高中数学苏教版必修4章末综合检测02 含解析

合集下载

苏教版高中数学必修4 章末过关检测卷(二) Word版含解析

苏教版高中数学必修4 章末过关检测卷(二) Word版含解析

章末过关检测卷(二)(时间:分钟满分:分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).(·四川卷)向量=(,)与向量=(,)共线,则实数=( )....解析:因为∥,所以×-=,解得=.答案:.(+)+(+)+化简后等于( )解析:原式=++++=.答案:.(·课标全国Ⅱ卷)向量=(,-),=(-,),则(+)·=( ).-...解析:法一:因为=(,-),=(-,),所以=,·=-,从而(+)·=+·=-=.法二:因为=(,-),=(-,),所以+=(,-)+(-,)=(,).从而(+)·=(,)·(,-)=.答案:.设点(-,),(,),(,-),且=-,则点的坐标为( ).(-,-).(,).(,).(,)解析:设(,),由题意可知=(+,-),=(,),=(,-),所以-=(,)-(,-)=(,).所以所以答案:.点在线段上,且=,若=λ,则λ等于( ).-.-解析:因==(-),所以=-,即=-=λ.所以λ=-.答案:.设非零向量,,满足==,+=,则向量,的夹角为( ).°.°.°.°解析:设向量,夹角为θ,=+=++θ,则θ=-.又θ∈[°,°],所以θ=°.答案:.(·陕西卷)对任意向量,,下列关系式中不恒成立的是( ).-≤-.·≤.(+)·(-)=-.(+)=+解析:根据·=θ,又θ≤,知·≤,恒成立.当向量和方向不相同时,->-,不恒成立.根据+=+·+=(+),恒成立. 根据向量的运算性质得(+)·(-)=-,恒成立.答案:.(·课标全国Ⅰ卷)设为△所在平面内一点,=,则( )=-=-+。

苏教版高中数学必修4模块检测(含参考答案).docx

苏教版高中数学必修4模块检测(含参考答案).docx

高中数学学习材料马鸣风萧萧*整理制作模块检测(苏教版必修4)建议用时 实际用时满分 实际得分150分钟160分一、填空题(每小题5分,共70分)1.函数πsin 23y x ⎛⎫=- ⎪⎝⎭的最小正周期为 .2.化简:sin 13cos 17sin 17cos 13︒︒+︒︒= .3.已知(,3)x =a ,(3,1)=b ,且⊥a b ,则x = .4.已知tan 2α=,则sin 2cos cos sin αααα+-= .5.若1sin cos 3αα+=,则sin 2α= . 6.已知扇形的半径为8 cm ,圆心角为45°,则扇形的面积是 cm 2.7.已知4sin 5θ=,且cos(π)0θ->,则πcos 3θ⎛⎫+ ⎪⎝⎭ = . 8.要得到2πsin 23y x ⎛⎫=-⎪⎝⎭的图象,需要将函数y = sin 2x 的图象 .9.若ππ0,022αβ<<<<,且72cos 10α=,tan β=34,则αβ+= . 10.函数sin y x =的定义域是 .11.已知,a b 满足:3,2,+4===a b a b ,则-a b = .12.设02πθ<≤,已知两个向量1(cos ,sin ),OP θθ=uuu r 2(2sin ,2cos )OP θθ=+-uuu r ,则向量12P P uuu r长度的最大值是 .13.已知四边形ABCD 为平行四边形,(1,2),(0,A B -0),(1,7)C ,则D 点坐标为 . 14.给出下列四个命题: ①函数π2sin 23y x ⎛⎫=-⎪⎝⎭的一条对称轴是5π12x =; ②函数tan y x =的图象关于点π,02⎛⎫ ⎪⎝⎭对称; ③正弦函数在第一象限为增函数; ④若12ππsin 2sin 244x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则12πx x k -=, 其中k ∈Z .以上正确的有 .(请把正确命题的序号填在横线上)二、解答题(共90分)15.(14分)(1)已知1cos 3α=,求cos(2π)sin(π)πsin tan(3π)2αααα-+⎛⎫++ ⎪⎝⎭··的值;(2)已知tan 2α=,求2sin sin cos ααα+的值.16.(14分)已知53cos(),sin 135αββ+=-=,,αβ均为锐角.(1)求cos(2)αβ+的值;(2)求sin α的值.17.(14分)已知(1,2),(3,2)==-a b .(1)当k 为何值时,k +a b 与3-a b 垂直?(2)当k 为何值时,k +a b 与3-a b 平行?平行时它们是同向还是反向?18.(16分)函数π()sin()0,0,2f x A x A ωαω⎛=+>>- ⎝π2α⎫<<⎪⎭的最小正周期是π,且当π6x =时()f x 取得最大值3.(1)求()f x 的解析式及单调增区间.(2)若0[02π)x ∈,,且03()2f x =,求0x .(3)将函数()f x 的图象向右平移(0)m m >个单位长度后得到函数()y g x =的图象,且()y g x =是偶函数,求m 的最小值.19.(16分)已知(3sin ,cos ),(cos ,x m x x =+=a b cos )m x -+且()f x =g a b .(1)求函数()f x 的解析式;(2)当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值.20.(16分)某港口的水深y (米)是时间t(024t ≤≤,单位:小时)的函数,下表是每天时间t 与水深y 的关系:t 0 3 6 9 12 15 18 21 24 y 10 13 9.9 7 10 13 10.1 7 10 经过长期观测,()y f t =可近似的看成是函数y =sin A t b ω+.(1)根据以上数据,求出()y f t =的解析式.(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?模块检测(苏教版必修4)答题纸得分:一、填空题1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.三、解答题15.16.17.18.19.20.模块检测(苏教版必修4)答案一、填空题1.πv 解析:∵ 函数πsin 23y x ⎛⎫=- ⎪⎝⎭,∴ 2ω=,∴ 2π π2T ==.2.12 解析:1sin 13cos 17cos 13sin 17sin 302+==. 3.-1 解析:∵ (,3)x =a ,(3,1)=b ,且⊥a b ,∴ 330x =+=g a b .解得1x =-.4.-4 解析:由tan 2α=,得sin 2cos tan 2224cos sin 1tan 12αααααα+++===----.5.89- 解析:由1sin cos 3αα+=,得112sin cos 9αα+=,∴ 82sin cos 9αα=-,∴ 8sin 29α=-.6.8π 解析:∵ 在扇形中,半径8 cm r =,圆心角α=45°=π4,∴ 弧长π82π(cm)4l =⨯=,∴ 扇形的面积2112π88π(cm )22S lr ==⨯⨯=.7.34310-- 解析:∵ 4sin 5θ=,且cos(π)cos 0θθ-=>-,∴ 3cos 5θ=-.∴ πππ3143343cos cos cos sin sin 333525210θθθ--⎛⎫+==-⨯-⨯= ⎪⎝⎭-.8.向右平移π3个单位 解析:将函数sin 2y x =的图象向右平移π3个单位,可得到πsin 23y x ⎛⎫=- ⎪⎝⎭的图象,即2πsin 23y x ⎛⎫=- ⎪⎝⎭的图象. 9.π4 解析:由条件可得22sin 1cos 10αα=-=,∴ 1tan 7α=.∴ tan tan tan()11tan tan αβαβαβ++==-·.由0παβ<+<,得π4αβ+=. 10.[2π,2ππ],k k k +∈Z 解析:由题意得sin 0x ≥,∴ 2π2ππ,k x k k +∈Z ≤≤,故函数的定义域为[2π,k2ππ],k k +∈Z .11.10 解析:∵ 3,2==a b ,∴ 229,4==a b .又+4=a b ,∴ 22216++=g a b a b ,∴ 23=g a b , ∴ 222210+-==-g a b a b a b ,∴ 10-=a b .12.32 解析:由向量的减法知1221(2sin cos 2cos sin )PP OP OP θθθθ=-=+---,uuu r uuu r uuu r, ∴ 2212(2sin cos )(2cos sin )PP θθθθ=+-+--uuu r2244(sin cos )(sin cos )44(sin cos )(sin cos )θθθθθθθθ=+-+-+-+++108cos θ=-.∵ 02πθ<≤,∴ 1cos 1θ-≤≤,则当cos 1θ=-时,向量12P P uuu r的长度有最大值是32.13.(0,9) 解析:设(,)D x y ,则BA CD =uu r uu u r .又(1,2),(1,7)BA CD x y =-=--uu r uu u r ,∴ 11,7 2.x y -=-⎧⎨-=⎩解得0,9.x y =⎧⎨=⎩∴ (0,9)D . 14.①② 解析:把5π12x =代入函数π2sin 23y x ⎛⎫=- ⎪⎝⎭,得2y =,为最大值,故①正确.结合函数tan y x =的图象可得点π,02⎛⎫ ⎪⎝⎭是函数tan y x =的图象的一个对称中心,故②正确. ③正弦函数在第一象限为增函数,不正确,如39060>,都是第一象限角,但sin 390sin 60< .若12ππsin 2sin 244x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则有12ππ22π244x k x -=+-,或12ππ22ππ244x k x ⎛⎫-=+-- ⎪⎝⎭,k ∈Z , ∴ 12πx x k -=或123ππ+4x x k +=,k ∈Z ,故④不正确.二、解答题15.解:(1)cos(2π)sin(π)cos sin πcos tan sin tan(3π)2αααααααα-+=⎛⎫++ ⎪⎝⎭g g g g =cos α=13. (2)因为tan 2α=, 所以2sin sin cos ααα+ =222sin sin cos sin cos ααααα++=22tan tan tan 1ααα++=222221++ =65. 16.解:(1)由题意知124sin(),cos 135αββ+==,∴ 5412356cos(2)cos[()]cos()cos sin()sin 13513565αβαββαββαββ+=++=++=-⨯-⨯=--. (2)1245363sin sin[()]sin()cos cos()sin =13513565ααββαββαββ⎛⎫=+=+-+=⨯--⨯ ⎪⎝⎭-.17.解:(1,2)+(3,2)(3,22)k k k k +==-+-a b ,3(1,2)3(3,2)(10,4)---=-a b =. (1)由()(3)k +⊥-a b a b ,得()(3)10(3)4(22)2380,k k k k +-=-+=-=-g a b a b 解得19k =.(2)由()(3)k +-a b a b ∥,得4(3)10(22)k k --=+,解得13k =-.此时1041,(10,4)333k ⎛⎫+=-=-- ⎪⎝⎭a b ,所以它们方向相反.18.解:(1)由题意知2π3,πA ω==.∴ 2ω=.∴ ππ3sin 2366f α⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.∴ ππ22π62k α⨯+=+()k ∈Z . 又ππ22α-<<,∴ π6α=.∴ π()3sin 26f x x ⎛⎫=+ ⎪⎝⎭.由πππ2π22π262k x k -++≤≤()k ∈Z ,得ππππ36k x k -+≤≤()k ∈Z ,∴()f x 的单调增区间是πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .(2)∵ 00π3()3sin 262f x x ⎛⎫=+= ⎪⎝⎭,即0π1sin 262x ⎛⎫+= ⎪⎝⎭,∴ 0ππ22π66x k +=+或0π5π22π()66x k k +=+∈Z .∴ 0πx k =或0ππ()3x k k =+∈Z .又0[02πx ∈,),∴ 0π4π0,π,,33x =. (3)由条件可得ππ()3sin 2()3sin 2266g x x m x m ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭.又()g x 是偶函数,∴ ()g x 的图象关于y 轴对称,∴ 当0x =时,()g x 取最大值或最小值,即π3sin 2+36m ⎛⎫-=± ⎪⎝⎭,∴ ππππ2π(),()6226k m k k m k -+=+∈=--∈Z Z . 又0m >,∴ m 的最小值是π3.19.解:(1)()(3sin ,cos )(cos ,cos )f x x m x x m x ==+-+g g a b ,即22()3sin cos cos f x x x x m =+-. (2)∵ 223sin 21cos 2π1()sin 22262x x f x m x m +⎛⎫=+-=++- ⎪⎝⎭,又ππ,63x ⎡⎤∈-⎢⎥⎣⎦, ∴ ππ5π2,666x ⎡⎤+∈-⎢⎥⎣⎦,∴ π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,∴ 211422m -+-=-, ∴ 24m =,∴ max 15()1422f x =+-=-,此时ππ262x +=,π6x =.20.解:(1)由题意知13713710,322b A +-====,周期为12,因此2ππ12,6T ωω===,故π()3sin 10(024)6f t t t =+≤≤.(2)要想船舶安全,必须深度()11.5f t ≥,即π3sin 1011.56t +≥,∴ π1sin 62t ≥,故ππ5π2π2π,666k t k k ++∈Z ≤≤.解得121512,k t k k ++∈Z ≤≤. 又024t ≤≤,当0k =时,15t ≤≤; 当1k =时,13t ≤≤17,故船舶安全进出港的时间段为(1:00∼5:00),(13:00∼17:00).。

