一次函教案
一次函数的图像教案
一次函数的图像教案
教案:一次函数的图像
目标:学生能够理解一次函数,并能够画出一次函数的图像。
课时安排:
1. 引入(5分钟):通过一个日常生活中的例子引出直线的概念,例如描述一个小汽车的速度随时间变化的关系。
2. 概念讲解(10分钟):介绍一次函数的定义和特征,例如
方程为y = ax + b,其中a是斜率,b是截距。
3. 图像绘制(20分钟):通过数值计算和绘制坐标轴的方式,指导学生如何画出直线的图像。
先让学生选择一对点,计算斜率,然后绘制直线。
4. 拓展练习(10分钟):给学生几个一次函数的方程,让他
们自己计算斜率和截距,并画出图像。
5. 理解和应用(15分钟):引导学生思考一次函数的图像表
示了什么,并通过实际问题进行应用,例如速度和时间的关系。
6. 总结(5分钟):复习一次函数的定义和特征,并让学生总
结本节课所学到的知识。
7. 回顾和作业(5分钟):检查学生的学习情况,并布置相关
作业,例如题目中给出方程,让学生计算斜率和截距,并画出
图像。
注:课时时间仅供参考,可根据实际情况进行调整。
《二元一次方程与一次函数》教学设计精选4篇
《二元一次方程与一次函数》教学设计精选4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《二元一次方程与一次函数》教学设计精选4篇在教学工作者开展教学活动前,时常需要用到教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
一次函数的图像和性质教案
一次函数的图像和性质教案一、教学目标1. 让学生理解一次函数的概念,掌握一次函数的表示方法。
2. 让学生能够绘制一次函数的图像,理解图像的性质。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学重点1. 一次函数的概念及表示方法。
2. 一次函数图像的性质。
三、教学难点1. 一次函数图像的性质的理解和应用。
四、教学准备1. 教学课件或黑板。
2. 练习题。
五、教学过程1. 引入:通过生活中的实例,如购物时商品的价格,引出一次函数的概念。
2. 讲解:讲解一次函数的定义,举例说明一次函数的表示方法,如y=2x+3。
3. 演示:通过课件或黑板,演示一次函数的图像,让学生观察图像的形状和特点。
4. 讲解:讲解一次函数图像的性质,如直线、斜率、截距等。
5. 练习:让学生绘制一些一次函数的图像,并分析其性质。
7. 作业:布置一些有关一次函数图像和性质的练习题,巩固所学知识。
8. 课后反思:教师对本节课的教学进行反思,看学生对一次函数图像和性质的理解程度,为下一节课的教学做好准备。
六、教学拓展1. 引导学生思考:一次函数在实际生活中的应用,如交通费用计算、物体运动速度与时间的关系等。
2. 让学生尝试解决一些与一次函数相关的生活问题,培养学生的应用能力。
七、课堂小结2. 强调一次函数在实际生活中的应用,激发学生学习兴趣。
八、课后作业1. 完成练习册上的一次函数相关习题。
2. 选择一个生活中的实例,运用一次函数的知识进行分析和解答。
九、教学反思1. 教师反思本节课的教学效果,观察学生对一次函数的理解程度和运用能力。
2. 根据学生的实际情况,调整教学方法和策略,为下一节课的教学做好准备。
十、教学评价1. 对学生的课堂表现、作业完成情况进行评价,了解学生对一次函数知识的掌握程度。
2. 通过课后访谈、问卷调查等方式,了解学生对一次函数图像和性质的理解程度及应用能力。
3. 根据评价结果,针对学生的薄弱环节进行有针对性的辅导,提高学生的数学素养。
一次函数与方程、不等式详细教案
一次函数与方程、不等式详细教案第一章:一次函数的概念与性质1.1 一次函数的定义介绍一次函数的定义:形式为y = kx + b(k、b为常数,k≠0)的函数。
强调一次函数的图像为直线。
1.2 一次函数的斜率与截距解释斜率k的意义:直线的倾斜程度。
解释截距b的意义:直线与y轴的交点。
1.3 一次函数的图像特点描述一次函数图像的形状、方向和位置。
第二章:一次函数的图像与解析式2.1 一次函数图像的绘制利用斜率和截距绘制一次函数的图像。
2.2 一次函数解析式的求解介绍求解一次函数解析式的方法:观察图像或给定的点。
2.3 一次函数图像与解析式的关系解释图像与解析式之间的联系。
第三章:一次函数的应用3.1 线性方程的解法介绍解线性方程的方法:代入法、消元法等。
3.2 实际问题中的一元一次方程举例说明一元一次方程在实际问题中的应用。
3.3 一次函数与不等式介绍一次函数与不等式的关系:图像与解集。
第四章:一元一次不等式的解法4.1 不等式的基本性质介绍不等式的加减乘除性质。
4.2 一元一次不等式的解法介绍解一元一次不等式的方法:同解变形、图像法等。
4.3 不等式的应用举例说明一元一次不等式在实际问题中的应用。
第五章:一次函数与方程的综合应用5.1 实际问题中的一次函数与方程组举例说明一次函数与方程组在实际问题中的应用。
5.2 一次函数与方程的综合解法介绍一次函数与方程的综合解法:代入法、图像法等。
