15学年上学期高二期中考试数学试题(附答案) (1)

合集下载

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1B M相等的向量是().A .1122a b c-++B .1122++a b cC .1122-+ a b cD .1122--+ a b c2.若直线经过(1,0),A B 两点,则直线AB 的倾斜角是()A .135︒B .120︒C .60︒D .45︒3.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A B C .5-D 4.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A .1月29日景区A 累计参观人次中特色景点a 占比超过了13.B .2月4日至2月10日特色景点a 累计参观人次增加了9800人次.C .2月4日至2月6日特色景点a 的累计参观人次的增长率和2月6日至2月8日特色景点a 累计参观人次的增长率相等.D .2月8日至2月10日景区A 累计参观人次的增长率小于2月6日至2月8日的增长率.5.如图,修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处,从A ,B 到直线(水库底面与水坝的交线)的距离AC 和B 分别为3m 和4m ,B 的长为2m ,则水库底面与水坝所成二面角的大小为().A .30︒B .60︒C .120︒D .150︒6.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中AC BC ⊥.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F .下列说法正确的是()A .四棱锥11C AB BA -为“阳马”B .四面体111A CC B 为“鳖臑”C .1EF AC ⊥D .1EF A B⊥7.阅读下面材料:在空间直角坐标系Oxyz 中,过点()000,,P x y z 且一个法向量为(),,m a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,过点()000,,P x y z 且方向向量为()()0n u v w uvw =≠ ,,的直线l 的方程为000.x x y y z z uvw---==根据上述材料,解决下面问题:直线l 是两个平面220x y -+=与210x z -+=的交线,则()是l 的一个方向向量.A .()2,1,4B .()1,3,5C .()1,2,0-D .()2,0,1-8.设直线系:cos sin 1m n M x y θθ+=(其中,,m n θ均为参数,{}02π,,1,2m n θ≤≤∈),则下列命题中是假命题...的是()A .当1m n ==时,存在一个点与直线系M 中所有直线的距离都相等.B .当2m n ==时,直线系M 中所有直线恒过定点,且不过第三象限.C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1.D .当2,1m n ==时,若0a ≤,则点(),0A a 到直线系M 中所有直线的距离不小于1.二、多选题9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组[)[)[)0,0.50.5,13,3.5 ,,,,制作了频率分布直方图,下列命题正确的有().A .设该市有60万居民,则全市居民中月均用水量不低于3吨的人数恰好有3万人.B .如果希望86%的居民每月的用水量不超出标准,则月均用水量a (吨)的最低标准的估计值为2.7.C .该市居民月均用水量的平均数的估计值为1.875吨.D .在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率为0.4.10.以下四个命题为真命题的是()A .过点(10,10)-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .已知直线10kx y --=和以(3,1)M -,(3,2)N 为端点的线段相交,则实数k 的取值范围为213k -≤≤C .直线10x y +-=与直线2210x y ++=D .点P 在直线:10l x y --=上运动,(2,3),(2,0)A B ,则||||PA PB -11.在棱长为2的正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为线段BM 上的动点(含端点),则下列选项正确的有()A .若直线1A M 与直线AN 所成角为α,则cos α的最大值为23.B .若点N 到平面11ABCD 的距离为d ,则d CN +的最小值为5.C .若在该正方体内放入一个半径为12的小球,则小球在正方体内不能达到的空间体积是π22-.D .点T 从B 点出发匀速朝1D 移动,点S 从A 点出发匀速朝1A 移动.现,S T 同时出发,当S 到达1A 时,T 恰好在1BD 的中点处.则在此过程中,,S T .三、填空题12.一条光线经过点(2,3)A 射到直线10x y ++=上,被反射后经过点(1,1)B ,则入射光线所在直线的一般式方程为.13.已知三棱锥P ABC -,如图所示,G 为ABC V 重心,点M ,F 为PG ,PC 中点,点D ,E 分别在PA ,PB 上,PD mPA= ,()0PE nPB mn =≠ ,若M D E F ,,,四点共面,则11m n+=.14.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“i 的胜者”,负者称为“i 的负者”,第6场为决赛,获胜的人是冠军,已知甲每场比赛获胜的概率均为34,而乙、丙、丁相互之间胜负的可能性相同.则乙进入决赛,且乙与其决赛对手是第二次相遇的概率为.四、解答题15.如图,已知平行六面体1111—ABCD A B C D 的底面ABCD 是菱形,1AB =,且11C CB C CD BCD ∠=∠=∠.(1)证明:1C C BD ⊥;(2)若1CA ⊥平面1C BD ,求1CC 的长.16.班级新年晚会设置抽奖环节.不透明纸箱中有大小、质地相同的红球3个,黄球2个.(1)如下两种方案,哪种方案获得奖品的可能性更大?并说明理由.方案一:依次无放回地抽取2个球,若颜色相同,则获得奖品;方案二:依次有放回地抽取2个球,若颜色相同,则获得奖品.(2)还剩最后一个奖品时,甲乙两位同学都想获得.于是他们约定:轮流从纸箱中有放回地抽取一球,谁先抽到黄球,谁获得奖品;如果3轮之后都两人都没有抽到黄球,则后抽的同学获得奖品.如果甲先抽,求甲获得奖品的概率.17.已知,如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且13AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点,四面体P BCG -的体积为83.(1)求异面直线GE 与PC 所成角的余弦;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF GC ⊥,求PFFC的值.18.男子10米气步枪和女子10米气步枪在1984年被列为奥运会比赛项目.根据国际射联的要求,10米气步枪靶纸为总边长80毫米的正方形,直径最大的1环,直径为45.5mm ,而最高10.9环的靶心点,直径仅有0.5mm .为了了解某校射击选手甲的训练水平,甲按照比赛要求进行了15次射击训练,命中的环数如下:射击序号123456789101112131415命中环数9.49.510.29.19.28.910.19.39.49.69.39.310.19.5 5.0(1)如果命中10环及以上的环数,我们称之为“命中靶心”.①用以上数据估计甲每次射击“命中靶心”的概率;②现发现一架小型无人机悬停在训练区域的上空(训练区域禁止无人机飞行),甲准备将其击落.假设甲每次射击能击中该无人机的概率为①中所求其“命中靶心”的概率,每次射击互不影响.则甲至少需要进行几次射击,才能有90%以上的概率能击落该无人机(该无人机被击中一次即被击落)?(2)经计算得甲这次训练命中环数的平均数15119.2015i i x x ===∑,标准差1.18s =,其中i x 为第i 次射击命中的环数,1i =,2,L ,15.第15次射击时,由于甲受到了明显的干扰,导致结果偏差较大.为了数据分析更加客观准确,教练剔除了这次的成绩.求剔除数据后,甲命中环数的平均数和方差(精确到0.01).(参考数据lg20.3010=,lg30.4771=)19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点.(1)求证://NC 平面PAM ;(2)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(3)设P AM D --的大小为θ,若π(0,]2θ∈,求平面PAM 和平面PBC 夹角余弦值的最小值.。

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪教版2020必修第三册第十~十一章。

5.难度系数:0.72。

一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。

湖南省长沙市2024-2025学年高二上学期期中考试数学试题含答案

湖南省长沙市2024-2025学年高二上学期期中考试数学试题含答案

2024年下学期期中检测试题高二数学(答案在最后)时量:120分钟分值:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{}n a 满足6786a a a ++=,则7a 等于()A.1B.2C.4D.8【答案】B 【解析】【分析】利用等差数列的性质进行求解.【详解】 6787736,2a a a a a ++==∴=故选:B2.若圆224820x y x y m +-++=的半径为2,则实数m 的值为()A.-9B.-8C.9D.8【答案】D 【解析】【分析】由圆的一般方程配方得出其标准方程,由半径为2得出答案.【详解】由224820x y x y m +-++=,得22(2)(4)202x y m -++=-,所以2r ==,解得8m =.故选:D.3.若抛物线22(0)y px p =>的焦点与椭圆22195x y +=的一个焦点重合,则该抛物线的准线方程为()A.1x =-B.1x =C.2x =D.2x =-【答案】D 【解析】【分析】先求出椭圆的焦点坐标即是抛物线的焦点坐标,即可求出准线方程.【详解】∵椭圆22195x y +=的右焦点坐标为(2,0),∴抛物线的焦点坐标为(2,0),∴抛物线的准线方程为2x =-,故选:D.4.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为[)0,50、[)50,100、[)100,150、[)150,200、[)200,300和[]300,500六档,分别对应“优”、“良”、“轻度污染”、“中度污染”、“重度污染”和“严重污染”六个等级.如图是某市2月1日至14日连续14天的空气质量指数趋势图,则下面说法中正确的是().A.这14天中有5天空气质量为“中度污染”B.从2日到5日空气质量越来越好C.这14天中空气质量指数的中位数是214D.连续三天中空气质量指数方差最小是5日到7日【答案】B 【解析】【分析】根据折线图直接分析各选项.【详解】A 选项:这14天中空气质量为“中度污染”有4日,6日,9日,10日,共4天,A 选项错误;B 选项:从2日到5日空气质量指数逐渐降低,空气质量越来越好,B 选项正确;C 选项:这14天中空气质量指数的中位数是179214196.52+=,C 选项错误;D 选项:方差表示波动情况,根据折线图可知连续三天中波动最小的是9日到11日,所以方程最小的是9日到11日,D 选项错误;故选:B.5.已知双曲线C :22x a -22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A.220x -25y =1B.25x -220y =1C.280x -220y =1D.220x -280y =1【答案】A 【解析】【详解】由题意得,双曲线的焦距为10,即22225a b c +==,又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上,所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.6.定义22⨯行列式12142334a a a a a a a a =-,若函数22cos sin ()πcos 22x xf x x -=⎛⎫+ ⎪⎝⎭,则下列表述正确的是()A.()f x 的图象关于点(π,0)中心对称B.()f x 的图象关于直线π2x =对称C.()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增 D.()f x 是最小正周期为π的奇函数【答案】C 【解析】【分析】由行列式运算的定义,结合三角恒等变换,求出()f x 解析式,AB 选项关于函数图象的对称性,代入检验即可判断;整体代入验证单调性判断选项C ;公式法求最小正周期,检验函数奇偶性判断选项D.【详解】由题中所给定义可知,22ππ()cos sin 2cos 222cos 223f x x x x x x x ⎛⎫⎛⎫=--+=+=- ⎪ ⎪⎝⎭⎝⎭,π(π)2cos103f ==≠,点(π,0)不是()f x 图象的对称中心,故A 错误;ππ2cos 1223f ⎛⎫=-=-≠± ⎪⎝⎭,直线π2x =不是()f x 图象的对称轴,故B 错误;π,06x ⎡⎤∈-⎢⎥⎣⎦时,π2ππ2,333x ⎡⎤⎢⎥-⎣-∈⎦-,2ππ,33⎡⎤--⎢⎥⎣⎦是余弦函数的单调递增区间,所以()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;()f x 的最小正周期2ππ2T ==,但(0)0f ≠,所以函数不是奇函数,故D 错误.故选:C7.已知ABC V 中,6AB =,4AC =,60BAC ∠=︒,D 为BC 的中点,则AD =()A.25B.19C.D.【答案】C 【解析】【分析】由题意可得:1()2AD AB AC =+,结合向量的数量积运算求模长.【详解】由题意可得:16,4,64122AB AC AB AC ==⋅=⨯⨯=uu u r uuu r uu u r uuu r ,因为D 为BC 的中点,则1()2AD AB AC =+,两边平方得,()22212194AD AB AC AB AC =++⋅=,即AD =uuu r .故选:C.8.已知椭圆:2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上一点,且2PF x ⊥轴,直线1PF 与椭圆C 的另一个交点为Q ,若11||4||PF F Q =,则椭圆C 的离心率为()A.255B.2C.155D.217【答案】D 【解析】【分析】由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,解得0x 、0y ,代入椭圆方程化简即可求解.【详解】解:由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,得032c x =-,204b y a =-,代入椭圆方程得:222291416c b a a+=,结合222a b c =+,化简上式可得:2237c a =,所以椭圆的离心率为7c e a ==,故选:D .二、多项选择题:本题共3小题,每小题6分,18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.设i 为虚数单位,下列关于复数z 的命题正确的有()A.2025i 1=-B.若1z ,2z 互为共轭复数,则12=z z C.若1z =,则z 的轨迹是以原点为圆心,半径为1的圆D.若复数1(1)i =++-z m m 为纯虚数,则1m =-【答案】BCD 【解析】【分析】A 选项,利用复数的乘方运算得到A 正确;B 选项,设1i z a b =+,2i z a b =-,则12=z z ;C 选项,由复数的几何意义得到C 正确;D 选项,根据纯虚数的定义得到方程,求出1m =-.【详解】对于A :()()1012101220252i i i 1i i =⋅=-⋅=,A 错;对于B :令1i z a b =+,2i,,R z a b a b =-∈,1z =,2z =所以12=z z ,故B 正确;对于C :1z =,故z 的轨迹是以原点为圆心,半径为1的圆,C 正确;对于D :若复数1(1)i =++-z m m 为纯虚数,则10,10m m +=-≠,即1m =-,故D 正确.故选:BCD10.如图,正方体1111ABCD A B C D -的棱长为1,E 是棱CD 上的动点(含端点).则下列结论正确的是()A.三棱锥11A B D E -的体积为定值B.11EB AD ⊥C.存在某个点E ,使直线1A E 与平面ABCD 所成角为60o D.二面角11E A B A --的平面角的大小为π4【答案】BD 【解析】【分析】A.根据等体积法的等高等底即可判断;B.结合正方体的性质,由垂影必垂斜即可判断;C.结合正方体的性质即可判断;D.根据二面角的平面角定义即可判断.【详解】对于选项A :三棱锥11E AB D -的底面积为定值,高变化,体积不为定值,故选项A 不正确;对于选项B :1,B E 两点在平面11ADD A 上的射影分别为1,A D ,即直线1B E 在平面11ADD A 上的射影为1A D ,而11A D AD ⊥,根据三垂线定理可得11EB AD ⊥.故选项B 正确;对于选项C :因为1A A ⊥平面ABCD ,直线1A E 与平面ABCD 所成角为1AEA ∠,当点E 和点D 重合时,1A E 在平面ABCD 射影最小,这时直线1A E 与平面ABCD 所成角θ最大值为π4,故选项C 不正确;对于选项D :二面角11E A B A --即二面角11D A B A --,因为111DA A B ⊥,111AA A B ⊥,1DA ⊂平面11E AB ,1AA ⊂平面11AA B ,所以1DA A ∠即为二面角11E A B A --的平面角,在正方形11ADD A 中,1π4DA A ∠=,所以二面角11E A B A --的大小为π4,故选项D 正确.故选:BD.11.数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线()32222:16C x y x y +=为四叶玫瑰线,下列结论正确的有()A.方程()()32222160x y x y xy +=<,表示的曲线在第二和第四象限;B.曲线C 上任一点到坐标原点O 的距离都不超过2;C.曲线C 构成的四叶玫瑰线面积大于4π;D.曲线C 上有5个整点(横、纵坐标均为整数的点).【答案】AB 【解析】【分析】本题首先可以根据0xy <判断出A 正确,然后根据基本不等式将()3222216x y x y +=转化为224x y +≤,即可判断出B 正确,再然后根据曲线C 构成的面积小于以O 为圆心、2为半径的圆O 的面积判断出C 错误,最后根据曲线C 上任一点到坐标原点O 的距离都不超过2以及曲线C 的对称性即可判断出D 错误.【详解】A 项:因为0xy <,所以x 、y 异号,在第二和第四象限,故A 正确;B 项:因为222x y xy +≥,当且仅当x y =时等号成立,所以222x yxy ≤+,()()22232222222161642x y x y x y x y ⎛⎫++=≤=+ ⎪⎝⎭,即224x y +≤2£,故B 正确;C 项:以O 为圆心、2为半径的圆O 的面积为4π,显然曲线C 构成的四叶玫瑰线面积小于圆O 的面积,故C 错误;D 项:可以先讨论第一象限内的图像上是否有整点,因为曲线C 上任一点到坐标原点O 的距离都不超过2,所以可将()0,0、()2,0、()1,0、()1,1、()0,1、()0,2代入曲线C 的方程中,通过验证可知,仅有点()0,0在曲线C 上,故结合曲线C 的对称性可知,曲线C 仅经过整点()0,0,故D 错误,故选:AB.【点睛】本题是创新题,考查学生从题目中获取信息的能力,考查基本不等式的应用,考查数形结合思想,体现了综合性,是中档题.三、填空题:本题共4小题,每小题5分,共20分.12.圆22250x y x +--=与圆222440x y x y ++--=的交点为A ,B ,则公共弦AB 所在的直线的方程是________.【答案】4410x y -+=【解析】【分析】两圆相减得到公共弦所在的直线的方程.【详解】由题意可知圆22250x y x +--=与圆222440x y x y ++--=相交,两圆方程相减得,2222244441025x x y x y x x y y ++=--+--+--=-,故公共弦AB 所在的直线的方程是4410x y -+=.故答案为:4410x y -+=13.若数列{}n a 满足111n nd a a +-=(*n ∈N ,d 为常数),则称数列{}n a 为“调和数列”,已知正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,且12202220220b b b +++= ,则12022b b 的最大值是________.【答案】100【解析】【分析】根据题设易知正项数列{}n b 为等差数列,公差为d ,应用等差数列前n 项和公式得1202220b b +=,应用基本不等式求12022b b 最大值.【详解】由题意,正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,则1n n d b b +=-(d 为常数),所以正项数列{}n b 为等差数列,公差为d ,则()120221220222022202202b b b b b +++==⨯+ ,则1202220b b +=,则2212022120222010022b b b b +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭(当且仅当0122110b b ==时等号成立),所以12022b b 的最大值是100.故答案为:10014.如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =,设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为____________.【答案】643π.【解析】【分析】根据题意有=B AN MN N MN BM ≥++,动点M 恰为PD 的中点即4BP BD ==,及可求出PO =,则可求出外接球的半径,方可求出其表面积.【详解】由题意知=B AN MN N MN BM ≥++当BM PD ⊥时BM 最小,因为M 为PD 的中点,故而为PD 的中点,即=4BP BD =,2BO =PO ∴=,设外接球的半径为r ,则22)4r r =+.解得433r =.故外接球的表面积为26443r ππ=.【点睛】本题考查锥体的外接球表面积,求出其外接球的半径,即可得出答案,属于中档题.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,84a =,1122S =-.(1)求数列{}n a 的通项公式;(2)求n S 的最小值.【答案】(1)320n a n =-(2)-57【解析】【分析】根据等差数列的通项公式和前n 项和公式列方程组求出117,3,a d =-⎧⎨=⎩即可得,(2)由通项公式可求得当6n ≤时,0n a <,从而可得当6n =时,n S 取到最小值,进而可求出其最小值【小问1详解】设数列 的公差为d ,则8111174115522a a d S a d =+=⎧⎨=+=-⎩,解得1173a d =-⎧⎨=⎩,所以1(1)320n a a n d n =+-=-.【小问2详解】令3200n a n =->,解得203n >,所以当6n ≤时,0n a <.故当6n =时,n S 取到最小值,为6161557S a d =+=-.16.已知公差不为零的等差数列{}n a 的前n 项和为n S ,若10110S =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若3n an n b a =+,求数列{}n b 的前n 项和.【答案】(1)2n a n=(2)199(1)8n n n +-++【解析】【分析】(1)设出公差,利用题意得到方程组,求出首项和公差,得到通项公式;(2)29nn b n =+,利用分组求和,结合等差数列和等比数列求和公式得到答案.【小问1详解】根据{}n a 为等差数列,设公差为0d ≠.10110S =,即11101045a d =+①,1a ,2a ,4a 成等比数列∴2214a a a =⋅,()()21113∴+=+a d a a d ②,由①②解得:122a d =⎧⎨=⎩,∴数列{}n a 的通项公式为2n a n =.【小问2详解】由232329n a n n n n b a n n =+=+=+,数列{}n b 的前n 项和()()122212999nn n T b b b n =++⋯+=⨯+++++++ ()1919(1)992(1)2198n n n n n n +-+-=⨯+=++-.17.在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,AD AB ⊥,侧面PAB ⊥底面ABCD ,122PA PB AD BC ====,且E ,F 分别为PC ,CD 的中点,(1)证明://DE 平面PAB ;(2)若直线PF 与平面PAB 所成的角为60︒,求平面PAB 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)取PB 中点M ,连接AM ,EM ,通过证明四边形ADEM 为平行四边形,即可证明结论;(2)由直线PF 与平面PAB 所成的角为60︒,可得,,,,GF PG AG BG AB ,建立以G 为原点的空间直角坐标系,利用向量方法可得答案.【小问1详解】取PB 中点M ,连接AM ,EM ,E 为PC 的中点,//ME BC ∴,12ME BC =,又AD //BC ,12AD BC =,//ME AD ∴,ME AD =,∴四边形ADEM 为平行四边形,//DE AM ∴,DE ⊄ 平面PAB ,AM ⊂平面PAB ,//DE ∴平面PAB ;【小问2详解】平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB BC =⊂平面ABCD ,,BC AB BC ⊥∴⊥平面PAB ,取AB 中点G ,连接FG ,则//,FG BC FG ∴⊥平面PAB ,()160,32GPF GF AD BC ∴∠=︒=+=,3tan60,PG PG∴︒=∴=2,1,2PA PB AG GB AB ==∴===,如图以G 为坐标原点,GB 为x 轴,GF 为y 轴,GP 为z轴建立空间直角坐标系,(()(),1,4,0,1,2,0P C D ∴-,(()1,4,,2,2,0PC CD ∴==-- ,设平面PCD 的一个法向量,()1,,n x y z = ,则1140220n PC x y n CD x y ⎧⋅=+-=⎪⎨⋅=--=⎪⎩ ,取1y =,则(1n =- ,平面PAB 的一个法向量可取()20,1,0n = ,设平面PAB 与平面PCD 所成锐二面角为θ,1212cos5n nn nθ⋅∴==,所以平面PAB与平面PCD 所成锐二面角的余弦值55.18.已知抛物线2:2(0)C x py p=>上一点(,6)P m到焦点F的距离为9.(1)求抛物线C的方程;(2)过点F且倾斜角为5π6的直线l与抛物线C交于A,B两点,点M为抛物线C准线上一点,且MA MB⊥,求MAB△的面积.(3)过点(2,0)Q的动直线l与抛物线相交于C,D两点,是否存在定点T,使得TC TD⋅为常数?若存在,求出点T的坐标及该常数;若不存在,说明理由.【答案】(1)212x y=(2)(3)存在定点191,93T⎛⎫⎪⎝⎭,TC TD⋅为常数37081.【解析】【分析】(1)利用抛物线的定义得02pPF y=+,计算出p得抛物线方程;(2)直线方程与抛物线方程联立方程组,求出,A B两点坐标,利用0MA MB⋅=求出M点坐标,求出M 点到直线l的距离和弦长AB,可求MAB△的面积;(3)设()00,T x y,()33,C x y,()44,D x y,过点Q的直线为(2)y k x=-,与抛物线方程联立方程组,利用韦达定理表示出TC TD⋅,求出算式的值与k无关的条件,可得TC TD⋅为定值的常数.【小问1详解】由拋物线的定义得02pPF y=+,解得692p+=,6p=.∴抛物线的方程为212x y=.【小问2详解】设()11,A x y,()22,B x y,由(1)知点(0,3)F,∴直线l的方程为0x +-=.由20,12,x x y ⎧+-=⎪⎨=⎪⎩可得21090y y -+=,则1210y y +=,129y y =,12121061622p p AB AF BF y y y y p ⎛⎫⎛⎫∴=+=+++=++=+= ⎪ ⎪⎝⎭⎝⎭,则不妨取11y =,29y =,则点A ,B的坐标分别为,(-.设点M 的坐标为(,3)t -,则,4)MA t =-uuu r,(,12)MB t =--uuu r ,则)()4120MA MB t t ⋅=--+⨯= ,解得t =-.即(3)M --,又点M 到直线l的距离d =d =,故MAB △的面积12S d AB =⋅=;【小问3详解】设()00,T x y ,()33,C x y ,()44,D x y ,过点Q 的直线为(2)y k x =-,2(2)12y k x x y =-⎧⎨=⎩联立消去y 得:212240x kx k -+=,0∆>时,3412x x k +=,3424x x k =,联立消去x 得:()22241240y k k y k +-+=,234124y y k k +=-,2344y y k =,()()()()30403040TC TD x x x x y y y y ⋅=--+-- ()()22340343403400x x x x x y y y y y x y =-++-+++()2222000024124124k x k k y k k x y =-⋅+--++()()2220000024124412x y k y k x y =-++-++要使()()2220000024124412x y k y k x y -++-++与k 无关,则00241240x y -+=且04120y -=,0199x ∴=,013y =,存在191,93T ⎛⎫ ⎪⎝⎭此时TC TD ⋅ 为定值37081.19.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学内容,例如:用一张纸片,按如下步骤折纸:步骤1:在纸上画一个圆A ,并在圆外取一定点B ;步骤2:把纸片折叠,使得点B 折叠后与圆A 上某一点重合;步骤3:把纸片展开,并得到一条折痕;步骤4:不断重复步骤2和3,得到越来越多的折痕.你会发现,当折痕足够密时,这些折痕会呈现出一个双曲线的轮廓.若取一张足够大的纸,画一个半径为2的圆A ,并在圆外取一定点,4B AB =,按照上述方法折纸,点B 折叠后与圆A 上的点T 重合,折痕与直线TA 交于点,P P 的轨迹为曲线C .(1)以AB 所在直线为x 轴建立适当的坐标系,求C 的方程;(2)设AB 的中点为O ,若存在一个定圆O ,使得当C 的弦PQ 与圆O 相切时,C 上存在异于,P Q 的点,M N 使得//PM QN ,且直线,PM QN 均与圆O 相切.(i )求证:OP OQ ⊥;(ii )求四边形PQNM 面积的取值范围.【答案】(1)2213y x -=;(2)(i )证明见解析;(ii )[)6,+∞.【解析】【分析】(1)建立平面直角坐标系,根据双曲线定义可得双曲线方程;(2)假设存在符合条件的圆,依据条件,可得四边形PQNM 为菱形,设直线,OP OQ 的斜率分别为1,k k -,将直线,OP OQ 分别与双曲线方程联立求得||,||OP OQ ,通过计算O 到直线PQ 的距离可得定圆的方程.【小问1详解】以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图所示的平面直角坐标系.则()()2,0,2,0A B -.由折纸方法可知:PB PT =,所以2PB PA PT PA TA AB -=-==<.根据双曲线的定义,C 是以A ,B 为焦点,实轴长为2的双曲线,设其方程为()222210,0,x y a b a b-=>>则1,2a c ===,所以221,3a b ==.故C 的方程为2213y x -=.【小问2详解】(i )假设存在符合条件的圆O ,如图所示:由//PM QN 可得180MPQ NQP ∠+∠=︒,根据切线的性质可知,,MPO OPQ NQO OQP ∠=∠∠=∠,所以90OPQ OQP ∠+∠=︒,即OP OQ ⊥.(ii )分别作,P Q 关于原点O 的对称点,N M '',则,N M ''均在C 上,且四边形PQN M ''为菱形,所以,PM QN ''均与O 相切,所以M '与M 重合,N '与N 重合,所以四边形PQNM 为菱形.显然,直线,OP OQ 的斜率均存在且不为0.设直线,OP OQ 的斜率分别为1,k k-,则直线OP 的方程为y kx =,直线OQ 的方程为1=-y x k .设()()1122,,,P x y Q x y ,则由22,13y kx y x =⎧⎪⎨-=⎪⎩,得()2233k x -=,所以230k ->,且21233x k =-,所以203k <<,且1||OP ==.同理可得:213k >,且||OQ =所以四边形PQNM 的面积2||||S OP OQ =⋅=.设241,43t k t =+<<,故S ==.设1=u t ,则1344u <<,所以S =因为216163y u u =-+-在11,42⎛⎫ ⎪⎝⎭单调递增,在13,24⎛⎫ ⎪⎝⎭单调递减,所以(]0,1y ∈.所以[)6,S ∈+∞.所以四边形PQNM 的面积的取值范围是[)6,+∞.。