苏教版高中数学必修4章末综合测评(二) 平面向量.docx

苏教版高中数学必修4章末综合测评(二) 平面向量.docx

高中数学学习材料马鸣风萧萧*整理制作章末综合测评(二) 平面向量(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.已知作用在点A(1,1)的三个力F 1=(3,4),F 2=(2,-5),F 3=(3,1),则合力F =F 1+F 2+F 3的终点坐标是________.【解析】 ∵F =(8,0),∴终点坐标为(8,0)+(1,1)=(9,1). 【答案】 (9,1)2.BA →-BC →+AB →+AC →=________.【解析】 原式=CA →+AC →+AB →=0+AB →=AB →. 【答案】 AB →3.若向量a =(1,1),b =(1,-1),c =(-1,2),若c =λa +μb ,则λ,μ的值分别是________.【解析】 ∵c =λa +μb , ∴(-1,2)=(λ,λ)+(μ,-μ), ∴⎩⎨⎧-1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧λ=12,μ=-32.【答案】 12,-324.已知两点A (4,1),B (7,-3),则与向量AB →同向的单位向量的坐标是________.【解析】 AB →=(3,-4),|AB →|=5,∴e ==15(3,-4)=⎝ ⎛⎭⎪⎫35,-45.【答案】 ⎝ ⎛⎭⎪⎫35,-455.已知向量a =(3x ,1),b =(2,-5),若a ∥b ,则x =________. 【解析】 ∵a ∥b ,∴-15x =2,x =-215. 【答案】 -2156.若|a |=1,|b |=2,a·b =-1,则|a -b |=________. 【解析】 ∵|a |=1,|b |=2,a·b =-1 ∴|a -b |=a 2-2a·b +b 2=1+2+4=7. 【答案】77.平面向量a ,b 中,若a =(4,-3),|b |=1,且a·b =5,则向量b =________. 【导学号:48582123】【解析】 设b =(x ,y ),则⎩⎨⎧x 2+y 2=1,4x -3y =5,∴⎩⎪⎨⎪⎧x =45,y =-35,即b =⎝ ⎛⎭⎪⎫45,-35.【答案】 ⎝ ⎛⎭⎪⎫45,-358.下列5个说法:①共线的单位向量是相等向量;②若a ,b ,c 满足a +b =c 时,则以|a|,|b|,|c|为边一定能构成三角形; ③对任意的向量,必有|a +b |≤|a |+|b |; ④(a·b )c =c (b·c );⑤(a +b )·c =a·c +b·c .其中正确的是________.【解析】 共线也有可能反向,故①不正确;若|a |=0,显然不能构成三角形,故②不正确;由数量积的性质知④不正确;由向量加法的三角形法则知③正确;由数量积的性质知⑤正确.【答案】 ③⑤9.已知a =(1,n ),b =(-1,n ),且2a -b 与b 垂直,则|a |等于________. 【解析】 2a -b =(3,n ),∵(2a -b )·b =0,∴n 2-3=0,∴n 2=3,∴|a |2=1+n 2=4,∴|a |=2.【答案】 210.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN →的模为________.【解析】 ∵a ∥b ,∴2×(-2)-(-1)x =0,解得x =4, ∴b =(4,-2),∴a +b =(6,-3),b -c =(1,-2-y ). ∵(a +b )⊥(b -c ),∴(a +b )·(b -c )=0, 即6-3(-2-y )=0,解得y =-4,∴MN →=(y -x ,x -y )=(-8,8),∴|MN →|=8 2. 【答案】 8 211.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是________.(1)|b |=1;(2)a ⊥b ;(3)a·b =1;(4)(4a +b )⊥BC →. 【解析】 如图△ABC 是边长为2的等边三角形.由已知b =AC →-2a =AC →-AB →=BC →,显然(1)(2)(3)错,(4a +b )·BC →=2AB →·BC →+|BC →|2=2×2×2×cos 23π+22=0,∴(4a +b )⊥BC →.【答案】 (4)12.如图1,非零向量OA →=a ,OB →=b ,且BC ⊥OA ,C 为垂足,若OC →=λa ,则λ=________.图1【解析】 BC →=OC →-OB →=λa -b ,∵BC →⊥OA →,∴a ·(λa -b )=0,则λ=a ·b|a |2. 【答案】 a ·b |a |213.已知向量a =(6,2),b =⎝ ⎛⎭⎪⎫-4,12,直线l 过点A (3,-1)且与向量a +2b垂直,则直线l 的方程为________. 【导学号:48582124】【解析】 ∵a +2b =(-2,3),在l 上任取一点P (x ,y ),则有AP →⊥(a +2b ), ∴AP →·(a +2b )=0,∴(x -3,y +1)·(-2,3)=0, ∴2x -3y -9=0. 【答案】 2x -3y -9=014.已知OA →=(2,2),OB →=(4,1),O 为坐标原点,在x 轴上求一点P ,使AP →·BP →有最小值,则P 点坐标为________.【解析】 设P (x ,0),∴AP →·BP →=(x -2,-2)·(x -4,-1)=(x -2)(x -4)+2=x 2-6x +10=(x -3)2+1,当x =3时,AP →·BP →有最小值,∴P (3,0).【答案】 (3,0)二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)在平行四边形ABCD 中,AB →=a ,AD →=b ,(1)如图2①,如果E ,F 分别是BC ,DC 的中点,试用a ,b 分别表示BF →,DE →.(2)如图2②,如果O 是AC 与BD 的交点,G 是DO 的中点,试用a ,b 表示AG →.图2【解】 (1)BF →=BC →+CF →=AD →+12CD →=AD →-12AB →=-12a +b . DE →=DC →+CE →=AB →-12AD →=a -12b . (2)BD →=AD →-AB →=b -a ,∵O 是BD 的中点,G 是DO 的中点, ∴BG →=34BD →=34(b -a ), ∴AG →=AB →+BG →=a +34(b -a ) =14a +34b .16.(本小题满分14分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.【解】 (1)若a ⊥b ,则a·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0. 整理得x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则有1×(-x )-x (2x +3)=0,即x (2x +4)=0,解得x =0或x =-2.当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2.当x =-2时,a =(1,-2),b =(-1,2),a -b =(2,-4),|a -b |=22+(-4)2=2 5.17.(本小题满分14分)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.【解】 (1)由题设,知AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB →+AC →|=210,|AB →-AC →|=4 2.故所求的两条对角线长分别为42,210.(2)由题设,知OC →=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得(3+2t ,5+t )·(-2,-1)=0,从而5t =-11,所以t =-115.18.(本小题满分16分)设两个向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,求实数t 的取值范围.【解】 由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角, 得(2t e 1+7e 2)·(e 1+t e 2)|2t e 1+7e 2|·|e 1+t e 2|<0,即(2t e 1+7e 2)·(e 1+t e 2)<0.整理得:2t e 21+(2t 2+7)e 1·e 2+7t e 22<0.(*)∵|e 1|=2,|e 2|=1,〈e 1,e 2〉=60°. ∴e 1·e 2=2×1×cos 60°=1 ∴(*)式化简得:2t 2+15t +7<0. 解得:-7<t <-12.当向量2t e 1+7e 2与e 1+t e 2夹角为180°时, 设2t e 1+7e 2=λ(e 1+t e 2)(λ<0).对比系数得⎩⎨⎧2t =λ7=λtλ<0,∴⎩⎨⎧λ=-14t =-142∴所求实数t 的取值范围是 ⎝⎛⎭⎪⎫-7,-142∪⎝ ⎛⎭⎪⎫-142,-12. 19.(本小题满分16分)设作用于同一点O 的三个力F 1,F 2,F 3处 于平衡状态,若|F 1|=1,|F 2|=2,F 1与F 2的夹角为23π,如图3所示.图3求:(1)F 3的大小; (2)∠F 3OF 2的大小.【解】 (1)F 1、F 2、F 3三个力处于平衡状态, 故F 1+F 2+F 3=0. 即F 3=-(F 1+F 2).∴|F 3|=|F 1+F 2|=(F 1+F 2)2=F 21+F 22+2F 1·F 2 =1+4+2×1×2cos 23π= 3.(2)如图所示,以F 2所在直线为x 轴,合力作用点为坐标原点,建立直角坐标系,将向量F 1,F 3正交分解,设∠MOF 3=θ,由受力平衡知⎩⎪⎨⎪⎧|F 3|·cos θ+|F 1|cos ⎝ ⎛⎭⎪⎫π-23π=|-F 2|,|F 3|·sin θ=|-F 1|cos ⎝ ⎛⎭⎪⎫23π-π2,即⎩⎪⎨⎪⎧ |F 3|·cos θ=|-F 2|-|F 1|·cos π3,|F 3|sin θ=|-F 1|cos π6.将数值代入得⎩⎪⎨⎪⎧3cos θ=2-12,3sin θ=32,∴θ=π6.于是得∠F 3OF 2=π-π6=56π.20.(本小题满分16分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),且点A (8,0),B (n ,t ),C (k sin θ,t ),θ∈⎝ ⎛⎭⎪⎫0,π2.(1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →. 【导学号:48582125】【解】 (1)因为AB →=(n -8,t ),且AB →⊥a , 所以8-n +2t =0,即n =8+2t . 又|AB →|=5|OA →|,所以5×64=(n -8)2+t 2=5t 2,解得t =±8. 则n =24或-8,所以OB →=(24,8)或(-8,-8).(2)因为AC →=(k sin θ-8,t ),AC →与a 共线, 所以t =-2k sin θ+16. 又t sin θ=(-2k sin θ+16)sin θ =-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k ,当k >4时,1>4k >0,所以当sin θ=4k 时,t sin θ取得最大值32k ; 由32k =4,得k =8,此时θ=π6, 故OC →=(4,8),所以OA →·OC →=8×4+8×0=32.。

高中数学苏教版必修4模块综合测评含解析

高中数学苏教版必修4模块综合测评含解析
【答案】x-3y+5=0
7.函数y=sin 的值域为________.
【解析】∵0≤x≤ ,∴ ≤2x+ ≤
∴y=sin 的值域为 .
【答案】Байду номын сангаас
8.如图1,在△ABC中,E,F分别是边AC,BC的中点,D是EF的中点,设 =a, =b,则 =________.(用a,b表示)
图1
【解析】 = = = ( - )= (-b+a).
= = a, = +
= a+ (-b+a)= a- b.
【答案】 a- b
9.若b=(1,1),且a·b=2,(a-b)2=3,则|a|=________.
【解析】 由(a-b)2=3,得a2-2a·b+b2=3,
则a2-2×2+2=3,故a2=5,|a|= .
【答案】
10.函数f(x)=sin 的单调递减区间是________.
(2)由(1)得 =2tanα,即 =2x,
所以
由此得,cosα=cos(π-β),
由0<β<π,得0<π-β<π.
又0<α<π,故α=π-β.代入sinα+sinβ=1,得sinα=sinβ= ,而α>β,所以α= ,β= .
18.(本小题满分16分)已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,记y=f(x).
(1)求证:tan(α+β)=2tanα.
模块综合测评
(时间120分钟,满分160分)
一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)
1.sin 330°=________.
【解析】sin 330°=sin(330°-360°)=sin(-30°)=- .
【答案】 -
2.已知角α的终边经过点P(4,-3),则2sinα+cosα的值等于________.

2018-2019学年最新苏教版高中数学必修四全册模块综合检测题及答案解析-精品试卷

2018-2019学年最新苏教版高中数学必修四全册模块综合检测题及答案解析-精品试卷

模块综合检测卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当|a|=|b|≠0,且a ,b 不共线时,a +b 与a -b 的关系是( )A .平行B .相等C .相交但不垂直D .垂直解析:根据向量的几何意义,作OA →=a ,OB →=b , 则在▱CAOB 中,OC →=a +b ,BA →=a -b ,因为|a|=|b|,即OA =OB ,所以▱CAOB 是菱形. 所以AB⊥OC,即BA →⊥OC →.所以(a +b)⊥(a-b). 答案:D2.已知角α的终边经过点P(4,-3),则2sin α+cos α的值等于( )A .-35 B.45 C.25 D .-25解析:因为α的终边过点P(4,-3), 所以x =4,y =-3,r =|OP|=5. 所以sin α=y r =-35,cos α=45.所以2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.答案:D3.下列各向量中,与a =(3,2)垂直的是( ) A .(3,-2) B .(2,3) C .(-4,6)D .(-3,2)解析:(3,2)·(-4,6)=3×(-4)+2×6=0. 答案:C4.要得到函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象,只需将函数y =3sin 2x的图象( )A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π8个单位长度D .向右平移π8个单位长度解析:因为y =3sin ⎝ ⎛⎭⎪⎫2x +π4=3sin ⎝ ⎛⎭⎪⎫2x +π8,所以由y =3sin 2x的图象向左平移π8个单位长度可得y =3sin ⎝⎛⎭⎪⎫2x +π4的图象.答案:C5.(2015·广东卷)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin 2xB .y =x 2-cos xC .y =2x +12xD .y =x 2+sin x解析:A 为奇函数,B 、C 为偶函数,D 中,y =x 2+sin x 是非奇非偶函数.答案:D6.已知函数f(x)=(sin x -cos x)sin x ,x ∈R ,则f(x)的最小正周期是( )A .πB .2π C.π2D .2解析:f(x)=sin 2x -sin xcos x =1-cos 2x 2-12sin 2x =12-22sin ⎝⎛⎭⎪⎫2x +π4,所以T =2π2=π.答案:A7.将函数y =sin x 的图象向左平移π2个单位长度,得到函数y=f(x)的图象,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称D .y =f(x)的图象关于点⎝ ⎛⎭⎪⎫-π2,0对称解析:由题意得y =f(x)=sin ⎝⎛⎭⎪⎫x +π2=cos x.显然A ,B ,C 均错误,只有D 正确. 答案:D8.若θ∈⎝⎛⎭⎪⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32 B .-32C .±32D .±12解析:由sin θ-cos θ=22,得1-2sin θcos θ=12,则sin 2θ=12.即1-2sin θcos θ=12,所以sin 2θ=12.因为θ∈⎝ ⎛⎭⎪⎫0,π2,sin θ >cos θ,所以θ∈⎝ ⎛⎭⎪⎫π4,π2.所以2θ∈⎝ ⎛⎭⎪⎫π2,π.所以cos 2θ=-1-sin 22θ=-32.答案:B9.函数f(x)=cos (ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A.⎝ ⎛⎭⎪⎫kπ-14,k π+34,k ∈ZB.⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z解析:由图象知,周期T =2⎝ ⎛⎭⎪⎫54-14=2,所以2πω=2,所以ω=π.由π·14+φ=π2+2kπ,k ∈Z ,不妨取φ=π4,所以f(x)=cos ⎝⎛⎭⎪⎫πx +π4.由2kπ<πx +π4<2k π+π,得2k -14<x<2k +34,k ∈Z ,所以f(x)的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.答案:D10.先令函数y =cos x 的图象上各点纵坐标不变,横坐标变为原来的12,再把图象沿x 轴向左平移π4个单位长度,则所得图象对应的函数表达式为( )A .y =sin 2xB .y =-sin 2xC .y =cos ⎝⎛⎭⎪⎫2x +π4D .y =cos ⎝ ⎛⎭⎪⎫x 2+π4解析:第一步变换后所得函数表达式是y =cos 2x ,第二步变换后所得函数表达式是y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4=cos ⎝⎛⎭⎪⎫2x +π2=-sin 2x答案:B11.函数y =3sin ⎝ ⎛⎭⎪⎫π3-2x 的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2+2kπ,π2+2kπ(k∈Z)B.⎣⎢⎡⎦⎥⎤π2+2kπ,3π2+2kπ(k∈Z)C.⎣⎢⎡⎦⎥⎤5π12+kπ,11π12+kπ(k∈Z) D.⎣⎢⎡⎦⎥⎤-π12+kπ,5π12+kπ(k ∈Z)解析:由题可得y =-3sin ⎝⎛⎭⎪⎫2x -π3,由π2+2kπ≤2x -π3≤3π2+2kπ,k ∈Z , 得5π12+kπ≤x ≤11π12+kπ,k ∈Z , 所以原函数的单调递增区间是⎣⎢⎡⎦⎥⎤5π12+kπ,11π12+kπ(k∈Z). 答案:C12.已知向量a =(2cos φ,2sin φ),φ∈⎝ ⎛⎭⎪⎫π2,π,b =(0,-1),则a 与b 的夹角为( )A .φ B.π2-φ C.π2+φ D.3π2-φ 解析:|a|= (2cos φ)2+(2sin φ)2=2, |b|=1,a·b=-2sin φ,设a 与b 的夹角为θ, 则cos θ=a·b |a||b|=-2sin φ2×1=-sin φ=sin(-φ)=cos ⎝ ⎛⎭⎪⎫3π2-φ,则cos θ=cos ⎝ ⎛⎭⎪⎫3π2-φ,且3π2-φ∈⎝ ⎛⎭⎪⎫π2,π,所以θ=3π2-φ. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中横线上)13.已知等腰三角形底角的余弦值等于45,则这个三角形顶角的正弦值为________.解析:设此三角形的底角为α,顶角为β,则cos α=45,sin α=35,所以sin β=sin (π-2α)=sin 2α=2sin αcos α=2×35×45=2425. 答案:242514.(2014·陕西卷)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a∥b,则tan θ=________.解析:因为a∥b,所以sin 2θ·1-cos 2θ=0.所以2sin θcos θ-cos 2θ=0.因为0<θ<π2,所以cos θ >0.所以2sin θ=cos θ.所以tan θ=12.答案:1215.在等腰梯形ABCD 中,已知AB∥DC,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE →=23BC →,DF→=16DC →,则AE →·AF →的值为________. 解析:取BA →,BC →为一组基底,则AE →=BE →-BA →=23BC →-BA →,AF→=AB →+BC →+CF →=-BA →+BC →+512BA →=-712BA →+BC →,所以AE →·AF →=⎝ ⎛⎭⎪⎪⎫23BC →-BA →·⎝ ⎛⎭⎪⎪⎫-712BA →+BC →=712|BA →|2-2518BA →·BC →+23|BC →|2=712×4-2518×2×1×12+23=2918.答案:291816.(2015·天津卷)已知函数f(x)=sin ωx +cos ωx (ω>0),x ∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y =f(x)的图象关于直线x =ω对称,则ω的值为________.解析:f(x)=sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π4,因为f(x)在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f(ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2kπ,k ∈Z.又ω-(-ω)≤2πω2,即ω2≤π2, 所以ω2=π4,所以ω=π2.答案:π2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知|a|=1,|b|=2,a 与b 的夹角为θ.(1)若a∥b,求a·b; (2)若a -b 与a 垂直,求θ.解:(1)因为a∥b,所以θ=0°或180°, 所以a·b=|a||b|cos θ=± 2. (2)因为a -b 与a 垂直,所以(a -b)·a=0,即|a|2-a·b=1-2cos θ=0. 所以cos θ=22.又0°≤θ ≤180°,所以θ=45°.18.(本小题满分12分)已知sin ⎝ ⎛⎭⎪⎫α-π4=7210,cos 2α=725,求sin α及tan ⎝⎛⎭⎪⎫α+π3.解:因为sin ⎝ ⎛⎭⎪⎫α-π4=22(sin α-cos α)=7210,所以sin α-cos α=75.①因为cos 2α=cos 2α-sin 2α=(cos α-sin α) (cos α+sin α)=-75(cos α+sin α), 所以cos α+sin α=-15.②由①②得:sin α=35,cos α=-45.所以tan α=-34.所以tan ⎝⎛⎭⎪⎫α+π3=tan α+31-3tan α=3-341+334=48-25311.所以sin α=35,tan ⎝⎛⎭⎪⎫α+π3=48-25311.19.(本小题满分12分)如图所示,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A ,B 两点.(1)若A ,B 两点的纵坐标分别为45,1213,求cos (β-α)的值;(2)已知点C 是单位圆上的一点,且OC →=OA →+OB →,求OA →和OB →的夹角θ.解:(1)设A ⎝ ⎛⎭⎪⎫x 1,45,B ⎝ ⎛⎭⎪⎫x 2,1213,则x 21+⎝ ⎛⎭⎪⎫452=1,又x 1>0,所以x 1=35,所以A ⎝ ⎛⎭⎪⎫35,45.x 22+⎝ ⎛⎭⎪⎫12132=1,又x 2<0,所以x 2=-513.所以B ⎝ ⎛⎭⎪⎫-513,1213.所以sin α=45,cos α=35,sin β=1213,cos β=-513,所以cos (β-α)=cos βcos α+sin βsin α=⎝ ⎛⎭⎪⎫-513×35+1213×45=3365. (2)根据题意知|OA →|=1,|OB →|=1,|OC →|=1, 又OC →=OA →+OB →,所以四边形CAOB 是平行四边形. 又|OA →|=|OB →|,所以▱CAOB 是菱形.又|OA →|=|OB →|=|OC →|,所以△AOC 是等边三角形. 所以∠AOC=60°.所以∠AOB=120°. 即OA →与OB →的夹角θ为120°.20.(本小题满分12分)已知函数f(x)=2cos x ·sin ⎝⎛⎭⎪⎫x +π3-3sin 2x +sin x ·cos x.(1)当x∈⎣⎢⎡⎦⎥⎤0,π2时,求f(x)的值域;(2)用五点法在下图中作出y =f(x)在闭区间⎣⎢⎡⎦⎥⎤-π6,5π6上的简图;(3)说明f(x)的图象可由y =sin x 的图象经过怎样的变化得到.解:f(x)=2cos x ·sin ⎝⎛⎭⎪⎫x +π3-3sin 2x +sin xcos x =2cosx ⎝⎛⎭⎪⎫sin xcos π3+cos xsin π3-3·sin 2x +sin xcos x =sin 2x +3cos 2x =2sin ⎝⎛⎭⎪⎫2x +π3.(1)因为x∈⎣⎢⎡⎦⎥⎤0,π2,所以π3≤2x +π3≤4π3.所以-32≤sin ⎝⎛⎭⎪⎫2x +π3≤1.所以当x∈⎣⎢⎡⎦⎥⎤0,π2时,f(x)的值域为[-3,2].(2)由T =2π2,得T =π,列表:x -π6 π12 π3 7π12 5π6 2x +π30 π2 π 3π2 2π 2sin ⎝⎛⎭⎪⎫2x +π32-2图象如图所示.(3)法一:由以下变换可得f(x)的图象:先将y =sin x 的图象向左平移π3个单位长度,再将图象上各点的横坐标缩短到原来的12,最后将纵坐标伸长为原来的2倍.法二:由以下变换可得f(x)的图象:先将y =sin x 的图象上各点的横坐标缩短到原来的12,再将图象向左平移π6个单位长度,最后将纵坐标伸长为原来的2倍.21.(本小题满分12分)(2015·广东卷)在平面直角坐标系xOy中,已知向量m =⎝ ⎛⎭⎪⎪⎫22,-22,n =(sin x ,cos x),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m⊥n,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解:(1)若m⊥n,则m·n=0.由向量数量积的坐标公式得22sin x -22cos x =0,所以tan x =1.(2)因为m 与n 的夹角为π3,所以m·n=|m|·|n|cos π3,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎪⎫x -π4=12.又因为x∈⎝⎛⎭⎪⎫0,π2,所以x -π4∈⎝ ⎛⎭⎪⎫-π4,π4.所以x -π4=π6,即x =5π12.22.(本小题满分12分)已知f(x)=2cos2ωx2+3sin ωx +a 的图象上相邻两对称轴的距离为π2.(1)若x∈R,求f(x)的递增区间;(2)若x∈⎣⎢⎡⎦⎥⎤0,π2时,f(x)的最大值为4,求a 的值.解:由f(x)=2cos 2ωx2+3sin ωx +a =3sin ωx +cos ωx +a +1=2sin ⎝⎛⎭⎪⎫ωx +π6+a +1.因为f(x)的图象上相邻对称轴的距离为π2,故T 2=π2⇒T =π⇒ω=2πT=2, 所以f(x)=2sin ⎝⎛⎭⎪⎫2x +π6+a +1.(1)由-π2+2kπ≤2x +π6≤π2+2kπ(k∈Z),解得-π3+kπ≤x ≤π6+kπ(k∈Z),所以f(x)的递增区间为⎣⎢⎡⎦⎥⎤-π3+kπ,π6+kπ(k∈Z).(2)若x∈⎣⎢⎡⎦⎥⎤0,π2,则π6≤2x +π6≤7π6,所以-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1.所以f(x)max =2+a +1=4. 所以a =1.。

