对磁场中双杆模型问题的解析

合集下载

高中物理-电磁感应中的“双杆模型”

高中物理-电磁感应中的“双杆模型”

高中物理-电磁感应中的“双杆模型”“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.一、平行导轨:不受其他外力作用光滑平行导轨光滑不等距导轨示意图质量m1=m2 电阻r1=r2 长度L1=L2质量m1=m2电阻r1=r2长度L1=2L2规律分析杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动稳定时,两杆的加速度均为零,两杆的速度之比为1∶2(2015·高考四川卷)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.[解析](1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生的热量分别为W和W1,有W+W1=E k①且W=W1②由题意有E k=12m v21③得W=14m v21.④(2)设在题设过程中,ab棒滑行时间为Δt,扫过的导轨间的面积为ΔS,通过ΔS的磁通量为ΔΦ,ab棒产生的电动势平均值为E,ab棒中的电流为I,通过ab棒某横截面的电荷量为q,则甲E=ΔΦΔt⑤且ΔΦ=BΔS⑥I=qΔt⑦又有I=2ER⑧由图甲所示ΔS=d(L-d cot θ)⑨联立⑤~⑨,解得q=2Bd(L-d cot θ)R.⑩(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为L x=L-2x cot θ⑪此时,ab棒产生的电动势E x为E x=B v2L x⑫流过ef棒的电流I x为I x=E xR⑬ef棒所受安培力F x为F x=BI x L⑭联立⑪~⑭,解得F x=B2v2LR(L-2x cot θ)⑮由⑮式可得,F x在x=0和B为最大值B m时有最大值F1.由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图乙所示,图中f m为最大静摩擦力,有F1cos α=mg sin α+μ(mg cos α+F1sin α)⑯联立⑮⑯,得B m=1Lmg(sin α+μcos α)R(cos α-μsin α)v2⑰⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.乙丙由⑮式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值F2,如图丙可知F2cos α+μ(mg cos α+F2sin α)=mg sin α⑱联立⑮⑰⑱,得x m =μL tan θ(1+μ2)sin αcos α+μ.[答案]见解析二、平行导轨:一杆受恒定水平外力作用光滑平行导轨不光滑平行导轨示意图质量m1=m2电阻r1=r2长度L1=L2摩擦力F f1=F f2=F f 质量m1=m2电阻r1=r2长度L1=L2规律分析开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀变速运动开始时,若F f<F≤2F f,则PQ杆先变加速后匀速,MN杆一直静止;若F>2F f,PQ杆先变加速,MN后做变加速最后两杆做匀速运动如图所示,两条平行的金属导轨相距L=1 m,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B1中,B1=B2=0.5 T.金属棒MN和PQ的质量均为m=0.2 kg,电阻R MN=0.5 Ω、R PQ=1.5 Ω.MN置于水平导轨上,PQ置于倾斜导轨上,刚好不下滑.两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F的作用下由静止开始向右运动,MN棒的速度v与位移x满足关系v=0.4x.不计导轨的电阻,MN始终在水平导轨上运动,MN与水平导轨间的动摩擦因数μ=0.5.(1)问当MN棒运动的位移为多少时PQ刚要滑动?(2)求从t=0到PQ刚要滑动的过程中通过PQ棒的电荷量;(3)定性画出MN受的安培力随位移变化的图象,并求出MN从开始到位移x1=5 m的过程中外力F做的功.[解析](1)开始PQ刚好不下滑时,PQ受沿倾斜导轨向上的最大静摩擦力F fm,则F fm=mg sin 37°设PQ刚好要向上滑动时,MN棒的感应电动势为E,由法拉第电磁感应定律E=B1L v设电路中的感应电流为I,由闭合电路的欧姆定律得I=ER MN+R PQ设PQ所受安培力为F A,有F A=B2IL此时PQ受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有:F A=F fm+mg sin 37°又由v=0.4x,联立解得x=48 m.(2)在从t=0到PQ刚要滑动的过程中,穿过回路MNQP的磁通量的变化量ΔΦ=B1Lx=0.5×1×48 Wb=24 Wb通过PQ棒的电荷量q=I·t=ER MN+R PQ·t=ΔΦR MN+R PQ=240.5+1.5C=12 C.(3)回路中的电流I=B1L vR MN+R PQ,MN受到的安培力F A=B1IL,又v=0.4x,故推出F A=0.4xB21L2R MN+R PQ因此MN受的安培力与位移x成正比,故画出如图所示的安培力—位移图象.考虑到MN受的安培力与位移方向相反,故安培力与位移图象包围的面积等于克服安培力做的功,故安培力对MN做功W A=-12·0.4x1B21L2R MN+R PQx1=-0.625 J当x1=5 m时,速度v1=0.4x1=0.4×5 m/s=2 m/s对MN棒由动能定理:W F-μmgx1+W A=12m v21-0故W F=12m v21+μmgx1-W A=⎝⎛⎭⎫12×0.2×22+0.5×0.2×10×5+0.625J=6.025 J.