AE的距离.解答:解:将半圆面展开可得:AD=4π米,DE=DC﹣CE=AB﹣CE=18米,在Rt△ADE中,AE=米.即滑行的最短距离约为22米.点评:本题考查了学生对问题简单处理的能力;直接求是求不出的,所以要将半圆展开,利用已学的知识来解决这个问题.24.(5分)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?考点:勾股定理的应用.分析:根据题意画出图形,利用勾股定理建立方程,求出x的值即可.解答:解:画图解决,通过建模把距离转化为线段的长度.由题意得:AB=20,DC=30,BC=50,设EC为x肘尺,BE为(50﹣x)肘尺,在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=202+(50﹣x)2,DE2=DC2+EC2=302+x2,又∵AE=DE,∴x2+302=(50﹣x)2+202,x=20,答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺另解:设:这条鱼出现的地方离比较高的棕榈树的树根肘尺,则这条鱼出现的地方离比较低的棕榈树的树根(50﹣x)肘尺.得方程:x2+302=(50﹣x)2+202可解的:x=20;答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.点评:本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的关键.25.(5分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;(1)使三角形的三边长分别为2,3,,(在图①中画出一个即可);(2)使三角形为钝角三角形且面积为4(在图②中画出一个即可),并计算你所画三角形的三边的长.考点:作图—应用与设计作图;勾股定理.专题:压轴题.分析:(1)画一个两直角边分别为2,3的三角形即可.(2)画一个底边长是2,高为4的钝角三角形即可,然后利用勾股定理可以求出各边长.解答:解:(1)在图中画出AB=2,BC=3,连接AC,AC==;(2)如图所示,S△EMF=4,FM=2,EM==2,EF==4.点评:此题主要考查了勾股定理,应用与作图设计,关键要理解题意,弄清问题中对所作图形的要求,然后作图.26.(5分)已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.考点:勾股定理的逆定理;三角形的重心.分析:连接AC,在Rt△ACD中,AD=4,CD=3,可求AC;在△ABC中,由勾股定理的逆定理可证△ABC为直角三角形,利用两个直角三角形的面积差求图形的面积.解答:解:连接AC,在Rt△ACD中,AD=4,CD=3,∴AC==5,在△ABC中,∵AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形;∴图形面积为:S△ABC﹣S△ACD=×5×12﹣×3×4=24.点评:本题考查了勾股定理及其逆定理的运用,三角形面积的求法.27.(6分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,求:(1)EC的长;(2)AE的长.考点:翻折变换(折叠问题).分析:(1)首先根据勾股定理求出BF的长,借助翻转变换的性质及勾股定理求出DE的长即可解决问题.(2)直接根据勾股定理求出AE的长.解答:解:(1)∵四边形ABCD为长方形,∴AD=BC=10,DC=AB=8;由题意得:△ADE≌△AFE,∴AF=AD=10,EF=ED(设为x),则EC=8﹣x;在直角△ABF中,由勾股定理得:BF=,∴FC=10﹣6=4;在直角△EFC中,由勾股定理得:x2=42+(8﹣x)2,解得:x=5,8﹣x=3;∴EC的长为3(cm).(2)由勾股定理得:==(cm).点评:该命题考查了翻转变换及其应用问题;解题的关键是借助翻转变换的性质,灵活运用勾股定理、全等三角形的性质等几何知识来分析与判断、推理或解答.28.(6分)如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC 方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?考点:勾股定理的应用.分析:首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;再根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解答:解:∵AB=100km,AD=60km,∴在Rt△ABD中,根据勾股定理,得BD==80km,则台风中心经过80÷20=4小时从B移动到D点;如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴人们要在台风中心到达E点之前撤离,∵BE=BD﹣DE=80﹣30=50km,∴游人在=2.5小时内撤离才可脱离危险.点评:本题考查了勾股定理的应用,解答本题的关键是利用勾股定理求出BD的长度,难度一般.。
2018-2019学年八年级上第一次月考数学试卷含答案解析
广东省深圳市锦华实验学校2018-2019学年八年级上学期第一次月考数学试卷一、单选题(共12小题)1.在平面直角坐标系中,已知点(2,-3),则点在()A.第一象限B.第二象限C.第三象限D.第四象限考点:平面直角坐标系及点的坐标答案:D试题解析:(2,-3)横纵坐标为正、负,在第四象限,故选D。
2.以下列各组数为三边的三角形中不是直角三角形的是()A.9、12、15B.41、40、9C.25、7、24D.6、5、4考点:直角三角形与勾股定理答案:D试题解析:不能构成的是 6、5、4,故选D,其他选项都是勾股数。
3.在3.14,π,3.212212221,2+,,—5.121121112……中,无理数的个数为().A.5B.2C.3D.4考点:实数及其分类答案:C试题解析:无理数是无线不循环小数,满足条件的有π,2+,—5.121121112……,故选C。
4.下列计算正确的是()A.B.C.D.考点:实数运算答案:C试题解析:,故A错;,故B错;,故C对;,故D错,故选C。
5.如果点P(在轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,考点:平面直角坐标系及点的坐标答案:B试题解析:P(在轴上,则P的纵坐标为0,则∴P的横坐标为2,∴P(2,0)。
故选B。
6.点P(-3,5)关于x轴的对称点P′的坐标是()A.(3,5)B.(5,-3)C.(3,-5)D.(-3,-5)考点:平面直角坐标系及点的坐标答案:D试题解析:有题意可得,P、关于X轴对称,则两点的纵坐标为相反数,横坐标相等,∴P′(-3,-5),故选D。
7.如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-的点P应落在线段()A.AO上B.OB上C.BC上D.CD上考点:二次根式的运算及其估值答案:B试题解析:∵在2~3之间,∴3-的值在0~1之间,∴P应落在线段OB上,故选B。
8.下列说法中,不正确的是()A.3是的算术平方根B.±3是的平方根C.-3是的算术平方根D.-3是的立方根考点:实数的相关概念答案:C试题解析:“3是的算术平方根”正确,故A对;“±3是的平方根”正确,故B对;“-3是的算术平方根”错误,算术平方根是正数,故C错;“-3是的立方根”正确,故D对;故选C。
人教版八年级上第一次月考数学试卷含解析
初中数学试题2018-2019学年江西省九江市柴桑八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.一个直角三角形的两条边分别是6和8,则第三边是()A.10B.12C.12或D.10或2.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13B.8C.25D.643.三角形的三边长为a,b,c,且满足(b+c)2=a2+2bc,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形4.下列说法不正确的是()A.1的平方根是±1B.﹣1的立方根是﹣1C.4是2的平方根D.﹣3是9的平方根5.下列各式中无意义的是()A.B.C.D.6.在下列各数中,是无理数的是()A.πB.C.3.1415926D.7.我们知道是一个无理数,那么的大小在哪两个数之间()A.3和4B.4和5C.19和20D.20和218.若a=,b=﹣|﹣|,c=﹣,则a、b、c的大小关系是()A.a<b<c B.b<a<c C.b<c<a D.c<b<a9.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为()A.12B.7C.5D.1310.