2016苏教版高中数学必修4模块综合检测版

2016苏教版高中数学必修4模块综合检测版

模块缘合检测(时间:120分钟,满分:160分)一、填空题(本大题共14小题,每小题5分,共70分、将答案填在题中的横线上)1、若角a的终边过点(sin 30。

,一cos 30。

),则sin a等于____ 、解析:sin a -错误•=・cos 30°=•错误!、答案:一错误!2、(cos 15°+sin 15°)(cos 15°—sin 15°)= _______ x解析:(cos 15° + sin 15°)(cos 15° • sin 15°)=cos215°・ sin215° = cos 30° =错误!.答案:错误!3、设a与”就是两个不共线的向量,且向量a+肋与一(b-2a)共线,则实线2的值等于 __________解析:由・(「2a) = 2a-b与a+"共线,故人二•错误!、答案:一错误!4、已知tan错误!=错误!,伽错误!=错误!,则伽(a+/?)的值为__________ 、解析:tan («+/?) =tan[(a-错误!)+ (错误!+“)]二错误!二1、答案:15、计算:错误! = ________ 、解析:错误!二错误!二错误!二错误!、答案:错误!6、(2012•隹卷)当函数)=sinx—羽cosx (0WxV2?r)取得最大值时,x=_________ 、解析:j = sin x -错误! cos x二2(错误! sin x -错误! cosx)二2sin(x •错误!)的最大值为2,又00<2冗,故当x・错误!二错误!,即x二错误!时,y取得最大值、答案:弘7、已知sin (n—a) =—2sin错误!,则sin acos a等于_______ 、解析:由sin (TT - a ) = - 2sin(错谋! + a),可得sin a = • 2cos a t贝IJ tan a 二• 2,那么sin acos a -错误![来源:]tan a 2二二・ g1 + tan2a答案:一错误!8、设函数y=3sln错误!的图象关于点Pg.0)成中心对称,若M岸错误!,则x0=_______ 、解析:因为图象的对称中心就是与X轴的交点,所以由3sin(2x0 +错误!)二0,如曰・错误!,0],得X。

2016-2017学年高中数学苏教版选修4-4阶段综合测评2 含解析

2016-2017学年高中数学苏教版选修4-4阶段综合测评2 含解析

阶段综合测评(二)(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知动圆:x2+y2-2ax cos θ-2by sin θ=0(a,b是正常数,a≠b,θ是参数),那么圆心的轨迹是________.【答案】椭圆2.圆错误!的圆心坐标是________.【解析】消去参数θ,得圆的方程为x2+(y-2)2=4,所以圆心坐标为(0,2).【答案】(0,2)3.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为错误!错误!和错误!(t为参数),则曲线C1与C2的交点坐标为________.【解析】C1的普通方程为x2+y2=5(x≥0,y≥0).C2的普通方程为x-y-1=0。

解方程组错误!得错误!∴C1与C2的交点坐标为(2,1).【答案】(2,1)4.直线错误!上对应t=0和t=1两点间的距离是________.【答案】错误!5.方程错误!分别以t为参数(t≠0)和θ为参数,得到两条曲线,则这两条曲线公共点的个数是________.【答案】2个6.已知点P(x,y)在椭圆错误!+y2=1上,则2x+y的最大值________.【解析】设x=2cos θ,y=sin θ(0≤θ<2π),2x+y=4cos θ+sin θ=错误!sin(θ+φ),所以2x+y最大值为错误!.【答案】错误!7.直线错误!(t为参数)过定点________.【答案】(3,-1)8.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线C1:错误!(θ为参数)和曲线C2:ρ=1上,则AB的最小值为________.【解析】曲线C1的方程是(x-3)2+(y-4)2=1,曲线C2的方程是x2+y2=1,两圆外离,所以AB的最小值为错误!-1-1=3。

【答案】39.过曲线错误!(θ为参数,0≤θ≤π)上一点P和原点连线的倾斜角为错误!,则点P的坐标为________.【解析】由于错误!=错误!=tan错误!=1,所以tan θ=错误!,cos θ=错误!,sin θ=错误!,点P的坐标为(错误!,12).5【答案】(错误!,错误!)10.直线错误!(t为参数)与圆错误!(θ为参数)相交,弦长为________.【解析】圆的普通方程为x2+y2=5,将错误!代入上式,得5t2-24t+16=0,|t1-t2|=错误!=错误!,所以相交弦长为错误!|t1-t2|=错误!错误!。

2019-2020学年高中数学 第四章 圆与方程章末综合测评2(含解析)新人教A版必修2

2019-2020学年高中数学 第四章 圆与方程章末综合测评2(含解析)新人教A版必修2

2019-2020学年高中数学 第四章 圆与方程章末综合测评2(含解析)新人教A 版必修2一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在空间直角坐标系中,点A (-3,4,0)与点B (2,-1,6)的距离是( ) A .243 B .221 C .9D.86【解析】 由空间直角坐标系中两点间距离公式得: |AB |=-3-2++2+-2=86.【答案】 D2.当圆x 2+y 2+2x +ky +k 2=0的面积最大时,圆心坐标是( ) A .(0,-1) B .(-1,0) C .(1,-1)D .(-1,1)【解析】 圆的标准方程得:(x +1)2+⎝ ⎛⎭⎪⎫y +k 22=1-3k 24,当半径的平方1-3k 24取最大值为1时,圆的面积最大.∴k =0,即圆心为(-1,0).【答案】 B3.圆O 1:x 2+y 2-4x -6y +12=0与圆O 2:x 2+y 2-8x -6y +16=0的位置关系是( ) A .相交 B .相离 C .内含D .内切【解析】 把圆O 1:x 2+y 2-4x -6y +12=0与圆O 2:x 2+y 2-8x -6y +16=0分别化为标准式为(x -2)2+(y -3)2=1和(x -4)2+(y -3)2=9,两圆心间的距离d =-2+-2=2=|r 1-r 2|,所以两圆的位置关系为内切,故选D.【答案】 D4.过点(2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的最长弦所在的直线方程为( ) A .3x -y -5=0 B .3x +y -7=0 C .x +3y -5=0D .x -3y +1=0【解析】 依题意知所求直线通过圆心(1,-2),由直线的两点式方程,得y +21+2=x -12-1,即3x -y -5=0,故选A.【答案】 A5.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A .相切B .相交C .相离D .不确定【解析】 由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线与圆相交.【答案】 B6.若P (2,-1)为圆C :(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( ) A .2x -y -5=0 B .2x +y -3=0 C .x +y -1=0D .x -y -3=0 【解析】 圆心C (1,0),k PC =0--1-2=-1,则k AB =1,AB 的方程为y +1=x -2, 即x -y -3=0,故选D. 【答案】 D7.圆心在x 轴上,半径为1,且过点(2,1)的圆的方程是( ) A .(x -2)2+y 2=1 B .(x +2)2+y 2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -2)2=1【解析】 设圆心坐标为(a,0),则由题意可知(a -2)2+(1-0)2=1,解得a =2.故所求圆的方程是(x -2)2+y 2=1.【答案】 A8.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( )A .36B .18C .6 2D .5 2【解析】 圆x 2+y 2-4x -4y -10=0的圆心为(2,2),半径为32,圆心到直线x +y -14=0的距离为|2+2-14|2=52>32,圆上的点到直线的最大距离与最小距离的差是2R =6 2.【答案】 C9.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对【解析】 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|-2+42=a 2+7-1,解得a =±3. 【答案】 C10.若圆(x -5)2+(y -1)2=r 2(r >0)上有且仅有两点到直线4x +3y +2=0的距离等于1,则实数r 的取值范围为( )A .[4,6]B .(4,6)C .[5,7]D .(5,7)【解析】 因为圆心(5,1)到直线4x +3y +2=0的距离为|20+3+2|5=5,又圆上有且仅有两点到直线4x +3y +2=0的距离为1,则4<r <6.【答案】 B11.已知圆C 1:(x +2)2+(y -2)2=2,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +3)2+(y -3)2=2 B .(x -1)2+(y +1)2=2 C .(x -2)2+(y +2)2=2 D .(x -3)2+(y +3)2=2【解析】 设点(-2,2)关于直线x -y -1=0的对称点为Q (m ,n ),则⎩⎪⎨⎪⎧n -2m +2×1=-1,m -22-n +22-1=0,解得m =3,n =-3,所以圆C 2的圆心坐标为(3,-3),所以圆C 2的方程为(x -3)2+(y +3)2=2,故选D.【答案】 D12.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2 C .2D .2 2【解析】 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB 的面积为12×22×12=1.故选A.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知A (1,2,3),B (5,6,-7),则线段AB 中点D 的坐标为________.【解析】 设D (x ,y ,z ),由中点坐标公式可得x =1+52=3,y =2+62=4,z =3-72=-2,所以D (3,4,-2).【答案】 (3,4,-2)14.以原点O 为圆心且截直线3x +4y +15=0所得弦长为8的圆的方程是________. 【解析】 原点O 到直线的距离d =1532+42=3,设圆的半径为r ,∴r 2=32+42=25,∴圆的方程是x 2+y 2=25.【答案】 x 2+y 2=2515.若圆x 2+y 2+2x -4y -4=0的圆心C 到直线l 的距离为2,且l 与直线3x +4y -1=0平行,则直线l 的方程为________________.【解析】 圆心为(-1,2). 设所求的直线方程为3x +4y +D =0, 由点到直线的距离公式,得-+4×2+D |32+42=2,即|5+D |5=2, 解得D =5或-15.故所求的直线方程为:3x +4y +5=0或3x +4y -15=0. 【答案】 3x +4y +5=0或3x +4y -15=0 16.若x ,y ∈R ,且x =1-y 2,则y +2x +1的取值范围是________. 【解析】 x =1-y 2⇔x 2+y 2=1(x ≥0),此方程表示半圆,如图,设P (x ,y )是半圆上的点,则y +2x +1表示过点P (x ,y ),Q (-1,-2)两点直线的斜率.设切线QA 的斜率为k ,则它的方程为y +2=k (x +1).从而由|k -2|k 2+1=1,解得k =34.又k BQ =3,∴所求范围是⎣⎢⎡⎦⎥⎤34,3.【答案】 ⎣⎢⎡⎦⎥⎤34,3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求经过两点A (-1,4),B (3,2)且圆心在y 轴上的圆的方程. 【解】 法一:∵圆心在y 轴上, 设圆的标准方程是x 2+(y -b )2=r 2. ∵该圆经过A 、B 两点,∴⎩⎪⎨⎪⎧-2+-b2=r 2,32+-b 2=r 2,∴⎩⎪⎨⎪⎧b =1,r 2=10.所以圆的方程是x 2+(y -1)2=10. 法二:线段AB 的中点为(1,3),k AB =2-43--=-12,∴弦AB 的垂直平分线方程为y -3=2(x -1), 即y =2x +1.由⎩⎪⎨⎪⎧y =2x +1,x =0,得(0,1)为所求圆的圆心.由两点间距离公式得圆半径r 为+2+-2=10,∴所求圆的方程为x 2+(y -1)2=10.18.在三棱柱ABO ­A ′B ′O ′中,∠AOB =90°,侧棱OO ′⊥面OAB ,OA =OB =OO ′=2.若C 为线段O ′A 的中点,在线段BB ′上求一点E ,使|EC |最小.【解】 如图所示,以三棱柱的O 点为坐标原点,以OA ,OB ,OO ′所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Oxyz .由OA =OB =OO ′=2,得A (2,0,0),B (0,2,0),O (0,0,0),A ′(2,0,2),B ′(0,2,2),O ′(0,0,2).由C 为线段O ′A 的中点得C 点坐标为(1,0,1), 设E 点坐标为(0,2,z ),根据空间两点间距离公式得 |EC |=-2+-2+z -2=z -2+5,故当z =1时,|EC |取得最小值为5,此时E (0,2,1)为线段BB ′的中点. 19.已知圆C :(x -1)2+(y -2)2=2,过点P (2,-1)作圆C 的切线,切点为A ,B . (1)求直线PA ,PB 的方程; (2)求过P 点的圆C 的切线长.【解】 (1)切线的斜率存在,设切线方程为y +1=k (x -2),即kx -y -2k -1=0.圆心到直线的距离等于2,即|-k -3|k 2+1=2, ∴k 2-6k -7=0,解得k =7或k =-1, 故所求的切线方程为y +1=7(x -2)或y +1=-(x -2),即7x -y -15=0或x +y -1=0. (2)在Rt △PAC 中|PA |2=|PC |2-|AC |2=(2-1)2+(-1-2)2-2=8, ∴过P 点的圆C 的切线长为2 2.20.(本小题满分12分)点A (0,2)是圆x 2+y 2=16内的定点,B ,C 是这个圆上的两个动点,若BA ⊥CA ,求BC 中点M 的轨迹方程,并说明它的轨迹是什么曲线.【解】 设点M (x ,y ),因为M 是弦BC 的中点,故OM ⊥BC . 又∵∠BAC =90°,∴|MA |=12|BC |=|MB |.∵|MB |2=|OB |2-|OM |2,∴|OB |2=|MO |2+|MA |2,即42=(x 2+y 2)+[(x -0)2+(y -2)2],化简为x 2+y 2-2y -6=0,即x 2+(y -1)2=7.∴所求轨迹为以(0,1)为圆心,以7为半径的圆.21.(本小题满分12分)如图1所示,平行四边形ABCD 的对角线AC 与BD 交于E 点,定点A ,C 的坐标分别是A (-2,3),C (2,1).图1(1)求以线段AC 为直径的圆E 的方程;(2)若B 点的坐标为(-2,-2),求直线BC 截圆E 所得的弦长. 【解】 (1)AC 的中点E (0,2)即为圆心, 半径r =12|AC |=1242+-2=5,所以圆E 的方程为x 2+(y -2)2=5.(2)直线BC 的斜率k =1--2--=34, 其方程为y -1=34(x -2),即3x -4y -2=0.点E 到直线BC 的距离为d =|-8-2|5=2,所以BC 截圆E 所得的弦长为25-22=2. 22. (本小题满分12分)如图2,已知圆C :x 2+y 2+10x +10y =0,点A (0,6).图2(1)求圆心在直线y =x 上,经过点A ,且与圆C 相外切的圆N 的方程;(2)若过点A 的直线m 与圆C 交于P ,Q 两点,且圆弧PQ 恰为圆C 周长的14,求直线m的方程.【解】 (1)由x 2+y 2+10x +10y =0, 化为标准方程:(x +5)2+(y +5)2=50. 所以圆C 的圆心坐标为C (-5,-5), 又圆N 的圆心在直线y =x 上,所以当两圆外切时,切点为O ,设圆N 的圆心坐标为(a ,a ), 则有a -2+a -2=a -2+a -2,解得a =3,所以圆N 的圆心坐标为(3,3),半径r =32, 故圆N 的方程为(x -3)2+(y -3)2=18.(2)因为圆弧PQ 恰为圆C 周长的14,所以CP ⊥CQ .所以点C 到直线m 的距离为5.当直线m 的斜率不存在时,点C 到y 轴的距离为5,直线m 即为y 轴,所以此时直线m 的方程为x =0.当直线m 的斜率存在时,设直线m 的方程为y =kx +6, 即kx -y +6=0.所以|-5k +5+6|1+k 2=5,解得k =4855. 所以此时直线m 的方程为4855x -y +6=0,即48x-55y+330=0,故所求直线m的方程为x=0或48x-55y+330=0.。