5.3 一次函数与方程的拓展应用探讨一次函数与方程在其他领域的应用。
第六章:一次函数的图像与几何性质6.1 一次函数图像的交点介绍如何求出两条一次函数图像的交点。
强调交点在解析几何中的应用。
6.2 一次函数图像与坐标轴的交点解释一次函数与x轴、y轴的交点求解方法。
6.3 一次函数图像的距离和角度介绍如何利用一次函数图像求解两点间的距离和角度。
第七章:一次函数图像的变换7.1 一次函数图像的平移介绍如何对一次函数图像进行上下、左右平移。
《一次函数的图象和性质》教学设计优秀5篇
《一次函数的图象和性质》教学设计优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《一次函数的图象和性质》教学设计优秀5篇一次函数,也作线性函数,在X,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
4.4.3一次函数的应用第3课时(教案)
三、教学难点与重点
1.教学重点
-理解一次函数表达式y=kx+b中的k和b在实际问题中的意义,如速度与时间关系中的斜率k代表速度,截距b代表初始位置。
-学会通过给定条件或图表信息建立一次函数模型,如根据距离和时间的关系确定物体运动的速度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b是常数,它描述了两个变量之间的线性关系。一次函数在生活中的应用非常广泛,如速度与时间的关系、单价与总价的关系等。
2.案例分析:接下来,我们来看一个具体的案例。假设小华骑自行车以每小时10公里的速度行驶,我们如何根据时间来计算他行驶的距离。这个案例展示了如何建立一次函数模型来解决实际问题。
4.4.3一次函数的应用第3课时(教案)
一、教学内容
《4.4.3一次函数的应用第3课时》
1.理解并掌握一次函数在实际问题中的建模过程。
2.应用一次函数解决实际生活中的问题,如速度与时间、单价与总价等关系。
3.通过实例,使学生能够:
a.确定问题中的变量关系,建立一次函数模型。
b.利用一次函数模型进行问题求解,并解释结果的实际意义。
c.能够根据图表或实际情境,分析一次函数的增减性及其在实际问题中的应用。
4.教材案例:结合教材中关于一次函数应用的问题,如“小明骑自行车行驶,速度与时间的关系”、“某商品打折后的价格与原价的关系”等,进行深入讲解与练习。
二、核心素养目标
1.培养学生的模型建构能力:通过实际问题,让学生学会运用一次函数建立数学模型,提高解决实际问题的能力。
一次函数的图像和性质教案3篇
一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。
二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。
三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。
教学重点:一次函数图象的性质。
教学难点:通过图形探求性质以及分析图形的位置特征。
课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。
教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。
【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。
同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。
因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。
过(1,-)、(0,-3)两点画直线y=-x-3。
师:很好。
还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。
师:大家说说看,哪一种取法更好呢?众:乙的方法好。
师:对。
我们可以针对函数中不同的k和b的值,灵活取值。
教师要求学生画出这两函数的图象。
【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。
(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。
图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。
《二元一次方程与一次函数》教学设计【优秀4篇】
《二元一次方程与一次函数》教学设计【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《二元一次方程与一次函数》教学设计【优秀4篇】教学建议下面是本店铺精心为大家整理的4篇《《二元一次方程与一次函数》教学设计》,可以帮助到您,就是本店铺最大的乐趣哦。
一次函数试讲教案
一次函数试讲教案教案标题:一次函数试讲教案教学目标:1. 理解一次函数的定义和特征。
2. 掌握一次函数的图像、斜率和截距的关系。
3. 能够在实际问题中应用一次函数进行解决。