北京市海淀区北京理工大学附属中学2024-2025学年高二上学期期中考试数学试题(含解析)

北京市海淀区北京理工大学附属中学2024-2025学年高二上学期期中考试数学试题(含解析)

北京市海淀区北京理工大学附属中学2024-2025学年高二上学期期中考试数学试题1.的倾斜角为( )A. B. C. D.2.已知直线平分圆的周长,则( )A.2B.4C.6D.83.如图,在四面体OABC 中,,点在OA 上,且为BC 的中点,则等于( )A. B. C. D.4.已知向量,当时,向量在向量上的投影向量为( )(用坐标表示)A. B. C. D.5.已知直线和直线,下列说法错误的是( )A.始终过定点 B.若,则或-3C.若,则或2D.当时,始终不过第三象限6.空间内有三点,则点到直线EF 的距离为( )B.D.7.已知圆直线,点在直线上运动,直线PA ,PB 分别与圆相切于点A ,B .则下列说法正确的个数是( )310y --=30︒60︒120︒150︒260x my -+=222:(1)(2)4C x y -+-=m =,,OA a OB b OC c ===M 2,OM MA N =MN121232a b c -+ 211322a b c-++111222a b c +-221332a b c +-(2,1,1),(1,,1),(1,2,1)a b x c =-==-- a b ⊥ b c(1,2,1)-(1,2,1)(1,2,1)--(1,2,1)-1:0l x ay a +-=2:(23)10l ax a y ---=2l 21,33⎛⎫⎪⎝⎭12//l l 1a =12l l ⊥0a =0a >1l (3,1,4),(2,1,1),(1,2,2)P E F -P 22:(4)4M x y ++=:20l x y +-=P l M(1)四边形PAMB(2)|PA |最短时,弦AB (3)|PA |最短时,弦AB 直线方程为(4)直线AB 过定点A.1个B.2个C.3个D.4个8.在矩形ABCD 中,.将三角形ACD 沿着AC 翻折,使点在平面ABC 上的投影恰好在直线AB 上,则此时二面角的余弦值为( )A. B.D.9.在正三棱锥中,是的中心,,则____________.10.已知直线,若,则实数___________.11.设,过定点的动直线和过定点的动直线交于点,则的最大值___________.12.如图,平行六面体的所有棱长均为两两所成夹角均为,点E ,F分别在棱上,且,则___________;直线与EF 所成角的余弦值为______________________.13.已知的顶点边上的中线CM 所在直线的方程为的平分线BH 所在直线的方程为.(1)求直线BC 的方程;(2)若点P 满足,求动点的轨迹方程.14.已知四棱锥中,底面ABCD 是正方形,平面是PB 的中点.3380x y +-=10,23⎛⎫-⎪⎝⎭,,AD a AB b b a ==>D E B AC D --22a ba b2a b b+P ABC -O ABC 2PA AC ==PO PB ⋅=12:310,:2(1)10l mx y l x m y +-=+-+=12l l ‖m =m ∈R A 10x my ++=B 230mx y m --+=(,)P x y ||||||PA PB AB ++1111ABCD A B C D -12,,,AB AD AA 60︒11,BB DD 112,2BE B E D F DF ==||EF =1AC ABC (1,2),A AB 210,x y ABC +-=∠y x =PBC ABC S S = P P ABCD -PD ⊥,1,ABCD PD AB E ==(1)求直线BD 与直线PC 所成角的大小;(2)求点B 到平面ADE 的距离.15.已知圆过点三个点.(1)求圆的标准方程;(2)已知,直线与圆相交于A ,B 两点,求|AB |的最小值.16.已知平面边形ABCD 中,,且.以AD 为腰作等腰直角三角形PAD ,且,将沿直线AD 折起,使得平面平面ABCD .(1)证明:平面PAC ;(2)若M 是线段PD 上一点,且平面MAC ,①求三棱锥M-ABC 的体积;②求平面PBC 与平面ABM 夹角的余弦值.M (1,0),(2,2)--M 2a c b +=0ax by c ++=M //,AD BC BC CD⊥2AD CD AB ===PA AD =PAD ∆PAD ⊥AB ⊥//PB参考答案1.【答案】A所以它的倾斜角为.故选:A.2.【答案】B【详解】由,可得圆心为,因为直线平分圆的周长,所以直线过圆的圆心,则,解得.故选:B.3.【答案】B【详解】可知:,即.故选:B.4.【答案】A【详解】,解得,,所以在上的投影向量为.故选:A.5.【答案】B【详解】,令且,解得,故直线过点,A 正确;当时,和直线,故重合,故B 错误;由,得或2,故C 正确;30︒22(1)(2)4x y -+-=(1,2)260x my -+=222:(1)(2)4C x y -+-=2260m -+=4m =21()32MN MO ON OA OB OC =+=-++211322MN a b c =-++,210a b a b x ⊥∴⋅=-+=3x =(1,3,1)b ∴=b c 2.161(1,2,1)141b c c c c c--==-=-++2:(2)310l a x y y -+-=20x y -=310y -=21,33x y ==21,33⎛⎫⎪⎝⎭1a =1:10l x y +-=2:10l x y +-=12,l l 1(32)0a a a ⨯+⨯-=0a =始终过,斜率为负,不会过第三象限,故D 正确.故选:B 6.【答案】A【详解】因为,所以直线EF 的一个单位方向向量为.因为,所以点到直线EF故选:A 7.【答案】A【详解】对于(1),四边形的面积可以看成两个直角三角形的面积之和,即,最短时,面积最小,故当时,|MP |最短,即,,故(1)错误;对于(2),由上述可知,时,|MP |最短,故|PA |最小,且最小值为所以故(2)正确;对于(3),当|短时,则,又,所以,可设AB 的直线方程为圆心到直线AB 的距离或,由于直线AB 在圆心的右侧,且在直线的左侧,11:1l y x a=-+(0,1)(1,1,1)EF =- 1,1,1)u =- (1,0,5)PE =- P ==122||2||2MPA MPB MPA PAMB S S S S PA AM PA =+==⨯⨯=== 四边形‖||MP ∴MP l ⊥min ||MP ==PAMB S ∴==四边形MP l ⊥||PA ==|||2||sin 2||22||AP AB AM AMP AM PM =∠==⨯=PA ∣MP l ⊥MP AB ⊥,1,1l AB l AB k k =-∴=-‖0,x y m ++=∴(4,0)M -d ===83m =163m =(4,0)M -l所以,所以,即直线AB 的方程为,故(3)错误;对于(4),设圆上一点,,易知,由于,所以,同理,,,即,令,解得,所以直线AB 过定点为,故(4)错误;故选:A.8.【答案】A【详解】如图所示,作于于.在Rt 中,,在R 中,,4224m m -<-<⇒-<<83m =803xy ++=()()(),,,,,A A BB P P A x y B x y P x y ()()()4,,4,,,A A B B A P A P MA x y MB x y PA x x y y ∴=+=+=--()()()040A A P A A P PA MA x x x y y y ⋅=⇒+-+-= ()2244A A x y ++=()()444p A P A x x y y +++⋅=()()0444P B P B PB MB x x y y ⋅=⇒+++⋅=():(4)44,2P P P P AB x x y y y x ∴+++⋅==-+ ()()(4)424P P x x y x ∴+++-=(4)42120P x y x x y +-+++=4042120x y x y +-=⎧⎨++=⎩10323x y ⎧=-⎪⎪⎨⎪=⎪⎩102,33⎛⎫- ⎪⎝⎭DG AC ⊥,G BH AC ⊥H ADC AD AC DAC AC =∠==ADG cos AG AD DAC a =∠==DG ===同理可得,因为所以,又因为,所以.因为与的夹角即为二面角的大小,所以二面角的余弦值为.故选:A.9.【答案】【详解】在正三棱锥中,是的中心,平面平面,即,,.故答案为:cos BC BCA CH DG AC ∠====()AD BC AE ED BC AE BC B E CD ⋅=+⋅=⋅+⋅()()GD HB GA AD HC CB GA HC GA CB AD HC AD CB⋅=+⋅+=⋅+⋅+⋅+⋅ 4220a a a a b =+⨯⨯+=+2222||||a b GD HB a b ⋅==+ 422222222cos ,||||a GD HB a ab GD HB a b b GD HB a b ⋅+===⋅+GD HBB ACD --B AC D --22a b82/233P ABC -O ABC PO ∴⊥,ABC OB ⊂,ABC PO BO ∴⊥0PO OB ⋅=2,2PA AC AB CB AC ===== 2||||sin 603BO AB ︒∴=⋅⋅=22248()||||||433PO PB PO PO OB PO PO OB BP BO ∴⋅=⋅+=+⋅=-=-= 8310.【答案】3【详解】解:故答案为:3.11.【答案】【详解】由题意可知:动直线过定点,动直线,即过定点,则,且,则,可知点的轨迹是以AB 为直径的圆,则,且,可得,当且仅当时,等号成立,所以的最大值.故答案为:12.【详解】连接AF ,AE,(1)3232m m m m -=⨯⎧⇒=⎨≠-⎩6+10x my ++=(1,0)A -230mx y m --+=(2)30m x y --+=(2,3)B ||AB =1(1)0m m ⨯+⨯-=PA PB ⊥P 222||||||18PA PB AB +==22(||||)||||182PA PB PA PB +≤+=||||6PA PB +≤||||3PA PB ==||||||PA PB AB ++6+6+,故;,故,故,则故直线与EF.故答案为13.【详解】(1)111121333EF AF AE AD DD AB BB AB AD AA =-=+--=-+- 22221111222933EF AB AD AA AB AD AB AA AD AA =++-⋅+⋅-⋅4224044222cos 22cos 22cos 9333339πππ=++-⨯⨯+⨯⨯-⨯⨯=||EF = 11AC AB AD AA =++ 22221111222AC AD AD AB AA AD A =++++⋅+⋅11144422222222224222=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=1AC =1113||AC EF AC EF ⎛⎫⋅====1AC由点在,设,则AB 的中点在直线CM 上,所以,解得,所以,设点关于直线对称的点,则有,解得,即,显然在BC 上,直线BC 的斜率为,由点斜式,整理得,即为直线BC 的方程.(2)点A 到直线BC 的距离为因为点满足,所以点P ,A 到直线BC 的距离相等,所以动点的轨迹为与直线BC 平行,且距离等于点A 到直线BC 的距离的直线,设轨迹方程为,,解得或4,所以动点的轨迹方程为或.14.【详解】(1)以点为原点,分别以DA ,DC ,DP 所在直线为x ,y ,z 轴,建立如图空间直角坐标系.B y x =(,)B m m 12,22m m ++⎛⎫⎪⎝⎭1221022m m +++⨯-=1m =-(1,1)B --(1,2)A y x =()00,A x y '00002112122y x y x -⎧=-⎪-⎪⎨++⎪=⎪⎩0021x y =⎧⎨=⎩(2,1)A '(2,1)A '1(1)22(1)3k --==--21(1)3y x +=+2310x y --=d ==P PBC ABC S S = P 230x y C -+==6C =-P 2360x y --=2340x y -+=D由题意D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),P (0,0,1),设直线BD 与直线PC 所成的角为,因为,,所以直线BD 与直线PC 所成角为;(2)因为,所以,,则为平面ADE 的一个法向量,设点到平面ADE 的距离为,则为向量在向量上的投影的绝对值,由,得所以点到平面ADE.15.【详解】(1)设圆的方程为,代入各点得:,所求圆的一般方程为:标准方程为:.111(22,2,E θ(1,1,0),(0,1,1)BD PC =--=- ||1cos 2||||BD PC BD PC θ⋅===⋅ 3π111(1,0,0),(0,1,1),,,222DA PC DE ⎛⎫==-= ⎪⎝⎭10010(1)0DA PC ⋅=⨯+⨯+⨯-= 11101(1)0222DE PC ⋅=⨯+⨯+-⨯= (0,1,1)PC =- B d d DB (0,1,1)PC =- (1,1,0)DB = ||||DB PC d PC ⋅=== B 220x y Dx Ey F ++++=1041200,4,15420D F DEF D E F E F ⎧++=⎪++-+=⇒===-⎨⎪++-+=⎩22410x y y ++-=22(2)5x y ++=(2)把代入直线方程得:,即,令,可得,所以直线过定点.又,所以定点在圆内,当时,|AB |最小,此时,则.16.【详解】(1)因,故,又,且,故在直角梯形ABCD 中,,由可得;因平面平面,平面平面,则平面ABCD ,又平面ABCD ,则,又,因平面PAC ,故平面PAC .(2)①如图,连接BD ,设,连接OM ,因平面MAC ,且平面PBD ,平面平面,则,故,在四边形ABCD 中,由,可得,故,即,即点是线段PD 上靠近点的三等分点,2c b a =-20ax by b a ++-=(1)(2)0x a y b -++=1020x y -=⎧⎨+=⎩12x y =⎧⎨=-⎩(1,2)N -||1MN =<N MN AB ⊥|||1AM r MN ===min ||4AB ===//,AD BC BC CD ⊥AD CD ⊥2AD CD AB ===PA AD =AC AB ==24BC =+=222AB AC BC +=AB AC ⊥PAD ⊥,ABCD PA AD ⊥PAD ⋂ABCD AD =PA ⊥AB ⊂PA AB ⊥PA AC A ⋂=,PA AC ⊂AB ⊥BD AC O ⋂=//PB PB ⊂PBD ⋂MAC OM =//OM PB DM DO MP BO=//AD BC 12DO AD BO BC ==12DM DO MP BO ==13DM DP =M D故.②如图,以点A 为坐标原点,分别以AB ,AC ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则,所以,,设平面PBC 的法向量为,则,可取,因,故,设平面ABM 的法向量为,则由,可取,故,故平面PBC与平面ABM11111823332189M ABC P ABC V AB AC PA --==⨯⨯⨯⨯=⨯⨯=(0,0,0),(0,0,2),(A B C P D (2)BC PC =-=- ()111,,m x y z =1111020BC m PC m z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ m = 112333DM DP ⎫===⎪⎭ 22(,33AM AD DM AB ⎫⎛⎫=+=+==⎪ ⎪⎭⎝⎭ ()222,,n x y z = 22220203AB n AM n x y z ⎧⋅==⎪⎨⋅=++=⎪⎩(0,1,n =cos(,)|||m n m n m n ⋅=⋅ ∣。