[答案](1)48 m(2)12 C(3)6.025 J三、倾斜导轨:两杆不受外力作用注意双杆之间的制约关系,即“主动杆”与“被动杆”之间的关系,因为两杆都有可能产生感应电动势,相当于两个电源,并且最终两杆的收尾状态的确定是分析问题的关键.(2014·高考天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2.问:(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.[审题点睛] (1)ab 刚好不下滑,隐含F fm =mg sin θ,方向沿斜面向上,ab 刚要向上滑动时,隐含F 安=F fm +mg sin θ,摩擦力方向沿斜面向下.(2)由于ab 中的电流变化,产生的热量要用功能关系(能量守恒)结合电路知识求解.[解析] (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max =m 1g sin θ① 设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有 I =ER 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤ 综合①②③④⑤式,代入数据解得v =5 m/s.(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R 1R 1+R 2Q 总解得Q =1.3 J.[答案] (1)由a 流向b (2)5 m/s (3)1.3 J 四、倾斜导轨:一杆受到外力作用(2016·浙江金华高三质检)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?[解析] (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30° 代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c . (2)棒ab 与棒cd 受到的安培力大小相等,F ab =F cd 对棒ab ,由受力平衡知F =mg sin 30°+IlB 代入数据解得F =0.2 N.(3)设在时间t 内棒cd 产生Q =0.1 J 的热量,由焦耳定律知Q =I 2Rt设棒ab 匀速运动的速度大小为v ,其产生的感应电动势E =Bl v ,由闭合电路欧姆定律知,I =E2R由运动学公式知在时间t 内,棒ab 沿导轨的位移 x =v t力F 做的功W =Fx综合上述各式,代入数据解得W =0.4 J. [答案] (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J 五、竖直导轨如图是一种电磁驱动电梯的原理图,竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B 1和B 2,B 1=B 2=1 T ,且B 1和B 2的方向相反,两磁场始终竖直向上做匀速运动.电梯桥厢(未在图中画出)固定在一个用超导材料制成的金属框abdc 内,并且与之绝缘.电梯载人时的总质量为5×103 kg ,所受阻力f =500 N ,金属框垂直轨道的边长L cd =2m ,两磁场沿轨道的宽度均与金属框的竖直边长L ac 相同,金属框整个回路的电阻R =9.5×10-4Ω,若设计要求电梯以v 1=10 m/s 的速度向上匀速运动,取g =10 m/s 2,那么 (1)磁场向上运动速度v 0应该为多大?(2)在电梯向上做匀速运动时,为维持它的运动,外界对系统提供的总功率为多少?(保留三位有效数字)[解析] (1)当电梯向上做匀速运动时,安培力等于重力和阻力之和,所以 F A =mg +f =50 500 N金属框中感应电流大小为 I =2B 1L cd (v 0-v 1)R金属框所受安培力F A =2B 1IL cd 解得v 0=13 m/s.(2)当电梯向上做匀速运动时,由第(1)问中的I =2B 1L cd (v 0-v 1)R ,求出金属框中感应电流I =1.263×104 A金属框中的焦耳热功率P 1=I 2R =1.51×105 W 有用功率为克服电梯重力的功率 P 2=mg v 1=5×105 W阻力的功率为P 3=f v 1=5×103W电梯向上运动时,外界提供的能量,一部分转变为金属框内的焦耳热,另一部分克服电梯的重力和阻力做功.因而外界对系统提供的总功率P 总=P 1+P 2+P 3=6.56×105W. [答案] (1)13 m/s (2)6.56×105 W1.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变解析:选BC.对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析其受力,则有:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.2.(多选)(2016·唐山模拟)如图所示,水平传送带带动两金属杆a 、b 匀速向右运动,传送带右侧与两光滑平行金属导轨平滑连接,导轨与水平面间夹角为30°,两虚线EF 、GH 之间有垂直导轨平面向下的匀强磁场,磁感应强度为B ,磁场宽度为L ,两金属杆的长度和两导轨的间距均为d ,两金属杆质量均为m ,两杆与导轨接触良好.当金属杆a 进入磁场后恰好做匀速直线运动,当金属杆a 离开磁场时,金属杆b 恰好进入磁场,则( )A .金属杆b 进入磁场后做加速运动B .金属杆b 进入磁场后做匀速运动C .两杆在穿过磁场的过程中,回路中产生的总热量为mgLD .两杆在穿过磁场的过程中,回路中产生的总热量为mgL2解析:选BC.两杆从导轨顶端进入磁场过程中,均只有重力做功,故进入磁场时速度大小相等,金属杆a 进入磁场后匀速运动,b 进入磁场后,a 离开磁场,金属杆b 受力与金属杆a 受力情况相同,故也做匀速运动,A 项错,B 项正确;两杆匀速穿过磁场,减少的重力势能转化为回路的电热,即Q =2mgL sin 30°=mgL ,C 项正确,D 项错.3.