教学重点:1. 一次函数的定义和特征。
2. 一次函数的图像、斜率和截距的关系。
教学难点:1. 能够在实际问题中应用一次函数进行解决。
教学准备:1. 教师准备:PPT、黑板、白板、笔等。
2. 学生准备:教材、笔、纸等。
教学过程:一、导入(5分钟)1. 教师通过一个简单的问题或实例引起学生对一次函数的兴趣,如:小明每天骑自行车去学校,他发现自行车的速度和他骑的时间有关系,你能推测出这个关系是什么吗?二、讲解(15分钟)1. 教师通过PPT或黑板向学生介绍一次函数的定义和特征,包括函数的表达式为y=ax+b,其中a和b为常数,a称为斜率,b称为截距。
2. 教师通过图像展示一次函数的特点,解释斜率和截距对图像的影响。
三、练习(20分钟)1. 学生根据教师提供的一次函数表达式,画出对应的图像,并标注出斜率和截距。
2. 学生根据给定的斜率和截距,写出对应的一次函数表达式。
3. 学生通过实际问题,应用一次函数进行解决,如:小明每天骑自行车去学校,已知他花费30分钟骑行5公里,求他的速度。
四、总结(10分钟)1. 教师与学生一起总结一次函数的定义和特征,以及斜率和截距对图像的影响。
2. 教师强调一次函数在实际问题中的应用。
五、拓展(5分钟)1. 学生自主拓展,寻找更多实际问题,并应用一次函数进行解决。
教学反思:通过本堂课的教学,学生能够理解一次函数的定义和特征,掌握一次函数的图像、斜率和截距的关系,并能够在实际问题中应用一次函数进行解决。
教学过程中,教师通过引入问题和实例,激发学生的学习兴趣;通过图像展示和练习,帮助学生深入理解一次函数的特点;通过总结和拓展,巩固学生的知识并拓宽应用领域。
同时,教师还应注意在教学过程中注重学生的参与和思考,激发他们的学习动力。
八年级《一次函数》教学设计(5篇)
八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
初二数学教案《一次函数》(优秀10篇)
初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
一次函数的图像教案
一次函数的图像教案第一章:一次函数的定义与表达式1.1 一次函数的定义引导学生回顾初中数学中的一次函数的定义。
解释一次函数是形如y=kx+b的函数,其中k和b是常数,x的次数为1。
1.2 一次函数的表达式介绍一次函数的一般形式y=kx+b,其中k是斜率,b是截距。
解释斜率和截距的概念,并给出具体的例子进行说明。
第二章:一次函数的图像2.1 直线图像的性质解释直线图像的几个重要性质,如直线是无限延伸的,直线上的点满足一次函数关系等。
通过具体的例子,让学生观察和理解直线的斜率和截距对图像的影响。
2.2 斜率和截距的计算教授斜率和截距的计算方法,并给出具体的例子进行示范。
让学生进行一些练习题,巩固他们对斜率和截距的理解和计算能力。
第三章:一次函数图像的性质3.1 斜率的含义解释斜率是直线上任意两点的纵坐标之差与横坐标之差的比值。
解释斜率的正负性和直线的倾斜程度之间的关系。
3.2 截距的含义解释截距是直线与y轴的交点的纵坐标。
解释截距的意义,并给出具体的例子进行说明。
第四章:一次函数图像的绘制4.1 利用斜率和截距绘制直线教授如何根据斜率和截距的值绘制直线的方法。
给出一些具体的例子,让学生练习绘制直线。
4.2 利用两点绘制直线解释如何根据已知的两点来绘制直线。
给出一些具体的例子,让学生练习绘制直线。
第五章:一次函数图像的应用5.1 实际问题中的一次函数图像通过一些实际问题,让学生理解一次函数图像在实际中的应用。
让学生尝试解决一些实际问题,如计算物品的成本、距离和速度等问题。
5.2 一次函数图像的解析教授如何通过一次函数图像来解析一些问题,如求解方程、求解最值等。
给出一些具体的例子,让学生练习解析一次函数图像。
第六章:一次函数图像的交点6.1 交点的定义解释一次函数图像的交点是指两条直线相交的点。
给出两个一次函数图像的例子,让学生观察和理解交点的含义。
6.2 求解交点的方法教授如何求解两条一次函数图像的交点的方法。
《一次函数》教案(共5则)
《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
一次函数及一元一次方程教案
一次函数及一元一次方程教案第一章:一次函数的概念与性质1.1 引入:通过实际生活中的问题,让学生感受函数的存在,引导学生理解函数的概念。
1.2 一次函数的定义:函数是一种对应关系,一次函数是形如y=kx+b(k、b 为常数,k≠0,x为自变量)的函数。
1.3 一次函数的性质:讨论一次函数的图像,包括斜率k和截距b对图像的影响。
1.4 一次函数的图像:通过绘制函数图像,让学生理解一次函数的增减性和转折点。
第二章:一元一次方程的定义与解法2.1 引入:通过实际问题,引导学生理解方程的概念,让学生感受方程的解决过程。
2.2 一元一次方程的定义:形如ax+b=0(a、b为常数,a≠0,x为未知数)的方程称为一元一次方程。
2.3 一元一次方程的解法:通过讨论解法,让学生掌握解一元一次方程的技巧。