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若(4)“若,则,则有实数解”的逆否命题;”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形B.等腰直角三角形C.有一个内角为30°的直角三角形D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.为的内角,,的对边分别为,,,若,,,则的面积A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1B.16C.8D.4)10.若关于的不等式的解集为,则的取值范围是(A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.114.已知的三边长构成公差为 2 的等差数列,且最大角的正弦值为 ,则这个三角形的周长为________.15.已知数列{a n }的前 n 项和为 S n ,a 1=1,当 n≥2时,a n +2S n - =n ,则 S 2017的值____ ___16.已知变量满足约束条件 若目标函数 的最小值为2,则的最小值为__________.三、解答题:共 6 题,共 70 分,解答应写出必要的文字说明、证明过程或演算步骤。

江苏省扬州市扬州大学附属中学2024-2025学年高二上学期11月期中考试数学试题

江苏省扬州市扬州大学附属中学2024-2025学年高二上学期11月期中考试数学试题

江苏省扬州市扬州大学附属中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.直线20240x +=倾斜角是()A .0B .π4C .π2D .不存在2.已知圆221612960x y x y +-+-=,则圆心位于()A .第一象限B .第二象限C .第三象限D .第四象限3.已知ABC V 的顶点为()0,4A ,()3,2B -,()5,4C ,则BC 边上的中线长为()A .4B .5C .D .4.已知圆与直线30x y +-=相切于点()1,2,且圆过点()11,2A ,则圆的半径是()A .B .C .8D .95.已知双曲线22221x y a b-=(0a >,0b >)的一条渐近线经过点()4,3M ,则此双曲线的离心率是()A .53B .54C .377D .76.已知椭圆的焦点坐标分别为1−1,0和21,0,长轴长为4,则直线240x y +-=与椭圆的交点个数为()A .0B .1C .2D .无法确定7.椭圆可以看作圆沿定直线方向拉伸或压缩而得.如图,M 是圆O 上动点,M 在y 轴上身影为N ,则满足NP NM λ= (1λ>)的动点P 的轨迹是椭圆.若椭圆的离心率12e =,则λ=()A .2BC .2D .38.函数1y x x=+的图象如图,已知此函数的图象是以直线y x =和0x =为渐近线的双曲线,设它的离心率为e ,则2e =()A B .C .4-D .1二、多选题9.已知点()2,3M 与()0,4N 关于直线l :0Ax By C ++=对称,则下列说法正确的是()A .0AB >B .直线l 不过第四象限C .直线l 在两坐标轴上的截距之和大于零D .直线l 的倾斜角ππ,43α⎛⎫∈ ⎪⎝⎭10.已知曲线C :22142x y m m +=-+,则()A .2m =时,则C 的焦点是(1F ,(20,FB .当6m =时,则C 的渐近线方程为2y x=±C .当C 表示双曲线时,则m 的取值范围为2m <-D .存在m ,使C 表示圆11.斜率为k 的直线y kx b =+与曲线21x y y +=有公共点,则下列说法正确的是()A .最多有4个公共点B .若1k =,则公共点个数最多为2C .若2k =-,则实数b 的取值范围是(-∞D .若2b k =,且有两个公共点,则实数k 的取值范围是⎛- ⎝⎭三、填空题12.已知直线l 与直线1l :3540x y +-=和2l :3560x y ++=的距离相等,则l 的方程是.13.某圆拱(圆的一段劣弧)的示意图如图所示,该圆拱的跨度AB 是24m ,拱高OP 是4m ,在建造时,每隔2m 需要一个支柱支撑,则支柱22A P 的长度为m.14.已知椭圆22221x y a b +=(0a b >>)的离心率为23,双曲线22221(0,0)x y m n m n-=>>的离心率为32,且它们有公共焦点,P 是它们的一个公共点,若12F PF θ∠=,则cos θ=.四、解答题15.已知点()2,1P ,直线l :230x y -+=.(1)求过点P 且垂直于l 的直线方程;(2)求过点P 且在两坐标轴上截距相等的直线方程.五、单选题16.已知圆C 过点()1,1A ,()2,2B -,且圆心C 在直线50x y ++=上.(1)求圆C 的标准方程;(2)若过点()1,1P --的直线l 被圆截得的线段长度为,求直线l 的方程.六、解答题17.已知椭圆C :22143x y +=右焦点是F ,动点P 在椭圆C 上,直线l :4x =.(1)若52PF =,O 为坐标原点,求以PO 为直径的圆的方程;(2)若点P 到直线l 的距离为d ,求证:d PF为定值.18.已知双曲线C :22221x y a b-=(0a >,0b >)与双曲线22193y x -=有相同的渐近线,与椭圆22162x y +=有相同的焦点,双曲线C 的左右焦点分别为1F ,2F ,直线l 过2F 且与双曲线C 相交于A ,B 两点.(1)求双曲线C 的方程;(2)若直线l 的斜率为1,求线段AB 的长;(3)若1ABF 的面积是12,求直线AB 的方程.19.已知椭圆22221x y a b +=(0a b >>)的短轴长与焦距相等,且椭圆过点P ⎛- ⎝⎭,斜率为k 的直线l 过椭圆的右焦点,且与椭圆交于A ,B 两点,M 是线段AB 的中点,射线OM 与椭圆于点C .(1)求椭圆方程;(2)若直线12k =-,求点C 的坐标;(3)是否存在正数k ,使四边形OACB 是平行四边形?若存在,求出直线AB 的方程,若不存在,请说明理由.。

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。

湖北省武汉市二中2014-2015学年高二上学期期中考试理科数学试卷(解析版)

湖北省武汉市二中2014-2015学年高二上学期期中考试理科数学试卷(解析版)

湖北省武汉市二中2014-2015学年高二上学期期中考试理科数学试卷(解析版)一、选择题1.直线043:=-+y x l 与圆4:22=+y x C 的位置关系是 ( ) A.相交且过圆心 B.相交不过圆心 C.相切 D.相离 【答案】C 【解析】试题分析:∵圆C 的圆心为(0,0),半径2r =,而圆心到直线l 的距离2d r ===所以直线l 与圆C 相切考点:直线与圆的位置关系,点到直线的距离公式 2.已知y x ,之间的几组数据如下表假设根据上表数据所得线性回归方程为11a x b y +=, 某同学根据上表中前两组数据 求得的直线方程为22a x b y +=, 则以下结论正确的是 ( ) A.2121,a a b b >> B.2121,a a b b <> C.2121,a a b b >< D.2121,a a b b << 【答案】C 【解析】试题分析:由题意可知6n =,713,26x y == 12713043121524666267351491625366()2b +++++-⨯⨯==+++++-⨯,122930a =, 而由直线方程的求解可得22b =,把(1,0)代入可得22a =-, ∴1212,b b a a <>考点:线性回归方程的求解3.下图是一个程序框图, 则输出的结果为 ( )A.20B.14C.10D.7 【答案】A 【解析】试题分析:由程序框图知:第一次循环1,5i a ==; 第二次循环2,14i a ==; 第三次循环3,7i a ==; 第四次循环4,20i a ==; 第五次循环5,10i a ==;第六次循环6,5i a ==;……,输出的a 值的周期为5∵跳出循环的i 值为2015,∴第2014次循环的20a =. 考点:循环结构的程序框图4.统计中国足球超级联赛甲、乙两支足球队一年36次比赛中的结果如下 甲队平均每场比赛丢失5.1个球, 全年比赛丢失球的个数的标准差为2.1; 乙队全年丢失了79个球, 全年比赛丢失球的个数的方差为6.0.据此分析 ①甲队防守技术较乙队好; ②甲队技术发挥不稳定; ③乙队几乎场场失球;④乙队防守技术的发挥比较稳定. 其中正确判断的个数是 ( ) A.1 B.2 C.3 D.4 【答案】D 【解析】试题分析:因为甲队平均每场比赛丢失1.5个球,乙队全年丢失了79个球,乙队平均每场比赛丢失7912, 所以甲队技术比乙队好,故①正确;因为甲队比赛丢失球的个数的标准差为1.2,全年比赛丢失球的个数的方差为0.6.所以乙队发挥比甲队稳定,故②正确;乙队几乎场场失球,甲队表现时好时坏,故③④正确, 考点:平均数,方差,标准差5.题文天气预报说, 在今后的三天中, 每三天下雨的情况不完全相间, 每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率 用1, 2, 3, 4表示下雨, 从下列随机数表的第1行第2列开始读取直到末尾从而获得N 个数据.据此估计, 这三天中恰有两天下雨的概率近似为 ( )19 07 96 61 91 92 52 71 93 28 12 45 85 69 19 16 83 43 12 57 39 30 27 55 64 88 73 01 13 53 79 89 A.236 B.216C.41D.非ABC 的结果【答案】C【解析】 试题分析:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下36组随机数, 在20组随机数中表示三天中恰有两天下雨的有:192、193、281、245、393、125、302、011、353,共9组随机数,所以所求概率为90.2536= 考点:随机数的含义与应用6.如果圆8)()(22=-+-a y a x 上总存在到原点的距离为2的点, 则实数a 的取值范围是 ( )A.)3,1()1,3(⋃--B.)3,3(-C.[-1, 1]D.]3,1[]1,3[⋃-- 【答案】D 【解析】试题分析:圆22()()8x a y a -+-=的圆心(,)a a ,半径r =由于圆22()()8x a y a -+-=∴≤≤∴1||a ≤≤解得13a ≤≤或31a -≤≤-∴实数a 的取值范围是[3,1][1,3]-- 考点:点到直线的距离公式,圆的标准方程7.若P (A ∪B )=P (A )+P (B )=1,则事件A 与B 的关系是 ( )A.互斥不对立B.对立不互斥C.互斥且对立D.以上答案都不对 【答案】D 【解析】试题分析:若是在同一试验下,由P (A ∪B )=P (A )+P (B )=1,说明事件A 与事件B 一定是对立事件;但若在不同实验下,虽有P (A ∪B )=P (A )+P (B )=1,但事件A 和B 不一定对立,所以事件A 与B 的关系是不确定的 考点:互斥事件与对立事件 8.已知直线1+=bkxb y 与圆10022=+y x 有公共点, 且公共点的横坐标和纵坐标均为整数,那么这样的直线共有 ( )A.60条B.66条C.70条D.71条 【答案】A 【解析】 试题分析:22100x y +=,整点为(0,10)±,(6,8)±±,(8,6)±±,(10,0)±,如图,共12个点,直线1x ya b+=(a,b 为非零实数),∴直线与x,y 轴不平行,不经过原点,任意两点连线有212C 条,与x,y 轴平行的有14条,经过原点的有6条,其中有两条既过原点又与x,y 轴平行,所以共有212C +12-14-6+2=60考点:圆与圆锥曲线综合 9.我班制定了数学学习方案 星期一和星期日分别解决4个数学问题, 且从星期二开始, 每天所解决问题的个数与前一天相比, 要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同 方案共有( )A.50种B.51种C.140种D.141种 【答案】D【解析】 试题分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有01122336656463141C C C C C C C +++=种考点:排列组合问题10.如图, 在四面体ABCD 中, E, F 分别为AB, CD 的中点, 过EF 任作一个平面α分别与直线BC, AD相交于点G, H, 有下列四个结论, 其中正确的个数是( )①对于任意的平面α, 都有直线GF, EH, BD 相交于同一点;②存在一个平面0α, 使得点G 在线段BC 上, 点H 在线段AD 的延长线上;③对于任意的平面α, 它把三棱锥的体积分成相等的两部分 A.0 B.1 C.2 D.3 【答案】B 【解析】试题分析:①取AD 的中点H ,BC 的中点G ,则EGFH 在一个平面内,此时直线GF ∥EH ∥BD ,因此不正确;②不存在一个平面0α,使得点G 在线段BC 上,点H 在线段AD 的延长线上;③对于任意的平面α,当G ,H 在线段BC ,AD 上时,可以证明几何体AC-EGFH 的体积是四面体ABCD 体积的一般,故③正确. 考点:棱柱、棱台、棱锥的体积二、填空题 11.武汉2中近3年, 每年有在校学生2222人, 每年有22人考取了北大清华, 高分率稳居前“2”, 展望未9年前景美好.把三进制数3)22222222(化为九进制数的结果为 . 【答案】9(8888) 【解析】试题分析:012345673(22222222)23232323232323236560=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=∵0123656089898989=⨯+⨯+⨯+⨯,∴把三进制数3(22222222)化为九进制数的结果是9(8888)考点:进位制 12.某人有4把钥匙, 其中2把能打开门, 现随机地取1把钥匙试着开门, 不能开门就把钥匙放在旁边, 他第二次才能打开门的概率是 . 【答案】13【解析】试题分析:第二次打开门,说明第一次没有打开门,故第二次打开门的概率为221433⨯= 考点:相互独立事件的概率乘法公式 13.已知)1,0(,∈y x , 则1212222222+-+++-+++x y x y y x y x 22222+--++y x y x 的最小值为 .【答案】【解析】试题分析:从所给式子的几何意义考虑,即找点(,)x y 到(0,0),(0,1),(1,0),(1,1)四点的距离之和最小(其中)1,0(,∈y x ),显然当2x =,2y =时距离之和最小为考点:两点间距离公式的应用14.集合}1)1()1(|),{(},1|1||||),{(22≤-+-=≤-+-=y x y x B y a x y x A ,若集合∅=B A , 则实数a 的取值范围是 . 【答案】[1,3] 【解析】试题分析:先分别画出集合{(,)||||1|1}A x y x a y =-+-≤,22{(,)|(1)(1)1}B x y x y =-+-≤表示的平面图形,集合A 表示一个正方形,集合B 表示一个圆.如图所示,其中(1,1)A a +,(1,1)B a -,欲使A B =∅,只须A 或B 点在圆内即可,∴22(11)(11)1a +-+-≤或22(11)(11)1a --+-≤,解得:11a -≤≤或13a ≤≤,即13a -≤≤ 考点:简单的线性规划问题15.如图, P 为60的二面角βα--l 内一点, P 到二面角两个面的距离分别为2、3, A 、B 是二面角的两个面内的动点,则△PAB 周长的最小值为 .【答案】 【解析】 试题分析:如图,作出P 关于两个平面,αβ的对称点M 、N ,连接MN ,线段MN 与两个平面的交点坐标分别为C ,D ,连接MP ,NP ,CP ,DP ,则△PAB 的周长L=PA+PB+AB=AM+AB+BN,当A 与C 重合,B 与D 重合时,由两点只见线段最短可以得出MN 即为△PAB 周长的最小值,根据题意可知:P 到二面角两个面的距离分别为2、3,∴MP=4,NP=6,∵大小为60°的二面角l αβ--,∴∠EOF=60°,∴∠MPN=120° 根据余弦定理有:2222MN MP NP MP NP COS MPN =+-⋅⋅∠22146246()762=+-⨯⨯⨯-=∴MN =∴△PAB 周长的最小值等于考点:三角形周长的最小值求法,二面角的定义和求法.三、解答题 16.(本小题满分12分)下图是调查某地某公司1000名员工的月收入后制作的直方图.(1)求该公司员工的月平均收入及员工月收入的中位数;(2)在收入为1000至1500元和收入为3500至4000元的员工中用分层抽样的方法抽取一个容量15的样本, 员工甲、乙的月收入分别为1200元、3800元, 求甲乙同时被抽到的概率.【答案】(1)平均收入为2400,中位数为2400; (2)甲、乙同时被抽到的概率为1001【解析】试题分析:(1)利用组中值,可得该公司员工的月平均收入及员工月收入的中位数;(2)月收入在1000至1500元之间的有100人,月收入在3500元至4000元之间的有50人,由分层抽样可知甲、乙同时被抽到的概率. 试题解析:(1)可求出第一个小矩形的高度为0.0002 平均收入为=⨯+⨯+⨯+⨯+⨯+⨯375005.0325015.0275025.0225025.017502.012501.02400元 中位数为2400元(面积分为相等的两部分; (3分)(2)月收入在1000至1500元之间的有100人, 月收入在3500元至4000元之间的有50人, 由分层抽样可知, 甲、乙同时被抽到的概率为1001 考点:频率分布直方图 17.(本小题满分12分)标号为0到9的10瓶矿泉水.(1)从中取4瓶, 恰有2瓶上的数字相邻的取法有多少种? (2)把10个空矿泉水瓶挂成如下4列的形式, 作为射击的靶子, 规定每次只能射击每列最下面的一个(射中后这个空瓶会掉到地下), 把10个矿泉水瓶全部击中有几种不同的射击方案?(3)把击中后的矿泉水瓶分送给A 、B 、C 三名垃圾回收人员, 每个瓶子1角钱.垃圾回收人员卖掉瓶子后有几种不同的收入结果? 【答案】(1)35种;(2)25200;(3)66. 【解析】 试题分析:(1)取4张红卡,其中2张连在一起,组成3个组合卡,6张白卡排成一排,插入3个组合卡,有3537=C 种方法,即可得出结论;(2)一种射击方案对应于从0至9共十个数字中取2个、3个、3个、2个数字的组合,因为每组数的数字大小是固定的,数字小的挂下面,可得结论;(3)由于A 、B 、C 所得钱数与瓶子编号无关,他们所得钱数只与所得瓶子个数有关,即可得出结论 试题解析:(1)取4张红卡, 其中有2张连在一起, 组成3个组合卡, 6张白卡排成一排, 插入3个组合卡, 有3537=C 种方法, 然后在卡片上从左到右依次编号, 取出红色卡, 一种插法对应一种取数字的方法, 所以共有35种.(2)一种射击方案对应于从0至9共十个数字中取2个、3个、3个、2个数字的组合, 因为每组数的数字大小是固定的, 数字小的挂下面.所以共有252003538210=C C C .(3)由于A 、B 、C 所得钱数与瓶子编号无关, 他们所得钱数只与所得瓶子个数有关.所以66212=C .考点:考查排列、组合的实际应用18.(本小题满分12分)如图, 已知圆M ()2244x y +-=, 直线l 的方程为20x y -=,点P 是直线l 上一动点, 过点P 作圆的切线PA 、PB , 切点为A 、B .(1)当P 的横坐标为165时, 求∠APB 的大小; (2)求证 经过A 、P 、M 三点的圆N 必过定点, 并求出所有定点的坐标. 【答案】(1)∠APB =60°;(2)84(0,4),,55⎛⎫⎪⎝⎭. 【解析】试题分析:(1)由题设可知,圆M 的半径2r =,168(,)55P ,∠MAP=90°,根据MP=2r ,可得∠MPA=30°,从而可求∠APB 的大小;(2)设P 的坐标,求出经过A 、P 、M 三点的圆的方程即可得到圆过定点. 试题解析:解 (1)由题可知, 圆M 的半径r =2, 168(,)55P , 因为PA 是圆M 的一条切线, 所以∠MAP =90°又因MP=4==2r, 又∠MPA =30°, ∠APB =60°; (6分)(2)设P (2b, b ), 因为∠MAP =90°, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 方程为 ()()222244424b b b x b y +-+⎛⎫-+-=⎪⎝⎭即()22(24)40x y b x y y +--+-= 由2224040x y x y y +-=⎧⎨+-=⎩, 解得04x y =⎧⎨=⎩或8545x y ⎧=⎪⎪⎨⎪=⎪⎩, 所以圆过定点84(0,4),,55⎛⎫ ⎪⎝⎭ 考点:直线与圆的综合问题,圆过定点,19.(本小题满分12分)边长为2的正方形ABCD 中, BC F AB E ∈∈,(1)如果E 、F 分别为AB 、BC 中点, 分别将△AED 、△DCF 、△BEF 沿ED 、DF 、FE 折起, 使A 、B 、C 重合于点P.证明 在折叠过程中, A 点始终在某个圆上, 并指出圆心和半径.(2)如果F 为BC 的中点, E 是线段AB 上的动点, 沿DE 、DF 将△AED 、△DCF 折起,使A 、 C 重合于点P, 求三棱锥P -DEF 体积的最大值.【答案】(1)证明见解析,A 在以M 为圆心, AM 为半径的圆上.(2 【解析】试题分析:(1)根据三角形在折叠过程的点的变化,即可得到结论.(2)根据线面垂直的性质,结合三棱锥的体积公式即可得到结论.试题解析:(1)解:∵E 、F 分别为正方形边AB 、BC 中点, 在平面图中连接AF, BD 交于O 点, AF 交DE 于M, 可知O为三角形DEF 的垂心.三角形AED 在沿DE 折叠过程中, AM 始终垂直于DE, ∴A 在过M 且与DE 垂直的平面上, 又AM =52, ∴A 在以M 为圆心, AM 为半径的圆上. (2)∵PD ⊥PF, PD ⊥PE, ∴PD 垂直于平面PEF, 所以当三角形PEF 面积最大时, 三棱锥P -DEF 体积最大.设PE =t,α=∠EPF ,αcos 211)2(22t t t -+=+-,tt 22cos -=α 48321)22(12122-+-=--=∆t t t t t S PEF , 当34=t 时932max =V . 考点:空间几何体的折叠问题,三棱锥的体积计算20.(本小题满分14分)已知四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是边长为2的菱形, AC∩BD=O,AA 1=23, BD ⊥A 1A, ∠BAD=∠A 1AC=60°, 点M 是棱AA 1的中点.(1)求证 A 1C ∥平面BMD;(2)求证 A 1O ⊥平面ABCD;(3)求直线BM 与平面BC 1D 所成角的正弦值.【答案】(1)(2)证明详见试题分析(3【解析】试题分析:(1)连结MO ,由已知条件推导出MO//A1C,由此能证明(2)由已知条件推导出BD ⊥面A1AC ,12AO AC == (3)通过作辅助线确定直线MB 与平面1BDC 所成的角,然后求出其正弦值试题解析:(1)证明:连结MO ,∵1,AM MA AO OC ==,∴MO ∥1AC ,∵MO ⊂平面BMD ,1AC ⊄平面BMD ∴A 1C ∥平面BMD.(2)证明:∵1BD AA ⊥,BD AC ⊥,∴BD ⊥平面1A AC于是1BD AO ⊥,AC BD O =,∵AB=CD=2,∠BAD=60°,∴AO=12又∵1AA =160o AAC ∠=,∴1AO AC ⊥, 又∵1AO BD ⊥,∴1AO ⊥平面ABCD.(3)解:如图,以O 为原点,以OA 为x 轴,OB 为y 轴,1OA 为z 轴建立空间直角坐标系,由题意知1(0,0,3)A ,A ,(C (0,1,0)B ,(0,1,0)D -,∵11(AC AC ==-,∴1(C -∵3()22M,∴3()22MB =--,(0,2,0)DB =,1(1,3)BC =--, 设平面1BC D 的法向量为(,,)nx y z =,则12030n DB y n BC y z ⎧⋅==⎪⎨⋅=--+=⎪⎩,取x =(3,0,2)n =∴332cos ,MB n --<>==∴直线BM 与平面1BC D =. 考点:立体几何的证明与求解21.(本小题满分13=5+5+3分)已知点),(00y x P 是圆:C 8)2()2(22=-+-y x 内一点(C 为圆心), 过P 点的动弦AB.(1)如果)1,1(P , 72||=AB , 求弦AB 所在直线方程.(2)如果)1,1(P , 当PAC ∠最大时, 求直线AP 的方程.(3)过A 、B 作圆的两切线相交于点M , 求动点M 的轨迹方程.【答案】(1)1=y (2)1+-=x y (3)8)2)(2()2)(2(00=--+--y y x x【解析】试题分析:(1)当x AB ⊥轴时, 72=a , 此时1:=x AB , 由对称性知另一条弦所在的直线方程为1=y ;(2)由于以PC 为直径的圆在圆C 内, 所以角CAP 为锐角, 过C 作PA 的垂线, 垂足为N, 当xy zNC 最大时, 角CAP 最大;(3)求出圆C 在A 、B 处的切线方程,可得AB 的方程,点P 00(,)x y 在AB 上,即可得出结论.试题解析:(1)当x AB ⊥轴时, 72=a , 此时1:=x AB , 由对称性知另一条弦所在的直线方程为1=y(2)由于以PC 为直径的圆在圆C 内, 所以角CAP 为锐角, 过C 作PA 的垂线, 垂足为N, 当NC 最大时, 角CAP 最大, 又NC ≤PC, 所以当N 、P 重合时, PAC ∠最大, 此时PC PA ⊥, 故PA 的方程为 1+-=x y(3)因为过A 、B 的圆心的两条切线相交, 所以P 点异于圆心C.设),(,),(2211y x B y x A , ),(//y x M , 圆C 在A 、B 处的切线方程分别为 8)2)(2()2)(2(11=--+--y y x x , 8)2)(2()2)(2(22=--+--y y x x , 它们交于点M , 所以8)2)(2()2)(2(/1/1=--+--y y x x ,8)2)(2()2)(2(/2/2=--+--y y x x这两式表明 A 、B 两点在直线8)2)(2()2)(2(//=--+--y y x x 上, 即AB 的直线方程为8)2)(2()2)(2(//=--+--y y x x , P 在AB 上,所以8)2)(2()2)(2(/0/0=--+--y y x x所以M 的轨迹方程为 8)2)(2()2)(2(00=--+--y y x x考点:直线和圆的方程的应用。