(多选)如图所示,光滑平行的金属导轨宽度为L ,与水平方向成θ角倾斜固定,导轨之间充满了垂直于导轨平面的足够大的匀强磁场,磁感应强度为B ,在导轨上垂直导轨放置着质量均为m 、电阻均为R 的金属棒a 、b ,二者都被垂直于导轨的挡板挡住保持静止,金属导轨电阻不计,现对b 棒施加一垂直于棒且平行于导轨平面向上的牵引力F ,并在极短的时间内将牵引力的功率从零调为恒定的功率P .为了使a 棒沿导轨向上运动,P 的取值可能为(重力加速度为g )( )A.2m 2g 2RB 2L 2·sin 2θB .3m 2g 2RB 2L 2·sin 2θC.7m 2g 2RB 2L2·sin 2θ D .5m 2g 2RB 2L2·sin 2θ解析:选CD.以b 棒为研究对象,由牛顿第二定律可知F -mg sin θ-BL v2R BL =ma ,以a 棒为研究对象,由牛顿第二定律可知BL v 2R BL -mg sin θ=ma ′,则F >2mg sin θ,v >2Rmg sin θB 2L 2,故P =F v >4m 2g 2R B 2L 2sin 2θ,由此可得选项C 、D 正确,选项A 、B 错误.4.如图所示,竖直平面内有平行放置的光滑导轨,导轨间距为l =0.2 m ,电阻不计,导轨间有水平方向的匀强磁场,磁感应强度大小为B =2 T ,方向如图所示,有两根质量均为m =0.1 kg ,长度均为l =0.2 m ,电阻均为R =0.4 Ω的导体棒ab 和cd 与导轨接触良好,当用竖直向上的力F 使ab 棒向上做匀速运动时,cd 棒刚好能静止不动,则下列说法正确的是(g 取10m/s 2)( )A .ab 棒运动的速度是5 m/sB .力F 的大小为1 NC .在1 s 内,力F 做的功为5 JD .在1 s 内,cd 棒产生的电热为5 J解析:选A.对导体棒cd 由B Bl v2R l =mg ,得到v =5 m/s ,选项A 正确;再由F =mg +F 安=2 N 知选项B 错误;在1 s 内,力F 做的功W =F v t =10 J ,选项C 错误;在1 s 内,cd 棒产生的电热Q =⎝⎛⎭⎫Bl v2R 2Rt =2.5 J ,选项D 错误.5.(2016·合肥一中高三检测)如图所示,间距l =0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R =0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m 2=0.05 kg 的小环.已知小环以a =6 m/s 2的加速度沿绳下滑.K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小; (2)Q 杆所受拉力的瞬时功率.解析:(1)设小环受到的摩擦力大小为F f ,由牛顿第二定律,有m 2g -F f =m 2a 代入数据,得F f =0.2 N.(2)设通过K 杆的电流为I 1,K 杆受力平衡, 有F f =B 1I 1l设回路总电流为I ,总电阻为R 总,有I =2I 1 R 总=32R设Q 杆下滑速度大小为v ,产生的感应电动势为E ,有I =ER 总E =B 2l vF +m 1g sin θ=B 2Il拉力的瞬时功率为P =F v联立以上方程,代入数据得P =2 W. 答案:(1)0.2 N (2)2 W6.如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为6 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线m 、n 间有一方向垂直于导轨所在平面向下、磁感应强度为B 的匀强磁场.导体棒a 的质量为m a =0.4 kg ,电阻R a =3 Ω;导体棒b 的质量为m b =0.1 kg ,电阻R b =6 Ω.导体棒a 、b 分别垂直导轨放置并始终与导轨接触良好.a 、b从开始相距L 0=0.5 m 处同时由静止释放,运动过程中它们都能匀速穿过磁场区域,当b 刚穿出磁场时,a 正好进入磁场,g 取10 m/s 2,不计a 、b 之间电流的相互作用,sin 53°=0.8,cos 53°=0.6.求:(1)在a 、b 分别穿越磁场的过程中,通过R 的电荷量之比;(2)在穿越磁场的过程中,a 、b 两导体棒匀速运动的速度大小之比; (3)磁场区域沿导轨方向的宽度d ; (4)在整个运动过程中,产生的总焦耳热. 解析:(1)由q 总=I Δt ,I =E R 总,E =ΔΦΔt ,得q 总=ΔΦR 总在b 穿越磁场的过程中,b 是电源,a 与R 是外电路,电路的总电阻R 总1=8 Ω 通过R 的电荷量为q Rb =13q 总1=13·ΔΦR 总1同理,a 在磁场中匀速运动时,R 总2=6 Ω,通过R 的电荷量为q Ra =12q 总2=12·ΔΦR 总2,可得q Ra ∶q Rb =2∶1.(2)设a 、b 穿越磁场的过程中的速度分别为v a 和v b ,则b 中的电流I b =BL v bR 总1由平衡条件得B 2L 2v bR 总1=m b g sin 53°同理,a 在磁场中匀速运动时有 B 2L 2v aR 总2=m a g sin 53°, 解得v a ∶v b =3∶1.(3)设b 在磁场中穿越的时间为t ,由题意得: v a =v b +gt sin 53°,d =v b t因为v 2a -v 2b =2gL 0sin 53°,v a ∶v b =3∶1所以d =0.25 m.(4)a 穿越磁场时所受安培力F 安=m a g sin 53° 克服安培力所做的功W a =m a gd sin 53°=0.8 J 同理,b 穿越磁场时克服安培力所做的功 W b =m b gd sin 53°=0.2 J由功能关系得,在整个过程中,电路中产生的总焦耳热Q =W a +W b =1 J. 答案:(1)2∶1 (2)3∶1 (3)0.25 m (4)1 J。