三角形三边之比分别为(1)(2)3:4:5(3)1:2:3(4)4:5:6,其中可以构成直角三角形的有()A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题3分,共15分,把答案填在题中横线上).11.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要米.12.在Rt△ABC中,斜边AB=4,则AB2+AC2+BC2=.13.如图,数轴上点A所表示的实数是.14.已知a,b分别是的整数部分和小数部分,则2a﹣b的值为.15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.三、解答题(本大题共6小题,共55分,解答应写出文字说明,证明过程或演算步骤)16.把下列各式化为最简二次根式;(1)(2)(3)(4)17.(8分)解下列方程;(1)4x2=25;(2)(x﹣0.5)3=0.027.18.(7分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;①使三角形的三边长分别为1,3,(在图①中画出一个即可);②使三角形为钝角三角形且面积为3(在图②中画出一个即可),并计算你所画三角形的三边的长.19.(8分)已知,求7(x+y)﹣20的立方根.20.(10分)如图,在四边形ABCD中,BC=DC=2,AD=3,AB=1,且∠C=90°,求∠B的度数.21.(10分)如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6cm,BC=8cm,求阴影部分的面积.2018-2019学年江西省九江市柴桑三中八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.一个直角三角形的两条边分别是6和8,则第三边是()A.10B.12C.12或D.10或【分析】设第三条边为x,再根据8为直角边与斜边两种情况求解即可.【解答】解:设第三条边为x,当8为直角边时,x==10;当8为斜边时,x=.综上所述,第三条边的长度是10或2.故选:D.【点评】本题考查的是勾股定理,在解答此题时要进行分类讨论,不要漏解.2.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13B.8C.25D.64【分析】先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.【解答】解:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选:B.【点评】本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.3.三角形的三边长为a,b,c,且满足(b+c)2=a2+2bc,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【分析】展开等式后,利用勾股定理的逆定理解答即可.【解答】解:因为三角形的三边长满足(b+c)2=a2+2bc,可得:b2+c2=a2,所以这个三角形是直角三角形,故选:C.【点评】此题考查了勾股定理的逆定理的应用,熟练掌握因式分解的方法是解本题的关键.4.下列说法不正确的是()A.1的平方根是±1B.﹣1的立方根是﹣1C.4是2的平方根D.﹣3是9的平方根【分析】直接利用平方根以及立方根的定义计算得出答案.【解答】解:A、1的平方根是±1,正确,不合题意;B、﹣1的立方根是﹣1,正确,不合题意;C、4是16的一个平方根,故此选项错误,符合题意;D、﹣3是9的平方根,正确,不合题意;故选:C.【点评】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键.5.下列各式中无意义的是()A.B.C.D.【分析】直接利用二次根式的定义分析得出答案.【解答】解:A、﹣,有意义;B、,有意义;C、,有意义;D、,无意义.故选:D.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.6.在下列各数中,是无理数的是()A.πB.C.3.1415926D.【分析】根据无理数的三种形式解答即可.【解答】解:A.π是无理数;B.=2,是整数,属于有理数;C.3.1415926是有限小数,属于有理数;D.=﹣2,是整数,属于有理数;故选:A.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7.我们知道是一个无理数,那么的大小在哪两个数之间()A.3和4B.4和5C.19和20D.20和21【分析】直接得出的取值范围进而得出答案.【解答】解:∵4<<5,∴3<<4.故选:A.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8.若a=,b=﹣|﹣|,c=﹣,则a、b、c的大小关系是()A.a<b<c B.b<a<c C.b<c<a D.c<b<a【分析】根据实数大小的比较方法比较即可.【解答】解:∵a=,b=﹣|﹣|=﹣,c=﹣=2,∵﹣<<2,∴b<a<c,故选:B.【点评】本题考查了实数大小的比较,熟记比较的方法是解题的关键.9.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为()A.12B.7C.5D.13【分析】先根据△BCE等腰直角三角形得出BC的长,进而可得出BD的长,根据△ABD是等腰直角三角形可知AB=BD,在Rt△ABC中利用勾股定理即可求出AC的长.【解答】解:∵△BCE等腰直角三角形,BE=5,∴BC=5,∵CD=17,∴DB=CD﹣BE=17﹣5=12,∵△ABD是等腰直角三角形,∴AB=BD=12,在Rt△ABC中,∵AB=12,BC=5,∴AC===13.故选:D.【点评】本题考查的是等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键.10.三角形三边之比分别为(1)(2)3:4:5(3)1:2:3(4)4:5:6,其中可以构成直角三角形的有()A.1个B.2个C.3个D.4个【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:设每份为k,则(1)(k)2+(2k)2≠(k)2;(2)(3k)2+(4k)2=(5k)2;(3)k2+(2k)2≠(3k)2;(4)(4k)2+(5k)2≠(6k)2,∴可以构成直角三角形的是1个.故选:A.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题(本大题共5小题,每小题3分,共15分,把答案填在题中横线上).11.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要7米.【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7米.故答案为7.【点评】本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性.12.在Rt△ABC中,斜边AB=4,则AB2+AC2+BC2=32.【分析】根据勾股定理即可求得该代数式的值.【解答】解:∵在Rt△ABC中,斜边AB=4,∴AB2=BC2+AC2=16,AB2=16,∴AB2+BC2+AC2=32.故答案为:32.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.13.如图,数轴上点A所表示的实数是.【分析】根据勾股定理,可得斜线的长,根据圆的性质,可得答案.【解答】解:由勾股定理,得斜线的为=,由圆的性质,得:点表示的数为,故答案为:.【点评】本题考查了实数与数轴,利用勾股定理得出斜线的长是解题关键.14.已知a,b分别是的整数部分和小数部分,则2a﹣b的值为9﹣.【分析】先股算术的大致范围,然后再求得a、b的值,最后代入计算即可.【解答】解:∵9<13<16,∴3<<4.∴a=3,b=﹣3.∴2a﹣b=2×3﹣(﹣3)=6﹣+3=9﹣.【点评】本题主要考查的是估算无理数的大小,求得a、b的值是解题的关键.15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.三、解答题(本大题共6小题,共55分,解答应写出文字说明,证明过程或演算步骤)16.把下列各式化为最简二次根式;(1)(2)(3)(4)【分析】(1)利用二次根式的性质化简;(2)根据二次根式的除法法则运算;(3)利用平方差公式计算;(4)先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:(1)原式=10=10×=6;(2)原式=4+5=4+10;(3)原式=2﹣3=﹣1;(4)原式=2+3=5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(8分)解下列方程;(1)4x2=25;(2)(x﹣0.5)3=0.027.