2.4 应用:通过实际问题,让学生运用一元一次方程解决问题。
第三章:一次函数与一元一次方程的关系3.1 引入:通过实际问题,引导学生理解一次函数与一元一次方程之间的关系。
3.2 一次函数与一元一次方程的转化:讨论如何将一元一次方程转化为一次函数,以及如何将一次函数转化为一元一次方程。
3.3 应用:通过实际问题,让学生运用一次函数与一元一次方程的关系解决问题。
第四章:一次函数的应用4.1 引入:通过实际问题,引导学生理解一次函数在实际生活中的应用。
4.2 实际问题:让学生解决一些实际问题,如计算成本、收益等。
4.3 数据拟合:让学生通过给定的数据,拟合出一次函数,并解释其含义。
第五章:一元一次方程的应用5.1 引入:通过实际问题,引导学生理解一元一次方程在实际生活中的应用。
5.2 实际问题:让学生解决一些实际问题,如计算距离、面积等。
5.3 优化问题:让学生通过一元一次方程,解决一些优化问题,如最短路线等。
第六章:一次函数的图像与解析式6.1 引入:通过实际问题,引导学生理解一次函数图像与解析式之间的关系。
6.2 一次函数图像的绘制:让学生掌握如何绘制一次函数的图像,包括直线、斜率和截距的概念。
一次函数的图像和性质教案
一次函数的图像和性质教案一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的表示方法。
2. 让学生能够绘制一次函数的图像,理解图像的性质。
3. 培养学生运用一次函数解决实际问题的能力。
二、教学内容:1. 一次函数的概念及表示方法。
2. 一次函数图像的性质。
3. 一次函数图像的绘制方法。
4. 一次函数在实际问题中的应用。
三、教学重点与难点:1. 重点:一次函数的概念,一次函数图像的性质,一次函数图像的绘制方法。
2. 难点:一次函数图像的性质的理解与应用。
四、教学方法:1. 采用讲授法,讲解一次函数的概念、表示方法、图像性质等。
2. 采用演示法,展示一次函数图像的绘制过程。
3. 采用案例分析法,分析一次函数在实际问题中的应用。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识一次函数,激发学生的学习兴趣。
2. 新课导入:讲解一次函数的概念、表示方法。
3. 案例分析:分析一次函数在实际问题中的应用。
4. 课堂互动:让学生上台演示一次函数图像的绘制过程,其他学生进行评价。
6. 课后作业:布置有关一次函数的练习题,巩固所学知识。
六、教学评价:1. 通过课堂互动、课后作业和课堂表现,评价学生对一次函数概念和表示方法的掌握情况。
2. 通过绘制一次函数图像和分析图像性质,评价学生对一次函数图像性质的理解和应用能力。
3. 通过解决实际问题,评价学生运用一次函数解决实际问题的能力。
七、教学资源:1. PPT课件:展示一次函数的概念、表示方法、图像性质等内容。
2. 黑板:用于板书重要概念和公式。
3. 练习题:用于巩固所学知识。
4. 实际问题案例:用于引导学生运用一次函数解决实际问题。
八、教学进度安排:1. 第1-2课时:讲解一次函数的概念和表示方法。
2. 第3-4课时:讲解一次函数图像的性质。
3. 第5-6课时:讲解一次函数图像的绘制方法。
4. 第7-8课时:分析一次函数在实际问题中的应用。
九、教学反思:在课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、作业完成情况等。
一次函数的图象教案及反思
一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的图象特征。
2. 培养学生利用图象解决实际问题的能力。
3. 引导学生通过观察、分析、归纳等方法,探索一次函数图象的性质。
二、教学内容:1. 一次函数的定义及表示方法。
2. 一次函数图象的性质及特点。
3. 利用一次函数图象解决实际问题。
三、教学重点与难点:1. 重点:一次函数的图象特征,一次函数图象与实际问题的结合。
2. 难点:一次函数图象在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数图象的性质。
2. 利用数形结合法,让学生直观地感受一次函数图象的特点。
3. 结合实际例子,培养学生解决实际问题的能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识一次函数,并激发学生学习兴趣。
2. 新课:讲解一次函数的定义、表示方法,并通过示例让学生理解一次函数图象的概念。
3. 探究:让学生分小组探究一次函数图象的性质,如:斜率、截距等,并归纳总结。
4. 应用:结合实际问题,让学生运用一次函数图象解决问题,如:线性规划等。
5. 巩固:出示一些练习题,让学生巩固所学知识,提高解题能力。
6. 总结:对本节课内容进行总结,强调一次函数图象在实际问题中的应用。
7. 作业:布置一些有关一次函数图象的练习题,让学生课后巩固。
教案反思:在授课过程中,要注意让学生通过观察、分析、归纳等方法,自主地探索一次函数图象的性质,培养他们的动手操作能力和独立思考能力。