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。

一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

电磁感应中的“双杆问题

电磁感应中的“双杆问题

问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例5] 两根相距d=的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得 Q=×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

电磁感应现象中的双杆模型归类与剖析

电磁感应现象中的双杆模型归类与剖析

电磁感应现象中的双杆模型归类与剖析
双杆模型是电磁感应现象中最常用的模型之一。

它描述了一个电流源和一个磁场源之间的相互作用。

当电流源改变时,它会产生磁场,而磁场源也会影响电流源。

双杆模型由两个磁杆组成,分别代表电流源和磁场源。

电流源可以是电流或电压,而磁场源可以是磁场或磁通量。

两个磁杆之间的相互作用由磁力线来描述,磁力线是由磁场源产生的路径,它们与电流源的电流方向相反。

双杆模型可以用来描述电磁感应现象,包括磁感应、电磁感应和电磁耦合等。

它可以用来解释电磁感应的基本原理,也可以用来分析电磁感应现象的物理机制。

此外,双杆模型还可以用来设计电磁感应器件,例如变压器、发电机和电机等。

对磁场中双杆模型问题的解析之欧阳美创编

对磁场中双杆模型问题的解析之欧阳美创编

1 •等间距型对磁场中双杆模型问题的解析时间:2021.01.01研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生练习的一个难点,下面就这类问题的解法举例分析。

在电磁感应中,有三类重要的导轨问题:1・发电式导轨; 2.电动式导轨;3.双动式导轨。

导轨问题,不仅涉及到电磁学的基本规律,还涉及到受力分析,运动学,动量,能量等多方面的知识,以及临界问题,极值问题。

尤其是双动式导轨问题要求学生要有较高的动态分析能力电磁感应中的双动式导轨问题其实已经包含有了电动式和发电式导轨,由于这类问题中物理过程比较复杂,状态变化过程中变量比较多,关键是能抓住状态变化过程中变量“变''的特点和规律,从而确定最终的稳定状态是解题的关键,求解时注意从动量、能量的观点出发,运用相应的规律进行分析和解答。

一、在竖直导轨上的“双杆滑动”问题创作:欧阳美欧阳美创编2021.01.01 欧阳美创编如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度达到10m/s 时,再释放a,经Is时间a的速度达到12m/s,则:A、当VQ二12m/s 时,vb=18m/sB、当va=12m/s 时,vb二2加/sC、若导轨很长,它们最终速度必相同D、它们最终速度不相同,但速度差恒定【解析】因先释放b,后释放a,所以a、b 一开始速度是不相等的,而且b的速度要大于a的速度,这就使a、b和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图lo开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g的匀加速直线运动。