【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【解答】解:(1)4x2=25故x2=,解得:x=±;(2)(x﹣0.5)3=0.027故x﹣0.5=0.3则x=0.8.【点评】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键.18.(7分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;①使三角形的三边长分别为1,3,(在图①中画出一个即可);②使三角形为钝角三角形且面积为3(在图②中画出一个即可),并计算你所画三角形的三边的长.【分析】(1)三角形的三边长分别为1,3,,恰好为勾股数,利用网格直接作出即可,(2)利用三角形的面积为3,固定底为整数,高为整数,例如2×3等,即可画出;再利用勾股定理求得三角形的三边的长.【解答】解:①如图,△ABC即为所求.②如图,△ABC即为所求.△ABC的三边的长分别为:AB=2,AC==5,BC==.【点评】此题主要考查勾股定理及三角形的面积.19.(8分)已知,求7(x+y)﹣20的立方根.【分析】根据被开方数大于等于0,分母不等于0列式求出x的取值范围,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据立方根的定义解答.【解答】解:由题意得,5﹣x>0,解得x<5,y﹣2x=0,x2﹣25=0,解得x=﹣5,y=﹣10,∴7(x+y)﹣20=7×(﹣5﹣10)﹣20=﹣125,∵(﹣5)3=﹣125,∴7(x+y)﹣20的立方根是﹣5.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.(10分)如图,在四边形ABCD中,BC=DC=2,AD=3,AB=1,且∠C=90°,求∠B的度数.【分析】连接BD,根据勾股定理的逆定理得出△ABD为直角三角形,进而解答即可.【解答】解:连接BD,在Rt△BCD中,BD2=BC2+DC2=8.∵BC=DC,∴∠BDC=∠DBC=45°.在△ABD中,∵AB2+BD2=8+12=9=32=AD2,∴△ABD为直角三角形,故∠ABD=90°,∴∠B=∠ABD+∠DBC=90°+45°=135°.【点评】本题考查的是勾股定理、勾股定理的逆定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.(10分)如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6cm,BC=8cm,求阴影部分的面积.【分析】先根据翻折变换的性质得出∠EAC=∠DAC,再由平行线的性质得出∠DAC=∠ACB,故可得出AE=CE,设CE=x,则BE=8﹣x,在Rt△ABE中根据勾股定理可求出x的值,进而得出结论.【解答】解:∵△AD′C由△ADC翻折而成,∴∠EAC=∠DAC,∵AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴AE=CE,设CE=x,则BE=8﹣x,在Rt△ABE中,AE2=AB2+BE2,即x2=62+(8﹣x)2,解得x=,=CE•AB=××6=.∴S阴影【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.研读课标著名特级教师于永正先生有一个习惯,总是把课程标准中各学段的教学目标复印下来,贴在备课本的首页上,作为“教学指南”。
人教版初中数学八年级上册第一次月考试题(重庆八中
2018-2019学年重庆八中八年级(上)定时练习数学试卷(五)一、选择题:(本大题10个小题,每小题1分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.(1分)下列哪个点在第四象限()A.(2,﹣1)B.(﹣1,2)C.(1,2)D.(﹣2,﹣1)2.(1分)函数y=,自变量x的取值范围是()A.x>2B.x<2C.x≥2D.x≤23.(1分)以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.8,12,13D.4.(1分)已知点A(3,2)与点B关于x轴对称,则点B的坐标为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,3)5.(1分)购买物品,每人出8元,还余3元,每人出7元,还差4元,人数和价格各是多少?若设有x人,物品价格是y元,则所列方程组正确的是()A.B.C.D.6.(1分)如图,OC平分∠AOB,点P是OC上一点,PM⊥OB于点M,点N 是射线OA上的一个动点若OM=4,OP=5,则PN的最小值为()A.2B.3C.4D.57.(1分)如图,在直角坐标系中,△OBC的顶点O(0,0),B(﹣6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称的点的坐标是()A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(3,3)8.(1分)若点P(m,n)在第二象限,则点P(m2,﹣n)在()A.第一象限B.第一象限C.第三象限D.第四象限9.(1分)已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.210.(1分)如图,图象(折线ABCDE)描述了一汽车在某一直路上行驶过程中汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,下列说法正确的是()A.汽车共行驶了120千米B.汽车在行驶途中停留了2小时C.汽车在AB段的行驶速度与CD段的行驶速度相同D.汽车自出发后3小时至4.5小时之间行驶的平均速度为80千米/时二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)已知点O(0,0),A(3,4),则线段AO的长度为.12.(4分)在Rt△ABC中,∠C=90°,若a=6,b=8,则c=斜边上的高为.13.(4分)已知代数式2x m y3与﹣3x n﹣1y m+1是同类项,则m﹣n=.14.(4分)已知三角形ABC的三个顶点坐标为A(2,1),B(6,1),C(6,﹣3),则三角形ABC的面积为.15.(4分)点P在第四象限,到x轴的距离为3,到y轴的距离为2,则P点坐标为.16.(4分)如图,在矩形ABCD中,AB=8,AD=4,点E、F分别在线段AD、AB上,将△AEF沿EF翻折,使得点A落在矩形ABCD内部的P点,连接PD,当△PDE是等边三角形时,BF的长为.三、解答题:(共36分)解答时每小题必须给出必要的演算过程,请将解答书写在答题卡中对应的位置上.17.(10分)计算:(1)(2x+3y)(﹣2x+3y)﹣(3y﹣x)2(2)(2﹣π)0+|﹣3|﹣﹣(﹣)﹣218.(8分)选择合适的方法解方程组(1)(2)19.(8分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?20.(10分)已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0).(1)求△ABC的面积是多少?(2)若点A、C的位置不变,当点P在y轴上时,且S△ACP =2S△ABC,求点P的坐标?四、填空题(本大题5个小题,每小题4分,共20分)21.(4分)已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.22.(4分)已知A(a﹣5,2b﹣1)在y轴上,B(3a+2,b+3)在x轴上,则C (a,b)向左平移2个单位长度再向上平移3个单位长度后的坐标为.23.(4分)已知关于x、y的方程组的解是整数,则整数a的值为.24.(4分)在平面直角坐标系中有两点A(0,0),B(3,2),C是第一象限内的一点,若△ABC是等腰直角三角形,则C点的坐标为.25.(4分)如图,∠MON=90°,Rt△ABC的顶点A、B分别在边OM,ON上,∠CAB=90°,当B在边ON上运动时,A随之在边OM上运动,△ABC的形状保持不变,其中AB=6,AC=3,运动过程中,点C到点O的最大距离为.五、解答题(本大题共3个小题,每小题10分,共30分)26.(10分)某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?27.(10分)如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.28.(10分)如图,在等腰Rt△ABC中,AB=AC.D是△ABC内一点,连接AD,过点A作AD⊥AE,AD=AE,连接BE,点F是线段BE的中点,连接AF,连接DC,点F在DC上.(1)求证:∠BAD=∠CAE.