(苏教版)数学高中必修4配套练习+章节检测卷 (全书完整版)

(苏教版)数学高中必修4配套练习+章节检测卷 (全书完整版)

(苏教版)高中数学必修4配套练习+章节检测卷汇总第1章三角函数1.1 任意角、弧度1.1.1 任意角A级基础巩固1.下列命题中正确的是()A.终边与始边都相同的角一定相等B.始边相同而终边不同的角一定不相等C.小于90°的角一定是锐角D.大于或等于0°且小于90°的角一定是锐角答案:B2.已知下列各角:①787°;②-957°;③-289°;④1 711°.其中在第一象限的角是()A.①②B.②③C.①③D.②④答案:C3.若角α的终边经过点M(0,-3),则角α()A.是第三象限角B.是第四象限角C.即是第三象限角,又是第四象限角D.不是任何象限的角解析:因为点M(0,-3)在y轴负半轴上,所以角α的终边不在任何象限.答案:D4.已知α是第三象限角,则-α所在的象限是()A.四B.三C.二D.一解析:因为α是第三象限角,所以k·360°+180°<α<k·360°+270°,k∈Z.则-k·360°-270°<-α<-k·360°-180°,k∈Z.所以-α是第二象限角.答案:C5.终边与坐标轴重合的角α的集合是()A.{α|α=k·360°,k∈Z}B.{α|α=k·180°+90°,k∈Z}C.{α|α=k·180°,k∈Z}D.{α|α=k·90°,k∈Z}解析:终边在坐标轴上的角为90°或90°的倍数角,所以终边与坐标轴重合的角的集合为{α|α=k·90°,k∈Z}.答案:D6.时针走过了2小时40分钟,则分针转过的角度是______.答案:-960°7.50°角的始边与x轴的非负半轴重合,把其终边按顺时针方向旋转3周,所得的角是________.解析:顺时针方向旋转3周转了-(3×360°)=-1 080°.又50°+(-1 080°)=-1 030°,故所得的角为-1 030°.答案:-1 030°8.若α为锐角,则角-α+k·360°(k∈Z)是第________象限角.解析:α为锐角,则角α是第一象限角,所以角-α是第四象限角,又因为-α+k·360°(k∈Z)与-α的终边相同,所以-α+k·360°(k∈Z)是第四象限角.答案:四9.在0°~360°间,找出与下列各角终边相同的角,并判定它们是第几象限角:(1)-120°;(2)660°;(3)-950°08′.解:(1)因为-120°=240°-360°,所以与-120°角终边相同的角是240°角,它是第三象限的角;(2)因为660°=300°+360°,所以与660°终边相同的角是300°角,它是第四象限的角;(3)因为-950°08′=129°52′-3×360°,所以与-950°08′角终边相同的角是129°52′角,它是第二象限的角.10.已知锐角α的10倍与它本身的终边相同,求角α.解:与角α终边相同的角连同角α在内的角的集合可表示{β|β=α+k·360°,k∈Z}.因为锐角α的10倍的终边与其终边相同,所以10α=α+k·360°,k∈Z.解得:α=k·40°,k∈Z.又α为锐角,所以α=40°或80°.B级能力提升11.下面说法正确的个数为()(1)第二象限角大于第一象限角;(2)三角形的内角是第一象限角或第二象限角;(3)钝角是第二象限角.A.0 B.1 C.2 D.3解析:第二象限角如120°比第一象限角390°要小,故(1)错;三角形的内角可能为直角,直角既不是第一象限角,也不是第二象限角,故(2)错;(3)中钝角是第二象限角是对的.所以正确的只有1个.答案:B12.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β< 180°},则A∩B等于()A.{-36°,54°} B.{-126°,144°}C.{-126°,-36°,54°,144°} D.{-126°,54°} 解析:令k=-1,0,1,2,则A,B的公共元素有-126°,-36°,54°,144°.答案:C13.在0°~360°范围内,与角-60°的终边在同一条直线上的角为________.解析:根据终边相同角定义知,与-60°终边相同角可表示为β=-60°+k·360°(k∈Z),当k=1时β=300°与-60°终边相同,终边在其反向延长线上且在0°~360°范围内角为120°.答案:120°,300°14.如图所示,写出阴影部分(包括边界)的角的集合,并指出-950°12′是否是该集合中的角.解:题图阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,所求集合为{α|k·360°≤α≤k·360°+125°,k∈Z},因为-950°12′=-3×360°+129°48′,所以-950°12′不是该集合中的角.15.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M中大于-360°且小于360°的角是哪几个?(2)写出集合M中的第二象限角β的一般表达式.解:(1)令-360°<30°+k·90°<360°,则-133<k<113,又因为k∈Z,所以k=-4,-3,-2,-1,0,1,2,3,所以集合M中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°.(2)集合M中的第二象限角与120°角的终边相同,所以β=120°+k·360°,k∈Z.第1章三角函数1.1 任意角、弧度1.1.2 弧度制A 级 基础巩固一、选择题1.α=-5 rad ,则α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:-5=-2π+(2π-5),因为0<2π-5<π2, 所以α=-5在第一象限.答案:A2.下列说法中,错误的是( )A .半圆所对的圆心角是π radB .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度解析:根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误.答案:D3.一条弦长等于圆的半径,则这条弦所对的圆心角的弧度数是( )A .1 B.π6 C.π3D .π 解析:因为弦长等于圆的半径,如图所示,则△ABC 为正三角形,所以弦所对的圆心角为π3.答案:C4.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203πC.2003πD.4003π 解析:240°=240180π=43π, 所以弧长l =|α|·r =43π·10=403π. 答案:A5.把-11π4表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是( )A .-3π4B .-π4 C.π4 D.3π4解析:令-11π4=θ+2k π(k ∈Z), 则θ=-11π4-2k π(k ∈Z), 取k ≤0的值,k =-1时,θ=-3π4,|θ|=3π4; k =-2时,θ=5π4,|θ|=5π4>3π4; k =0时,θ=-11π4,|θ|=11π4>3π4. 答案:A6.若有一角和π3rad 角终边相同,则此角的集合可以表示为______________________________.答案:⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k ·2π+π3,k ∈Z 7.π12rad =________度,________rad =-300°. 解析:π12=180°12=15°,-300°=-300×π180=-5π3. 答案:15 -5π3 8.已知扇形的圆心角为60°,半径为3,则扇形的面积是________.解析:因为60°=π3rad , 则扇形的面积S =12×π3·32=32π. 答案:32π 9.(1)1°的圆心角所对弧长为1米,则此圆半径为______米;(2)1 rad 的圆心角所对弧长为1米,则此圆半径为______米.解析:(1)因为|α|=1°=π180,l =1, 所以r =l |α|=1π180=180π. (2)因为l =1,|α|=1,所以r =l |α|=1. 答案:(1)180π(2)1 10.已知扇形的圆心角所对的弦长为2,圆心角为2弧度.(1)求这个圆心角所对的弧长; (2)求这个扇形的面积. 解:(1)如图所示,过O 作OD ⊥AB 于点D ,则D 为AB 的中点,所以AD =12AB =1, ∠AOD =12∠AOB =1 rad , 所以扇形的半径OA =1sin 1. 由弧长公式l =|α|r ,得l =2×1sin 1=2sin 1. (2)由扇形面积公式S =12lr ,得 S =12×2sin 1·1sin 1=1sin 21. B 级 能力提升11.集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π4,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π2+π4,k ∈Z ,则有( ) A .M =NB .M NC .M ND .M ∩N =∅解析:因为集合M 是表示终边在第一、第三象限的角平分线上的角的集合.集合N 是表示终边在第一、第三象限或第二、第四象限的角平分线上的角的集合,所以MN . 答案:C12.在直径为10 cm的轮上有一长为6 cm的弦,P为弦的中点,轮子以每秒5弧度的角速度旋转,则经过5秒钟后P转过的弧长为________.解析:P到圆心O的距离OP=52-32=4(cm),又点P转过的角的弧度数α=5×5=25(rad).所以弧长为α·OP=25×4=100(cm).答案:100 cm13.已知α=2 000°.(1)把α写成2kπ+β(k∈Z,β∈[0,2π))的形式;(2)求θ,使得θ与α的终边相同,且θ∈(4π,6π).解:(1)α=2 000°=5×360°+200°=10π+10 9π.(2)θ与α的终边相同,故θ=2kπ+109π,k∈Z,又θ∈(4π,6π),所以k=2时,θ=4π+109π=46π9.14.已知扇形的周长为40 cm,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解:设扇形的圆心角为θ,半径为r,弧长为l,面积为S,则l+2r=40.所以l=40-2r.所以S=12lr=12×(40-2r)r=20r-r2=-(r-10)2+100.所以当半径r=10 cm时,扇形的面积最大,这个最大值为100cm2,这时θ=lr=40-2×1010=2 rad.15.已知半径为10的圆O中,弦AB的长为10.求α(∠AOB)所在的扇形的弧长l及弧所在的弓形的面积S.解:由⊙O 的半径r =10=AB , 知△AOB 是等边三角形, 所以α=∠AOB =60°=π3.所以弧长l =a ·r =π3·10=10π3.所以S 扇形=12lr =12×10π3·10=50π3.而S △AOB =12×AB ·53=12×10×53=5032,所以S =S 扇形-S △AOB =50⎝ ⎛⎭⎪⎫π3-32.第1章 三角函数 1.2 任意角的三角函数 1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.若-π2<α<0,则点Q (cos α,sin α)位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:因为-π2<α<0,则cos α>0,sin α<0.答案:D2.已知角α的终边过点P ⎝ ⎛⎭⎪⎫32,12,则cos α=( )A.12B.32C.33 D .±12解析:因为点P ⎝ ⎛⎭⎪⎫32,12是单位圆上一点,则cos α=x =32. 答案:B3.若α是第四象限角,则sin α和tan α的大小的关系是( ) A .sin α>tan α B .sin α<tan α C .sin α≥tan αD .不确定解析:画出三角函数线即可判断出来,如图所示,sin α=MP ,tan α=AT ,又|MP |<|AT |,故sin α>tan α. 答案:A4.若sin θ·cos θ>0,则角θ是( ) A .第一或第二象限角 B .第一或第三象限角 C .第一或第四象限角 D .第二或第四象限角 解析:因为sin θ·cos θ>0,所以sin θ与cos θ同号, 由三角函数值在各象限内的符号知θ为第一或第三象限角. 答案:B5.函数y =11+sin x的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈Z C.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z 解析:因为1+sin x ≠0,所以sin x ≠-1. 又sin 3π2=-1,所以x ≠3π2+2k π,k ∈Z.答案:A6.若α的终边过点P (2sin 30°,-2cos 30°),则sin α的值为________.答案:-327.若420°角的终边所在直线上有一点(-4,a ),则a 的值为________.解析:由三角函数定义知,tan 420°=-a4,又tan 420°=tan(360°+60°)=tan 60°=3, 所以-a4= 3.所以a =-4 3.答案:-438.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为________.解析:作图如下,因为θ∈⎝ ⎛⎭⎪⎫π3,π2,所以θ>π4,根据三角函数线的定义可知AT >MP >OM . 答案:AT >MP >OM9.函数y =sin x +-cos x 的定义域是_________________.解析:因为⎩⎪⎨⎪⎧sin x ≥0,-cos x ≥0,所以⎩⎪⎨⎪⎧sin x ≥0,cos x ≤0,即角x 的终边落在第二象限内和两个半轴上.所以2k π+π2≤x ≤2k π+π,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z) 10.已知角α的终边落在射线y =2x (x ≥0)上,求sin α,cos α的值.解:在射线y =2x (x ≥0)上任取一点P (a ,2a )(a >0). 则r =|OP |=a 2+4a 2=5a , 所以sin α=y r =2a 5a =255,cos α=x r =a5a =55.B 级 能力提升11.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( )A .0B .1C .2D .-2 解析:因为α是第三象限角,所以sin α<0,cos α<0, 所以|sin α|sin α-cos α|cos α|=-1-(-1)=0.答案:A12.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝⎛⎭⎪⎫π2,π,则cos α=________.解析:因为θ∈⎝⎛⎭⎪⎫π2,π,所以cos θ<0.所以点(-3cos θ,4cos θ)到原点的距离r =-5cos θ, 所以cos α=-3cos θ-5cos θ=35.答案:3513.在(0,2π)内,满足tan 2α=-tan α的α的取值范围是______.解析:由tan 2α=-tan α,知tan α≤0,在单位圆中作出角α的正切线,如图所示,知π2<α≤π或3π2<α<2π.答案:⎝ ⎛⎦⎥⎤π2,π∪⎝ ⎛⎭⎪⎫3π2,2π14.已知P (-2,y )是角α终边上一点,且sin α=-55,求cos α与tan α的值.解:因为点P 到原点的距离为r =4+y 2, 所以sin α=y 4+y2=-55,所以y 2+4=5y 2,所以y 2=1. 又易知y <0,所以y =-1.所以r = 5.所以cos α=-25=-255,tan α=-1-2=12.15.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.解:因为角α的终边在直线3x +4y =0上,所以在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t ,r =x 2+y 2=(4t )2+(-3t )2=5|t |, 当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t4t =-34.第1章 三角函数 1.2 任意角的三角函数 1.2.2 同角三角函数关系A 级 基础巩固一、选择题1.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=35,则tan α=( )A.34 B .-34 C.43 D .-43解析:由sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π得cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.答案:B2.sin 2α+cos 4α+sin 2α cos 2α的化简结果是( ) A.14 B.12 C.32D .1 解析:sin 2α+cos 4α+sin 2αcos 2α=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1.答案: D3.已知tan α=13,且0≤α≤π,则sin α·cos α的值为( )A .±310 B.310 C.310 D .±310解析:sin α·cos αsin 2α+cos 2α=tan αtan 2α+1=310.答案:B4.