结合实际例子,让学生感受一次函数图象在解决实际问题中的重要性,提高他们的学习兴趣。
在教学过程中,要关注学生的学习情况,及时解答他们的疑问,确保他们能够掌握一次函数图象的知识。
六、教学评价:1. 通过课堂提问、练习题和小组讨论,评估学生对一次函数概念和图象性质的理解程度。
2. 观察学生在解决实际问题时的表现,评估他们应用一次函数图象解决实际问题的能力。
3. 收集学生作业和课后练习,评估他们的巩固程度和独立解题能力。
一次函数的概念教学设计6篇
一次函数的概念教学设计6篇教学目标1、经受一般规律的探究过程,进展学生的抽象思维力量。
2、理解一次函数和正比例函数的概念,能依据所给条件写出简洁的一次函数表达式,进展学生的数学应用力量。
教学重点1、一次函数、正比例函数的概念及两者之间的关系。
2、会依据已知信息写出一次函数的表达式。
教学难点一次函数学问的运用教学方法教师引导学生自学法教具预备弹簧一根、课件教学过程一、创设问题情境,引入新课1、简洁复习函数的概念(设在某一变化过程中有两个变量X和Y,假如,那么我们称Y是X的函数,其中X是自变量,Y是因变量)2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?二、新课学习1、做一做。
让学生做书上157页上面两个题目,使学生在探究一般规律的过程中,进展抽象思维力量。
2、一次函数、正比例函数的概念学习争论:刚刚写出的两个关系式y=3+0.5x、y=100—0.18x在形式上有什么一样之处?让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。
问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。
问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。
并接着引导学生比拟一次函数与正比例函数的关系(用集合的方法比拟):一次函包括正比例函数,正比例函数是一次函数的特别状况。
3、例题学习例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进展口答。
例题2是培育学生依据题意列出简洁一次函数关系式及利用一次函数解决实际问题的力量。
数学教案-二元一次方程与一次函数(优秀6篇)
数学教案-二元一次方程与一次函数(优秀6篇)元一次方程教案篇一一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。
2.由上题可知一元二次方程的系数与根有着密切的关系。
其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x2x2-2x=0x2+3x-4=0x2-5x+6=0观察上面的表格,你能得到什么结论?(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x22x2-7x-4=03x2+2x-5=05x2-17x+6=0小结:根与系数关系:(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。
)(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论即:对于方程ax2+bx+c=0(a≠0)∵a≠0,∴x2+bax+ca=0∴x1+x2=-ba,x1?x2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0 (2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x=3(5)x2-1=0 (6)x2-2x+1=0例2 不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3 已知一元二次方程的`两个根是-1和2,请你写出一个符合条件的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:一次函数
题型一、一次函数与正比例函数的识别
1、当k_____________时,()2323y k x x =-++-是一次函数;
2、当m_____________时,()21345m y m x x +=-+-是一次函数;
3、当m_____________时,()21445m y m x x +=-+-是一次函数;
4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________;
题型二、函数图像及其性质
方法:
k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度;
b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。
☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。