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。

一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A B C D 【解析的速度,这就使a a 的速当和以及导轨所组成的闭合回路中产生感应电流,于是,分别以为研究对a 对b 在、棒向下运动的过程中,棒产生的加速度。

当棒的速度与逐渐减小,感应电流也逐渐减小,则安培力也逐渐减小。

最后,两棒以共同的速度向下做加速度为g 的匀加速运动。

2.不等间距型图中1111a b c d 和2222a b c d 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

导轨的11a b 段与22a b 段是竖直的.距离为小1l ,11c d 段与22c d 段也是竖直的,距离为2l 。

11x y 与22x y 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。

两杆与导轨构成的回路的总电阻为R 。

F 为作用于金属杆11x y 上的竖直向上的恒力。

已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

(04全国2)【解析】设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。

由法拉第电磁感应定律,回路中的感应电动势的大小21()E B l l v =-①回路中的电流E I R =②电流沿顺时针方向。

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型

欢迎共阅高考模型——电磁场中的双杆模型研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。

一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且当和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒为研究对象,根据动量定理,则有:联立二式解得:v b = 18 m/s,正确答案为:A、C。

在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。

当棒的速度与棒接近时,闭合回路中的逐渐减小,感应电流也逐渐减小,则安培力也逐渐减小。

最后,两棒以共同的速度向下做加速度为g的匀加速运动。

2.不等间距型图中1111a b c d 和2222a b c d 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

导轨的11a b 段与22a b 段是竖直的.距离为小1l ,11c d 段与22c d 段也是竖直的,距离为2l 。

11x y 与22x y 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。

两杆与导轨构成的回路的总电阻为R 。

F 为作用于金属杆11x y 上的竖直向上的恒力。

已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

(04全国2)【解析】设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积一、等间距水平导轨,无水平外力作用(安培力除外)够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l ,导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图2所示,两根导体棒的质量皆为m ,电阻皆为R ,回路中其余电阻不计,整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B ,设两导体棒均可沿导轨无摩擦的滑行,开始时棒cd 静止,棒ab 有指向棒cd 的初速度v 0, 若两导体棒在运动中始终不接触,求:1、运动中产生焦耳热最多是多少?2、当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?【解析】ab棒向cd棒运动时,两棒和导轨构成的回路的面积变小,穿过它的磁通量也变小,在回路中产生了感应电流,用楞次定律和安培定则判断其方向如图3所示,又由左手定则可判断ab棒受到的与运动方向相反的安培力作用,作减速运动,cd棒受到安培力作用作加速运动,在ab棒速度大于cd棒的速度时,两棒间的距离总会减小,回路中总有感应电流,ab会继续减速,cd会继续加速,当两棒的速度相等时,回路的面积保持不变,磁通量不变化,不产生感应电流,两棒此时不受倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。

电磁场中的双杆模型

电磁场中的双杆模型
应用提供理论支持。
03 双杆模型的实验验证
实验设备与实验方法
实验设备
双杆模型、磁场测量仪、电场测 量仪、数据采集系统。
实验方法
在双杆模型中设置不同的电磁场 参数,使用磁场测量仪和电场测 量仪分别测量磁场和电场强度, 通过数据采集系统记录数据。
实验数据与结果分析
实验数据
在双杆模型中,测量得到的磁场和电 场强度随时间的变化曲线。
涉等现象。
双杆模型的物理意义
01
双杆模型是一种理想化的物理模型,通过它可以深 入理解电磁场的本质和规律。
02
双杆模型可以用来解释和预测电磁场中的一些实验 现象,为实际应用提供理论支持。
03
双杆模型还可以用于研究和设计电磁器件,如天线、 滤波器和微波器件等。
02 双杆模型的数学描述
双杆模型的电场分布
考虑将双杆模型与其他物理场(如流体场、热力 学场)进行耦合,以模拟更复杂的物理系统。
双杆模型在新型电磁材料中的应用
研究新型电磁材料的电磁特性
01
利用双杆模型模拟新型电磁材料的电磁响应,为材料设计和优
化提供理论支持。
探索新型电磁材料的潜在应用
02
通过双杆模型模拟,预测新型电磁材料在通信、雷达、探测等
双杆模型的磁场分布
总结词
双杆模型中的磁场分布与电场分布相互耦合,呈现出复杂的空间变化。
详细描述
在电磁场中,双杆模型不仅存在电场分布,还伴随着磁场分布。磁场的方向和强 度受到电场的影响,呈现出特定的空间变化规律。通过求解磁场方程,可以获得 双杆模型中磁场的详细分布情况,进一步揭示电磁场的相互作用机制。
散射与透射研究
通过双杆模型,可以模拟电磁波与障 碍物的相互作用,研究散射和透射现 象,为雷达和通信系统设计提供依据。