若α∈[0,2π),且有1-cos 2α+1-sin 2α=sin α-cos α,则角α的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎦⎥⎤π2,π C.⎝ ⎛⎭⎪⎫π2,π D.⎣⎢⎡⎦⎥⎤π,32π 解析:因为1-cos 2α+1-sin 2α=sin α-cos α, 所以sin α≥0,且cos α≤0.又α∈[0,2π),所以α∈⎣⎢⎡⎦⎥⎤π2,π.答案:B5.若sin θ=m -3m +5,cos θ=4-2mm +5,则m 的值为( )A .0B .8C .0或8D .3<m <9解析:由sin 2θ+cos 2θ=1得⎝⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1, 解得m =0或8. 答案:C6.化简sin α1+sin α-sin α1-sin α的结果为________.解析:sin α1+sin α-sin α1-sin α=sin α(1-sin α)-sin α(1+sin α)(1+sin α)(1-sin α)=-2sin 2α1-sin 2α=-2sin 2αcos 2α=-2tan 2α. 答案:-2tan 2α7.若4sin α-2cos α5cos α+3sin α=10,则tan α的值为________.解析:因为4sin α-2cos α5cos α+3sin α=10,所以4sin α-2cos α=50cos α+30sin α. 所以26sin α=-52cos α,即sin α=-2cos α. 所以tan α=-2. 答案:-28.若A 为△ABC 的一个内角,且sin A +cos A =23,则△ABC的形状为________三角形.解析:因为sin A +cos A =23,则(sin A +cos A )2=49.所以sin A cos A =-518<0,则A 为钝角.故△ABC 为钝角三角形. 答案:钝角9.cos α+2sin α=-5,则tan α=________.解析:由⎩⎪⎨⎪⎧cos α+2sin α=-5,sin 2α+cos 2α=1⇒⎩⎨⎧sin α=-25,cos α=-15.所以tan α=sin αcos α=2.答案:210.化简下列各式: (1)1+sin θ1-sin θ+1-sin θ1+sin θ;(2)⎝⎛⎭⎪⎪⎫1-sin x1+sin x-1+sin x 1-sin x ·⎝⎛⎭⎪⎪⎫1-cos x1+cos x-1+cos x 1-cos x .解:(1)原式= (1+sin θ)21-sin 2θ+(1-sin θ)21-sin 2θ=1+sin θ|cos θ|+1-sin θ|cos θ|=2|cos θ|. (2)原式=⎣⎢⎢⎡⎦⎥⎥⎤ 1-sin 2x(1+sin x )2-1-sin 2x (1-sin x )2·⎣⎢⎢⎡1-cos 2x(1+cos x )2-⎦⎥⎥⎤1-cos 2x (1-cos x )2=⎝ ⎛⎭⎪⎫|cos x |1+sin x -|cos x |1-sin x ·⎝ ⎛⎭⎪⎫|sin x |1+cos x -|sin x |1-cos x =-2sin x ·|cos x |cos 2x ·-2cos x ·|sin x |sin 2x =4|sin x ·cos x |sin x ·cos x⎝ ⎛⎭⎪⎫x ≠n π2,n ∈Z ,所以当x ∈⎝ ⎛⎭⎪⎫n π,n π+π2时,原式=4; 当x ∈⎝ ⎛⎭⎪⎫n π+π2,(n +1)π时,原式=-4. B 级 能力提升11.若θ是△ABC 的一个内角,且sin θcos θ=-18,则sin θ-cos θ的值为( )A .-32 B.32 C .-52 D.52解析:由题意知θ∈(0,π),则sin θ-cos θ>0, 所以sin θ-cos θ=(sin θ-cos θ)2=1-2sin θcos θ=52. 答案:D12.已知α是锐角,且tan α是方程4x 2+x -3=0的根,则sin α=( )A.45B.35C.25D.15解析:因为方程4x 2+x -3=0的根为x =34或x =-1,又因为tan α是方程4x 2+x -3=0的根且α为锐角,所以tan α=34.所以cos α=43sin α.代入sin 2α+cos 2α=1,得sin 2α+169sin 2α=1.所以sin 2α=925(α为锐角),所以sin α=35.答案:B 13.使 1-cos α1+cos α=cos α-1sin α成立的α的范围是________.解析: 1-cos α1+cos α=(1-cos α)2sin 2α=1-cos α|sin α|=cos α-1sin α, 所以sin α<0.故2k π-π<α<2k π,k ∈Z. 答案:{α|2k π-π<α<2k π,k ∈Z}14.化简:tan α+tan αsin αtan α+sin α·⎝ ⎛⎭⎪⎫1+1cos α·sin α1+sin α. 解:原式=tan α(1+sin α)tan α+sin α·cos α+1cos α·sin α1+sin α=sin αcos αsin αcos α+sin α·1+cos αcos α·sin α=11+cos α·1+cos αcos α·sin α=sin αcos α=tan α.15.已知3sin α-2cos α=0,求1sin αcos α的值.解:由3sin α-2cos α=0,得tan α=23.1sin αcos α=sin 2α+cos 2αsin αcos α=tan 2α+1tan α=136.第1章 三角函数 1.2 任意角的三角函数1.2.3 诱导公式A 级 基础巩固一、选择题1.若sin (π+α)=-12,则sin (4π-α)的值是( )A.12 B .-12 C .-32 D.32 解析:因为sin(π+α)=-12=-sin α,所以sin α=12,sin(4π-α)=-sin α=-12.答案:B2.下列各式不正确的是( ) A .sin(α+180°)=-sin α B .cos(-α+β)=-cos(α-β) C .sin(-α-360°)=-sin α D .cos(-α-β)=cos(α+β)解析:cos(-α+β)=cos[-(α-β)]=cos(α-β),故B 项错误. 答案:B3.已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,则cos α=( )A .-25B .-15 C.15 D.25解析:因为sin ⎝ ⎛⎭⎪⎫52π+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α,所以cos α=sin ⎝ ⎛⎭⎪⎫52π+α=15. 答案:C4.设tan (5π+α)=m ,则sin (α+3π)+cos (π+α)sin (-α)-cos (π+α)的值等于( )A.m +1m -1B.m -1m +1 C .-1D .1解析:因为tan(5π+α)=tan[4π+(π+α)]=tan α. 所以tan α=m .所以原式=sin (π+α)-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1. 答案:A5.若sin (π+α)+cos ⎝ ⎛⎭⎪⎫π2+α=-m ,则cos ⎝ ⎛⎭⎪⎫3π2-α+2sin (2π-α)的值为( )A .-23mB.23m C .-32mD.32m 解析:因为sin(π+α)+cos ⎝⎛⎭⎪⎫π2+α=-m ,所以-sin α-sin α=-m ,则sin α=m2.则cos ⎝ ⎛⎭⎪⎫32π-α+2sin(2π-α)=-sin α-2sin α=-3sin α=-32m .答案:C6.已知sin (π+α)=45,且α是第四象限角,则cos(α-2π)=________.解析:由sin(π+α)=-sin α,得sin α=-45.故cos(α-2π)=cos α=1-sin 2α= 1-⎝ ⎛⎭⎪⎫-452=35.答案:357.已知tan α=43,且α为第一象限角,则sin (π+α)+cos (π-α)=________.解析:因为tan α=43,α为第一象限角,所以sin α=45,cos α=35.所以sin(π+α)+cos(π-α)=-sin α-cos α=-75.答案:-758.在△ABC 中,若cos(A +B )>0,sin C =13,则tan C 等于_______.解析:在△ABC 中,因为cos(A +B )>0, 所以0<A +B <π2,又C =π-(A +B ),所以角C 是钝角.所以cos C =-1-sin 2C =-223.所以tan C =sin C cos C =13-223=-24.答案:-24. 9.计算下列各式的值:(1)cos π5+cos 2π5+cos 3π5+cos 4π5;(2)sin 420°cos 330°+sin(-690°)cos(-660°).解:(1)原式=⎝ ⎛⎭⎪⎫cos π5+cos 4π5+⎝ ⎛⎭⎪⎫cos 2π5+cos 3π5=⎣⎢⎡⎦⎥⎤cos π5+cos ⎝ ⎛⎭⎪⎫π-π5+⎣⎢⎡⎦⎥⎤cos 2π5+cos ⎝ ⎛⎭⎪⎫π-2π5=⎝ ⎛⎭⎪⎫cos π5-cos π5+⎝⎛⎭⎪⎫cos 2π5-cos 2π5=0.(2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)cos(-2×360°+60°)=sin 60°cos 30°+sin 30°cos 60°=32×32+12×12=1. 10.已知cos α=-45,且α为第三象限角.(1)求sin α的值;(2)求f (α)=tan (π-α)·sin (π-α)·sin ⎝ ⎛⎭⎪⎫π2-αcos (π+α)的值.解:(1)因为cos α=-45,且α为第三象限角,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-452=-35.(2)f (α)=-tan α·sin α·cos α-cos α=tan αsin α=sin αcos α·sin α=⎝ ⎛⎭⎪⎫-352-45=-920. B 级 能力提升11.若cos 165°=a ,则tan 195°=( ) A.1-a 2 B .-1-a 2aC.1-a 2aD.1+a 2a解析:cos 165°=cos(180°-15°)=-cos 15°=a , 故cos 15°=-a (a <0),得sin 15°=1-a 2, tan 195°=tan(180°+15°)=tan 15°=1-a 2-a .答案:B12.设φ(x )=sin 2⎝ ⎛⎭⎪⎫π2-x +cos 2⎝ ⎛⎭⎪⎫x -π2+tan(19π-x ),则φ⎝ ⎛⎭⎪⎫π3=________.解析:因为φ(x )=cos 2x +sin 2x -tan x =1-tan x ,所以φ⎝ ⎛⎭⎪⎫π3=1-tan π3=1- 3.答案:1-313.已知sin(α+π)=45,且sin αcos α<0,求2sin (α-π)+3tan (3π-α)4cos (α-3π)的值.解:因为sin(α+π)=45,所以sin α=-45.又因为sin αcos α<0.所以cos α>0,cos α=1-sin 2α=35,所以tan α=-43.所以原式=-2sin α-3tan α-4cos α=2×⎝ ⎛⎭⎪⎫-45+3×⎝ ⎛⎭⎪⎫-434×35=-73.14.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0. 证明:因为sin(α+β)=1, 所以α+β=2k π+π2(k ∈Z).所以α=2k π+π2-β(k ∈Z).tan(2α+β)+tan β=tan ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫2k π+π2-β+β+tan β=tan(4k π+π-2β+β)+tan β=tan(4k π+π-β)+tan β=tan(π-β)+tan β=-tan β+tan β=0.所以tan(2α+β)+tan β=0得证.15.已知sin α是方程5x 2-7x -6=0的根,且α为第三象限角,求sin ⎝ ⎛⎭⎪⎫α+3π2·sin ⎝ ⎛⎭⎪⎫3π2-α·tan 2(2π-α)·tan (π-α)cos ⎝ ⎛⎭⎪⎫π2-α·cos ⎝ ⎛⎭⎪⎫π2+α的值.解:因为5x 2-7x -6=0的两根为x =2或x =-35,所以sin α=-35.又因为α为第三象限角,所以cos α=-1-sin 2α=-45,所以tan α=34.所以原式=(-cos α)·(-cos α)·tan 2α·(-tan α)sin α·(-sin α)=tan α=34.第1章 三角函数 1.3 三角函数的图象和性质 1.3.2 三角函数的图象与性质 第1课时正弦、余弦函数的图象与性质A 级 基础巩固一、选择题1.y =sin x -|sin x |的值域是( ) A .[-1,0] B .[0,1] C .[-1,1]D .[-2,0]解析:y =⎩⎪⎨⎪⎧0,0≤sin x ≤1,2sin x ,-1≤sin x <0,函数的值域为[-2,0].答案:D2.函数y =cos x 与函数y =-cos x 的图象( ) A .关于直线x =1对称 B .关于原点对称 C .关于x 轴对称D .关于y 轴对称解析:作出函数y =cos x 与函数y =-cos x 的简图(图略),易知它们关于x 轴对称.答案:C3.下列函数中,既为偶函数又在(0,π)上单调递增的是( ) A .y =cos|x |B .y =cos|-x |C .y =sin ⎝ ⎛⎭⎪⎫x -π2 D .y =-sin x2解析:y =cos|x |在⎝ ⎛⎭⎪⎫0,π2上是减函数,排除A ; y =cos|-x |=cos|x |,排除B ;y =sin ⎝ ⎛⎭⎪⎫x -π2=-sin ⎝ ⎛⎭⎪⎫π2-x =-cos x 是偶函数,且在(0,π)上单调递增,C 符合题意;y =-sin x2在(0,π)上是单调递减的,排除D.答案:C4.函数f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3,x ∈[-π,0]的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π,-5π6 B.⎣⎢⎡⎦⎥⎤-5π6,-π6 C.⎣⎢⎡⎦⎥⎤-π3,0 D.⎣⎢⎡⎦⎥⎤-π6,0 解析:令2k π-π2≤x -π3≤2k π+π2,k ∈Z ,解得2k π-π6≤x ≤2k π+56π,k ∈Z ,又-π≤x ≤0,所以-π6≤x ≤0.答案:D5.函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象( )A .关于点⎝ ⎛⎭⎪⎫π3,0对称B .关于直线x =π4对称C .关于点⎝ ⎛⎭⎪⎫π4,0对称 D .关于直线x =π3对称解析:令2x +π3=π2+k π,k ∈Z ,则x =π12+k π2,k ∈Z ,排除B ,D ;令2x +π3=k π,k ∈Z ,则x =-π6+k π2,k ∈Z ,当k =1时,对称中心为⎝ ⎛⎭⎪⎫π3,0. 答案:A 6.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3⎝ ⎛⎭⎪⎫-π6≤x ≤π6的值域是________________.解析:因为-π6≤x ≤π6,所以0≤2x +π3≤23π.所以0≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1.所以y =2sin ⎝ ⎛⎭⎪⎫2x +π3的值域为[0,2]. 答案:[0,2]7.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=________.解析:因为f (x )是偶函数,所以0+φ3=π2+k π(k ∈Z).所以φ=32π+3k π(k ∈Z).又φ∈[0,2π],所以φ=32π.答案:32π8.将cos 150°,sin 470°,cos 760°按从小到大排列为_______.解析:cos 150°<0,sin 470°=sin 110°=cos 20°>0,cos 760°=cos 40°>0且cos 20°>cos 40°, 所以cos 150°<cos 760°<sin 470°. 答案:cos 150°<cos 760°<sin 470°9.用五点法作函数y =-2cos x +3(0≤x ≤2π)的简图. 解:列表:x 0 π2 π 3π2 2π -2cos x -2 0 2 0 -2 -2cos x +31353110.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫π3-x 2.求f (x )的单调递增区间.解:f (x )=2cos ⎝ ⎛⎭⎪⎫π3-x 2=2cos ⎝ ⎛⎭⎪⎫x 2-π3, 由2k π-π≤x 2-π3≤2k π,k ∈Z ,得4k π-4π3≤x ≤4k π+2π3,k ∈Z. 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤4k π-4π3,4k π+2π3(k ∈Z).B 级 能力提升11.方程lg x =sin x 的解的个数为( )A .0B .1C .2D .3解析:作出y =lg x 与y =sin x 的图象,如下图所示,由图知有三个交点,所以方程有三个解.答案:D12.