2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷(含答案)

2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷(含答案)

2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知z =1−i ,则z (1−z )=( )A. −1−iB. −1+iC. 1−iD. 1+i2.已知椭圆方程为x 236+y 264=1,则该椭圆的长轴长为( )A. 6B. 12C. 8D. 163.已知椭圆C:x 23+y 22=1的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 于A 、B 两点,则△AF 1B 的周长为( )A. 2B. 4C. 23 D. 434.已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为2,则渐近线方程是( )A. y =±12xB. y =±2xC. y =±3xD. y =±33x 5.已知抛物线的焦点在直线x−2y−4=0上,则此抛物线的标准方程是( )A. y 2=16xB. x 2=−8yC. y 2=16x 或x 2=−8yD. y 2=16x 或x 2=8y6.“a =3”是“直线l 1:ax−2y +3=0与直线l 2:(a−1)x +3y−5=0垂直”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.已知动圆C 与圆C 1:(x−3)2+y 2=4外切,与圆C 2:(x +3)2+y 2=4内切,则动圆圆心C 的轨迹方程为( )A. 圆B. 椭圆C. 双曲线D. 双曲线一支8.一个工业凹槽的截面是一条抛物线的一部分,它的方程是x 2=4y,y ∈[0,10],在凹槽内放入一个清洁钢球(规则的球体),要求清洁钢球能擦净凹槽的最底部,则清洁钢球的最大半径为( )A. 12B. 1C. 2D. 52二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试卷高 二 数 学 2024.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆的圆心和半径分别是( )A .,1B .,3C .,2D .,22.经过两点,的直线的斜率为( )A .B .C .D .3.椭圆x 225+y 216=1的焦点为为椭圆上一点,若,则( )A .B .C .D .4.已知双曲线的离心率大于实轴长,则的取值范围是( )A .B .C .D.5.两平行直线与之间的距离为( )ABCD6.已知圆关于直线对称,则实数( )A .1或B .1C .3D .或37.已知抛物线C :y 2=2px (p >0)的焦点为,若抛物线上一点满足|MF |=2,∠OFM =60°,则( )A .3B .4C .6D .88.如图,双曲线的左右焦点分别为、,过的直线与该双曲线的两支分别交于、两点(在线段上),⊙与⊙分别为与的内切圆,其半径分别为、,则的取值范围是( )A .B .C .D .(0,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A .若,且直线不经过第二象限,则,.()()22232x y +++=()2,3-()2,3-()2,3--()2.3-(2,7)A (4,6)B 12-2-12212,,F F P 13PF =2PF =435722:1y C x m -=m (3,)+∞)+∞(0,3)320mx y --=4670x y --=22:330C x y mx y +-++=:0l mx y m +-=m =3-1-F M p =2218y x -=1F 2F 1F l A B A 1F B 1O 2O 12AF F △2ABF △1r 2r 12r r 1132⎛⎫ ⎪⎝⎭,1233⎛⎫⎪⎝⎭,1223⎛⎫ ⎪⎝⎭,0abc ≠0ax by c ++=0ab >0bc <B .方程()表示的直线都经过点.C .,直线不可能与轴垂直.D .直线的横、纵截距相等.10.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P,使得C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则.11.已知集合.由集合中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论,正确的有( )A .白色“水滴”区域(含边界)任意两点间距离的最大值为B .在阴影部分任取一点,则到坐标轴的距离小于等于3.C .阴影部分的面积为.D .阴影部分的内外边界曲线长为.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的离心率为2,则其两条渐近线所成的锐角的大小为 .13.已知椭圆的左、右焦点分别为F 1、F 2,过点的直线交椭圆于A 、B 两点,若,则该椭圆的离心率为 .14.已知为曲线y =1+4―x 2上的动点,则的最大值为 .四、解答题:本题共5小题,共77分.解答题写出文字说明、证明过程或演算步骤.15.已知△ABC 的顶点坐标是为的中点.(1)求中线的方程;(2)求经过点且与直线平行的直线方程.16.已知双曲线C :x 2a2―y 2b 2=1(a >0,b >0)的离心率为为双曲线的右焦点,且点到直线的()()21250x y λλ++--=R λ∈()2,1m ∈R 220m x y ++=y 3310x y +-=:44C x x y y =-1F 2(0,F 124PF PF -=2y x =2y x =±45QA QB ⋅=(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣P 1M M 8π8π()222210,0y x a b a b -=>>22221(0)x y a b a b+=>>2F 1AB F B ⊥,14sin 5F AB ∠=(),P a b 223a b a b --++()()()2,0,6,2,2,3,A B C M --AB CM B AC ()5,,03F c F 2a x c=距离为.(1)求双曲线的方程;(2)若点,点为双曲线左支上一点,求的最小值.17.已知,是抛物线:上的两点.(1)求抛物线的方程;(2)若斜率为的直线经过的焦点,且与交于,两点,求的最小值.18.椭圆与椭圆:有相同的焦点,且经过点.(1)求椭圆的方程;(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.①证明:动直线恒过轴上的某个定点,并求出该定点的坐标.②求△OMN 面积的最大值.19.定义:M 是圆C 上一动点,N 是圆C 外一点,记的最大值为m ,的最小值为n ,若,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“”的“钻石点”.已知圆165C ()12,0A P C PA PF +()6,2A m +()24,8B m +C ()221y px p =>C ()0k k ≠l C C P Q 2PQ k +C 1C 2212x y +=31,2Q ⎛⎫ ⎪⎝⎭C C B l l C M N BM BN l x MN MN 2m n =E F -A :,P 为圆A 的“黄金点”(1)求点P 所在曲线的方程.(2)已知圆B :,P ,Q 均为圆“”的“钻石点”.①求直线的方程.②若圆H 是以线段为直径的圆,直线l :与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分?若存在,求出点W 的坐标;若不存在,请说明理由.()()221113x y +++=()()22221x y -+-=A B -PQ PQ 13y kx =+IWJ ∠江苏省扬州中学2024-2025学年第一学期期中试卷高二数学(参考答案)2024.11参考答案:题号12345678910答案C A D A C C A C BD CD 题号11 答案ABD8.【详解】设,∴S △AF 1F 2=12r 1(8+2m )=(4+m )r 1,S △ABF 2=12r 2(2m +2p )=(m +p )r 2,.在△与△中:,即,,当双曲线的斜率为正的渐近线时,取最大,此时,,当与轴重合时,取最小,此时,经上述分析得:,.故选:C.10.【详解】当时,曲线,即;当时,曲线,即;不存在;时,曲线,即;时,曲线,即;画出图形如右:对于A ,由图可得A 错误,故A 错误;对于B ,方程是以为上下焦点的双曲线,当时,曲线C 存在点P ,使得,故B 错误;对于C ,一三象限曲线的渐近线方程为,所以直线与曲线C 没有交点,故C 正确;对于D ,设,设点在直线上,点在直线,11222,,6,2,2AF m BA p F F AF m BF m p ====+=+-()()11224m r S m S p m p r +∴==+12AF F 2AF B 122cos cos F AF F AB ∠=-∠()()()()()2222222262222224m m m p m p m p m m m pm++-++-+-=-⇒=⋅⋅+⋅+⋅-32212324444444m m r m mp m m m r p mp m m m++-∴===+++--//l m p →+∞404m m ∴-=⇒=l x m 2m =()2,4m ∈1212,23r r ⎛⎫∴∈ ⎪⎝⎭0,0x y ≥>22:44C x y =-2214y x -=0,0x y ≥<22:44C x y =--2214y x +=-0,0x y ≤≥22:44C x y -=-2214y x +=0,0x y <≤22:44C x y -=--2214y x -=2214y x -=12,F F 0,0x y ≥>214PF PF -=2y x =2y x =()00,Q x y A 2y x =B 2y x =-又点Q 是曲线C 上在第三象限内的一点,代入曲线方程可得,故D 正确;故选:CD.11.【详解】对于A ,由于,令时,整理得,解得,“水滴”图形与轴相交,最高点记为A ,则点A 的坐标为,点,白色“水滴”区域(含边界)任意两点间距离的最大值为,故A 正确;对于B ,由于,整理得:,所以,所以到坐标轴的距离为或,因为,所以,,所以到坐标轴的距离小于等于3,故B正确;对于C ,由于,令时,整理得,解得,因为表示以为圆心,半径为的圆,则,且,则在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以为圆心,半径为1的半圆,阴影的上半部分的外边界是以为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以为圆心,半径为2的圆弧,设,则,即AN 所对的圆心角为,同理AM 所在圆的半径为2,所对的圆心角为,阴影部分在第四象限的外边界为以为圆心,半径为2的圆弧,设,可得,DG 所对的圆心角为,同理DH 所在圆的半径为2,所对的圆心角为,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,22004455x y QA QB -⋅==22(cos )(sin )4x y θθ-+-=0x =[]32sin 0,2y yθ=-∈[1]y ∈- y (0,1)B -||1AB =22(cos )(sin )4x y θθ-+-=2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩2cos cos ,2sin sin )(M αθαθ++M ||2cos cos αθ+|2sin sin |αθ+cos [1,1],sin [0,1]θθ∈-∈2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=M 22(cos )(sin )4x y θθ-+-=0y =[]32cos 2,2y yθ=-∈-[3,1][1,3]x ∈-- 22(cos )(sin )4x y -+-=θθ()cos ,sin Q θθ2r =13r OQ OP OQ r =-≤≤+=0πθ≤≤()cos ,sin Q θθO O ()1,0M -()1,0N 2AN AM MN ===π3π3()1,0N ()()3,0,3,0G H -π1,3ON OD OND ==∠=2π32π3所以它的面积是.轴上方的半圆(包含阴影和水滴的上半部分)的面积为,第四象限的阴影和水滴部分面积可以看作是一个直角三角形和一个扇形的面积的和,且等于所以阴影部分的面积为C 错误;对于D ,轴上方的阴影部分的内外边界曲线长为,轴下方的阴影部分的内外边界曲线长为,所以阴影部分的内外边界曲线长为,故D 正确.故选:ABD.12.13【详解】如图,设,因为,所以.由椭圆定义可知,,由,可得,所以.在Rt △F 1BF 2中,由,可得,即得,故得14.【详解】曲线,由于在曲线上,令,则,(其中),,又,,当时取得最大值15.【详解】(1)因为,所以,212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯=⎝V 弓形半圆x 219π3π22⨯=2114π21π323⨯⨯+=941116π2(πππ2363++-=+x 1π4132π3223πππ2333⨯⨯+⨯⨯=+=x 111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=13π11π8π33+=π314BF t =1AB F B ⊥,14sin 5F AB ∠=15,3AF t AB t ==21212=25,224AF a AF a t BF a BF a t =--=-=-22493AB AF BF a t t =+=-=13t a =1242,33BF a BF a ==2221212||||||F F BF BF =+222424(()33a a c =+2295c a =c e a ==9+1y =()()22141x y y +-=≥(),P a b ()2cos ,0π12sin a b θθθ=⎧≤≤⎨=+⎩()()222232cos 12sin 32cos 12sin a b a b θθθθ--++=---+++2cos 2sin 454sin 42sin 2cos 54sin θθθθθθ=--++=+-++()96sin 2cos 9θθθϕ=+-=+-sin ϕ=cos ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭[][]0,π,πθθϕϕϕ∈∴-∈-- π,02ϕ⎛⎫-∈- ⎪⎝⎭ππ,π2ϕ⎛⎫-∈ ⎪⎝⎭∴π2θϕ-=223a b a b --++9+()()2,0,6,2A B -()4,1M -故的方程是,即;(2)因为直线的斜率,所以经过点且与直线平行的直线方程为,即.16.【详解】(1)由题意知,解得,则,所以双曲线的方程为.(2)记双曲线的左焦点为,则,可得,当三点共线时,最小,且最小值为.故的最小值为.17.【详解】(1)∵,是抛物线C :上的两点,∴,则,整理得,解得, 当时,,解得,不合题意;当时,,解得.故抛物线C 方程为y 2=6x .(2)由(1)知C 的焦点为,故直线l 的方程为,联立,得,必有,设,,则,∴, ∴,即所以的最小值为18.【详解】(1)椭圆:的焦点坐标为,所以椭圆的焦点坐标也为,即得焦距为,∵椭圆过点,∴,CM 143124y x +-=+--2350x y +-=AC 303224ACk -==---B AC ()3264y x +=--34100x y +-=253165c a a c c ⎧=⎪⎪⎨⎪-=⎪⎩35a c =⎧⎨=⎩4b ==C 221916x y -=C 0F ()05,0F -0026PA PF PA PF a PA PF +=++=++0,,P F A 0PA PF +017AF =PA PF +17623+=()6,2A m +()24,8B m +()221y px p =>()()22212,848m p m p⎧+=⎪⎨+=⎪⎩()()22842m m +=+216m =4m =±4m =-()21224p m =+=113p =<4m =()212236p m =+=31p =>3,02⎛⎫⎪⎝⎭32y k x ⎛⎫=- ⎪⎝⎭2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩()222293604k x k x k -++=0∆>()11,P x y ()22,Q x y 212236k x x k ++=2122236636k PQ x x p k k+=++=+=+222666PQ k k k +=++≥+226k k=2k =2PQ k +6+1C 2212x y +=()1,0±C ()1,0±22c =C 31,2Q ⎛⎫⎪⎝⎭24a +=∴,,∴椭圆的标准方程为.(2)①设直线:(),由,得,设M (x 1,y 1),N (x 2,y 2),所以,,所以,因为直线和的斜率互为相反数,所以,所以,所以,所以.即,所以,因为,所以,所以动直线恒过轴上的定点②由①知,,且,即,又S △OMN =12⋅|OT |⋅|y 1―y 2|=12⋅4⋅(y 1+y 2)2―4y1y 2令,则,∴S △OMN=24⋅n (3n +16)2≤24⋅n (2⋅3n⋅16)2=24⋅n 4⋅3n ⋅16=3(当且仅当时取“=”)∴(S △OMN )max =3.19.【详解】(1)因为点P 为圆A 的“黄金点”,即,所以点P的轨迹是以AP 所在曲线的方程为(2)①因为P 为圆B 的“黄金点”,则所以,即点P 在圆上,则P 是圆和的交点.因为P ,Q 均为圆“”的“钻石点”,所以直线即为圆和的公共弦所在直线,2a =b =22143x y +=l x my t =+0m ≠223412x my t x y =+⎧⎨+=⎩()2223463120m y mty t +++-=122634mt y y m +=-+212231234t y y m -=+()()()()1221121212111111MF NF y x y x y yk k x x x x -+-+=+=----()()()()1221121111y my t y my t x x +-++-=--BM BN 0MB NB k k =+()()()()12211211011y my t y my t x x +-++-=--()()1221110y my t y my t +-++-=()()1212210my y t y y +-+=()22231262103434t mtm t m m --⨯+-⨯=++()640m t -=0m ≠4t =l x ()4,0T 1222434m y y m +=-+1223634y y m =+()()22Δ24434360m m =-+⋅>24m >224==240n m =->24m n =+316n ==PA =()()2211 3.x y +++=()121PB PB +=-||3PB =()()22229x y -+-=()()22113x y +++=()()22229x y -+-=A B -PQ ()()22113x y +++=()()22229x y -+-=两圆方程相减可得,故直线的方程为.②设的圆心为的圆心为,半径为.直线的方程为,得的中点坐标为,点S 到直线,则,所以圆H 的方程为.假设轴上存在点满足题意,设,.若轴平分,则,即,整理得又,所以代入上式可得,整理得①,由可得,所以x 1+x 2=―23k k 2+1,x 1x 2=―89k 2+1,代入①并整理得,此式对任意的都成立,所以.故轴上存在点,使得轴平分.0x y +=PQ 0x y +=22(1)(1)3x y +++=(11),S --()()22229x y -+-=(2,2)T 3ST y x =PQ (0,0)0x y +==12PQ ==221x y +=y (0),W t ()()1122,,,I x y J x y 120x x ≠y IWJ ∠0IM JW k k +=12120y t y tx x --+=()()21120.x y t x y t -+-=11223,113y kx y kx =+=+211211)33(()0x kx t x kx t +-++-=()12121203kx x t x x ⎛⎫+-+= ⎪⎝⎭22131y kx x y ⎧=+⎪⎨⎪+=⎩()22281039k x kx ++-=2203k kt -+=k 3t =y ()0,3W y IWJ ∠。