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。

一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

对磁场中双杆模型问题的解析之欧阳体创编

对磁场中双杆模型问题的解析之欧阳体创编

欧阳体创编2021.02.03 欧阳美创编2021.02.03对磁扬中般杠樸堂向题的解柝时间:2021.02.03 创作:欧阳体Z对完鬲偃年矽导体杓於导饥垂妄滋切方角迄为经力电知识仮合运用向超,县电磁感应部分的紗常典型的习超垄型,0处理迪垄向耀涉冬到力学舸电歹的知识点筱-乡,稔合傕筱発,所以县歹隹值习的一个难点,T而就迫垄向超的斜注举例分朽。

右电磁感应中,侖三売重妥的寻仏向超:1.岌电弍导轨;2.电为式导銚;3.奴动式导轨。

导轨向超,不紐涉冬到电越歹的基本规律,込涉及到叠力分朽,住动学,为蚤,能逻等乡方而的知谄,以及临界向超,佢侥向腿。

尤典县奴为弍导銃向超雯求学竺爰侖筱京的为各分朽能力电越感应中的取动式导轨向超虫懐已©包舎侖3电为弍衣岌电式%如,由孑迪坯向超中的理过終比筱夏多,就各总亿过終中总逻比筱多,券縫经能狐侄址$盒亿过綏中盒蚤“总"的游点和规律,从而銘宝禺沿的稳宝就各蛊肅趣的矣縫,來超时席瘙从动蚤、能蚤的规点出岌,迄用枸应的规律逬矽分朽如餌一、卷竖盍粤仇£的“取杠濡妙"向懸1 •等向餐童1所5:,喙盍孜匿的鬲丸滑平轻拿忌导銃畫孑垂盍导轨角里的勺勰欧阳体创编2021.02.03 欧阳美创编滋氏中,鬲絶底蚤枸同的金念棒a和b如导轨竖密谑融©可仓由滑动,免®)宝a,释孜b,老b速庖达到10m/s 时,西释孜a,忆Is时向a的速虐达到12m/s,则:A、省va=12m/s 时,vb=18m/sB、步va=12m/s 时,vb=22m/sC、若导仏確E,恋们蟲蠢速建必枸同D、它们虽谕速虐4枸同,便速虐差仅宝【解杨】因免释幺1 b,后释幺1 a,所以a、b -乌壮速废县刁:枸等的,而©b的速虐聂尢孑a的速廈,迫就往a、b餉导銚所(5 的銭植而衣何尢,僅穿过迫个銭圈的彼通蚤岌竺妥亿,申侖惑应电泓产建,钊用楞次立律初名倚宝刖判断所国偻枢中的感应电浅的方角厶爲所5。

(精心整理)对磁场中双杆模型问题的解析

(精心整理)对磁场中双杆模型问题的解析

对磁场中双杆模型问题的解析研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生练习的一个难点,下面就这类问题的解法举例分析。

在电磁感应中,有三类重要的导轨问题:1.发电式导轨;2.电动式导轨;3.双动式导轨。

导轨问题,不仅涉及到电磁学的基本规律,还涉及到受力分析,运动学,动量,能量等多方面的知识,以及临界问题,极值问题。

尤其是双动式导轨问题要求学生要有较高的动态分析能力电磁感应中的双动式导轨问题其实已经包含有了电动式和发电式导轨,由于这类问题中物理过程比较复杂,状态变化过程中变量比较多,关键是能抓住状态变化过程中变量“变”的特点和规律,从而确定最终的稳定状态是解题的关键,求解时注意从动量、能量的观点出发,运用相应的规律进行分析和解答。

一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s,则:A、当va=12m/s时,vb=18m/sB、当va=12m/s时,vb=22m/sC、若导轨很长,它们最终速度必相同D、它们最终速度不相同,但速度差恒定【解析】因先释放b,后释放a,所以a、b一开始速度是不相等的,而且b的速度要大于a 的速度,这就使a、b和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g的匀加速直线运动。