函数y =|sin x |(1-sin x )1-sin x 的奇偶性为( )A .奇函数B .即是奇函数又是偶函数C .偶函数D .非奇非偶函数解析:由题意知,1-sin x ≠0,即sin x ≠1,所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠2k π+π2,k ∈Z , 由于定义域关于原点不对称,所以该函数是非奇非偶函数. 答案:D13.若函数f (x )=sin ωx (0<ω<2)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω等于________.解析:根据题意知f (x )在x =π3处取得最大值1,所以sin ωπ3=1,所以ωπ3=2k π+π2,k ∈Z ,即ω=6k +32,k ∈Z.又0<ω<2,所以ω=32.答案:3214.若cos 2θ+2sin θ+m 2-3<0恒成立,求实数m 的取值范围.解:由已知得:m 2<sin 2θ-2sin θ+2=(sin θ-1)2+1,因为-1≤sin θ≤1,所以-2≤sin θ-1≤0. 所以0≤(sin θ-1)2≤4.所以1≤(sin θ-1)2+1≤5. 所以m 2<1.所以-1<m <1. 所以m 的取值范围是(-1,1).15.设函数f (x )=a sin ⎝ ⎛⎭⎪⎫2x +π3+b . (1)若a >0,若f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π4时,f (x )的值域为[1,3],求a ,b 的值. 解:(1)由于a >0,令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z.所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z. (2)当x ∈⎣⎢⎡⎦⎥⎤0,π4时,π3≤2x +π3≤5π6,则12≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1, 当a >0时,由f (x )的值域为[1,3],所以⎩⎨⎧a +b =3,12a +b =1,解之得⎩⎪⎨⎪⎧a =4,b =-1.当a <0时,依题意得⎩⎨⎧a +b =1,12a +b =3,解之得⎩⎪⎨⎪⎧a =-4,b =5.综上知⎩⎪⎨⎪⎧a =4,b =-1或⎩⎪⎨⎪⎧a =-4,b =5.第1章 三角函数 1.3 三角函数的图象和性质 1.3.2 三角函数的图象与性质 第2课时 正切函数的图象与性质A 级 基础巩固1.函数y =tan ⎝ ⎛⎭⎪⎫x -π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π4 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π4,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+3π4,k ∈Z 解析:x -π4≠k π+π2⇒x ≠k π+3π4,k ∈Z.答案:D2.f (x )=-tan ⎝ ⎛⎭⎪⎫x +π4的单调区间是( )A.⎝ ⎛⎭⎪⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈ZC.⎝ ⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝ ⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:令-π2+k π<x +π4<π2+k π,k ∈Z ,解得-3π4+k π<x <π4+k π,k ∈Z.所以函数f (x )的减区间为⎝ ⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z.答案:C3.在下列给出的函数中,以π为周期且在⎝ ⎛⎭⎪⎫0,π2内是增函数的是( )A .y =sin x2B . y =cos 2xC .y =sin ⎝ ⎛⎭⎪⎫2x +π4D .y =tan ⎝ ⎛⎭⎪⎫x -π4解析:由函数周期为π可排除A.x ∈⎝ ⎛⎭⎪⎫0,π2时,2x ∈(0,π),2x +π4∈⎝ ⎛⎭⎪⎫π4,54π,此时B 、C 中函数均不是增函数,D 中在⎝ ⎛⎭⎪⎫0,π2上递增,且周期为π.答案:D 4.若直线x =kx2(-1≤k ≤1)与函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象不相交,则k =( )A.14 B .-34C.14或-34 D .-14或34解析:由题意得2×k π2+π4=π2+m π,m ∈Z. 则k =14+m ,m ∈Z.由于-1≤k ≤1,所以k =14或-34.答案:C5.函数y =tan ⎝ ⎛⎭⎪⎫3x +π6图象的对称中心为( )A .(0,0)B.⎝ ⎛⎭⎪⎫π2,0 C.⎝ ⎛⎭⎪⎫k π-π18,0,k ∈Z D. ⎝ ⎛⎭⎪⎫k π6-π18,0,k ∈Z 解析:由函数y =tan x 的对称中心为⎝ ⎛⎭⎪⎫k π2,0,k ∈Z , 令3x +π6=k π2,k ∈Z ,则x =k π6-π18(k ∈Z).所以y =tan ⎝⎛⎭⎪⎫3x +π6图象的对称中心为⎝⎛⎭⎪⎫k π6-π18,0,k ∈Z.答案:D6.函数y =lg(3-tan x )的定义域为____________________. 解析:因为3-tan x >0,所以tan x < 3. 又因为tan x =3时,x =π3+k π(k ∈Z),根据正切函数图象,得k π-π2<x <k π+π3(k ∈Z),所以函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π-π2<x <k π+π3,k ∈Z.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π-π2<x <k π+π3,k ∈Z 7.若函数y =tan ⎝ ⎛⎭⎪⎫3ax -π3(a ≠0)的最小正周期为π2,则a =______.解析:因为π|3a |=π2,所以|a |=23.所以a =±23.答案:±238.函数y =sin x +tan x ,x ∈⎣⎢⎡⎦⎥⎤-π4,π3的最大值是________.解析:因为函数y 1=sin x 与y 2=tan x 在x ∈⎣⎢⎡⎦⎥⎤-π4,π3上都是递增函数,所以y =sin x +tan x 在x ∈⎣⎢⎡⎦⎥⎤-π4,π3上是单调递增函数,y max =sin π3+tan π3=332.答案:3329.求函数y =tan 2x 的定义域、值域和周期,并作出它在区间[-π,π]内的图象.解:定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠π4+k π2,k ∈Z ;值域为R.最小正周期T =π2.对应图象如图所示:10.求函数y =12tan ⎝ ⎛⎭⎪⎫5x +π4的定义域,单调区间及对称中心. 解:由5x +π4≠k π+π2,得x ≠k π5+π20,k ∈Z.函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π5+π20,k ∈Z. 由k π-π2<5x +π4<k π+π2,得k π5-3π20<x <k π5+π20,k ∈Z.函数的单调递增区间是⎝ ⎛⎭⎪⎫k π5-3π20,k π5+π20,k ∈Z ,由5x +π4=k π2,得x =k π10-π20,k ∈Z ,函数图象的对称中心坐标为⎝ ⎛⎭⎪⎫k π10-π20,0,k ∈Z. B 级 能力提升11.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =π4所得线段长为π4,则f ⎝ ⎛⎭⎪⎫π4的值是( )A.π4B .0C .1D .2 解析:因为y =tan ωx 的周期T =πω,所以y =π4与y =tan ωx 的图象相邻两交点间的距离为πω.故πω=π4,ω=4,所以f (x )=tan 4x . 所以f ⎝ ⎛⎭⎪⎫π4=tan ⎝ ⎛⎭⎪⎫4×π4=tan π=0.答案:B12.已知函数y =tan ωx 在⎝ ⎛⎭⎪⎫-π2,π2内是减函数,则( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-1解析:由题意可知ω<0,又⎝⎛⎭⎪⎫π2 ω,-π2 ω⊆⎝ ⎛⎭⎪⎫-π2,π2. 故-1≤ω<0. 答案:B13.f (x )=a sin x +b tan x +1,满足f (5)=7,则f (-5)=________.解析:因为f (5)=a sin 5+b tan 5+1=7, 所以a sin 5+b tan 5=6.所以f (-5)=a sin(-5)+b tan(-5)+1=-(a sin 5+b tan 5)+1=-5.答案:-514.当x ∈⎣⎢⎡⎦⎥⎤π6,π3时,若使a -2tan ⎝⎛⎭⎪⎫2x -π3的值总大于零,求a的取值范围.解:因为x ∈⎣⎢⎡⎦⎥⎤π6,π3,所以0≤2x -π3≤π3.又因为y =tan x 在⎣⎢⎡⎦⎥⎤0,π3内单调递增,所以0≤tan ⎝⎛⎭⎪⎫2x -π3≤ 3.所以0≤2tan ⎝ ⎛⎭⎪⎫2x -π3≤2 3.由题意知a -2tan ⎝ ⎛⎭⎪⎫2x -π3>0恒成立,即a >2tan ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤π6,π3恒成立. 所以a >2 3.所以实数a 的取值范围是(23,+∞).15.已知函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx -π3的最小正周期T 满足1<T <32,求正整数k 的值,并指出f (x )的奇偶性、单调区间.解:因为1<T <32,所以1<πk <32,即2π3<k <π.因为k ∈N *,所以k =3.则f (x )=2tan ⎝⎛⎭⎪⎫3x -π3,由3x -π3≠π2+k π(k ∈Z),得x ≠5π18+k π3(k ∈Z),定义域不关于原点对称.所以f (x )=2tan ⎝ ⎛⎭⎪⎫3x -π3是非奇非偶函数.由-π2+k π<3x -π3<π2+k π(k ∈Z),得-π18+k π3<x <5π18+k π3(k ∈Z).所以f (x )=2tan ⎝ ⎛⎭⎪⎫3x -π3的增区间为 ⎝ ⎛⎭⎪⎫-π18+k π3,5π18+k π3,k ∈Z.第1章 三角函数 1.3 三角函数的图象和性质 1.3.3 函数y =A sin(ωx +φ)的图象A 级 基础巩固一、选择题1.函数y =3sin ⎝⎛⎭⎪⎫π2x +π4的振幅和周期分别为( ) A .3,4 B .3,π2 C.π2,4 D.π2,3解析:由于函数y =3sin ⎝⎛⎭⎪⎫π2x +π4,所以振幅是3,周期是T=2ππ2=4.答案:A2.(2015·山东卷)要得到函数y=sin⎝⎛⎭⎪⎫4x-π3的图象,只需将函数y=sin 4x的图象()A.向左平移π12个单位长度B.向右平移π12个单位长度C.向左平移π3个单位长度D.向右平移π3个单位长度解析:由y=sin⎝⎛⎭⎪⎫4x-π3=sin 4⎝⎛⎭⎪⎫x-π12得,只需将y=sin 4x的图象向右平移π12个单位长度.答案:B3.函数y=sin⎝⎛⎭⎪⎫2x-π3在区间⎣⎢⎡⎦⎥⎤-π2,π的简图是()答案:A4.函数y=2sin⎝⎛⎭⎪⎫2x+π3图象的一条对称轴方程为() A.x=-π6B.x=-512πC.x=π2D.x=π6答案:B5.将函数f (x )=sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移φ(φ>0)个单位长度后,所得的图象都关于y 轴对称,则φ的最小值分别为( )A.π6B.π3C.2π3D.π12解析:函数f (x )的图象向左平移φ个单位长度得到函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +2φ+π6的图象, 于是2φ+π6=π2+k π,k ∈Z ,所以φ=k π2+π6,k ∈Z ,取k =0,得φ的最小值为π6.答案:A6.函数y =6sin ⎝ ⎛⎭⎪⎫14x -π6的频率是________,图象最高点的坐标是________.解析:由于T =8π,则频率f =1T =18π,当14x -π6=2k π+π2(k ∈Z),即x =8k π+8π3 (k ∈Z)时,函数取得最大值6.答案:18π⎝ ⎛⎭⎪⎫8k π+8π3,6(k ∈Z)7.把函数y =sin x 的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向左平移π4个单位长度,则所得图象的解析式为________________.解析:由题意y =sin x 的图象――――――――――――→各点横坐标缩小为原来的一半,纵坐标不变y =sin2x 的图象y =sin2⎝ ⎛⎭⎪⎫x +π4的图象, 则y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x . 答案:y =cos 2x8.已知函数y =sin(ωx +φ)(ω>0,-π<φ≤π)的图象如图所示,则φ=________.解析:由题意得T2=2π-34π,所以T =52π,ω=45.由x =34时,y =-1,得-1=sin ⎝ ⎛⎭⎪⎫35π+φ, 又-2π5<35π+φ<85π,所以35π+φ=32π.所以φ=910π.答案:910π 9.已知函数y =3sin ⎝ ⎛⎭⎪⎫12x -π4.(1)用“五点法”画函数的图象;(2)说出此图象是由y =sin x 的图象经过怎样的变换得到的. 解:(1)列表:12x -π4 0 π2 π 3π2 2π x π2 3π2 5π2 7π2 9π2 y3-3数一个周期内的图象,如图所示,再将这部分图象左右平移4k π(k ∈Z)个单位长度.得函数y =3sin ⎝ ⎛⎭⎪⎫12x -π4的图象. (2)法一:①把y =sin x 图象上所有的点向右平移π4个单位长度,得到y =sin ⎝⎛⎭⎪⎫x -π4的图象;②把y =sin ⎝⎛⎭⎪⎫x -π4图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫12x -π4的图象;③将y =sin ⎝ ⎛⎭⎪⎫12x -π4图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin ⎝ ⎛⎭⎪⎫12x -π4的图象. 法二:①把y =sin x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin 12x 的图象;②把y =sin 12x 图象上所有的点向右平移π2个单位长度,得到y =sin 12⎝ ⎛⎭⎪⎫x -π2=sin ⎝ ⎛⎭⎪⎫12x -π4的图象; ③将y =sin ⎝ ⎛⎭⎪⎫12x -π4的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin ⎝ ⎛⎭⎪⎫12x -π4的图象. 10.设函数f (x )=sin(2x +φ)(-π<φ<0),已知它的一条对称轴是直线x =π8.(1)求φ;(2)求函数f (x )的单调递减区间.解:(1)函数的一条对称轴是直线x =π8,2×π8+φ=k π+π2,k ∈Z ,因为-π<φ<0,所以φ=-3π4.(2)由(1)知,f (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4,由π2+2k π≤2x -3π4≤3π2+2k π,k ∈Z , 得5π8+k π≤x ≤9π8+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤5π8+k π,9π8+k π(k ∈Z).B 级 能力提升11.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝ ⎛⎭⎪⎫3π4,0,则ω的最小值是( ) A.13 B .1 C.53D .2解析:函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,得到函数f (x )=sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π4(其中ω>0). 将⎝ ⎛⎭⎪⎫3π4,0代入得sin ωπ2=0,所以ωπ2=k π(k ∈Z),故得ω的最小值是2. 答案:D12.(2014·福建卷)将函数y =sin x 的图象向左平移π2个单位长度,得到函数y =f (x )的图象,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图象关于直线x =π2对称D .y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π2,0对称 解析:由题意知,f (x )=cos x ,所以它是偶函数,A 错误;它的周期为2π,B 错误;它的对称轴是直线x =k π,k ∈Z ,C 错误;它的对称中心是点⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ,D 正确. 答案:D13.函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则函数的解析式为f (x )=__________.。