2023-2024学年人大附中高二数学上学期期中考试卷附答案解析

2023-2024学年人大附中高二数学上学期期中考试卷附答案解析

2023-2024学年人大附中高二数学上学期期中考试卷(试卷满分150分,考试时间120分钟)2023.11第I 卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.已知平面//α平面β,直线a α⊂,直线b β⊂,则a 与b 的位置关系是()A .平行B .平行或异面C .异面D .异面或相交2.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是().A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-3.一个水平放置的平面图形OAB 用斜二测画法作出的直观图是如图所示的等腰直角O A B '''△,其中A B ''=,则平面图形OAB 的面积为()A .B .C .D .4.已知1cos ,3a b 〈〉=-,则下列说法错误的是()A .若,a b分别是直线12,l l 的方向向量,则12,l l所成角余弦值是13B .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角正弦值是13C .若,a b分别是平面ABC 、平面BCD 的法向量,则二面角A BC D --的余弦值是13D .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角余弦值是223.5.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切,过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是A .B .C .D .6.如图,平行六面体1111ABCD A B C D -的底面ABCD 是矩形,其中2AB =,4=AD ,13AA =,且1160A AD A AB ∠=∠=︒,则线段1AC 的长为()A .9B C D .7.如图,已知大小为60︒的二面角l αβ--棱上有两点A ,B ,,AC AC l α⊂⊥,,BD BD l β⊂⊥,若3,3,7AC BD CD ===,则AB 的长度()A .22B .40C .D 8.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为A .41πB .42πC .43πD .44π9.如图,1111ABCD A B C D -是棱长为4的正方体,P QRH -是棱长为4的正四面体,底面ABCD ,QRH 在同一个平面内,//BC QH ,则正方体中过AD 且与平面PHQ 平行的截面面积是A ..C ..10.《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意思是:如图,沿正方体对角面11A B CD 截正方体可得两个壍堵,再沿平面11B C D 截壍堵可得一个阳马(四棱锥1111D A B C D -),一个鳖臑(三个棱锥11D B C C -),若P 为线段CD 上一动点,平面α过点P ,CD ⊥平面α,设正方体棱长为1,PD x =,α与图中鳖臑截面面积为S ,则点P 从点D 移动到点C 的过程中,S 关于x 的函数图象大致是()A .B .C .D .二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11.已知正方形ABCD 的边长为2,则AB AC =+ .12.已知圆锥的轴截面是边长为2的等边三角形,则此圆锥的表面积为.13.平面与平面垂直的判定定理符号语言为:.14.在移动通信中,总是有很多用户希望能够同享一个发射媒介,进行无线通信,这种通信方式称为多址通信.多址通信的理论基础是:若用户之间的信号可以做到正交,这些用户就可以同享一个发射媒介.在n 维空间中,正交的定义是两个n 维向量()()1212,,,,,,,n n a x x x b y y y =⋯=⋯满足11220n n x y x y x y ++⋯+=.已知某通信方式中用户的信号是4维非平向量,有四个用户同享一个发射媒介,已知前三个用户的信号向量为22(0,0,0,1),(0,0,1,0),,,0,022⎫⎪⎪⎝⎭.写出一个满足条件的第四个用户的信号向量.15.一个三棱锥的三个侧面中有一个是边长为2的正三角形,另两个是等腰直角三角形,则该三棱锥的体积可能为.三、解答题(本大题共3小题,共35分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.已知空间直角坐标系中四个点的坐标分别为:(1,1,1),(1,2,3),(4,5,6),(7,8,)A B C D x .(1)求||AC ;(2)若AB CD ⊥ ,求x 的值;(3)若D 点在平面ABC 上,直接写出x 的值.17.如图所示,在四棱锥P ABCD -中,BC 平面PAD ,12BC AD =,E 是PD 的中点.(1)求证:BC AD ∥;(2)求证:CE 平面PAB ;(3)若M 是线段CE 上一动点,则线段AD 上是否存在点N ,使MN 平面PAB ?说明理由.18.如图所标,已知四棱锥E ABCD -中,ABCD 是直角梯形,90ABC BAD ∠=∠=︒,平面EAB ⊥平面ABCD ,63AB BC BE AD AE =====,,(1)证明:BE ⊥平面ABCD ;(2)求B 到平面ADE 的距离;(3)求二面角A DE C --的余弦值.第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.关于空间中的角,下列说法中正确的个数是()①空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦②空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦③空间中二面角的平面角的取值范围是π0,2⎡⎤⎢⎣⎦④空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦A .1B .2C .3D .420..如图,在正方形ABCD 中,点E 、F 分别为边BC ,AD 的中点.将ABF △沿BF 所在直线进行翻折,将CDE 沿DE 所在直线进行翻折,在翻折的过程中,下列说法正确的是()A .点A 与点C 在某一位置可能重合B .点A 与点C 3ABC .直线AB 与直线DE 可能垂直D .直线AF 与直线CE 可能垂直21.在正方体ABCD A B C D -''''中,P 为棱AA '上一动点,Q 为底面ABCD 上一动点,M 是PQ 的中点,若点,P Q 都运动时,点M 构成的点集是一个空间几何体,则这个几何体是()A .棱柱B .棱台C .棱锥D .球的一部分22.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11A C 的中点,Q 为线段1BC 上的动点,则下列结论正确的是()A .存在点Q ,使得//PQ BDB .存在点Q ,使得PQ ⊥平面11AB C DC .三棱锥Q APD -的体积是定值D .存在点Q ,使得PQ 与AD 所成的角为π6二、填空题(共3小题,每小题5分,共15分.把答案填在答题纸上的相应位置.)23.如图,在边长为2正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在正方体表面上移动,且满足11B P D E ⊥,则点1B 和满足条件的所有点P 构成的图形的周长是.24.已知正三棱柱111ABC A B C -的所有侧棱长及底面边长都为2,D 是1CC 的中点,则直线AD 与平面1A BD所成角的正弦值为.25.点O 是正四面体1234A A A A 的中心,()11,2,3,4i OA i ==.若11223344OP OA OA OA OA λλλλ=+++ ,其中()011,2,3,4i i λ≤≤=,则动点P 扫过的区域的体积为.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤.请将答案写在答题纸上的相应位置.)26.已知自然数集()*{1,2,3,,}N A n n =∈ ,非空集合{}()*12,,,N m E e e e A m =⊆∈ .若集合E 满足:对任意a A ∈,存在,(1)i j e e E i j m ∈≤≤≤,使得,,{1,0,1}i j a xe ye x y =+∈-,称集合E 为集合A 的一组m 元基底.(1)分别判断下列集合E 是否为集合A 的一组二元基底,并说明理由:①{1,2},{1,2,3,4,5}E A ==;②{2,3},{1,2,3,4,5,6}E A ==.(2)若集合E 是集合A 的一组m 元基底,证明:(1)n m m ≤+;(3)若集合E 为集合{1,2,3,,19}A = 的一组m 元基底,求m 的最小值.1.B【分析】利用直线与平面的位置关系判断即可.【详解】因为平面//α平面β,直线a α⊂,直线b β⊂,所以a 与b 没有交点,即a 与b 可能平行,也可能异面.故选:B.2.B【分析】根据空间向量的坐标表示可得.【详解】由空间向量的坐标表示可知,AB OB OA =-,所以()()()2,5,33,1,05,4,3OB AB OA =+=-+-=-,所以点B 的坐标为()5,4,3-.故选:B 3.B【分析】先求得原图形三角形的底与高的值,进而求得原图形的面积【详解】因为在直观图中,O A A B ''''=O B ''==,,高为2⨯=故原图形的面积为12=.故选:B4.C【分析】根据向量法逐一判断即可.【详解】对于A :因为直线与直线所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以12,l l 所成角余弦值为1cos ,3a b 〈〉= ,故A 正确;对于B :因为直线与平面所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以l 与α所成角正弦值3s n 1cos ,i a b θ〈=〉= ,l 与α所成223=,故BD 正确;对于C :因为二面角的平面角所成角范围为[)0,p,所以二面角A BC D --的余弦值可能为负值,故C 错误;故选:C 5.B【分析】设三棱锥S ABC -的各棱长均相等,由,SC SH 确定的平面,得到截面SCD ∆,再由正四面体的性质和图象的对称性加以分析,同时对照选项,即可求解.【详解】如图所示,设三棱锥S ABC -的各棱长均相等,球O 是它的内切球,设H 为底面ABC ∆的中心,根据对称性可得内切球的球心O 在三棱锥的高SH 上,由,SC SH 确定的平面交AB 于D ,连接,AD CD ,得到截面SCD ∆,截面SCD 就是经过侧棱SC 与AB 中点的截面,平面SCD 与内切球相交,截得的球大圆如图所示,因为SCD ∆中,圆O 分别与,AD CE 相切于点,E H ,且SD CD =,圆O 与SC 相离,所对照各个选项,可得只有B 项的截面符合题意,故选B.【点睛】本题主要考查了正四面体的内切球的截面问题,其中解答中正确理解组合体的结构特征是解答的关键,着重考查了正四面体的性质,球的性质的应用,属于中档试题.6.C【分析】由11AC AC CC =+ ,两边平方,利用勾股定理以及数量积的定义求出2211,,2AC AC CC CC ⋅ 的值,进而可得答案【详解】由11AC AC CC =+ ,2222211111()2AC AC AC CC AC AC CC CC ==+=+⋅+ .因为底面ABCD 是矩形,2AB =,4=AD ,13AA =,所以2241620=AC AC =+= ,219CC = ,因为1160A AB A AD ∠=∠=,所以1123cos 603,43cos 606AB CC BC CC ⋅=⨯⨯=⋅=⨯⨯=所以()1111822()2()=23+6=1AC CC AB BC CC AB CC BC CC ⋅=+⋅=⋅+⋅,2112018947,47AC AC =++==故选:C.7.C【分析】过A 作AE BD 且AE BD =,连接,CE DE ,易得60CAE ︒∠=,通过线面垂直的判定定理可得ED ⊥平面AEC ,继而得到ED EC ⊥,由勾股定理即可求出答案.【详解】解:过A 作AE BD 且AE BD =,连接,CE DE ,则四边形ABDE 是平行四边形,因为BD AB ⊥,所以平行四边形ABDE 是矩形,因为BD l ⊥,即AE l ⊥,而AC l ⊥,则CAE ∠是二面角l αβ--的平面角,即60CAE ︒∠=,因为3BD AE AC ===,即ACE △为正三角形,所以3CE =,因为,ED AE l AC ⊥⊥,即ED AC ⊥,,,AE AC A AE AC ⋂=⊂平面AEC ,所以ED ⊥平面AEC ,因为EC ⊂平面AEC ,所以ED EC ⊥,所以在Rt EDC中,ED =AB ED ==故选:C8.A【解析】由于图形的对称性,只要求出一组正四棱柱的体对角线,即是外接圆的直径.【详解】由题意,该球形容器的半径的最小值为并在一起的两个长方体体对角线的一半,即为14122=,∴该球形容器体积的最小值为:42π⨯=41π.故选:A.【点睛】本题考查了几何体的外接球问题,考查了空间想象能力,考查了转化思想,该类问题的一个主要方法是通过空间想象,把实际问题抽象成空间几何问题,属于中档题.9.C【分析】首先要根据面面平行的性质定理确定截面的形状,再根据正四面体的性质、等角定理等确定点,E F 的具体位置、AE 的长度,从而求出截面面积.【详解】设截面与1111,A B D C 分别相交于点,E F 则//EF AD ,过点P 作平面QRH 的垂线,垂足为O ,则O 是底面QRH的中心.设OR HQ G ⋂=,则EAB PGO ∠=∠,又因为4323RG RO OG ===,3PO ==,所以22sin sin 3PO EAB PGO PG ∠=∠==,所以43EA EA =⇒=,所以四边形AEFD的面积4S =⨯=选C.【点睛】本题考查正棱锥的平行关系、等角定理,考查空间想象能力,突显了直观想象的考查.属中档题.10.B【分析】分析得出11PMN CB C △△,可得出1PNxCC =,求出PMN S △关于x 的函数关系式,由此可得出合适的选项.【详解】设M 、N 分别为截面与1DB 、1DC 的交点,DP x =,01x ≤≤,CD ⊥ 平面PMN ,CD ⊥平面11B CC ,所以,平面//PMN 平面11B CC ,因为平面1DCC 平面PMN PN =,平面1DCC 平面111B CC CC =,所以,1//PN CC ,同理可得11//MN B C ,1//PM B C ,所以,111111PN DN MN DM PM DP x CC DC B C DB B C DC ======,所以,11PMN CB C △△,易知111111122CB C S B C CC =⋅=△,因此,112212PMN CB C S x S x ==△△.故选:B.【点睛】关键点点睛:本题考查函数图象的辨别,解题的关键就是充分分析图形的几何特征,以此求出函数解析式,结合解析式进行判断.11.【分析】根据向量数量积以及模长公式即可求解.【详解】由题意可知π2,,4AB AC AB AC ===,24,2AB AC ∴=⋅=⨯故AB AC +===故答案为:12.3π【分析】由轴截面可确定圆锥底面半径和母线长,代入圆锥表面积公式即可.【详解】 圆锥轴截面是边长为2的等边三角形,∴圆锥底面半径1r =,圆锥母线长2l =,∴圆锥的表面积2ππ2ππ3πS rl r =+=+=.故答案为:3π.13.,a a αβαβ⊂⊥⇒⊥(答案不唯一)【分析】根据“平面与平面垂直的判定定理”写出正确答案.【详解】平面与平面垂直的判定定理:,a a αβαβ⊂⊥⇒⊥.故答案为:,a a αβαβ⊂⊥⇒⊥(答案不唯一)14.()1,1,0,0(答案不唯一)【分析】根据“正交”的定义列方程,从而求得正确答案.【详解】设满足条件的第四个用户的信号向量是(),,,x y z u ,则()()()(0,0,0,1),,,0(0,0,1,0),,,0,,,,022x y z u x y z u x y z u ⎧⎪⋅=⎪⎪⋅=⎨⎪⎛⎫⎪-⋅=⎪ ⎪⎪⎝⎭⎩,则00022u z x y ⎧⎪=⎪⎪=⎨⎪-=⎪⎩,则0,u z x y ===,故一个满足条件的信号向量是()1,1,0,0.故答案为:()1,1,0,0(答案不唯一)15.(或3或,答案不唯一)【分析】根据已知条件进行分类讨论,结合三棱锥的体积公式求得正确答案.【详解】(1)BCD △是等边三角形,且,AB AC AD AC ⊥⊥,如下图所示,由于,,AB AD A AB AD =⊂ 平面ABD ,所以AC ⊥平面ABD,2,BC BD CD AB AD AC ======222,AB AD BD AB AD +=⊥,则1132A BCD V -=⨯.(2)BCD △是等边三角形,且,AB BD AB BC ⊥⊥,如下图所示,由于,,BD BC B BD BC ⋂=⊂平面BCD ,所以AB ⊥平面BCD ,2BC BD CD AB ====,所以112322sin 602323A BCD V -=⨯⨯⨯⨯︒⨯=.(3)BCD △是等边三角形,且,AB BD CD AC ⊥⊥,如下图所示,取AD 的中点O ,连接,OB OC ,则2BC BD CD AB ====,22AD =122OB OC AD ===222,OB OC BC OB OC +=⊥,,,,,AD OB AD OC OB OC O OB OC ⊥⊥⋂=⊂平面OBC ,所以AD ⊥平面OBC .所以112222232A BCD V -⎛=⨯⨯ ⎝.故答案为:23(或23或23,答案不唯一).16.(1)92x =(3)9x =【分析】(1)根据空间向量的模求得正确答案.(2)根据向量垂直列方程,化简求得x 的值.(3)根据向量共面列方程,从而求得x 的值.【详解】(1)()3,4,5,AC AC ===(2)()()0,1,2,3,3,6AB CD x ==-,由于AB CD ⊥ ,所以3212290AB CD x x ⋅=+-=-= ,解得92x =.(3)()()0,1,2,3,4,5AB AC ==,设AD aAB bAC =+ ,即()()()()6,7,10,,23,4,53,4,25x a a b b b b a b a b -=+=++,所以6374125ba b x a b =⎧⎪=+⎨⎪-=+⎩,解得1,2,9a b x =-==.17.(1)证明见解析(2)证明见解析(3)存在,证明见解析【分析】(1)根据线面平行的性质定理即可证明;(2)由中位线、线面平行的性质可得四边形BCEF 为平行四边形,再根据线面平行的判定即可证明;(3)根据线面、面面平行的性质定理和判断定理即可判断存在性.【详解】(1)在四棱锥P ABCD -中,BC 平面PAD ,BC ⊂平面ABCD ,AD ⊂平面PAD ,平面ABCD ⋂平面PAD AD =,所以BC AD ∥;(2)如下图,取F 为AP 中点,连接,EF BF ,由E 是PD 的中点,所以EF AD ∥且12EF AD =,由(1)知BC AD ∥,又12BC AD =,所以EF BC ∥且EF BC =,所以四边形BCEF 为平行四边形,故CE BF ∥,而CE ⊂平面PAB ,BF ⊄平面PAB ,则CE 平面PAB .(3)取AD 中点N ,连接CN ,EN ,因为E ,N 分别为PD ,AD 的中点,所以EN PA ∥,因为EN ⊄平面PAB ,PA ⊂平面PAB ,所以EN 平面PAB ,线段AD 存在点N ,使得MN 平面PAB ,理由如下:由(2)知:CE 平面PAB ,又CE EN E = ,CE ⊂平面CEN ,EN ⊂平面CEN ,所以平面CEN 平面PAB ,又M 是CE 上的动点,MN ⊂平面CEN ,所以MN 平面PAB ,所以线段AD 存在点N ,使得MN 平面PAB .18.(1)证明详见解析(2)3222-【分析】(1)通过证明BE AB ⊥,结合面面垂直的性质定理证得BE ⊥平面ABCD.(2)建立空间直角坐标系,利用向量法求得B 到平面ADE 的距离.(3)利用向量法求得二面角A DE C --的余弦值.【详解】(1)由于222AB BE AE +=,所以BE AB ⊥,由于平面EAB ⊥平面ABCD ,且交线为AB ,BE ⊂平面EAB ,所以BE ⊥平面ABCD .(2)由于BC ⊂平面ABCD ,所以BE BC ⊥,所以,,BC AB BE 两两相互垂直,由此建立如图所示空间直角坐标系,则()()()()6,0,0,0,6,0,0,0,6,3,6,0C A E D,故()()3,0,0,0,6,6AD AE==-,设平面ADE的法向量为(),,m x y z=,则30660m AD xm AE y z⎧⋅==⎪⎨⋅=-+=⎪⎩,故可设()0,1,1m=,又()0,6,0BA=,所以B到平面ADE的距离为m BAm⋅==.(3)由(2)得平面ADE的法向量为()0,1,1 m=.而()()3,6,0,3,6,6CD ED=-=-,设平面CDE的法向量为(),,n a b c=,则3603660n CD a bn ED a b c⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,故可设()2,1,2n=,由图可知二面角A DE C--为钝角,设为θ,则cos2m nm nθ⋅=-==-⋅.19.C【分析】由空间中直线与直线、直线与平面、平面与平面所成角范围判断即可.【详解】对于①:由空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知①正确;对于②:由空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦,可知②正确;对于③:空间中二面角的平面角的取值范围是[]0,π,可知③错误;对于④:空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知④正确;故选:C20.D【分析】将ABF△沿BF所在直线进行翻折,将CDE沿DE所在直线进行翻折,在翻折过程中A,C的运动轨迹分别是圆,AB,AF是以BF为旋转轴的圆锥侧面;CE,CD是以DE为旋转轴的圆锥侧面;【详解】由题意,在翻折过程中A,C的运动轨迹分别是两个平行的圆,所以点A与点C不可能重合,故选项A错误;点A与点C的最大距离为正方形的对角线AC=,故选项B错误;由题易知直线BF与直线DE平行,所以直线AB与直线DE所成角和直线AB与直线BF所成角相等,显然直线AB与直线BF不垂直,故选项C错误;由题在正方形中直线AF 与直线CE 平行,设翻折后点A 为1A ,由题易知初始位置ππ,42AFB ⎛⎫∠∈ ⎪⎝⎭,当ABF △沿BF 所在直线翻折到与平面BEDF 重合时,1π2,π2A FA AFB ⎛⎫∠=∠∈ ⎪⎝⎭所以在此连续变化过程中必存在1π2A FA ∠=,即1A F AF ⊥,所以1A F CE ⊥,所以翻折过程中,直线AF 与直线CE 可能垂直,故选项D 正确.故选:D.21.A【分析】先讨论P 点与A 点重合,M 点的轨迹,再分析把P 点从A 点向上沿1AA 移动,在移动的过程中M 点的轨迹,从而可得出结论.【详解】解:若P 点与A 点重合,设,AB AD 的中点分别为,E F ,移动Q 点,则此时M 点的轨迹为以,AE AF 邻边的正方形,再将P 点从A 点向上沿1AA 移动,在移动的过程中可得M 点的轨迹是将以,AE AF 邻边的正方形沿1AA 向上移动,最后当点P 与1A 重合时,得到最后一个正方形,故所得的几何体为棱柱.故选:A.22.B【分析】A 由11//BD B D 、11B D PQ P = 即可判断;B 若Q 为1BC 中点,根据正方体、线面的性质及判定即可判断;C 只需求证1BC 与面APD 是否平行;D 利用空间向量求直线夹角的范围即可判断.【详解】A :正方体中11//BD B D ,而P 为线段11A C 的中点,即为11B D 的中点,所以11B D PQ P = ,故,BD PQ 不可能平行,错;B :若Q 为1BC 中点,则1//PQ A B ,而11A B AB ⊥,故1PQ AB ⊥,又AD ⊥面11ABB A ,1A B ⊂面11ABB A ,则1A B AD ⊥,故PQ AD ⊥,1AB AD A ⋂=,1,AB AD ⊂面11AB C D ,则PQ ⊥面11AB C D ,所以存在Q 使得PQ ⊥平面11AB C D ,对;C :由正方体性质知:11//BC AD ,而1AD 面APD A =,故1BC 与面APD 不平行,所以Q 在线段1BC 上运动时,到面APD 的距离不一定相等,故三棱锥Q APD -的体积不是定值,错;D :构建如下图示空间直角坐标系D xyz -,则(2,0,0)A ,(1,1,2)P ,(2,2,)Q a a -且02a ≤≤,所以(2,0,0)DA = ,(1,1,2)PQ a a =--,若它们夹角为θ,则2222(1)|1|cos 2(1)1(2)233a a a a θ=⨯-++-⋅-+令1[1,1]t a =-∈-,则cos θ==,当(0,1]t ∈,则[)11,t ∈+∞,cos θ∈;当0=t 则cos 0θ=;当[1,0)t ∈-,则(]1,1t ∞∈--,2cos (0,]2θ∈;所以πcos 6=不在上述范围内,错.故选:B23.【分析】以点D 为坐标原点,建立如下图所示的空间直角坐标系,由坐标法证明11,D E MN D E AM ⊥⊥,从而得出满足条件的所有点P 构成的图形,进而得出周长.【详解】以点D 为坐标原点,建立如下图所示的空间直角坐标系,如图,取1,CC CD 的中点分别为,N M ,连接11,,,AM MN B N AB ,由于1AB MN ∥,所以1,,,A B N M 四点共面,且四边形1AB NM 为梯形,()()()()()12,0,0,0,1,0,0,2,1,0,0,2,1,2,0A M N D E ,()()()12,1,0,0,1,1,1,2,2AM MN D E =-==- ,因为11220,220AM D E MN D E ⋅=-+=⋅=-= 所以11,D E MN D E AM ⊥⊥,所以由线面垂直的判定可知1D E ⊥平面1AB NM ,即满足条件的所有点P 构成的图形为1AB NM ,由于11NM AB AM B N ===,则满足条件的所有点P构成的图形的周长为.故答案为:3225+24.10【分析】以A 为原点,建立空间直角坐标系,求得向量(0,2,1)AD = 和平面1A BD 的一个法向量为(3,1,2)n = ,结合向量的夹角公式,即可求解.【详解】如图所示,以A 为原点,过点A 垂直于AC 的直线为x 轴,以AC 和1AA 所在的直线分别为y 轴和z 轴,建立空间直角坐标系,因为正四棱柱111ABC A B C -的所有侧棱长及底面边长都为2,可得1(0,0,0),(0,0,2),(3,1,0),(0,2,1)A A B D ,则11(0,2,1),(3,1,2),(0,2,1)AD A B A D ==-=- ,设平面1A BD 的法向量为(,,)n x y z = ,则1132020n A B y z n A D y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令1y =,可得3,2x z ==,所以(3,1,2)n =,设直线AD 与平面1A BD 所成的角为θ,可得410sin cos ,5522AD n AD n AD n θ⋅====⨯ ,所以直线AD 与平面1A BD 所成的角的正弦值为105.故答案为:105.25.16391639【分析】将正四面体1234A A A A 放入正方体中,得到正方体的体对角线是12OA ,从而得到该正方体的边长,再根据条件得到P 扫过的区域的体积即可.【详解】图,作出正四面体1234A A A A ,将正四面体1234A A A A 放入正方体中,如下图所示:则O 是该正方体的中心,设该正方体的棱长为a ,则22212a a a ++=⨯,解得:233a =,又11223344OP OA OA OA OA λλλλ=+++ ,()011,2,3,4i i λ≤≤=,则知P 扫过的区域的边界是以该正方体的六个面作延伸的六个全等的正方体的中心为顶点的正方体,其中两个面如下图所示:可得动点P 扫过的区域的体积为该正方体体积的2倍,即动点P 扫过的区域的体积3233239V ⎛=⨯= ⎝⎭.故答案为:163.26.(1)①不是;②是(2)证明见解析(3)5【分析】(1)根据题干信息,利用二元基底的定义加以验证即可;(2)首先设12m e e e <<⋅⋅⋅<,计算出i j a xe ye =+的各种情况下的正整数个数并求出它们的和,结合题意可得:22C C m m m m n +++≥,即可得证:()1n m m ≤+;(3)由(2)可知()119m m +≥,所以4m ≥,并且得到结论“基底中元素表示出的数最多重复一个”,再讨论当4m =时,集合E 的所有情况均不可能是A 的4元基底,而当5m =时,A 的一个基底{}1,3,5,9,16E =,由此可得m 的最小值为5.【详解】(1){}1,2E =不是{}1,2,3,4,5A =的一个二元基底理由是{}()412,1,0,1x y x y ≠⋅+⋅∈-{}2,3E =是{}1,2,3,4,5,6A =的一个二元基底理由是11213=-⨯+⨯;21203=⨯+⨯;30213=⨯+⨯;41212=⨯+⨯,51213=⨯+⨯,61313=⨯+⨯.(2)不妨设12m e e e <<⋅⋅⋅<,则形如()101i j e e i j m ⋅+⋅≤<≤的正整数共有m 个;形如()111i i e e i m ⋅+⋅≤≤的正整数共有m 个;形如()111i j e e i j m ⋅+⋅≤<≤的正整数至多有2C m 个;形如()()111i j e e i j m -+⋅≤<≤的正整数至多有2C m 个;又集合{}1,2,3,,A n =⋅⋅⋅含有n 个不同的正整数,E 为集合A 的一个m 元基底.故22C C m m m m n +++≥,即()1m m n +≥.(3)由(2)可知()119m m +≥,所以4m ≥.当4m =时,()1191m m +-=,即用基底中元素表示出的数最多重复一个.假设{}1234,,,E e e e e =为{}1,2,3,,19A =⋅⋅⋅的一个4元基底,不妨设1234e e e e <<<,则410e ≥.当410e =时,有39e =,这时28e =或27e =.如果28e =,则1109=-,198=-,1899=+,18108=+,重复元素超出一个,不符合条件;如果27e =,则16e =或15e =,易知{}6,7,9,10E =和{}5,7,9,10E =都不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当411e =时,有38e =,这时27e =,16e =,易知{}6,7,8,11E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当412e =时,有37e =,这时26e =,15e =,易知{}5,6,7,12E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当413e =时,有36e =,这时25e =,14e =,易知{}4,5,6,13E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当414e =时,有35e =,这时24e =,13e =,易知{}3,4,5,14E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当415e =时,有34e =,这时23e =,12=e ,易知{}2,3,4,15E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当416e =时,有33e =,这时22e =,11e =,易知{}1,2,3,16E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当417e ≥时,E 均不可能是A 的4元基底.当5m =时,易验证A 的一个基底{}1,3,5,9,16E =,理由:11101=⨯+⨯;21111=⨯+⨯;31301=⨯+⨯;41113=⨯+⨯;51501=⨯+⨯;61313=⨯+⨯;719116=-⨯+⨯;81315=⨯+⨯;91901=⨯+⨯;101515=⨯+⨯;1115116=-⨯+⨯;121319=⨯+⨯;1313116=-⨯+⨯;141519=⨯+⨯;1511116=-⨯+⨯;1611601=⨯+⨯;1711611=⨯+⨯;181919=⨯+⨯;1911613=⨯+⨯.综上所述,m 的最小值为5.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,照章办事,逐条分析、验证、运算,使问题得以解决.。