(2)若AC=DC,求证:∠ACF=30°.2018-2019学年重庆八中八年级(上)定时练习数学试卷(五)参考答案与试题解析一、选择题:(本大题10个小题,每小题1分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.(1分)下列哪个点在第四象限()A.(2,﹣1)B.(﹣1,2)C.(1,2)D.(﹣2,﹣1)【分析】平面坐标系中点的坐标特点为:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(﹣,+);根据此特点可知此题的答案.【解答】解:因为第四象限内的点横坐标为正,纵坐标为负,各选项只有A符合条件,故选:A.【点评】此题考查了平面坐标系中点的横纵坐标的特点,准确记忆此特点是解题的关键.2.(1分)函数y=,自变量x的取值范围是()A.x>2B.x<2C.x≥2D.x≤2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:C.【点评】本题考查函数自变量的取值范围,解决本题的关键是二次根式的被开方数是非负数.3.(1分)以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.8,12,13D.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项不符合题意;C、82+122≠132,故不是直角三角形,故此选项符合题意;D、()2+()2=()2,故是直角三角形,故此选项不符合题意.故选:C.【点评】本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.(1分)已知点A(3,2)与点B关于x轴对称,则点B的坐标为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,3)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点(3,2)关于x轴对称的点的坐标.【解答】解:点A(3,2)关于x轴的对称点B的坐标为(3,﹣2),故选:A.【点评】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.5.(1分)购买物品,每人出8元,还余3元,每人出7元,还差4元,人数和价格各是多少?若设有x人,物品价格是y元,则所列方程组正确的是()A.B.C.D.【分析】设有x人,物品价格是y元,根据“每人出8元,还余3元,每人出7元,还差4元”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设有x人,物品价格是y元,根据题意得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.(1分)如图,OC平分∠AOB,点P是OC上一点,PM⊥OB于点M,点N 是射线OA上的一个动点若OM=4,OP=5,则PN的最小值为()A.2B.3C.4D.5【分析】先根据勾股定理求出PM,再根据垂线段最短可得PN⊥OA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,从而得解.【解答】解:∵PM⊥OB于点M,OM=4,OP=5,∴PM=3,当PN⊥OA时,PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵PM=3,∴PN的最小值为3.故选:B.【点评】本题考查了勾股定理、角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.(1分)如图,在直角坐标系中,△OBC的顶点O(0,0),B(﹣6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称的点的坐标是()A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(3,3)【分析】等腰直角三角形,直角顶点在斜边垂直平分线上,求出C点的坐标,再根据关于y轴对称的点的坐标之间的关系就可以得到.【解答】解:已知∠OCB=90°,OC=BC∴△OBC为等腰直角三角形,又因为顶点O(0,0),B(﹣6,0)过点C作CD⊥OB于点D,则OD=DC=3所以C点坐标为(﹣3,3),点C关于y轴对称的点的坐标是(3,3)故选:A.【点评】本题主要考查了等腰直角三角形的性质,以及关于y轴对称的点的关系.解决本题的关键是掌握好对称点的坐标规律:关于y轴对称的点,纵坐标相同,横坐标互为相反数.8.(1分)若点P(m,n)在第二象限,则点P(m2,﹣n)在()A.第一象限B.第一象限C.第三象限D.第四象限【分析】平面坐标系中点的坐标特点为:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(﹣,+);根据此特点可知此题的答案.【解答】解:∵点P(m,n)在第二象限,∴m<0,n>0,∴m2>0,﹣n<0,∴点P(m2,﹣n)在第四象限.故选:D.【点评】此题主要考查了点的坐标,正确理解点的坐标意义是解题关键.9.(1分)已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.2【分析】,②﹣①得:x﹣y=1,根据“方程组的解满足x﹣y=m﹣1”,得到关于m的一元一次方程,解之即可.【解答】解:,②﹣①得:x﹣y=1,∵方程组的解满足x﹣y=m﹣1,∴m﹣1=1,解得:m=2,故选:D.【点评】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.10.(1分)如图,图象(折线ABCDE)描述了一汽车在某一直路上行驶过程中汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,下列说法正确的是()A.汽车共行驶了120千米B.汽车在行驶途中停留了2小时C.汽车在AB段的行驶速度与CD段的行驶速度相同D.汽车自出发后3小时至4.5小时之间行驶的平均速度为80千米/时【分析】根据题意,读图分析,注意纵横轴的意义,可得A,②④正确,进而可得答案.【解答】解:读图可得:A、汽车的最大位移为120千米,来回的路程为240千米,故错误;B、BC间的位移不变,其时间为2﹣1.5=0.5,故汽车在途中停留了0.5小时,故错误;C、汽车在AB段的行驶速度为=km/s,CD段的行驶速度为=80km/s,故C错误;D、汽车返回时的速度是=80千米/小时,故D正确;故选:D.【点评】本题考查了一次函数的应用:从一次函数图象中得到实际问题中的数量关系,再根据有关的数学知识解决实际问题.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)已知点O(0,0),A(3,4),则线段AO的长度为5.【分析】根据勾股定理和两点之间的距离解答即可.【解答】解:因为点O(0,0),A(3,4),则线段AO的长度=,故答案为:5【点评】此题考查勾股定理,关键是根据勾股定理和两点之间的距离解答.12.(4分)在Rt△ABC中,∠C=90°,若a=6,b=8,则c=10斜边上的高为 4.8.【分析】首先根据勾股定理求得斜边c=10;然后由面积法来求斜边上的高线.【解答】解:如图,∵在Rt△ABC中,∠C=90°,若a=6,b=8,则由勾股定理得到:c===10.设斜边上的高为h,则ab=ch,∴h===4.8.故答案是:10,4.8.【点评】本题考查了勾股定理的运用,及直角三角形面积的求法,需同学们灵活掌握.13.(4分)已知代数式2x m y3与﹣3x n﹣1y m+1是同类项,则m﹣n=﹣1.【分析】直接利用同类项的定义得出关于m,n的方程组进而得出答案.【解答】解:∵代数式2x m y3与﹣3x n﹣1y m+1是同类项,∴,解得:,则m﹣n=2﹣3=﹣1.故答案为:﹣1.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.14.(4分)已知三角形ABC的三个顶点坐标为A(2,1),B(6,1),C(6,﹣3),则三角形ABC的面积为8.【分析】根据点的坐标求得AB,BC,根据三角形的面积公式即可得到结论.【解答】解:如图,∵A(2,1),B(6,1),C(6,﹣3),∴AB=6﹣2=4,BC=1﹣(﹣3)=4,=×4×4=8,∴S△ABC故答案为:8.【点评】本题考查了三角形的面积,坐标与图形性质,熟练掌握三角形的面积公式是解题的关键.15.(4分)点P在第四象限,到x轴的距离为3,到y轴的距离为2,则P点坐标为(2,﹣3).【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点P在第四象限,到x轴的距离为3,到y轴的距离为2,∴点P的横坐标为2,纵坐标为﹣3,∴点P的坐标为(2,﹣3).故答案为:(2,﹣3).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).16.