高中数学 模块综合检测 苏教版必修4-苏教版高一必修4数学试题

高中数学 模块综合检测 苏教版必修4-苏教版高一必修4数学试题

模块综合检测[学生用书P129(单独成册)] (时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知750°<α<800°,那么α2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选A .因为750°<α<800°,所以375°<α2<400°,所以α2是第一象限角.2.已知sin (π+α)=13,则cos 2α=( )A .79B .-89C .-79D .429解析:选A .因为sin (π+α)=13,所以sin α=-13,所以cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫-132=79. 3.已知a =(1,0),b =(1,1),且(a +λb )⊥a ,则λ=( ) A .2 B .1 C .0D .-1解析:选D .因为a +λb =(1,0)+(λ,λ)=(1+λ,λ),所以(a +λb )·a =(1+λ,λ)·(1,0)=1+λ.由(a +λb )⊥a 得1+λ=0,得λ=-1,故选D .4.已知sin (π+α)=-13,则tan ⎝ ⎛⎭⎪⎫π2-α的值为( )A .2 2B .-2 2C .24D .±2 2解析:选D .因为sin (π+α)=-13,所以sin α=13,则cos α=±223,所以tan ⎝ ⎛⎭⎪⎫π2-α=sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α=cos αsin α=±2 2.故选D . 5.3-tan 15°1+3tan 15°的值为( )A .0B .1C .12D .2解析:选B .原式=tan 60°-tan 15°1+tan 60°·tan 15°=tan(60°-15°)=tan 45°=1.6.函数f (x )=cos 2x +sin 2x +2(x ∈R )的值域是( ) A .[2,3] B .⎣⎢⎡⎦⎥⎤52,3 C .[1,4]D .[2,4]解析:选A .因为f (x )=cos 2x +sin 2x +2=3-2sin 2x +sin 2x =3-sin 2x ,sin x ∈[-1,1],所以f (x )∈[2,3].故选A .7.已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3,则下列说法正确的是( )A .f (x )在定义域内是增函数B .f (x )图象的对称中心是⎝ ⎛⎭⎪⎫k π4-π6,0(k ∈Z )C .f (x )是奇函数D .f (x )图象的对称轴是x =k π2+π12(k ∈Z ) 解析:选B .f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3在定义域内不是增函数,不是奇函数,且其图象没有对称轴,因此A ,C ,D 错误.由2x +π3=k π2(k ∈Z )得x =k π4-π6(k ∈Z ).因此f (x )图象的对称中心是⎝ ⎛⎭⎪⎫k π4-π6,0(k ∈Z ).故选B .8.如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λμ的值为( )A .-3B .3C .2D .-2解析:选B .因为AD →=23AC →,所以BP →=13BD →=13(AD →-AB →)=29AC →-13AB →,所以AP →=AB →+BP →=23AB →+29AC →,又AP →=λAB →+μAC →,所以λ=23,μ=29,从而λμ=3,故选B .9.如图是由16个边长为1的菱形构成的图形,菱形中的锐角大小为π3,a =AB →,b =CD →,则a ·b=( )A .-5B .-1C .-3D .-6解析:选B .设菱形中过A 点的两邻边对应的向量分别表示为i ,j ,且i 的方向水平向右,则|i |=|j |=1,〈i ,j 〉=60°,从而i ·j =12.因此a =i +2j ,b =-3i +2j ,所以a ·b =(i +2j )·(-3i +2j )=-3i 2-4i ·j +4j 2=-3×12-4×1×1×12+4×12=-1,故选B .10.先将函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6+1的图象上所有的点向右平移π4个单位,再向上平移1个单位后得到函数y =g (x )的图象,则下列说法正确的是( )A .f (x )的周期是π2B .f ⎝ ⎛⎭⎪⎫x +π12是奇函数 C .g (x )的图象关于点⎝⎛⎭⎪⎫7π12,0对称D .g (x )在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增 解析:选D .由题意得f (x )的最小正周期T =2π2=π,A 错误;f ⎝ ⎛⎭⎪⎫x +π12=cos 2x +1为偶函数,B 错误;将f (x )的图象上所有的点向右平移π4个单位,再向上平移1个单位后得到函数g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+2,g (x )的图象关于点⎝ ⎛⎭⎪⎫7π12,2对称,C 错误;g (x )在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,D正确.11.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,且图象关于直线x =3π4对称,且在区间⎣⎢⎡⎦⎥⎤0,2π3上是单调函数,则ω等于( )A .83 B .23 C .43或83D .43解析:选D .因为f (x )在R 上是偶函数,所以φ=k π+π2,k ∈Z ,因为0≤φ≤π.所以φ=π2,所以f (x )=cos ωx ,因为f (x )的图象关于直线x =3π4对称,所以3π4ω=k π,即ω=43k ,k ∈Z ,又因为f (x )在⎣⎢⎡⎦⎥⎤0,2π3上是单调函数,所以23ωπ≤π,ω≤32,所以只有k =1时,ω=43符合题意.12.在四边形ABCD 中,AB →=DC →=(1,1),1|BA →|·BA →+1|BC →|·BC →=3|BD →|·BD →,则四边形ABCD 的面积为( )A . 3B . 2C .2D .33解析:选A .作CE ⊥BD 于E .由AB →=DC →=(1,1)可知四边形ABCD 为平行四边形,且|AB →|=|DC →|=2,因为1|BA →|·BA →+1|BC →|·BC →=3|BD →|·BD →,所以平行四边形ABCD 的对角线BD 平分∠ABC ,平行四边形ABCD 为菱形,其边长为2,且对角线BD 的长等于边长的3倍,即BD =3×2=6,则CE 2=(2)2-⎝ ⎛⎭⎪⎫622=12,即CE =22,所以三角形BCD 的面积为12×6×22=32,所以四边形ABCD的面积为2×32= 3. 二、填空题:本题共4小题,每小题5分.13.已知sin α+cos α=52,则cos 4α=________. 解析:由sin α+cos α=52,得sin 2α+cos 2α+2sin αcos α=1+sin 2α=54,所以sin 2α=14,从而cos 4α=1-2sin 22α=1-2×⎝ ⎛⎭⎪⎫142=78.答案:7814.l 1,l 2是不共线向量,且a =-l 1+3l 2,b =4l 1+2l 2,c =-3l 1+12l 2,若b ,c 为一组基底,则向量a =________.解析:设a =x b +y c ,由题意可知-l 1+3l 2=x (4l 1+2l 2)+y (-3l 1+12l 2),整理得-l 1+3l 2=(4x -3y )l 1+(2x +12y )l 2.由平面向量基本定理,得⎩⎪⎨⎪⎧4x -3y =-1,2x +12y =3,解得⎩⎪⎨⎪⎧x =-118,y =727.答案:-118b +727c15.设向量a =⎝ ⎛⎭⎪⎫12,sin α,b =⎝ ⎛⎭⎪⎫32,cos α+23,若a ∥b ,则sin ⎝ ⎛⎭⎪⎫5π6-2α的值是________. 解析:由a ∥b ,可得12⎝⎛⎭⎪⎫cos α+23-32sin α=0,故sin ⎝ ⎛⎭⎪⎫α-π6=13.而sin ⎝ ⎛⎭⎪⎫5π6-2α=sin ⎝ ⎛⎭⎪⎫π2+π3-2α=cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎝ ⎛⎭⎪⎫2α-π3=1-2sin 2⎝⎛⎭⎪⎫α-π6=79.答案:7916.在矩形ABCD 中,AB =2,AD =1.边DC 上的动点P (包含点D ,C )与CB 延长线上的动点Q (包含点B )满足|DP →|=|BQ →|,则PA →·PQ →的最小值为________.解析:以点A 为坐标原点,分别以AB ,AD 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设P (x ,1),Q (2,y ),由题意知0≤x ≤2,-2≤y ≤0. 因为|DP →|=|BQ →|,所以|x |=|y |,所以x =-y . 因为PA →=(-x ,-1),PQ →=(2-x ,y -1), 所以PA →·PQ →=-x (2-x )-(y -1)=x 2-2x -y +1=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,所以当x =12时,PA →·PQ →取得最小值为34.答案:34三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知角α的终边经过点P (3,4). (1)求tan (π-α)的值;(2)求cos ⎝⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫5π2+α·sin(α-2π)·cos (π-α)的值.解:因为角α的终边经过点P (3,4), 所以设x =3,y =4,则r =32+42=5,所以sin α=y r =45,cos α=x r =35,tan α=y x =43.(1)tan (π-α)=-tan α=-43.(2)cos ⎝⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫5π2+α·sin(α-2π)·cos (π-α)=sin αcos α·sin α·(-cos α) =-sin 2α=-⎝ ⎛⎭⎪⎫452=-1625. 18.(本小题满分12分)已知a ,b ,c 是同一平面的三个向量,其中a =(1,3). (1)若|c |=4,且c ∥a ,求c 的坐标;(2)若|b |=1,且(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ,求a 与b 的夹角θ. 解:(1)因为c ∥a ,所以存在实数λ(λ∈R ),使得c =λa =(λ,3λ),又|c |=4,即λ2+3λ2=4,解得λ=±2.所以c =(2,23)或c =(-2,-23).(2)因为(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ,所以(a +b )·⎝ ⎛⎭⎪⎫a -52b =0,即a 2-32a ·b -52b 2=0,所以4-32×2×1×cos θ-52=0,所以cos θ=12,因为θ∈[0,π],所以θ=π3.19.(本小题满分12分)已知角α∈⎝ ⎛⎭⎪⎫π4,π2,且(4cos α-3sin α)(2cos α-3sin α)=0.(1)求tan ⎝⎛⎭⎪⎫α+π4的值; (2)求cos ⎝ ⎛⎭⎪⎫π3-2α的值. 解:因为(4cos α-3sin α)(2cos α-3sin α)=0,又α∈⎝ ⎛⎭⎪⎫π4,π2,所以4cos α-3sinα=0,所以tan α=43,sin α=45,cos α=35.(1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=43+11-43=-7.(2)cos 2α=2cos 2α-1=-725,sin 2α=2sin αcos α=2425,cos ⎝ ⎛⎭⎪⎫π3-2α=cos π3cos 2α+sin π3sin 2α=12×⎝ ⎛⎭⎪⎫-725+32×2425=243-750.20.(本小题满分12分)已知向量a =(cos 2x ,sin 2x ),b =(3,1),函数f (x )=a ·b +m . (1)求f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最小值为5,求m 的值. 解:(1)由题意知:f (x )=(cos 2x ,sin 2x )·(3,1)+m =3cos 2x +sin 2x +m =2sin ⎝⎛⎭⎪⎫2x +π3+m , 所以f (x )的最小正周期为T =π. (2)由(1)知:f (x )=2sin ⎝⎛⎭⎪⎫2x +π3+m ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3.所以当2x +π3=4π3时,f (x )取得最小值-3+m .又f (x )的最小值为5,所以-3+m =5,即m =5+ 3.21.(本小题满分12分)已知电流I 与时间t 的关系式为I =A sin(ωt +φ).(1)如图是I =A sin(ωt +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?解:(1)由图可知A =300,设t 1=-1900,t 2=1180,则周期T =2(t 2-t 1)=2⎝ ⎛⎭⎪⎫1180+1900=175,所以ω=2πT =150π.t =-1900时,I =0,即sin ⎣⎢⎡⎦⎥⎤150π·⎝ ⎛⎭⎪⎫-1900+φ=0, sin ⎝ ⎛⎭⎪⎫φ-π6=0.而|φ|<π2,所以φ=π6.故所求的解析式为I =300sin ⎝ ⎛⎭⎪⎫150πt +π6.(2)依题意,周期T ≤1150,即2πω≤1150(ω>0),所以ω≥300π>942,又ω∈N *,故最小正整数ω=943.22.(本小题满分12分)已知向量m =(cos x +sin x ,2cos x ),n =(cos x -sin x ,-sin x ). (1)求f (x )=m ·n 的最小正周期和单调减区间;(2)将函数y =f (x )的图象向右平移π8个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=0,g (B )=22,求C 的值.解:(1)f (x )=cos 2x -sin 2x -2cos x sin x =cos 2x -sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +3π4,所以T =2π2=π.由2k π+π2≤2x +3π4≤2k π+3π2(k ∈Z )得:2k π-π4≤2x ≤2k π+3π4(k ∈Z ),k π-π8≤x ≤k π+3π8(k ∈Z ),所以f (x )=m ·n 的单调减区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). (2)将函数y =f (x )的图象向右平移π8个单位,所得函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8+3π4=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x ,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,所得函数为y =2cos x ,即g (x )=2cos x ,由题设得:2sin ⎝ ⎛⎭⎪⎫A +3π4=0,所以A =π4.又2cos B =22,所以cos B =12,B =π3. 所以C =π-(A +B )=π-⎝ ⎛⎭⎪⎫π4+π3=5π12.。

苏教版高中数学必修4章末练测:第二章平面向量(含参考答案).docx

苏教版高中数学必修4章末练测:第二章平面向量(含参考答案).docx

第2章平面向量(数学苏教版必修4)建议用时实际用时满分实际得分120分钟150分一、填空题(本大题共14小题,每小题5分,共70分.把答案填在题中横线上)1.已知一点O到平行四边形ABCD的三个顶点A、B、C的向量分别为a、b、c,则向量OD等于.2. 有下列四个关系式:①|a·b|=|a|·|b|;②|a·b|≤|a|·|b|;③|a·b|≥|a|·|b|;④|a·b|≠|a|·|b|.其中正确的关系式是.3.在△ABC中,AB边上的高为CD,若CB=a,CA=b,a·b=0,|a|=1,|b|=2,则AD= .4.已知向量a=(2,1),a·b=10,|a+b|=5,则|b|= .5.设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|= .6.设a=(13,tan ),b=(cos ,32),且a∥b,则锐角的值为.7.点P为△ABC所在平面内任一点,且PA+PB+PC=AB,则点P与△ABC的位置关系是.8.对于向量a、b、c和实数λ,下列命题中的真命题是.○1若a·b=0,则a=0或b=0;○2若λa=0,λ=0或a=0;○3若a2=b2,则a=b或a=-b;○4若a·b=a·c,则b=c.9. 在△ABC所在平面存在一点O使得OA+ OB + OC= 0,则面积= .10.若将向量a=(1,2)绕原点按逆时针方向旋转π4得到向量b,则b的坐标是.11.已知平面上三点A、B、C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于.12.已知点A(1,-2),若向量AB与a=(2,3)同向,|AB|=213,则点B的坐标为.13. 设OA=(3,1),OB=(-1,2),OC⊥OB, BC ∥OA,又OD+OA=OC,则OD的坐标是.14.若对n个向量a1,a2,…,a n存在n个不全为零的实数k1,k2,…,k n,使得k1a1+k2a2+…+k n a n=0成立,则称向量a1,a2,…,a n为“线性相关”.依此规定,能说明a1=(1,2),a2=(1,-1),a3=(2,10)“线性相关”的实数k1,k2,k3依次可以取(写出一组数值即可,不必考虑所有情况).二、解答题(解答应写出文字说明,证明过程或演算步骤,共80分)15.(15分)设a,b,c,d∈R,求证:(ac+bd)2≤(a2+b2)(c2+d2). 16.(15分)已知实数a,b,c,d,求函数f(x)=2222()()x a b x c d+++-+的最小值.17.(21分)平面内给定三个向量a=(3,2),b =(-1,2),c=(4,1).(1)求满足a=m b+n c的实数m,n;(2)若(a+k c)∥(2b-a),求实数k;(3)设d=(x,y)满足(d-c)∥(a+b),且|d-c|=1,求向量d. 18.(14分)设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为零的实数.(1)若x=a+(t-3)b与y=-k a+t b垂直,求k关于t的函数表达式k=f(t);(2)求函数k=f(t)的最小值.19.(15分)一条河的两岸平行,河的宽度d为500 m,一条船从A处出发航行到河的正对岸B处,船航行的速度|v1|=10 km/h,水流速度|v2|=4 km/h,那么v1与v2的夹角(精确到1°)多大时,船才能垂直到达对岸B处?船行驶多少时间?(精确到0.1 min)第2章平面向量(数学苏教版必修4)答题纸得分:一、填空题1. 2. 3. 4. 5. 6.7. 8. 9. 10. 11. 12.13. 14.二、解答题15.16. 17. 18. 19.第2章 平面向量(数学苏教版必修4)答案一、填空题1. a +c -b 解析:如图,点O 到平行四边形三个顶点A 、B 、C 的向量分别为a 、b 、c , 结合图形有OD =OA +AD =OA +BC =OA +OC -OB =a +c -b .2. ○2 解析:|a ·b |=|a ||b ||cos θ|≤|a |·|b |,其中θ为a 与b 的夹角.3.45a -45b 解析:利用向量的三角形法则求解. 如图,∵ a ·b =0,∴ a ⊥b ,∴ ∠ACB =90°, ∴ AB =22AC BC +=5.又CD ⊥AB ,∴ AC 2=AD ·AB ,∴ AD =455. A DOB CC b aA D B∴ AD =45AB =45(a -b )=45a -45b . 4.5 解析:|a +b |2=a 2+2a ·b +b 2=|a |2+2a ·b +|b |2=50,即5+2×10+|b |2=50,∴ |b |=5.5. 解析:利用平面向量共线和垂直的条件求解. ∵ a =(x ,1),b =(1,y ),c =(2,-4), 由a ⊥c 得a ·c =0,即2x-4=0,∴ x =2. 由b ∥c ,得1×(-4)-2y =0,∴ y =-2. ∴ a =(2,1),b =(1,-2).∴ a +b =(3,-1),∴ |a +b |=223(1)+-=.6.π6解析:∵ a ∥b ,∴ 13×32-t a n cos =0,即sin =12,∴ =π6.7. P 在AC 边上 解析:∵ PA +PB +PC =AB ,∴ PA +PC =AB +BP =AP ,即PC =2AP . ∴ A 、C 、P 三点共线,即P 在AC 边上. 8.○2 解析:取a =(1,0),b =(0,-1),满足条件a ·b =0,a 2=b 2,但不能推得a =0或b =0,a =b 或a =-b ,故选项○1、○3均假;向量数量积运算不满足消去律,故选项○4假. 9.13解析:∵ OA + OB + OC = 0 ,∴ OB + OC = AO , 设 OB + OC =OD , ∴O 是AD 的中点, 要求面积之比的两个三角形是同底的三角形, ∴面积之比等于三角形的高之比,∴比值是13, 10. (22-,322) 解析:设b =(x ,y ),则|b |=|a |=,a ·b =|a ||b |·cos π4=××22=522,即x 2+y 2=5,x+2y =522,解得x =22-,y =322(舍去x =322,y =22).故b =(22-,322). 11.-25 解析:∵|AB |2+|BC |2=|CA |2,∴ △ABC 为直角三角形,AB ⊥BC , cos A =35,cos C =45. ∴原式=3×4×0+4×5×(45-)+5×3×(35-)=25-.12.(5,4) 解析:设AB =(x ,y ),∵ AB 与a 同向, ∴ AB =λa (λ>0),即(x ,y )=λ(2,3).∴ 2,3.x y λλ=⎧⎨=⎩又|AB |=2,∴ x 2+y 2=52.∴ 4λ2+9λ2=52,解得λ=2(负值舍去).∴ 点B 的坐标为(5,4).13. 1 解析:设OC =(x ,y ),由OC ⊥OB ,得-x+2y =0.① 由BC =OC -OB =(x+1,y-2), BC ∥OA , 得(x+1)-3(y-2)=0.②由①②联立,解得x =14,y =7.故OD =OC -OA =(14,7)-(3,1)=(11,6).14.只要写出-4c ,2c ,c (c ≠0)中一组即可,如-4,2,1等 解析:由k 1a 1+k 2a 2+k 3a 3=0得12313,12323,20,421002k k k k k k k k k k ++==-⎧⎧⇒⎨⎨-+==⎩⎩∴ k 1=-4c ,k 2=2c ,k 3=c (c ≠0). 二、解答题15.证明:引入向量a =(a ,b ),b =(c ,d ). 设向量a 、b 的夹角为,则(ac+bd )2=(a ·b )2=(|a ||b |cos )2≤(|a ||b |)2=(a 2+b 2)(c 2+d 2). 16.解:引入向量a =(x+a ,b ),b =(c-x ,d ), 则原函数变为f (x )=|a |+|b |.∴ f (x )=|a |+|b |≥|a +b |=22()()x a c x b d ++-++=22()()a c b d +++. ∴ 函数f (x )的最小值为22()()a c b d +++. 17.解:(1)因为a =m b +n c ,所以(3,2)=(-m+4n ,2m+n ),所以5,43,9228.9m m n m n n ⎧=⎪-+=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩(2)因为(a +k c )∥(2b -a ),又a + k c =(3+4k ,2+k ),2b -a =(-5,2), 所以2(3+4k )+5(2+k )=0,即k =-1613. (3)因为d -c =(x-4,y-1),a +b =(2,4), 又(d -c )∥(a +b ),|d -c |=1,所以22554,4,4(4)2(1)0,55(4)(1)1,25251,155x x x y x y y y ⎧⎧=+=-⎪⎪---=⎧⎪⎪⎨⎨⎨-+-=⎩⎪⎪=+=-⎪⎪⎩⎩解得或.所以d =(5254,155++),或d =(5254,155--). 18.解:(1)∵ a ⊥b ,∴ a ·b =0.又x ⊥y ,∴ x ·y =0,即[a +(t-3)b ]·(-k a +t b )=0,-k a 2-k (t-3)a ·b +t a ·b +t (t-3)b 2=0. 将|a |=2,|b |=1代入上式得-4k+t 2-3t =0, 即k =f (t )=14(t 2-3t ). (2)由(1)知k =f (t )=14(t 2-3t )=14(t-32)2916-, ∴ 当t =32时,k 最小=916-. 19.解:如图,根据向量的平行四边形法则和解三角形知识可得| v 1|2=| v |2+| v 2|2,得| v |=2212-v v =22104-≈9.2(km/h ). ∵ cos (π-)=21v v =410=25,∴ π-≈1130π,即≈1930π=114°,时间t =d v ≈0.59.2=592(h ),即约3.3 min. 答:v 1与v 2的夹角约为114°时船才能垂直到达对岸B 处,大约行驶3.3 min.v 1 vA v 2。