湖南省长沙市第一中学2024-2025学年高二上学期期中考试数学试卷(含解析)

湖南省长沙市第一中学2024-2025学年高二上学期期中考试数学试卷(含解析)

湖南省长沙市第一中学2024-2025学年高二上学期期中考试数学试卷时量:120分钟满分:150分得分______一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.设直线的倾斜角为,则A. B. C. D.3.如图,在平行六面体中,为与的交点.若,则下列向量中与相等的是A.B. C. D.4.已知数列为等差数列,.设甲:;乙:,则甲是乙的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.假设一水渠的横截面曲线是抛物线形,如图所示,它的渠口宽AB 为2m ,渠深OC 为1.5m ,水面EF 距AB 为0.5m ,则截面图中水面的宽度EF)A.0.816mB.1.33mC.1.50mD.1.63m6.已知圆.与圆外切,则ab 的最大值为1i2iz -=+z :80l x -+=αα=30︒60︒120︒150︒1111ABCD A B C D -M 11A C 11B D AB 1,,a AD b AA c ===BM1122a b c ++1122a b c -++1122a b c --+1122a b c -+{}n a *,,,p q s t ∈N p q s t +=+p q s t a a a a +=+ 2.448≈≈≈221:()(3)9C x a y -++=222:()(1)1C x b y +++=A.2B.C.D.37.若函数在区间上只有一个零点,则的取值范围为A. B. C. D.8.已知分别为椭圆的左、右焦点,椭圆上存在两点A ,B 使得梯形的高为(为该椭圆的半焦距),且,则椭圆的离心率为B.D.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是A.用简单随机抽样从含有50个个体的总体中抽取一个容量为10的样本,某个个体被抽到的概率是0.2B.已知一组数据1,2,m ,6,7的平均数为4,则这组数据的方差是5C.数据27,12,14,30,15,17,19,23的分位数是18D.若样本数据的平均值为8,则数据的平均值为1510.下列四个命题中正确的是A.过定点,且在轴和轴上的截距互为相反数的直线方程为B.过定点的直线与以为端点的线段相交,则直线的斜率的取值范围为或C.定点到圆D.过定点且与圆相切的直线方程为或11.在棱长为2的正方体中,点满足,则A.当时,点到平面B.当时,点到平面52)44()2sin cos sin cos (0)f x x x x x ωωωωω=->π0,2⎛⎫⎪⎝⎭ω14,33⎛⎤ ⎥⎝⎦14,33⎡⎫⎪⎢⎣⎭17,66⎛⎤⎥⎝⎦17,66⎡⎫⎪⎢⎣⎭12,F F 2222:1(0)x y E a b a b+=>>E 12AF F B c c 124AF BF =E 4556m 50%1210,,,x x x 121021,21,,21x x x --- (1,1)P -x y 20x y --=(1,1)P -(3,1),(3,2)M N -k 12k - (32)k …(1,0)Q 22(1)(3)4x y ++-=2-(1,0)Q 22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -P 1,,[0,1]AP AC AD λμλμ=+∈0λ=P 11A BC 0μ=P 11A BCC.当时,存在点,使得D.当时,存在点,使得平面PCD 选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.假设,且与相互独立,则______.13.斜率为1的直线与椭圆相交于A ,B 两点,AB 的中点为,则______.14.已知公差不为0的等差数列的前项和为,若,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知的三个内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求角;(2)若,点满足,且,求的面积.16.(15分)在四棱锥中,底面ABCD 是正方形,若.(1)求证:平面平面ABCD ;(2)求平面ABQ 与平面BDQ 所成夹角的余弦值.17.(15分)已知双曲线的左、右焦点分别为的一条渐近线方程为,且.(1)求的方程;(2)A ,B 为双曲线右支上两个不同的点,线段AB 的中垂线过点,求直线AB 的斜率的取值范围.34μ=P 1BP PC ⊥34λ=P 1BC ⊥()0.3,()0.4P A P B ==A B ()P AB =22143x y +=(,1)M m m ={}n a n n S 457,,{5,0}a S S ∈-n S ABC π22sin 6b aA c+⎛⎫+=⎪⎝⎭C 1a =D 2AD DB = ||CD = ABC Q ABCD -2,3AD QD QA QC ====QAD ⊥2222:1(0,0)x y E a b a b-=>>12,,F F E y =2c =E E (0,4)C18.(17分)已知是数列的前项和,若.(1)求证:数列为等差数列.(2)若,数列的前项和为.(ⅰ)求取最大值时的值;(ⅱ)若是偶数,且,求.19.(17分)直线族是指具有某种共同性质的直线的全体,例如表示过点的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆是直线族的包络曲线,则m ,n 满足的关系式是什么?(2)若点不在直线族的任意一条直线上,求的取值范围和直线族的包络曲线.(3)在(2)的条件下,过曲线上A ,B 两点作曲线的切线,其交点为.若且,B ,C 不共线,探究是否成立?请说明理由.n S {}n a n 1112n n n n S S a a ++-={}n a 12,13n n a c a =-=+{}n c n n T n T n m 2(1)nn n b a=-21mi i b =∑1x ty =+(1,0)221:1C x y +=1(,)mx ny m n +=∈R ()00P x y ,2:(24)4(2)0()a x y a a Ω-++-=∈R 0y ΩE E E 12,l l P (0,1)C A PCA PCB ∠=∠长沙市第一中学2024-2025学年度高二第一学期期中考试数学参考答案一、二、选择题题号1234567891011答案DABADDACACDBDBD1.D 【解析】因为,对应点为,在第四象限.故选D.2.A 【解析】由直线,可得直线的斜率为设直线的倾斜角为,其中,可得,所以.故选A.3.B 【解析】.故选B.4.A 【解析】甲是乙的充分条件;若为常数列,则乙成立推不出甲成立.5.D 【解析】以为原点,OC 为轴,建立如图所示的平面直角坐标系,设扡物线的标准方程为,由题意可得,代入得,得,故抛物线的标准方程为,设,则,则,1i (1i)(2i)13i 2i (2i)(2i)55z ---===-++-13,55⎛⎫- ⎪⎝⎭:80l x +=l k =l α0180α︒︒<…tan α=30α︒=11111111111111222222BM BB B M AA B AB C AA AB ADa b c =+=++=-+=-++ {}n a O y 22(0)x py p =>(1,1.5)B 22x py =13p =13p =223x y =()()0000,0,0F x y x y >>0 1.50.51y =-=200221,0.81633x x =⨯===≈所以截面图中水面的宽度EF 约为,故选D.6.D 【解析】圆的圆心,半径,圆的圆心,半径,依题意,,于是,即,因此,当且仅当时取等号,所以ab 的最大值为3.故选D.7.A 【解析】由,令,则由题意知.8.C 【解析】如图,由,得,则为梯形的两条底边,作于点,由梯形的高为,得,在Rt 中,,则有,即,在中,设,则,,即,解得,在中,,同理,又,所以,即,所以离心率.故选C.0.8162 1.63m ⨯≈221:()(3)9C x a y -++=1(,3)C a -13r =222:()(1)1C x b y +++=2(,1)C b --21r =12124C C r r =+=222()24a b ++=22122224a b ab ab ab ab =+++=…3ab …a b =)22π()sin 2sincos sin 222sin 23f x x x x x x x ωωωωωω⎛⎫=-=-=- ⎪⎝⎭πππ2π362k x k x ωωω-=⇒=+ππππ14,626233ωωωω⎛⎤<+⇒∈ ⎥⎝⎦…214AF BF =12//AF BF 12,AF BF 12AF F B 21F P AF ⊥P 12AF F B c 2PF c =12F PF 122F F c =1230PF F ︒∠=1230AF F ︒∠=12AF F 1AF x =22AF a x =-22221121122cos30AF AF F F AF F F ︒=+-222(2)4a x x c -=+-1AF x ==12BF F 21150BF F ︒∠=2BF =214AF BF = 4=3a =c e a ==9.ACD 【解析】对于A ,一个总体含有50个个体,以简单随机抽样方式从该总体中抽取一个容量为10的样本,则指定的某个个体被抽到的概率为,故A 正确;对于B ,数据1,2,m ,6,7的平均数是,这组数据的方差是,故B 错误;对于C ,,第50百分位数为,故C 正确;对于D ,依题意,,则,故D 正确;故选ACD.10.BD 【解析】对于A ,过点且在轴和轴上的截距互为相反数的直线还有过原点的直线,其方程为错误;对于B ,直线PM ,PN 的斜率分别为,依题意,或,即或,B 正确;对于C ,圆的圆心,半径,定点到圆C 错误;对于D,圆的圆心,半径,过点斜率不存在的直线与圆相切,当切线斜率存在时,设切线方程为,解得,此切线方程为,所以过点且与圆相切的直线方程为或,D 正确;故选BD.11.BD 【解析】在棱长为2的正方体中,建立如图所示的空间直角坐标系,11100.2505⨯== 4,4512674m =⨯----=222222126(14)(24)(44)(64)(74)55s ⎡⎤=-+-+-+-+-=⎣⎦850%4⨯=1719182+=8x =2116115x -=-=(1,1)-x y ,A y x =-2(1)31(1)1,312312PN FM k k ----====----PM k k …FN k k …12k -…32k (2)2:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)Q 2(1)x +2(3)4y +-=22,=22:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)1x =C (1)y k x =-2=512k =-51250x y +-=(1,0)22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -则,,设平面的法向是为,则令,得,对于,当时,,点到平面的距离A 错误;对于B ,当时,,点到平面的距离B 正确;对于C ,当时,,则,当时,显然,方程无实根,即BP 与不垂直,C 错误;对于D ,当时,,则,显然,即,由,得,1111(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(2,0,2),(2,2;2),(0,2,2)A B C D A B C D 11(2,0,2),(0,2,2)BA BC =-=11A BC (,,)n x y z = 11220,220,n BA x z n BC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩1z =(1,1,1)n =- A 0λ=11(0,2,2),(0,2,2),(0,2,22)AP AD P A P μμμμμμμ===-P 11ABC 11||n A Pd n ⋅=== 0μ=(2,2,0),(2,2;0),(22,2,0)AP AC P BP λλλλλλλ===-P 11ABC 2||||n BP d n ⋅===34μ=133333(2,2,0)0,,2,2,42222AP AC AD λλλλλ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 13333112,2,,22,2,,22,2,222222P BP C P λλλλλλ⎛⎫⎛⎫⎛⎫+=-+=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2213135(22)228602242BP C P λλλλλ⎛⎫⎛⎫⋅=-++--=-+= ⎪⎪⎝⎭⎝⎭ 2564802∆=-⨯⨯<1PC 34λ=133333,,0(0,2,2),2,242222AP AC AD μμμμμ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 3331,2,2,,2,2,(2,0,0),(0,2,2)2222P DP DC BC μμμμ⎛⎫⎛⎫+=-== ⎪ ⎪⎝⎭⎝⎭10DC BC ⋅= 1BC DC ⊥1122402DP BC μμ⎛⎫⋅=-+= ⎪⎝⎭ 18μ=即当时,,而平面PCD ,因此平面PCD ,D 正确.故选BD.三、填空题12.0.12【解析】由,且与相互独立,得,13.【解析】设直线AB 的方程为,代入椭圆方程,可得,由韦达定理可得,则,则,则,所以.14.-6【解析】取得最小值,则公差或,①当时,,所以,又,所以,所以,故,令,得,所以的最小值为.②当,不合题意.综上所述:的最小值为-6.四、解答题15.【解析】(1),,,,,18μ=1BC DP ⊥,,DC DP D DC DP ⋂=⊂1BC ⊥()0.3,()0.4P A P B ==A B ()()()0.12P AB P A P B ==43-y x b =+22143x y +=22784120x bx b ++-=1287bx x +=-()121427M b x x x =+=-43177M M b y x b b b =+=-+==73b =474733M m x ==-⨯=-n S 40,5d a >=-10a =40a =7470S a ==55S =-535S a =31a =-4310a a d -==>4n a n =-0n a …4n …n S 346S S ==-4745,735a S a =-==-4570,5,0,n a S S S ==-=π2πsin 2sin 2sin 2sin 66sin b a B A A A c C ++⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭cos )sin sin()2sin A A C A C A ∴+=++sin cos sin sin cos cos sin 2sin A C A C A C A C A +=++sin sin cos 2sin ,(0,π),sin 0A C A C A A A =+∈∴≠ πππ5πcos 2sin 1,,6666C C C C ⎛⎫⎛⎫=+⇒-=-∈- ⎪ ⎪⎝⎭⎝⎭.…………………………………………………………………………………6分(2)由,,,分16.【解析】(1)证明:中,,所以,所以.又平面平面QAD ,所以平面QAD.又平面ABCD ,所以平面平面ABCD .……………………………………………………5分(2)取AD 的中点,因为,所以,且,因为,平面平面ABCD ,平面平面,所以平面ABCD .在平面ABCD 内作,以OD 为轴,OQ 为轴,建立空间直角坐标系,如图所示,则,设平面ABQ 的法向量为,由,ππ2π,623C C ∴-=∴=222()33AD DB CD CA AD CA AB CA CB CA =⇒=+=+=+- 1212,||3333CD CA CB CD CA CB ∴=+∴=+==22214474272b a ab b b ⎛⎫∴++⋅-=⇒+-= ⎪⎝⎭211230(1)(3)03,sin 1322b b b b b S ab C ∴--=⇒+-=⇒=∴==⨯⨯=QCD 2,3CD AD QD QC ====222CD QD QC +=CD QD ⊥,,CD AD AD QD D AD ⊥⋂=⊂QAD QD ⊂,CD ⊥CD ⊂QAD ⊥O QD QA =OQ AD ⊥2OQ ==OQ AD ⊥QAD ⊥QAD ⋂ABCD AD =OQ ⊥Ox AD ⊥y z O xyz -(0,0,0),(0,1,0),(2,1,0),(2,1,0),(0,1,0),(0,0,2)O A B C D Q --()111,,x y z α=(2,0,0),(0,1,2)AB AQ ==得令,得,所以平面ABQ 的一个法向量.设平西BDQ 的法向量为,由,得令,得,所以平面BDQ 的一个法向量.所以所以平面ABQ 与平面BDQ分17.【解析】(1)由题得推出所以双曲线的方程为.……………………………………………………………………4分(2)由题意可知直线AB 斜率存在且,设,设AB 的中点为.由消去并整理得,则,即,,于是点为.11120,20,AB x AQ y z αα⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-112,0y x ==(0,2,1)α=- ()222,,x y x β=(2,2,0),(0,1,2)BD DQ =-=- 2222220,20,BD x y DQ y x ββ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 21z =222,2y x ==(2,2,1)β= |cos ,αβ〈〉 2222,,b a c c a b ⎧=⎪⎪=⎨⎪=+⎪⎩1,a b ==E 2213y x -=k ≠()()1122:,,,,AB y kx m A x y B x y =+M 22,33y kx m x y =+⎧⎨-=⎩y ()22223230,30k x kmx m k ----=-≠()()()22222(2)4331230km k m m k ∆-+-+-+-=223m k >-()21212121222222326,,223333km m km m x x x x y y k x x m k m k k k k++==-+=++=⋅+=----M 2222234331243,,333M C MC M m y y km m m k k k km k k x kmk---+⎛⎫-=== ⎪--⎝⎭-由中垂线知,所以,解得:.所以由A ,B 在双曲线的右支上可得:,且,且或,所以,即,综上可得,.…………………………………………………………………………15分18.【解析】(1)因为,所以是以为首项,以为公差的等差数列,所以,即①,所以②,由②-①可得,即,所以,所以,所以数列为等差数列.………………………………………………………7分(2)(Ⅰ)由题意知在等差数列中,,故.可得,当时,取最大值.………………………………………………………………………………12分(Ⅱ).………………………………………………………………17分19.【解析】(1)由定义可知,与相切,则圆的圆心到直线的距离等于1,则,即.……………………………………………………4分1MC AB k k ⋅=-231241m k km k-+=-23m k =-22221223303033m m x x m k k k m++=-=->⇒=-<⇒>-12222003km x x k k k +==>⇒>-()()()()()222222221230333403m k k k k k k ∆=+->⇒-+-=-->⇒<24k >24k >2k >(2,)k ∈+∞1112n n n n S S a a ++-=n n S a ⎧⎫⎨⎬⎩⎭111a a =12111(1)22n n S n n a +=+-=12n n n S a+=1122n n n S a +++=1122n n n n a a ++=11111n n a a a a n n +====+ 111(1),n n a n a a na +=+=11n n a a a +-={}n a {}n a 1(1)2n a a n d n =+-=-132n c n =-22(1)11(2)12(6)362n n n T n n n n -=+⨯-=-=--+∴6n =n T 222222212321234521mi m mi b b b b b a a a a a a ==++++=-+-+-++∑ ()()()()22222222123456212m m a a a a a a a a -=-++-++-+++-+ ()21232284m a a a a m m =-++++=+ 1mx ny +=221x y +=1C (0,0)1mx ny +=d 1==221m n +=(2)点不在直线族的任意一条直线上,所以无论取何值时,4)无解.将整理成关于的一元二次方程:.()00,P x y 2:(24)4(2)0(R)a x y a a Ω-++-=∈a (2a -2004(2)0x y a ++-=200(24)4(2)0a x y a -++-=a ()()2000244440a x a y x +-++-=。