(4分)如图,在矩形ABCD中,AB=8,AD=4,点E、F分别在线段AD、AB上,将△AEF沿EF翻折,使得点A落在矩形ABCD内部的P点,连接PD,当△PDE是等边三角形时,BF的长为8﹣2.【分析】根据等边三角形的性质得到PE=DE,∠DEP=60°,由折叠的性质得到AE=PE,∠AEF=∠PEF=(180°﹣60°)=60°,根据矩形的性质得到∠A=90°,解直角三角形即可得到结论.【解答】解:∵△PDE是等边三角形,∴PE=DE,∠DEP=60°,∵△AEF沿EF翻折,使得点A落在矩形ABCD内部的P点,∴AE=PE,∠AEF=∠PEF=(180°﹣60°)=60°,∴DE=AE,∵AD=4,∴AE=2,∵四边形ABCD是矩形,∴∠A=90°,∴AF=AE=2,∵AB=8,∴BF=AB﹣AF=8﹣2,故答案为:8﹣2.【点评】本题考查了翻折变换(折叠问题),等边三角形的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.三、解答题:(共36分)解答时每小题必须给出必要的演算过程,请将解答书写在答题卡中对应的位置上.17.(10分)计算:(1)(2x+3y)(﹣2x+3y)﹣(3y﹣x)2(2)(2﹣π)0+|﹣3|﹣﹣(﹣)﹣2【分析】(1)直接利用公式法计算后即可得到正确的结果;(2)利用0指数幂及负整数指数幂的有关知识运算后即可得解;【解答】解:(1)(2x+3y)(﹣2x+3y)﹣(3y﹣x)2=9y2﹣4x2﹣(9y2﹣6xy+x2)=﹣5x2+6xy;(2)(2﹣π)0+|﹣3|﹣﹣(﹣)﹣2,=1+3﹣﹣3﹣4=﹣﹣3【点评】本题考查了乘法公式及整数指数幂的有关知识,难度不大,但属于基本运算,应重点掌握.18.(8分)选择合适的方法解方程组(1)(2)【分析】(1)①×2﹣②得出7y=14,求出y,把y=2代入①求出x即可;(2)①﹣②×2能求出x,①×2﹣②能求出y.【解答】解:(1)①×2﹣②得:7y=14,解得:y=2,把y=2代入①得:x+4=5,解得:x=1,所以原方程组的解为:;(2)整理得:①﹣②×2得:﹣9x=﹣12,解得:x=,①×2﹣②得:﹣6y=3,解得:y=﹣,所以原方程组的解为:.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.19.(8分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:设甲原有x文钱,乙原有y文钱,由题意可得,,解得:,答:甲原有36文钱,乙原有24文钱.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.20.(10分)已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0).(1)求△ABC的面积是多少?(2)若点A、C的位置不变,当点P在y轴上时,且S△ACP =2S△ABC,求点P的坐标?【分析】(1)根据点A、C的坐标求出AC的长,然后利用三角形的面积列式计算即可得解;(2)分点P在y轴正半轴和负半轴两种情况讨论求解.【解答】解:(1)∵A(1,0),B(﹣2,3),C(﹣3,0),∴AC=1﹣(﹣3)=1+3=4,点B到AC的距离为3,∴△ABC的面积=×4×3=6;(2)∵S△ACP=2S△ABC=12,∴以AC为底时,△ACP的高12×2÷4=6,∴点P在y轴正半轴时,P(0,6);点P在y轴负半轴时,P(0,﹣6).【点评】本题考查了坐标与图形性质,三角形的面积,难点在于要分情况讨论.四、填空题(本大题5个小题,每小题4分,共20分)21.(4分)已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为(1,2)或(﹣7,2).【分析】在平面直角坐标系中与x轴平行,则它上面的点纵坐标相同,可求B 点纵坐标;与x轴平行,相当于点A左右平移,可求B点横坐标.【解答】解:∵AB∥x轴,∴点B纵坐标与点A纵坐标相同,为2,又∵AB=4,可能右移,横坐标为﹣3+4=﹣1;可能左移横坐标为﹣3﹣4=﹣7,∴B点坐标为(1,2)或(﹣7,2),故答案为:(1,2)或(﹣7,2).【点评】此题考查平面直角坐标系中平行特点和平移时坐标变化规律,解决本题的关键是分类讨论思想.22.(4分)已知A(a﹣5,2b﹣1)在y轴上,B(3a+2,b+3)在x轴上,则C (a,b)向左平移2个单位长度再向上平移3个单位长度后的坐标为(3,0).【分析】根据横轴上的点,纵坐标为零,纵轴上的点,横坐标为零可得a、b的值,然后再根据点的平移方法可得C平移后的坐标.【解答】解:∵A(a﹣5,2b﹣1)在y轴上,∴a﹣5=0,解得:a=5,∵B(3a+2,b+3)在x轴上,∴b+3=0,解得:b=﹣3,∴C点坐标为(5,﹣3),∵C向左平移2个单位长度再向上平移3个单位长度,∴所的对应点坐标为(5﹣2,﹣3+3),即(3,0),故答案为:(3,0).【点评】此题主要考查了坐标与图形的变化﹣﹣平移,以及坐标轴上点的坐标特点,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.23.(4分)已知关于x、y的方程组的解是整数,则整数a的值为2或0.【分析】先解方程组求出x、y的值,根据y和a都是整数求出1+2a=﹣1或1+2a =5或1+2a=1或1+2a=﹣5,求出a的值,再代入x求出x,再逐个判断即可.【解答】解:①×2﹣②得:(﹣2a﹣1)y=5,y=﹣,把y=﹣代入②得:4x﹣=7,解得:x=,∵方程组的解为整数,∴x、y都是整数,∴要使y为整数,a为整数,必须1+2a=﹣1或1+2a=5或1+2a=1或1+2a=﹣5,解得:a=﹣1或2或0或﹣3,当a=﹣1时,x==,不是整数,舍去;当a=2时,x==2,是整数,符合;当a=0时,x==3,是整数,符合;当a=﹣3时,x==,不是整数,舍去;故答案为:2或0.【点评】本题考查了解二元一次方程组和解一元一次方程,能求出符合的所有情况是解此题的关键.24.(4分)在平面直角坐标系中有两点A(0,0),B(3,2),C是第一象限内的一点,若△ABC是等腰直角三角形,则C点的坐标为(1,5)或(,).【分析】根据等腰直角三角形的性质和判定,画出图形即可解决问题;【解答】解:如图,观察图象可知,满足条件的点C坐标为(1,5)或(,).故答案为:(1,5)或(,).【点评】本题考查等腰直角三角形的判定和性质,坐标与图形的性质等知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(4分)如图,∠MON=90°,Rt△ABC的顶点A、B分别在边OM,ON上,∠CAB=90°,当B在边ON上运动时,A随之在边OM上运动,△ABC的形状保持不变,其中AB=6,AC=3,运动过程中,点C到点O的最大距离为6.【分析】取AB的中点D.连接CD.根据三角形的边角关系得到OC小于等于OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,根据勾股定理和直角三角形的性质即可得到结论..【解答】解:如图,取AB的中点D,连接CD.∵AC=3,AB=6.∵点D是AB边中点,∴BD=AD=AB=3,∴CD==3;连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=3,∴OD+CD=3+3=6,即OC=6.故答案为:6.【点评】此题考查的是勾股定理,直角三角形的性质,其中找出OC最大时的长为CD+OD是解本题的关键.五、解答题(本大题共3个小题,每小题10分,共30分)26.(10分)某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【分析】(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据安装8辆电动汽车和安装14辆电动汽车两个等量关系列出方程组,然后求解即可;(2)设调熟练工m人,根据一年的安装任务列出方程整理用m表示出n,然后根据人数m是整数讨论求解即可.【解答】解:(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据题意得,解之得.答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;(2)设调熟练工m人,由题意得,12(4m+2n)=240,整理得,n=10﹣2m,∵0<n<10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【点评】本题考查了二元一次方程的应用,解二元一次方程组,(1)理清题目数量关系列出方程组是解题的关键,(2)用一个未知数表示出另一个未知数,是解题的关键,难点在于考虑人数是整数.27.(10分)如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.