当 时,两直线垂直。
当 时,两直线相交。
当 时,两直线交于y 轴上同一点。
☆特殊直线方程:
X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。
2、对于函数12
23
y x =
-, y 的值随x 值的________而增大。
3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。
5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。
6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数
(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?
8、如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )
题型三、待定系数法求解析式
方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。
☆ 已知是直线或一次函数可以设y=kx+b (k ≠0);
☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b 经过点(2,-6),求函数的解析式。
2、直线y=kx+b 的图像经过A (3,4)和点B (2,7),
3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。
5、若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤
9,求此函数的解析式。
6、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。
7、已知直线y=kx+b与直线y= -3x+7关于x轴对称,求k、b的值。
8、已知直线y=kx+b与直线y= -3x+7关于原点对称,求k、b的值。
9,已知2y-3与3x+1成正比例,且x=2时,y=5,(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .
题型四、平移求解析式
方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。
直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
1. 直线y=5x-3向左平移2个单位得到直线。
2. 直线y=-x-2向右平移2个单位得到直线
3. 直线y=
21
x 向右平移2个单位得到直线 4. 直线y=22
3
+-x 向左平移2个单位得到直线
5. 直线y=2x+1向上平移4个单位得到直线
6. 直线y=-3x+5向下平移6个单位得到直线
7. 直线x y 31
=
向上平移1个单位,再向右平移1个单位得到直线 。
8. 直线14
3
+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
9. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。
题型五、交点问题及直线围成的面积问题
方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;
复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形); 往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高; 1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
(讲)
2、 已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB (1) 求两个函数的解析式;(2)求△AOB 的面积;(练)
3、 已知直线m 经过两点(1,6)、(-3,-2),它和x 轴、y 轴的交点式B 、
A ,直线n 过点(2,-2),且与y 轴交点的纵坐标是-3,它和x 轴、y 轴的交点是D 、C ;(讲) (1) 分别写出两条直线解析式,并画草图; (2) 计算四边形ABCD 的面积; (3) 若直线A
B 与D
C 交于点E ,求△BCE 的面积。
4、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,
p)在第一象限,直线PA交y轴于点C(0,2),直线PB交
y轴于点D,△AOP的面积为6;(练)
(1)求△COP的面积;
(2)求点A的坐标及p的值;
(3)若△BOP与△DOP的面积相等,求直线BD的函数解析式。
5、已知:经过点(-3,-2),它与x轴,y轴分别交于点B、A ,直线经过点(2,-2),且与y
轴交于点C(0,-3),它与x轴交于点D
(1)求直线的解析式;
(2)若直线与交于点P ,求的值。