北京市育才2024-2025学年高二上学期期中考试数学试题含解析

北京市育才2024-2025学年高二上学期期中考试数学试题含解析

2024-2025年度第一学期北京育才高二数学期中考试试卷(答案在最后)一、选择题:本大题共10小题,每小题4分,共40分.1.圆2221x y y ++=的半径为A.1 B.C.2D.4【答案】B 【解析】【详解】试题分析:由题意得,圆2221x y y ++=,可化为22(1)2x y ++=,所以R =B .考点:圆的标准方程.2.椭圆221178x y +=的焦点坐标为()A.(5,0),(5,0)-B.(3,0),(3,0)-C.(0,5),(0,5)-D.(0,3),(0,3)-【答案】B 【解析】【分析】根据椭圆的标准方程,求得,,a b c 的值,即可求得椭圆的焦点坐标,得到答案.【详解】由题意,椭圆221178x y +=,可得2217,8a b ==,则3c ==,所以椭圆的焦点坐标为(3,0)和(3,,0)-.故选:B.3.圆221:4C x y +=与圆222:(3)1C x y -+=的位置关系为()A.外离B.外切C.相交D.内切【答案】B 【解析】【分析】根据圆心距与半径的关系判断.【详解】由题意,圆221:4C x y +=,则圆心()10,0C ,半径12r =,圆222:(3)1C x y -+=,则圆心()23,0C ,半径21r =,所以两圆圆心距1212||3C C r r ==+,所以两圆外切.故选:B.4.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E ,F 分别是1,CC AD 的中点,那么异面直线OE 和1FD 所成角的余弦值等于() A.105B.155C.45D.23【答案】B 【解析】【分析】取BC 的中点G ,连接GC 1,则GC 1//FD 1,再取GC 的中点H ,连接HE 、OH ,则∠OEH 为异面直线所成的角,在△OEH 中,利用余弦定理可得结论.【详解】取BC 的中点G .连接GC 1,则GC 1//FD 1,再取GC 的中点H ,连接HE 、OH ,如图所示,∵E 是CC 1的中点,∴GC 1//EH ,∴∠OEH 为异面直线OE 和1FD 所成的角.在△OEH中,OE =HE=11522GC ==,OH =52.由余弦定理,可得cos ∠OEH=2221525OE EH OH OE EH+-==⋅.故选:B【点睛】本题考查异面直线所成的角,考查余弦定理的运用,解题的关键是作出异面直线所成的角,属于中档题.5.圆22(2)5x y ++=关于原点()0,0O 对称的圆的方程为()A .22(2)5x y ++= B.22(2)5x y +-=C.22(2)5x y -+=D.22(2)5x y ++=【答案】C 【解析】【分析】先求出圆心关于原点的对称点,从而可求出所求圆的方程.【详解】圆22(2)5x y ++=的圆心为(2,0)-,因为点(2,0)-关于原点()0,0O 对称点为(2,0),所以圆22(2)5x y ++=关于原点()0,0O 对称的圆的方程为22(2)5x y -+=,故选:C.6.如果方程221x ky +=表示焦点在x 轴上的椭圆,那么实数k 的取值范围()A.−∞,1 B.()1,+∞ C.()0,1 D.()(),01,-∞⋃+∞【答案】B 【解析】【分析】由椭圆的标准方程,明确,a b 的取值,根据焦点的位置,设不等式,可得答案.【详解】由方程221x ky +=,则=1a,=b k,即101k <<,可得1k >.故选:B.7.已知点P 是圆22:(3)1C x y -+=上一点,则点P 到直线:3460l x y ++=的距离的最小值为()A.0B.1C.2D.3【答案】C 【解析】【分析】首先求出圆心到直线的距离,再减去半径,即可求解.【详解】圆22:(3)1C x y -+=的圆心为()3,0,半径为1,3=,所以点P 到直线:3460l x y ++=的距离的最小值为312-=.故选:C.8.“1a =”是“直线()110ax a y +--=与直线()110a x ay -++=垂直”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两直线垂直可构造方程求得a 的值,由推出关系可得结论.【详解】由两直线垂直可得:()()110a a a a -+-=,解得:0a =或1a =;10a a =⇒= 或1a =,0a =或11a a ==¿,∴“1a =”是“直线()110ax a y +--=与直线()110a x ay -++=垂直”的充分不必要条件.故选:A .9.已知直线x y a +=与圆224x y +=交于,A B 两点,且OA OB OA OB +=-(其中O 为坐标原点),则实数a 的值为A.2 B.C.2或2- D.或【答案】C 【解析】【详解】分析:利用OA ⊥OB ,OA=OB ,可得出三角形AOB 为等腰直角三角形,由圆的标准方程得到圆心坐标与半径R ,可得出AB ,求出AB 的长,圆心到直线y=﹣x+a 的距离为AB 的一半,利用点到直线的距离公式列出关于a 的方程,求出方程的解即可得到实数a 的值.详解:∵OA ⊥OB ,OA=OB ,∴△AOB 为等腰直角三角形,又圆心坐标为(0,0),半径R=2,∴=∴圆心到直线y=﹣x+a 的距离d=12,∴|a|=2,∴a=±2.故答案为C .点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理和垂径定理.10.在空间直角坐标系O xyz -中,已知()1,2,2a =- ,(),,a b x y z += ,其中2221x y z ++=,则b 的最大值为()A.3B.1+C.D.4【答案】D 【解析】【分析】根据题意,求得()1,2,2b x y z =--+,根据其几何意义,代入计算,即可得到结果.【详解】因为()1,2,2a =- ,(),,a b x y z +=,则()1,2,2b x y z =--+ ,且2221x y z ++=,其中点(),,x y z 可以看作球心在原点,半径为1的球上的点所以b =()1,2,2-距离,最大值为球心到点()1,2,2-的距离再加球的半径,14=.故选:D二、填空题:本大题共5题,每小题6,共25分11.写出一个圆心在直线0x y -=上,且经过原点的圆的方程:______.【答案】22(1)(1)2x y -+-=(答案不唯一)【解析】【分析】利用圆心在直线0x y -=上设圆心坐标为(,)C a a ,由于圆过原点,得半径0)r a =≠,对a 赋值,可得一个符合条件的圆的方程.【详解】解:因为圆心在直线0x y -=,则设圆心坐标为(,)C a a 又圆经过原点则圆的半径为r OC ===,且0a ≠故取1a =,得圆心为(1,1)C ,半径r =所以圆的方程为:22(1)(1)2x y -+-=.故答案为:22(1)(1)2x y -+-=(答案不唯一)12.过点()1,4A -的直线将()()22231x y -+-=的面积分为相等的两部分,求直线方程______.【答案】3110x y +-=【解析】【分析】根据圆的对称性先判定直线过圆心,利用两点式计算直线方程即可.【详解】因为直线将()()22231x y -+-=的面积分为相等的两部分,所以该直线过圆心()2,3,由两点式知该直线方程为3231104312y x x y --=⇒+-=---.故答案为:3110x y +-=13.如图,在正方体1111ABCD A B C D -中,E 为CD 的中点,则直线1A E 与平面ABCD 所成角的正切值为______.【答案】255##255【解析】【分析】连接AE ,利用正方体的特征及线面角的定义计算即可.【详解】连接AE ,易知1AA ⊥底面ABCD ,所以1AEA ∠为所求角,不妨设正方体棱长为2,则112255,tan 55AA AE AEA AE =∠===.故答案为:25514.已知点()2,2A --,点P 在圆22:20C x y x ++=上,则AP 的取值范围是______;若AP 与圆C 相切,求切线AP 的方程______.【答案】①.1⎤-+⎦②.2x =-或3420x y --=【解析】【分析】利用点与圆的位置关系计算可得第一空;利用直线与圆的位置关系结合点到直线的距离公式分类讨论计算即可得第二空.【详解】易知点A 在圆C 外,且()2222:2011C x y x x y ++=⇒++=,即圆心()1,0C -,半径1r =,AC =,则AC r AP AC r -≤≤+,即1AP ⎤∈⎦;若直线AP 斜率不存在,即:2AP l x =-,此时圆心C 到直线AP 的距离等于半径,满足题意;若直线AP 斜率存在,不妨设其方程为:()22y k x =+-,则圆心C 到直线AP的距离()22112d k k ==⇒+=-,解之得34k =,此时直线AP 方程为3420x y --=.故答案为:1⎤-⎦;2x =-或3420x y --=15.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线C :()3222216x y x y +=恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()()32222160x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是______.【答案】②④【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】作出圆224x y +=和四叶玫瑰线()3222216x y x y +=的图示如下图所示:()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当2x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==,即224x y +=与曲线C 相切于点,(,(,,则①和③都错误;由0xy <,得④正确.综上,正确命题为:②④.故答案为:②④【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.三、解答题:本大题共6小题,共85分.16.在平面直角坐标系中,已知()3,7A -,()2,2B ,()5,1C ,线段AC 的中点为M .(1)求过点M 与直线BC 平行的直线方程;(2)求△ABC 的面积.【答案】(1)3130x y +-=(2)5【解析】【分析】(1)由点()3,7A -,()5,1C 求出AC 的中点坐标()1,4M 和BC 的斜率,进而求出方程,(2)由(1)可知BC 的斜率求出BC 的直线方程,再点A 到直线BC 的距离,根据面积公式,求出结果.【小问1详解】∵()3,7A -,()5,1C ,∴AC 的中点坐标()1,4M ,又直线BC 的斜率121523k -==--,∴过M 点和直线BC 平行的直线方程为()1413y x -=--,即3130x y +-=.【小问2详解】由(1)可知BC 的斜率13k =-,直线BC 的方程为()1223y x -=--,即380x y +-=,∴点A 到直线BC 的距离d ==,又B 、C 两点间距离BC ==∴△ABC 的面积11522S BC d =⨯⨯==.17.已知圆C 过原点O 和点()1,3A ,圆心在x 轴上.(1)求圆C 的方程;(2)直线l 经过点()1,1,且l 被圆C 截得的弦长为6,求直线l 的方程.【答案】(1)22(5)25x y -+=(2)1x =或15870x y --=【解析】【分析】(1)设圆C 的圆心坐标为(),0a ,由已知列出方程,求得a ,进而求得半径,即可得出结果;(2)设出直线方程,利用垂径定理,列方程求出直线的斜率即可得出结果.【小问1详解】设圆C 的圆心坐标为(),0a .=5a =从而圆C 的半径为5r ==,所以圆C 的方程为22(5)25x y -+=.【小问2详解】依题意,圆C 的圆心到直线l 的距离为4,显然直线1x =符合题意.当直线l 的斜率存在时,设其方程为()11y k x -=-,即10kx y k --+=4=解得158k =,所以直线l 的方程为15870x y --=综上,直线l 的方程为1x =或15870x y --=.18.如图,四边形ABCD 为梯形,//AB CD ,四边形ADEF 为平行四边形.(1)求证://CE 平面ABF ;(2)若AB ⊥平面ADEF ,AF AD ⊥,1AF AD CD ===,2AB =,求:(ⅰ)二面角A BF C --的余弦值;(ⅱ)点D 到平面BCF 的距离.【答案】(1)证明见解析;(2)66;66【解析】【分析】(1)利用平行四边形的性质与判定结合线面平行的判定证明即可;(2)根据题意判定线线垂直,构造合适的空间直角坐标系,利用面面夹角及点面距离公式计算即可.【小问1详解】过C 作//CG AD 交AB 于G 点,因为//AB CD ,所以四边形ADCG 为平行四边形,则CG AD =,又四边形ADEF 为平行四边形,所以,//AD EF AD EF =,所以,//EF GC EF GC =,则四边形CEFG 为平行四边形,即//CE FG ,易知FG ⊂平面ABF ,CE ⊄平面ABF ,所以//CE 平面ABF ;【小问2详解】因为AB ⊥平面ADEF ,,AD AF ⊂平面ADEF ,所以,AB AD AB AF ⊥⊥,又AF AD ⊥,所以,AD AB AF ,三条线两两垂直,即可以以A为中心建立如图所示的空间直角坐标系,则()()()2,0,0,0,0,1,1,1,0B F C ,所以()()1,1,0,1,1,1CB CF =-=-- ,设平面BCF 的一个法向量为(),,n x y z = ,则00n CB x y n CF x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ,令11,2x y z =⇒==,即()1,1,2n = ,(ⅰ)易知平面ABF 的一个法向量为()0,1,0AD = ,二面角A BF C --的一个平面角为锐角,设二面角A BF C --的一个平面角为α,则6cos 6AD n AD n α⋅===⋅ ;(ⅱ)易知 1, , ,则点D 到平面BCF的距离66DC n d n ⋅=== .19.已知椭圆2222:1x y C a b +=(0a b >>)的右焦点为()2,0F,且过点(,直线l 过点F 且交椭圆C 于A 、B 两点.(1)求椭圆C 的方程;(2)若线段AB 的垂直平分线与x 轴的交点为1,02M ⎛⎫ ⎪⎝⎭.(ⅰ)求直线l 的方程.(ⅱ)若点()4,0P -,求ABP 的面积.【答案】(1)22184x y +=;(2)20x -=或20x +-=;【解析】【分析】(1)根据椭圆的性质并代入所过点坐标计算即可;(2)(ⅰ)先排除直线l 斜率不存在的情况,设其点斜式方程,联立椭圆方程结合韦达定理、直线垂直的斜率积计算即可;(ⅱ)由上的结论及弦长公式、点到直线的距离公式计算即可.【小问1详解】根据题意有222222421a b ab ⎧-=⎪⎨+=⎪⎩,解之得224,8b a ==,所以椭圆C 的方程22184x y +=;【小问2详解】(ⅰ)显然若l 斜率不存在,其垂直平分线与横轴重合,不符合题意;不妨设直线l 的方程为()2y k x =-,AB 的中点为C ,设()()()112200,,,,,A x y B x y C x y ,l 与椭圆方程联立有222280y kx k x y =-⎧⎨+-=⎩,整理得()2222128880k x k x k +-+-=,则212221228128812k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,所以2120002242,221212x x k k x y k x k k k+===⋅-=-++,易知20204111612CM y k k k k k x ⋅=-⇒⋅=-=---,解之得2k =±,即()222y x =±-,整理得直线l的方程为20x --=或20x +-=;(ⅱ)由弦长公式可知12 AB x=-==2211121211kk++===++,由直线的对称性知点P到两条直线l的距离相同,即d==,所以ABP的面积为1122d AB=⨯=.20.如图,在长方体1111ABCD A B C D-中,1AD=,12AB AA==,,,H F M分别是棱11C D,1BB,11B C 的中点.(1)判断直线1A M与平面1B HF的位置关系,并证明你的结论;(2)求直线HF与平面1A MD所成角的正弦值;(3)在线段HF上是否存在一点Q,使得点Q到平面11A BCD,若存在,求出HQHF的值;若不存在,说明理由.【答案】(1)相交但不垂直,证明见解析;(2)73;(3)不存在,理由见解析.【解析】【分析】(1)建立合适的空间直角坐标系,利用空间向量计算线面夹角即可;(2)建立合适的空间直角坐标系,利用空间向量计算线面夹角即可;(3)假设存在点Q ,利用空间向量研究点面距离计算参数即可.【小问1详解】如图建立空间直角坐标系,则()()()()1111,0,2,1,2,2,,2,2,0,1,2,1,2,12A B M H F ⎛⎫ ⎪⎝⎭,所以()()111,2,0,0,0,1,1,1,12A M FB HF ⎛⎫=-==- ⎪⎝⎭,设平面1B HF 的一个法向量为 ,䗘,䔹,则100m FB z m HF x y z ⎧⋅==⎪⎨⋅=+-=⎪⎩ ,取11,0x y z =⇒=-=,即 1,−1, ,则11155342cos ,34A M m A M m A M m ⋅===⋅ ,连接1A M 与1B H 交于N 点,即直线1A M 与平面1B HF 相交于N 点,则直线1A M 与平面1B HF 的位置关系为相交,直线与平面的夹角的正弦值53434;【小问2详解】由上知()111,0,2,,2,22DA DM ⎛⎫== ⎪⎝⎭,设平面1A MD 的一个法向量为 ,h, ,则12012202n DA a c n DM a b c ⎧⋅=+=⎪⎨⋅=++=⎪⎩,取41,2a b c =⇒==-,即()4,1,2n =- ,设直线HF 与平面1A MD 所成角为α,则7sin cos ,3HF n HF n HF nα⋅====⋅ ,即直线HF 与平面1A MD所成角的正弦值为3;【小问3详解】设存在Q 满足题意,不妨设[]()0,1HQ HFλλ=∈,则(),,HQ HF λλλλ==- ,易知()()10,2,2,1,0,0A B CB =-= ,设平面11A BCD 的一个法向量为(),,p r s t = ,则12200p A B s t p CB r ⎧⋅=-=⎪⎨⋅==⎪⎩ ,取10,1s r t =⇒==,即()0,1,1p = ,而()11,1,D Q D H HQ λλλ=+=+- ,所以点Q 到平面11A BCD的距离是1D Q p d p ⋅==≠ ,所以不存在.21.在平面直角坐标系xOy 中,O为坐标原点,)M,已知平行四边形OMNP 两条对角线的长度之和等于4.(1)求动点P 的轨迹方程;(2)过)M 作互相垂直的两条直线1l 、2l ,1l 与动点P 的轨迹交于A 、B ,2l 与动点P 的轨迹交于点C 、D ,AB 、CD 的中点分别为E 、F ;证明:直线EF 恒过定点,并求出定点坐标;(3)在(2)的条件下,求四边形ACBD 面积的最小值.【答案】(1)221(0)4x y y +=≠(2)证明见解析,定点43(5(3)3225.【解析】【分析】(1)根据几何位置关系可得14PM PM +=,再根据椭圆定义求解;(2)利用韦达定理表示出,E F 坐标,从而表示出EF 的直线方程即可求解;(3)利用韦达定理表示出弦长,AB CD ,进而可表示面积,利用二次函数的性质可求面积的最小值.【小问1详解】取点1(M ,则有1M O PN ∥,所以四边形1M ONP 是平行四边形,所以1PM ON =,因为4PM ON +=,所以14PM PM +=,所以动点P 的轨迹为椭圆(左右顶点除外),所以24a =,c =,所以2221b a c =-=,所以动点P 的轨迹方程为221(0)4x y y +=≠.【小问2详解】当1l 垂直于x 轴时,AB 的中点E ,直线2l 为x 轴,与椭圆221(0)4x y y +=≠,无交点,不合题意,当直线1l 不垂直于x 轴时,不妨设直线1l 的方程为(0)y k x k =≠,11(,)A x y ,22(,)B x y ,由22(44y k x x y ⎧=⎪⎨+=⎪⎩,得2222(14)1240k x x k +-+-=,所以△22222()4(41)(124)16(1)0k k k =--+-=+>,所以21228341x x k +=+,212212441k x x k -=+,所以31212228323()1414y y k x x k k-+=+-=-=++,所以222433(,)4141E k k ++,因为12l l ⊥,以1k -代替k ,得22433(,)44F k k ++,所以直线EF 的斜率为22222335441(1)4(1)4343441EFk k k k k k k k +==≠±-++,所以直线EF的方程为22225(1)414(1)41k y x k k k k +=-≠±+-+,由椭圆的对称性得,若存在这样的定点必在x 轴上,令0y =,则22225()414(1)41k x k k k =-+-+,所以22221)5(41)5(14)5k x k k ++===++,所以直线EF 恒过定点43(5,当1k =±时,433()55E ,433()55F ,所以直线EF 恒过定点43(5,综上所述,直线EF 恒过定点43(5.【小问3详解】由(2)得21228341x x k +=+,212212441k x x k -=+,所以||AB =224(1)41k k +==+,同理可得224(1)||4k CD k +=+,所以四边形ACBD 的面积222218(1)||||2(41)(4)k S AB CD k k +==++,令21t k =+,则1t >,所以2222288889933(43)(3)4994()34t t S t t t t t t t t ====-++--++-+⋅+,因为1t >,所以303t<<,当332t =,即1k =±时,23325()344t t -+⋅+≤,所以min 3225S =,所以四边形ACBD 的面积最小值为3225.。