【分析】(1)用非负数的性质求解;(2)把四边形ABOP的面积看成两个三角形面积和,用m来表示;(3)△ABC可求,是已知量,根据题意,方程即可.【解答】解:(1)由已知|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0及(c﹣4)2≥0可得:a=2,b=3,c=4;(2)∵×2×3=3,×2×(﹣m)=﹣m,∴S四边形ABOP =S△ABO+S△APO=3+(﹣m)=3﹣m(3)因为×4×3=6,∵S四边形ABOP =S△ABC∴3﹣m=6,则m=﹣3,所以存在点P(﹣3,)使S四边形ABOP =S△ABC.【点评】本题考查了非负数的性质,三角形及四边形面积的求法,根据题意容易解答.28.(10分)如图,在等腰Rt△ABC中,AB=AC.D是△ABC内一点,连接AD,过点A作AD⊥AE,AD=AE,连接BE,点F是线段BE的中点,连接AF,连接DC,点F在DC上.(1)求证:∠BAD=∠CAE.(2)若AC=DC,求证:∠ACF=30°.【分析】(1)根据等角的余角相等证明即可;(2)作AG⊥BC于G,连接DB,FG,EC,延长BD交AC于O,交CE的延长线于M.首先证明△BAD≌△CAE,推出BD=EC,BM⊥CM,再证明∠CBD=∠AGF,由==,推出△AGF∽△CBD,可得==,由AC=CD,推出AC=2AF,即可解决问题;【解答】(1)证明:∵AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAD+∠CAD=90°,∠CAE+∠CAD=90°,∴∠BAD=∠CAE.(2)证明:作AG⊥BC于G,连接DB,FG,EC,延长BD交AC于O,交CE 的延长线于M.∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,∵∠AOB=∠COM,∴∠BAO=∠M=90°,∵AB=AC,AG⊥BC,∠BAC=90°,∴BG=CG=AG,∵BF=EF,∴FG∥CM,∵CM⊥BM,∴FG⊥BM,∴∠DBC+∠FGB=90°,∵∠FGB+∠AGF=90°,∴∠AGF=∠DBC,∵==,∴△AGF∽△CBD,∴==,∵AC=CD,∴AC=2AF,∵AF⊥CD,∴∠AFC=90°,∴sin∠ACF==,∴∠ACF=30°.【点评】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.。
2018-2019学年度第一学期第一次月考试题数学试卷
2018/2019学年度第一学期第一次月考试题数学试卷第Ⅰ卷(选择题)一.选择题(共12小题,满分36分,每小题3分)1. 一个月内,小丽的体重增长﹣1千克,意思就是这个月内()A. 小丽的体重减少﹣1千克B. 小丽的体重增长1千克C. 小丽的体重减少1千克D. 小丽的体重没变化2.若|x|=|y|,那么x与y之间的关系是()A. 相等B. 互为相反数C. 相等或互为相反数D. 无法判断3.下列运算正确的是()A. (﹣3)+(﹣4)=﹣3+﹣4=…B. (﹣3)+(﹣4)=﹣3+4=…C. (﹣3)﹣(﹣4)=﹣3+4=…D. (﹣3)﹣(﹣4)=﹣3﹣44.2的相反数的倒数是()A. ﹣2B. ﹣C. 2D.5.3×3+(﹣2)=()A. 5B. 6C. 4D. 76.下列式子:2a2b,3xy﹣2y2,,4,﹣m,,,其中是单项式的有()A. 2个B. 3个C. 4个D. 5个7.下列运算不正确的是()A. 2a﹣a=aB. 2a+b=2abC. 3a2+2a2=5a2D. ﹣a2b+2a2b=a2b8.计算(﹣1)2017+(﹣1)2018的结果是()A. ﹣2B. 2C. 0D. ﹣19.若多项式5x2y|m|(m+1)y2﹣3是三次三项式,则m等于()A. ﹣1B. 0C. 1D. 210.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则()A. ①,②都不对B. ①对,②不对C. ①,②都对;D. ①不对,②对11.一个代数式与3x2﹣5x+2的和是2x2﹣x+1,则这个代数式是()A. 5x2﹣6x+3B. ﹣x2﹣4x﹣1C. x2+4x+1D. ﹣x2+4x﹣112.若多项式3x2﹣2(5+y﹣2x2)+mx2的值与x的值无关,则m等于()A. 0B. 1C. ﹣1D. ﹣7第Ⅱ卷(非选择题)二.填空题(共8小题,满分24分,每小题3分)13.重庆西站铁路综合交通枢纽(简称“重庆西站”)自1月25日开通以来,第一个月累计到发旅客2272000人次,实现安全、平稳、有序运行,经受了首场春运“大考”,将数字2272000用科学记数法表示为_____.14.若单项式3x3y2n与单项式9x3y4是同类项,则n=________.15.若3x m+5y2与x7y n的和是单项式,则n m=_____.16.若单项式﹣8x3m+n y的次数为5,若m,n均为正整数,则m﹣n的值为_____.17.乘积是6的两个负整数之和为_____.18.现有两张铁片:长方形铁皮长为x+2y,宽为x﹣2y(其中x﹣2y>0);正方形铁皮的边长为2(x﹣y),根据需要把两张铁皮裁剪后焊接成一张长方形的铁片,铁皮一边长为6x,则新铁片的另一边长为_____(不计损失)19.若a,b,c,d均为有理数,现规定一种新的运算:=ad﹣bc,例:=2×5﹣3×4.已知=2,则的值为_____.20.若|x|=4,|y|=2,且x<y,则x+y=_____.三.解答题(共6小题,满分60分)21.计算:(1)﹣42×+|﹣2|3×(2)3a2b﹣[2ab2﹣2(ab﹣)+ab]+3ab2.22.先化简,后求值:求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值,其中a=﹣1,b=2.23.某自行车厂计划每天生产200辆自行车,由于各种原因实际每天生产量与计划每天生产量相比有出入,下表是某周(5天)的实际生产情况(比计划超产为正,减产为负):(1)根据记录求这5天实际生产自行车的数量.(2)求产量最多的一天比产量最少的一天多生产自行车的数量.24.一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)若(m,n)是“相伴数对”,其中m≠0,求;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.25.“十一”黄金周期间,某市的在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).若9月30日外出旅游人数记为a(1)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人.(2)如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?26.如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒3个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒3个单位长度的速度运动至点A停止运动,设运动时间为t (单位:秒)(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离;(用含t的代数式表示)(4)当点P表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t值.。
2018-2019学年度八年级数学上册第一次月考试题
2018-2019学年度第一学期第一次检测试题(卷)八年级数学题号 一 二 三 23 24 25 26 27 合计 得分一、选择题(本大题共10小题,每题3分,共30分):1.下列长度的三条线段能组成三角形的是( ) A .1,2,3 B.2,2,4 C.3,4,5 D.3,4,82.一个三角形的两边长分别为3cm 和7cm,则此三角形第三边长可能是( ) A .3cm B.4 cm C. 7 cm D.11cm3.不一定在三角形内部的线段是( )A..三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对4.张师傅不小心将一块三角形玻璃打破成如图10中的三块,他准备去店里重新配置一块与原来一模一样的,最省事的做法是 ( )A .带Ⅰ去;B .带Ⅱ去;C .带Ⅲ去;D .三块全带去5.在△ABC 中,∠A=12∠B=13∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形 6.如图1,△ABD ≌△ACE ,点B 和点C 是对应顶点,AB=8,AD=6,BD=7,则BE 的长是( )A .1B .2C .4D .67.如图2,△ABC 与△DEF 是全等三角形,则图中相等的线段有( ) A .1对 B .2对 C .3对 D .4对图10图2 图18.