电磁感应中地“双杆问题

电磁感应中地“双杆问题

电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

高考模型——电磁场中地双杆模型

高考模型——电磁场中地双杆模型

高考模型——电磁场中的双杆模型研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。

一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

电磁感应中的“双杆问题要点

电磁感应中的“双杆问题要点

问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例5] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如下图,不计导轨上的摩擦。

〔1〕求作用于每条金属细杆的拉力的大小。

〔2〕求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:〔1〕当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N〔2〕设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如下图。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对磁场中双杆模型问题的解析研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生练习的一个难点,下面就这类问题的解法举例分析。

在电磁感应中,有三类重要的导轨问题:1.发电式导轨;2.电动式导轨;3.双动式导轨。

导轨问题,不仅涉及到电磁学的基本规律,还涉及到受力分析,运动学,动量,能量等多方面的知识,以及临界问题,极值问题。

尤其是双动式导轨问题要求学生要有较高的动态分析能力电磁感应中的双动式导轨问题其实已经包含有了电动式和发电式导轨,由于这类问题中物理过程比较复杂,状态变化过程中变量比较多,关键是能抓住状态变化过程中变量“变”的特点和规律,从而确定最终的稳定状态是解题的关键,求解时注意从动量、能量的观点出发,运用相应的规律进行分析和解答。

一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s,则:A、当va=12m/s时,vb=18m/sB、当va=12m/s时,vb=22m/sC、若导轨很长,它们最终速度必相同D、它们最终速度不相同,但速度差恒定【解析】因先释放b,后释放a,所以a、b一开始速度是不相等的,而且b的速度要大于a的速度,这就使a、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g的匀加速直线运动。

在释放a后的1s内对a、b使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s内它的冲量大小都为I,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t,分别以和为研究对象,根据动量定理,则有:对a有:( mg + I ) · t = m v a0,对b有:( mg -I ) · t = m v b-m v b0联立二式解得:v b = 18 m/s,正确答案为:A、C。

在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。

当棒的速度与棒接近时,闭合回路中的逐渐减小,感应电流也逐渐减小,则安培力也逐渐减小。

最后,两棒以共同的速度向下做加速度为g的匀加速运动。

2.不等间距型 图中1111a b c d 和2222a b c d 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

导轨的11a b 段与22a b 段是竖直的.距离为小1l ,11c d 段与22c d 段也是竖直的,距离为2l 。

11x y 与22x y 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。

两杆与导轨构成的回路的总电阻为R 。

F 为作用于金属杆11x y上的竖直向上的恒力。

已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

(04全国2)【解析】设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。

由法拉第电磁感应定律,回路中的感应电动势的大小21()E B l l v =- ①回路中的电流EI R =②电流沿顺时针方向。

两金属杆都要受到安培力作用,作用于杆11x y 的安培力为11f Bl I = ③方向向上,作用于杆22x y 的安培力22f Bl I= 方向向下。

当杆作匀速运动时,根据牛顿第二定律有12120F m g m g f f --+-= ⑤ 解以上各式,得1221()()F m m g I B l l -+=- ⑥ 122221()()F m m g v R B l l -+=- ⑦作用于两杆的重力的功率的大小12()P m m gv =+ ⑧电阻上的热功率2Q I R = ⑨由⑥、⑦、⑧、⑨式,可得12122221()()()F m m gP R m m g B l l -+=+-21221()()F m m g Q RB l l ⎡⎤-+=⎢⎥-⎣⎦二、在水平导轨上的“双杆滑动”问题一、等间距水平导轨,无水平外力作用(安培力除外)够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l ,导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图2所示,两根导体棒的质量皆为m ,电阻皆为R ,回路中其余电阻不计,整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B ,设两导体棒均可沿导轨无摩擦的滑行,开始时棒cd 静止,棒ab 有指向棒cd 的初速度v 0, 若两导体棒在运动中始终不接触,求:1、运动中产生焦耳热最多是多少?2、当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?【解析】ab 棒向cd 棒运动时,两棒和导轨构成的回路的面积变小,穿过它的磁通量也变小,在回路中产生了感应电流,用楞次定律和安培定则判断其方向如图3所示,又由左手定则可判断ab 棒受到的与运动方向相反的安培力作用,作减速运动,cd 棒受到安培力作用作加速运动,在ab 棒速度大于cd 棒的速度时,两棒间的距离总会减小,回路中总有感应电流,ab 会继续减速,cd 会继续加速,当两棒的速度相等时,回路的面积保持不变,磁通量不变化,不产生感应电流,两棒此时不受安培力作用,以相同的速度向右作匀速直线运动。