北京市延庆区2024-2025学年高二上学期期中考试数学试题(含答案)

北京市延庆区2024-2025学年高二上学期期中考试数学试题(含答案)

延庆区2024-2025学年第一学期期中试卷高二数学2024.11本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知向量且,那么( )A. B.6C.9D.183.在空间直角坐标系中,点关于坐标平面的对称点为()A. B. C. D.4.设分别是空间中直线的方向向量,则直线所成角的大小为( )A. B. C. D.5.过和两点的直线的倾斜角是()A. B.1 C. D.6.“”是“直线与平行”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在平行六面体中,,点在上,且,则( )1i +()()1,2,1,3,,a b x y =-= a ∥b b = ()1,2,3P xOy ()1,2,3-()1,2,3-()1,2,3--()1,2,3-()()120,1,1,1,0,1v v ==- 12,l l 12,l l π65π6π32π3()2,0-()0,21-3π4π41a =1:20l ax y +-=()2:2120l x a y +++=1111ABCD A B C D -1,,AA a AB b AD c === P 1AC 1:1:2A P PC =AP =A. B.C. D.8.已知正方体的棱长为为的中点,则到平面的距离为( )9.在正方体中,点是线段上任意一点,则与平面所成角的正弦值不可能是( )A. B.10.已知点,直线,若直线上至少存在三个,使得为直角三角形,直线倾斜角的取值范围是( )211333a b c ++ 122333a b c ++ 112333a b c -++ 122333a b c -- 1111ABCD A B C D -2,E 1BB 1B 11A D E 1111ABCD A B C D -E 11A C AE ABCD 1323()()0,1,0,1A B -:2l y kx =-l M MAB V lA. B.C. D.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数,则__________.12.已知点,点在线段上,且,则点坐标为__________.13.若平面,平面的法向量为,平面的法向量为,写出平面的一个法向量__________.14.已知点,直线与线段无交点,则直线在轴上的截距为__________;的取值范围是__________.15.如图:在直三棱柱中,,.记,给出下列四个结论:①存在,使得任意,都有;②对于任意点,都不存在点,使得平面平面;③的最小值为3;④当取最小时,过点作三棱柱的截面,则截面周长为.其中,所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.(本小题13分)已知的顶点坐标为.π5π0,,π66⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦πππ2π,,3223⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦πππ3π,,4224⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦πππ5π,,6226⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦5i 12iz =-z =()()1,1,4,1,4,2A B -C AB 2AC CB =C αβ⊥α()11,2,3n = β()2,,0n x y = β()()1,3,1,4A B -:2l y ax =-AB l y a 111ABC A B C -13,90AB BB BC ABC ∠==== 1,(01,01)CH xCB CP yCB x y ==<≤≤≤ (),f x y AH HP =+H P AH HP ⊥H P AHP ⊥11A B C (),f x y (),f x y ,,A H P 5ABC V ()()()1,52,14,3A B C ---、、(1)求过点且与直线平行的直线的方程;(2)求边上的中线所在直线的方程;(3)求边上的高所在直线的方程.17.(本小题14分)如图,在三棱柱中,底面是的中点,且.(1)求证:平面;(2)若,求直线与平面所成角的正弦值;(3)若,求平面与平面所成角的余弦值.18.(本小题14分)设的内角对应的边分别为,且.(1)求角的大小;(2)从下列三个条件中选择一组作为已知,使存在且唯一,并求的面积.条件①:;条件②:;条件③:.注:如果选择的条件使不存在或不唯一,第(2)问得0分.19.(本小题14分)已知函数,且的图像过点.(1)求函数的最小正周期和单调递减区间;(2)若函数在上与直线有交点,求实数的取值范围;(3)设函数,记函数在上的最大值为,求的最小B AC BC AB 111ABC A B C -1CC ⊥,ABC D 11A C 12AC BC CC ===1BC ∥1AB D AC BC ⊥1CC 1AB D AC BC ⊥1AB D 11ACC A ABC V ,,A B C ,,a bc sin cos b A B =B ABC V ABC V 3,sin 2sin b C A ==5b a ==b C ==ABC V ()22sin cos 2cos f x a x x x =+()f x π,06⎛⎫- ⎪⎝⎭()f x ()f x π,12m ⎡⎤-⎢⎥⎣⎦3y =m ()()()g x f x t t =-∈R ()g x π11π,612⎡⎤⎢⎥⎣⎦()M t ()M t值及此时的值.20.(本小题15分)如图,已知四棱锥中,底面是边长为4的正方形,平面是正三角形,分别为的中点.(1)求证:平面;(2)求点到平面的距离;(3)线段上是否存在点,使得三棱锥的值;若不存在,说明理由.21.(本小题15分)给定正整数,设集合.对于集合中的任意元素和,记.设,且集合,对于中任意元素,若则称具有性质.(1)判断集合是否具有性质,集合是否具有性质;(直接写出答案,结论不需要证明)(2)判断是否存在具有性质的集合,并加以证明;(3)若集合具有性质,证明:.t P ABCD -ABCD CD ⊥,PAD PAD V ,,,E F G O ,,,PC PD BC AD PO ⊥ABCD A EFG PC M M EFG -PM PC 2n ≥(){}{}12,,,,0,1,1,2,,n k M t t t t k n αα==∈= ∣M ()12,,,n x x x β= ()12,,,n y y y γ= 1122n n x y x y x y βγ⋅=+++ A M ⊆(){}12,,,,1,2,,i i i i in A t t t i n αα=== ∣A ,i j αα,,1,,i j p i j i j αα=⎧⋅=⎨≠⎩A (),T n p ()()(){}1,1,0,1,0,1,0,1,1A =()3,2T ()()()(){}1,1,0,0,1,0,1,0,0,1,1,0,1,0,0,1B =()4,2T ()4,T p A A (),T n p ()121,2,,j j nj t t t p j n +++==延庆区2024-2025学年第一学期期中考试高二数学参考答案及评分标准2024.11一、选择题(共10小题,每小题4分,共40分)1.D2.A3.B4.C5.D6.C7.A8.B9.A 10.B二、填空题(共5小题,每小题5分,共25分)12. 13.(不唯一,共线即可)14.,(注:第一问3分,第二问2分)15.①③④(注:对一个2分,两个3分,有选错0分)三、解答题(共6小题,共85分)16.(共13分)解:(1)直线的斜率过点且与直线平行的直线的斜率为过点且与直线平行的直线方程为(2)设边的中点为,因为,所以点的坐标为,即,所以边的中线所在直线方程为()1,3,0()2,1,0-2-()6,5-AC 532145AC k -==---B AC 25-B AC ()21225905y x x y +=-+⇒++=BC D ()()2,14,3B C --、D 2413,22-+-+⎛⎫ ⎪⎝⎭()1,1D 51211AD k -==---BC ()121230y x x y -=--⇒+-=(3)因为,所以边的高线所在直线的斜率为,因此边的高线所在直线方程为.17.(共14分)(1)证明:连接,设,连接,由为三棱柱,得.又是的中点,所以是的中位线,.平面平面,平面;(2)解:底面,以为原点,的方向分别为轴正方向建立如图所示的空间直角坐标系,则,,设平面的法向量为由,得;15621AB k --==-+AB 16-AB ()13462206y x x y -=--⇒+-=1A B 11A B AB E ⋂=DE 111ABC A B C -1A E BE =D 11A C DE 11ΔA BC 1BC ∴∥DE 1BC ⊄ 1,AB D DE ⊂1AB D 1BC ∴∥1AB D 1CC ⊥ ,ABC AC BC ⊥C 1,,CA CB CC ,,x y z ()()()0,0,0,2,0,0,0,2,0C A B ()()()()1112,0,2,0,2,2,0,0,2,1,0,2A B C D ()()()110,0,2,2,2,2,1,0,2CC AB AD ==-=- 1AB D (),,n x y z =12220220n AB x y z n AD x z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩ ()2,1,1n =设直线与平面所成角为.则.直线与平面.(3)设平面与平面所成角为为锐角,平面的法向量为,,平面与平面.18.(共14分)解:(1),由正弦定理得,在中,,,.(2)若选①,由余弦定理,得,解得若选③,1CC 1AB Dθ111sin cos ,n CC n CC n CC θ⋅=<>== ∴1CC 1AB D 1AB D 11ACC A ,αα11ACC A ()0,1,0m =cos cos ,n m n m n m α⋅=<>== 1AB D 11ACC A sin cos b A B =sin sin a b A B =sin sin cos B A A B =ABC V sin 0,tan A B ≠=()0,πB ∈ π3B ∴=sin 2sin ,2C A c a== 2222cos b a c ac B =+-222944cos a a a B =+-a c ==1sin 2S ac B ∴==b C == ()sin sin sin cos cos sin A B C B C B C =+=+=由正弦定理可得:选择②,面积公式2分;余弦定理2分.不超过4分.19.(共14分)解:(1)由题意,,解得,,,的最小正周期;的单调减区间为(2)函数在区间上与直线有交点所以,函数在区间上的最大值为3,又因为所以,解得.实数的取值范围是.(3)当时,取最大值4c =1sin 2S bc A ==2πππ3sin 2cos 206364f a ⎛⎫⎛⎫⎛⎫-=-+-=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a =()22cos f x x x ∴=+cos21x x =++π2sin 216x ⎛⎫=++ ⎪⎝⎭()f x 2ππ2T ==()f x π2ππ,π,63k k k z ⎡⎤++∈⎢⎥⎣⎦()f x π,12m ⎡⎤-⎢⎥⎣⎦3y =()f x π,12m ⎡⎤-⎢⎥⎣⎦ππ20,266x m ⎡⎤+∈+⎢⎥⎣⎦ππ262m +≥π6m ≥∴m π,6∞⎡⎫+⎪⎢⎣⎭()()ππ11πππ2sin 21,,,2,2π661262g x f x t x t x x ⎛⎫⎡⎤⎡⎤=-=++-∈+∈ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦ππ262x +=()f x t -3t -当时,取最小值所以,当时,当时,所以,当时,20.(共15分)(1)证明:因为是正三角形,是的中点,所以.又因为平面平面,平面,所以面;解:(2)因为两两互相垂直.以点为原点,的方向分别为轴正方向建立如图所示的空间直角坐标系.则,设平面的法向量为,由,得,点到平面的距离π3π262x +=()f x t -1t --1t ≤()3M t t=-1t >()1M t t =+1t =min ()2M t =PAD V O AD PO AD ⊥CD ⊥,PAD PO ⊂,PADCD PO ⊥,,AD CD D CD AD ⋂=⊂ABCD PO ⊥ABCD ,,OA OG OP O ,,OA OG OP,,x y z ()()()()()(0,0,0,2,0,0,2,4,0,2,4,0,2,0,0,0,0,O A B C D P --((()1,,,0,4,0,E F G --()((0,2,0,1,2,,1,4,EF EG FG =-==EFG (),,n x y z =2020n EF y n EG x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ )n = (3,AE =- A EFG AE n d n ⋅==(3)设所以点到面的距离为定值解得:或.21.(共15分)(1)集合具有性质,集合B 不具有性质.(2)当时,集合A 中的元素个数为4.由题设.假设集合A 具有性质,则①当时,,矛盾.②当时,,不具有性质,矛盾.③当时,.因为和至多一个在A 中;和至多一个在A 中;和至多一个在A 中,故集合A 中的元素个数小于4,矛盾.④当时,,不具有性质,矛盾.⑤当时,,矛盾.综上,不存在具有性质的集合.11,0,,122PM PC λλ⎡⎫⎛⎤=∈⋃⎪ ⎢⎥⎣⎭⎝⎦()()2,4,,12,4M EM λλλλ-=-- M EFG 2PF n d nλ⋅== cos ,||||EF EG EF EG EF EG ⋅<>=== 1sin ,22EFG S EF EG EF EG =<>=V 11sin ,36M EFGEFG V S h EF EG EF EG h -==<>=V 14PM PC λ==34A ()3,2T ()4,2T 4n ={}0,1,2,3,4p ∈()4,T p 0p =(){}0,0,0,0A =1p =()()()(){}1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1A =()4,1T 2p =()()()()()(){}1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,1,1A ⊆()1,1,0,0()0,0,1,1()1,0,1,0()0,1,0,1()1,0,0,1()0,1,1,03p =()()()(){}1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1A =()4,3T 4p =(){}1,1,1,1A =()4,T p A(3)记,则.若,则,矛盾.若,则,矛盾.故.假设存在使得,不妨设,即.当时,有或成立.所以中分量为1的个数至多有.当时,不妨设.因为,所以的各分量有个1,不妨设.由时,可知,中至多有1个1,即的前个分量中,至多含有个1.又,则的前个分量中,含有个1,矛盾.所以.因为,所以.所以.()121,2,,j j j nj c t t t j n =+++= 12n c c c np +++= 0p =(){}0,0,,0A = 1p =(){}1,0,0,,0A = 2p ≥j 1j c p +…1j =11c p +…1c n =0j c =()12,3,,j c j n == 12,,,n ααα ()1212n n n n np +-=-<…11p c n +<…11211,111,0p n t t t t +===== n n p αα⋅=n αp 23,11n n n p t t t +==== i j ≠1i j αα⋅={}121,2,3,,1,,,,q q p q q p t t t +∀∈+ 121,,,p ααα+ 1p +121p p p ++=+()11,2,,1i n i p αα⋅==+ 121,,,p ααα+ 1p +()()1122p p p +++=+()1,2,,j c p j n = …12n c c c np +++= ()1,2,,j c p j n == ()121,2,,j j nj t t t p j n +++==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南德宏州芒市第一中学14—15学年上学期
高二期中考试数学试题
一、选择题(本大题共12道小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)
1.某几何体的三视图,如图所示,则这个几何体是( )
A .三棱锥
B .三棱柱
C .四棱锥
D .四棱柱
2、直线30l y ++=的倾斜角α为 ( )
A 、30;
B 、60;
C 、120;
D 、150。

3、边长为a 正四面体的表面积是 ( )
A 3;
B 3;
C 2;
D 2。

4、对于直线:360l x y -+=的截距,下列说法正确的是 ( )
A 、在y 轴上的截距是6;
B 、在x 轴上的截距是2;
C 、在x 轴上的截距是3;
D 、在y 轴上的截距是-6。

5、已知,a b αα⊂//,则直线a 与直线b 的位置关系是 ( )
A 、平行;
B 、相交或异面;
C 、异面;
D 、平行或异面。

6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为A 、1
2
-
; B 、12
; C 、2-; D 、2。

7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。

若AC BD a ==,
且AC 与BD 所成的角为60,则四边形EFGH 的面积为 ( )
A 、
2; B 、2; C 、2; D 2。

8、如果AB<0,BC<0,那么直线Ax +By +C =0不经过( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
9、下列叙述中错误的是 ( )
A 、若P αβ∈且l αβ=,则P l ∈;
B 、三点,,A B
C 确定一个平面;
C 、若直线a b A =,则直线a 与b 能够确定一个平面;
D 、若,A l B l ∈∈且,A B αα∈∈,则l α⊂。

10、经过直线1l :x -6y +4=0和直线2l :2x +y =5的交点,并且与直线2l 垂直的直线方程是( )
A . x -2y =0
B . x +2y =0
C . x +2y -4=0
D . x -2y -4=0
11、如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成四面体ABCD ,则在四面体ABCD 中,下列结论正确的是( )
A .平面ABD ⊥平面ABC
B .平面AD
C ⊥平面BDC C .平面ABC ⊥平面BDC
D .平面ADC ⊥平面ABC
12、给出下列命题
①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个
C .2个
D .3个
二、填空题(本大题共4道小题,每小题5分,共20分。

把答案填在题中横线上)
13、底面直径和高都是4cm 的圆柱的侧面积为 cm 2。

14.点(2,0)到直线1y x =-的距离为_______.
15、过点(1,2),且在两坐标轴上截距相等的直线方程
16、已知,a b 为直线,,,αβγ为平面,有下列三个命题: (1) a b αβ////,,则a b //; (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α⊂//,则a α//; (4) ,a b a α⊥⊥,则b α//;
其中正确命题是 。

三、解答题(本大题共6道小题,共70分。

解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分10分)如图,在直三棱柱111ABC A B C -中,AC BC ⊥,点D 是AB 的中点.
求证:(1)1AC BC ⊥;(2)1//AC 平面1B CD .
18、(本大题12分)已知直线l 经过点P (-2,5)且斜率为-3
4

(1)求直线l 的方程;
(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.
19、(本小题满分12分)如右图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.
求证:(1)平面AB 1F 1∥平面C 1BF ;
(2)平面AB 1F 1⊥平面ACC 1A 1. 20、(本小题满分12分)如下图,在正方体1111ABCD A B C D -中, (1)求证:面11BB DD ⊥面1AB C ;
(2)求二面角A —B 1C —D 1的平面角的余弦值(理) ( 3 ) 求直线B 1C 与平面ABCD 所成角(文)
21、(本小题满分12分)直线l 过点(1,0)且被两条平行直线0631=-+y x l :和033:2=++y x l 所截得的线段长为
10
10
9,求直线l 的方程。

22、(本小题满分14分)如下图,在三棱锥A BCD -中,,O E 分别是,BD BC 的中点,
2CA CB CD BD ====
,AB AD ==

1
A 1
B 1
D 1
C C
A
B
D
(1)求证:AO 平面BCD;
(2)求异面直线AB与CD所成角的余弦值;(3)求点E到平面ACD的距离。

参考答案
18、解: (1)直线l 的方程为:y -5=-3
4
(x +2)整理得
3x +4y -14=0.
(2)设直线m 的方程为3x +4y +n =0, d =

+4×5+n |
32+42
=3,
解得n =1或-29. ∴直线m 的方程为3x +4y +1=0或3x +4y -29=0.
19、证明: (1)在正三棱柱ABC -A 1B 1C 1中,
∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .
又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F , ∴平面AB 1F 1∥平面C 1BF .
(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1.
又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,
∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1,
∴平面AB 1F 1⊥平面ACC 1A 1
.
21、解;由平行线间的距离公式可得21l l 与的间的距离10
10
913362
2=
+--=
d 而l 被21l l 、截得的线段长恰好为
10
10
9,11l l l 垂直,由与∴的斜率3
1
31=-=k l k 的斜率知, ()13
1
-=
∴x y l 的方程为,即013=--y x 22、解:
(1)证明:连接OC ,BO DO AB AD ==
AO BD ∴⊥ ————————1分
,BO DO BC CD ==
CO BD ∴⊥ ———————2分
E A
B
C
图(5)
D
O

AOC
中,由已知可得
1,AO CO ==, 而2222,AC AO CO AC =∴+=90
AOC ∴∠=,即A O O ⊥ ————4
分。

相关文档
最新文档