如图3,△ABC ≌△FED ,则下列结论错误的是( )A .EC=BDB .EF ∥ABC .DF=BD D .AC ∥FD9.四边形ABCD 中,如果∠A +∠C+∠D=280°,则∠B 的度数是( ) A .80° B .90° C .170° D .20° 10.内角和等于外角和2倍的多边形是( )A .五边形B .六边形C .七边形D .八边形二、填空题(每小题3分,共30分)11.在△ABC 中,∠C=100°,∠B=10°,则∠A= .12.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B=∠F=72°,则∠D= 度. 13.如图,x = .14.△ABC 中,∠B=40°,D 在BA 的延长线上,AE 平分∠CAD ,且AE ∥BC ,则∠BAC= . 15.如图,五边形ABCDE 中,AE ∥CD ,∠A=147°,∠B=121°,则∠C= .16.如图所示,△ABC 中,BD 平分∠ABC ,CE 平分∠ACB 的邻补角∠ACM ,若∠BDC=130°,座位号---------------------------------------装----------------------------订-------------------------------------------线-------------------------------------------姓名:________________ 班级:______________ 学号:________________第16题图第15题图 AB C DE F BDC 图3EFAA CB D DE∠E=50°,则∠BAC的度数是.17.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).18.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.19.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于度.20.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有①,②,③,④的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带块.三.解答题21(5分).一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.(5分)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.23(10分).如图,AB=AE,∠B=∠AED,∠1=∠2,求证:△ABC≌△AED.24.(10分)如图,已知AD∥BC,AE,BE分别平分∠DAB,∠CBA,∠AEF=28°,求∠BEG 的大小.25(10分).如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.第20题图26(10分).如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27(10分).如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.。
人教版八年级上册数学《第一次月考》考试题及答案【必考题】
人教版八年级上册数学《第一次月考》考试题及答案【必考题】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.22.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣54.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.65.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.91.210⨯个B.91210⨯个C.101.210⨯个D.111.210⨯个6.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.因式分解:2218x -=__________.3.计算:()()201820195-252+的结果是________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=________°(点A ,B ,P 是网格线交点).5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.解不等式组513(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.4.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、B5、C6、C7、D8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、72、2(x +3)(x ﹣3).324、45.5、46、AC=DF (答案不唯一)三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、11a -,1.3、24x -<≤,数轴见解析.4、答案略5、CD 的长为3cm.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。
2018-2019新人教版八年级上学期第一次月考数学试卷
2018-2019学年第一学期第一次月考考试试卷八 年 级 数 学(满分:100分)友情提示:下面的数学问题是为了展示同学们一个月来的学习成果,请放松心态,仔细审题,认真作答,相信你会有出色的表现!一、选择题(每小题3分,共24分)1.下列说法正确的是( )A .周长相等的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等2.已知△ABC ≌△DEF ,且AB=4,BC=5,AC=6,则DE 的长为( )A .4B .5C .6D .不能确定3.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .长方形的对称性C .长方形的四个角都是直角D .三角形的稳定性 4.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有乙D .只有丙5.下列条件中,能判定两个三角形全等的是( )A .有三个角对应相等B .有两条边对应相等C .有两边及一角对应相等D .有两角及一边对应相等6.如图,如果△ABC ≌△FED ,那么下列结论错误的是( )A .EC=BDB .EF ∥ABC .DF=BD D .AC ∥FD第3题图7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°8.若一个多边形的内角和与外角和之和是1800°,则此多边形是()边形.A.八B.十C.十二D.十四二、填空题(每小题2分,共16分)9.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=______.10.如图所示,直线a∥b.直线c与直线a,b分别相交于点A,点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=______.11.如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以直接判定( )A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对12.如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2=_________.13.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是_______.14.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,A B=AC.∠E=30°,∠BCE=40°,则∠CDF=_______.三、解答题(共60分)15.(6分)如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠B=∠D.16.(8分)如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3 cm,S△ABC=12 cm2.求BC和DC的长.17.(8分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AO C=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?18.(8分)如图,∠B=45°,∠A+15°=∠1,∠ACD=60°.求证AB∥CD.17.(8分)如图,已知AB=DC,DB=AC.求证:∠B=∠C19.(10分)(1)已知等腰三角形的一边等于6 cm,一边等于7 cm,求它的周长;(2)已知等腰三角形的一边长为5 cm,周长为20 cm,求其他的边长.20.(12分)如图所示,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC.若BE∥DF,求证△DCF为直角三角形.。