1、从初始至两棒达到速度相同的过程中,两棒组成的系统受外力之和为零,系统的总动量守恒,有:mv 0 = 2mv ,所以最终作匀速直线运动的速度为:v = v 0 /2两棒的速度达到相等前,两棒机械能不断转化为回路的电能,最终电能又转化为内能。

两棒速度相等后,两棒的机械能不变化,根据能量守恒定律得整个过程中产生的焦耳最多时是两棒速度相等时,而且最多的焦耳热为两棒此时减小的机械能:22200111(2)224Q mv m v mv =-= 2、设ab 棒的速度变为初速度的3/4时,cd 棒的速度为'v ,又由动量守恒定律得:'0034mv m v mv =⋅+ (1)因ab 和cd 切割磁感线产生的感应电动势方向相反,所以此时回路中的感应电动势为:'034ab cd E E E Bl v Blv =-=⋅- (2)由闭合电路欧姆定律得此时通过两棒的感应电流为:2EI R = (3)此时cd 棒所受的安培力为:F = BI l ,联立解得加速度为:204Bl v F a m mR== 二、不等间距水平导轨,无水平外力作用(安培力除外)如图所示,光滑导轨、等高平行放置,间宽度为间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。

、是质量均为的金属棒,现让从离水平轨道高处由静止下滑,设导轨足够长。

试求: (1)、棒的最终速度;(2)全过程中感应电流产生的焦耳热。

【解析】下滑进入磁场后切割磁感线,在电路中产生感应电流,、各受不同的磁场力作用而分别作变减速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时,、不再受磁场力作用,各自以不同的速度匀速滑动。

(1)自由下滑,机械能守恒:①由于、串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度,故它们的磁场力为:②在磁场力作用下,、各作变速运动,产生的感应电动势方向相反,当时,电路中感应电流为零(),安培力为零,、运动趋于稳定,此时有:所以③、受安培力作用,动量均发生变化,由动量定理得:④⑤联立以上各式解得:,(2)根据系统的总能量守恒可得:三、等间距水平导轨,受水平外力作用(安培力除外)两根平行的金属导轨,固定在同一水平面上,磁感强度的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

导轨间的距离,两根质量均为的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为。

在时刻,两杆都处于静止状态。

现有一与导轨平行,大小为0.20N的恒力作用于金属杆甲上,使金属杆在导轨上滑动。

经过,金属杆甲的加速度为,求此时两金属杆的速度各为多少?【解析】设任一时刻两金属杆甲、乙之间的距离为,速度分别为和,经过很短时间,杆甲移动距离,杆乙移动距离,回路面积改变由法拉第电磁感应定律,回路中的感应电动势:回路中的电流:杆甲的运动方程:由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时为0)等于外力F的冲量:联立以上各式解得代入数据得=8.15m/s=1.85m/s三、绳连的“双杆滑动”问题两金属杆ab 和cd 长均为l ,电阻均为R ,质量分别为M 和m ,M >m ,用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平光滑不导电的圆棒两侧,两金属杆处在水平位置,如图4所示,整个装置处在一与回路平面相垂直的匀强磁场中,磁感强度为B ,若金属杆ab 正好匀速向下运动,求运动速度。

【解析】设磁场垂直纸面向里,ab 杆匀速向下运动时,cd 杆匀速向上运动,这时两杆切割磁感线运动产生同方向的感应电动势和电流,两棒都受到与运动方向相反的安培力,如图5所示,速度越大,电流越大,安培力也越大,最后ab 和cd 达到力的平衡时作匀速直线运动。

回路中的感应电动势:122E E E Blv =+= 回路中的电流为:2E BlvI R R==ab 受安培力向上,cd 受安培力向下,大小都为:22B l vF BIl R==设软导线对两杆的拉力为T ,由力的平衡条件:对ab 有:T + F = Mg 对cd 有:T = mg + F所以有:222()B l v M m g R =-,解得:22()2M m gRv B l -= 小结:从以上的分析可以看出处理“双杆滑动”问题要注意以下几点:1、在分析双杆切割磁感线产生的感应电动势时,要注意是同向还是反向,可以根据切割磁感线产生的感应电流的方向来确定,若同向,回路的电动势是二者相加,反之二者相减。

一般地,两杆向同一方向移动切割磁感线运动时,两杆中产生的感应电动势是方向相反的,向反方向移动切割磁感线时,两杆中产生的感应电动势是方向相同的,线圈中的感应电动势是“同向减,反向加”。

相关文档
最新文档