2018--2019年新人教版八年级数学第一次月考试题及答案
2018--2019学年上学期第一次月考八年级数学试题一、选择题(每小题3分,共36分)1.任意画一个三角形,它的三个内角之和为( ) A .180° B .270° C .360° D .720° 2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( ) A .35cm B .30cm C .45cm D .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .8 4.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( ) A .15° B .25° C .30° D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A .5B .6C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( ) A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC∥EF 8.具备下列条件的三角形ABC 中,不为直角三角形的是( ) A .∠A+∠B=∠CB .∠A=∠B=∠CC .∠A=90°﹣∠BD .∠A﹣∠B=90°9.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( ) A .2 B .4C .6D .810.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( ) A .4cmB .6cmC .8cmD .9cm11.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为( )A :30°或60°B :60°C :120°D :60°和120°12、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( )A :1个B :2个C :3个D :4个l OCBDA 图1图2图3图4图5 图6二、填空题(每小题4分,共32分)13、点E (a,-5)与点F (-2,b )关于y 轴对称,则a= ,b= ;14、)53(32)21(322yz y x xyz -⋅⋅-=___________; 3243-ab c 2⎛⎫ ⎪⎝⎭=_____________;15、等腰三角形的一边长是6cm ,另一边长是3cm ,则周长为______________; 16、等腰三角形的一内角等于50°,则其它两个内角各为 ; 17、如图:在Rt △ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝,则AB= .18、 如图,在Rt△ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,若BD =10,则CD =__________.P ONMA B17题图 18题图 20题图 19、693273=⋅m m,则 m= .20、如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是 . 三、计算题(共18分 21、22、23题各4分,24题6分)21、)7()x 2(33xy -⋅ 22、[]43223)y x 2-(xy ⋅23、求值:已知,32m=,222=n 则n 2m 2+的值是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年第一学期第一次月考试卷
八年级 数 学
(总分:150分,时间:120分)
班级: 姓名: 得分:
一.选择题(每题4分,总40分。
)
1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ) A .3 cm ,4 cm ,8 cm B .8 cm ,7 cm ,15 cm C .5 cm ,5 cm ,11 cm D .13 cm ,12 cm ,20 cm
2.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB ,CD 两根木条),这样做是运用了三角形的( )
(第2题图) (第3题图) A .全等性 B .灵活性 C .稳定性
D .对称性
3.如图,在△ABC 中,D 是BC 延长线上一点,∠B=50°,∠ACD=120°,则∠A=( ) A .50° B .60° C .70° D .80°
4.已知一个多边形的内角和为1080°,则这个多边形是( ) A. 九边形 B. 八边形 C. 七边形 D. 六边形
5.以下图中能表示△ABC 的BC 边上的高的是(
)
A B C D
6.如果三角形的三个内角的度数比是2:3:4,则它是( ) A .锐角三角形
B .钝角三角形
C .直角三角形
D .钝角或直角三角形
7.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为( )
A .9
B .12
C .7或9
D .9或12 8.如图,A
E 是△ABC 的中线,已知EC =4,DE =2,则BD 的长为( )
A .2
B .3
C .4
D .6
(第8题图) (第9题图)
9.如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则∠1为( ) A .32° B .36°
C .40°
D .42°
10.已知a ,b ,c 是△ABC 的三条边长,化简|a+b ﹣c|﹣|c ﹣a ﹣b|的结果为( ) A .2a+2b ﹣2c
B .2a+2b
C .2c
D .0
二,填空题(每题3分,总30分。
)
11.四边形的内角和是______.
12.正多边形一个外角的度数是60°,则该正多边形的边数是______. 13.一个多边形的内角和是外角和的2倍,则这个多边形是
14.已知△ABC 的两条边长分别为3和5,且第三边的长c 为整数,则c 的取值可以为________.(答案不唯一) 15.如图,点D 在△ABC 的边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的大小是______度.
(第15题图 ) (第16题图) (第17题图) (第18题图) 16.如图,AB ∥CD ,则∠DEC=100°,∠C=40°,则∠B 的大小是 17.将一副直角三角尺按如图所示摆放,则图中∠α的度数是
18.如图,△ABC 中,点D 在BA 的延长线上,DE ∥BC ,如果∠BAC=65°,∠C=30°,那么∠BDE 的度数是 . 19.如图,是六边形ABCDEF ,则该图形的对角线的条数是 条
(第19题图)(第20题图)
20.如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.
三,解答题(总80分)
21(10分).如图,CD是△ACB的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.
(第21题图)
22.(12分)一个多边形的内角和比外角和的3倍少180°,求
(1)这个多边形的边数. (2)该多边形共有多少条对角线?
23.(14分)如图,已知:点P是△ABC内一点.
(1)求证:∠BPC>∠A;
(2)若PB平分∠ABC,PC平分∠ACB,∠A=40°,求∠P的度数.
(第23题图)24.(14分) 如图,在△BCD中,BC=4,BD=5,
(1)求CD的取值范围;
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.
(第24题图)
25.(14分)四边形ABCD中,∠A=140°,∠D=80°.
(1)如图1,若∠B=∠C,试求出∠C的度数.
(2)如图2,若∠ABC的平分线BE交DC于点E,且BE∥AD,试求出∠C的度数
.
26.(16分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度数;
(2)∠DAE的度数;
(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B﹣∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.
(第26题图)。