高中数学 章末综合测评2 圆锥曲线与方程 苏教版必修4-苏教版高一必修4数学试题

高中数学 章末综合测评2 圆锥曲线与方程 苏教版必修4-苏教版高一必修4数学试题

章末综合测评(二) 圆锥曲线与方程(时间:120分钟,满分:160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中横线上) 1.抛物线y =-18x 2的准线方程是________.[解析] 把抛物线方程化为标准形式得x 2=-8y ,所以抛物线的准线方程为y =2. [答案] y =22.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值X 围是________.[解析] 焦点在x 轴上,则标准方程中a 2>a +6,解得a >3或a <-2.又a 2>0,a +6>0,所以a >3或-6<a <-2.[答案] (-6,-2)∪(3,+∞)3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于________.【导学号:71392150】[解析] 双曲线x 26-y 23=1的渐近线方程为y =±22x ,与圆(x -3)2+y 2=r 2(r >0)相切,得r = 3.[答案]34.若F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)与椭圆x 225+y 29=1的共同的左、右焦点,点P 是两曲线的一个交点,且△PF 1F 2为等腰三角形,则该双曲线的渐近线方程是________.[解析] 不妨设PF 1>PF 2,则PF 1=F 1F 2=8,由双曲线及椭圆的定义,可知⎩⎪⎨⎪⎧PF 1-PF 2=2a ,PF 1+PF 2=10,即⎩⎪⎨⎪⎧8-PF 2=2a ,8+PF 2=10,得2a =6,a =3.又a 2+b 2=16,所以b 2=7,故双曲线的渐近线方程为y =±73x . [答案] y =±73x 5.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值X 围是________.[解析] 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k (x +2)⇒k 2x2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0,可解得-1≤k ≤1,且k ≠0,综上可知,-1≤k ≤1.[答案] [-1,1]6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为________.[解析] 由e =2知,双曲线为等轴双曲线,则其渐近线方程为y =±x .由P (0,4)知左焦点F 的坐标为(-4,0),∴c =4,∴a 2=b 2=c 22=8,∴双曲线方程为x 28-y 28=1.[答案]x 28-y 28=1 7.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则△PF 1F 2的面积为________.【导学号:71392151】[解析] 由题意知,|F 1F 2|=26-2=4,设P 点坐标为(x ,y ).由⎩⎪⎨⎪⎧x 26+y 22=1,x 23-y 2=1,得⎩⎪⎨⎪⎧x =±322,y =±22.则S =12|F 1F 2|·|y |=12×4×22= 2.[答案]28.已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b2=1有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率为________.[解析] 由抛物线的定义知,AF =2c ,∴b 2a=2c .∴c 2-a 2=2ac ,∴e 2-2e -1=0. 又∵e >1, ∴e =2+1. [答案]2+19.直线l 过抛物线y 2=2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是________.[解析] 如图,分别过点A ,B 作抛物线准线的垂线,垂足分别为点M ,N ,由抛物线的定义知,AM +BN =AF +BF =AB =8.又四边形AMNB 为直角梯形,故AB 中点到准线的距离即为梯形的中位线的长度4,而抛物线的准线方程为x =-p 2,所以4=2+p2,即p =4,所以抛物线的方程是y 2=8x .[答案] y 2=8x10.已知抛物线y =2px 2(p >0)的焦点为F ,点P ⎝ ⎛⎭⎪⎫1,14在抛物线上,过点P 作PQ 垂直抛物线的准线,垂足为点Q ,若抛物线的准线与对称轴相交于点M ,则四边形PQMF 的面积为________.[解析] 由点P ⎝ ⎛⎭⎪⎫1,14在抛物线上,得p =18,故抛物线的标准方程为x 2=4y ,点F (0,1),准线为y =-1,∴FM =2,PQ =1+14=54,MQ =1,则直角梯形PQMF 的面积为12×⎝ ⎛⎭⎪⎫54+2×1=138. [答案]13811.已知椭圆方程x 24+y 23=1,双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为________.【导学号:71392152】[解析] 因为双曲线 x 2a 2-y 2b2=1(a >0,b >0)的焦点是椭圆的顶点,顶点是椭圆的焦点,所以c =2,a =1,所以双曲线的离心率为2.[答案] 212.已知长为1+2的线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,P 是AB 上一点,且AP →=22PB →,则点P 的轨迹C 的方程为________.[解析] 设A (x 0,0),B (0,y 0),P (x ,y ),AP →=22PB →,又AP →=(x -x 0,y ),PB →=(-x ,y 0-y ),所以x -x 0=-22x ,y =22(y 0-y ),得x 0=⎝⎛⎭⎪⎫1+22x ,y 0=(1+2)y ,因为|AB |=1+2,即x 20+y 20=(1+2)2,所以⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+22x 2+[(1+2)y ]2=(1+2)2,化简得x 22+y 2=1.∴点P 的轨迹方程为x 22+y 2=1.[答案]x 22+y 2=113.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若AF =3,则BF =________.[解析] 由题意知,抛物线的焦点F 的坐标为(1,0).又∵|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,∴点A 的横坐标为2.将x =2代入y 2=4x ,得y 2=8,由图知,y =22, ∴A (2,22),∴直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =2 2.知点B 的坐标为⎝ ⎛⎭⎪⎫12,-2,∴BF =12-(-1)=32.[答案] 3214.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为________.【导学号:71392153】[解析] 因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b2=1,所以x 2=45b 2,x =±25b ,y =±25b ,则在第一象限双曲线的渐近线与椭圆C 的交点坐标为⎝ ⎛⎭⎪⎫25b ,25b ,所以四边形的面积为4×25b ×25b =165b 2=16,所以b 2=5,a 2=20,所以椭圆方程为x 220+y 25=1. [答案]x 220+y 25=1 二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,一条渐近线方程为y =x ,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在此双曲线上,求MF 1→·MF 2→. [解] (1)∵双曲线的一条渐近线方程为y =x , ∴设双曲线方程为x 2-y 2=λ(λ≠0).把(4,-10)代入双曲线方程得42-(-10)2=λ, ∴λ=6,∴所求双曲线方程为x 2-y 2=6. (2)由(1)知双曲线方程为x 2-y 2=6,∴双曲线的焦点为F 1(-23,0),F 2(23,0). ∵点M 在双曲线上,∴32-m 2=6,∴m 2=3. ∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m )=(-3)2-(23)2+m 2=-3+3=0.16.(本小题满分14分)已知一条曲线C 在y 轴右侧,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)设直线l 交曲线C 于A ,B 两点,线段AB 的中点为D (2,-1),求直线l 的一般式方程.【导学号:71392154】[解] (1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足: (x -1)2+y 2-x =1(x >0),化简得y 2=4x (x >0). 即曲线C 的方程为y 2=4x (x >0).(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②①-②得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),易知l 的斜率k 存在, 故(y 1+y 2)y 1-y 2x 1-x 2=4,即-2k =4,所以k =-2,故l 的一般式方程为2x +y -3=0. 17.(本小题满分14分)如图1,抛物线关于x 轴对称,它的顶点是坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.图1(1)写出该抛物线的方程及其准线方程;(2)当直线PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. [解] (1)由已知条件,可设抛物线的方程为y 2=2px (p >0). ∵点P (1,2)在抛物线上,∴22=2p ×1,解得p =2. 故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB ,则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1). ∵PA 与PB 的斜率存在且倾斜角互补,∴k PA =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,① y 22=4x 2,②∴y 1-214y 21-1=-y 2-214y 22-1,∴y 1+2=-(y 2+2), ∴y 1+y 2=-4. ②-①,得k AB =y 2-y 1x 2-x 1=4y 1+y 2=-1(x 1≠x 2). 18.(本小题满分16分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P ⎝ ⎛⎭⎪⎫32,6,求抛物线的方程和双曲线的方程.[解] 依题意,设抛物线的方程为y 2=2px (p >0),∵点P ⎝ ⎛⎭⎪⎫32,6在抛物线上,∴6=2p ×32,解得2p =4,∴所求抛物线的方程为y 2=4x .∵双曲线的左焦点在抛物线的准线x =-1上,∴c =1,则a 2+b 2=1,又点P ⎝ ⎛⎭⎪⎫32,6在双曲线上,∴94a 2-6b2=1, 解方程组⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b2=1,得⎩⎪⎨⎪⎧a 2=14,b 2=34或⎩⎪⎨⎪⎧a 2=9,b 2=-8(舍去).∴所求双曲线的方程为4x 2-43y 2=1.19.(本小题满分16分)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .[解] (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →=2NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .20.(本小题满分16分)如图2,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8,点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.图2(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.【导学号:71392155】[解] (1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以c a =12,2a 2c=8,解得a =2,c =1,于是b =a 2-c 2=3, 因此椭圆E 的标准方程是x 24+y 23=1.(2)由(1)知,F 1(-1,0),F 2(1,0).设P (x 0,y 0),因为P 为第一象限内的点,故x 0>0,y 0>0. 当x 0=1时,l 2与l 1相交于F 1,与题设不符. 当x 0≠1时, 直线PF 1的斜率为y 0x 0+1,直线PF 2的斜率为y 0x 0-1. 因为l 1⊥PF 1,l 2⊥PF 2, 所以直线l 1的斜率为-x 0+1y 0,直线l 2的斜率为-x 0-1y 0, 从而直线l 1的方程为y =-x 0+1y 0(x +1),① 直线l 2的方程为y =-x 0-1y 0(x -1).② 由①②,解得x =-x 0,y =x 20-1y 0,所以Q ⎝ ⎛⎭⎪⎫-x 0,x 20-1y 0. 因为点Q 在椭圆E 上,由对称性,得x 20-1y 0=±y 0,即x 20-y 20=1或x 20+y 20=1. 又点P 在椭圆E 上,故x 204+y 203=1.由⎩⎪⎨⎪⎧x 20-y 20=1,x 204+y 203=1,解得⎩⎪⎨⎪⎧x 0=477,y 0=377;⎩⎪⎨⎪⎧x 20+y 20=1,x 204+y 23=1无解.因此点P 的坐标为⎝⎛⎭⎪⎫477,377.。

苏教版高中数学必修四高考章末综合检测

苏教版高中数学必修四高考章末综合检测

(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,把答案填在题中横线上) 1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为__________. 解析:由a ·b =0,得3×2+m ×(-1)=0,∴m =6. 答案:62.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =__________. 解析:法一:∵a ∥b ,∴1·m =2×(-2),即m =-4, ∴b =(-2,-4),∴2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 法二:∵a ∥b ,∴存在实数λ,使a =λb , ∴(1,2)=λ(-2,m ),即(1,2)=(-2λ,λm ).∴⎩⎪⎨⎪⎧-2λ=1,λm =2,解得⎩⎪⎨⎪⎧λ=-12,m =-4, ∴b =(-2,-4),∴2a +3b =-b +3b =2b =(-4,-8). 答案:(-4,8)3.已知|a |=4,|b |=6,a 与b 的夹角为60°,则|3a -b |=__________. 解析:由|3a -b |2=9a 2-6a ·b +b 2=9×42-6×4×6×cos60°+62=108,可求得|3a -b |=6 3.答案:6 34.在△ABC 中,AB =AC =4,且AB →·AC →=8,则这个三角形的形状是__________.解析:由AB →·AC →=|AB →||AC →|cos A =8,得cos A =12,所以A =60°,△ABC 是等边三角形.答案:等边三角形.5.若A (-1,-2),B (4,8),C (5,x ),且A ,B ,C 三点共线,则x =__________.解析:因为A ,B ,C 三点共线,所以AB →,AC →共线.所以存在实数k ,使得AB →=kAC →.又因为A (-1,-2),B (4,8),C (5,x ),所以AB →=(5,10),AC →=(6,x +2),所以(5,10)=k (6,x +2).所以⎩⎪⎨⎪⎧5=6k ,10=k (x +2),解得⎩⎪⎨⎪⎧k =56,x =10. 答案:106.已知向量a =(6,2)与b =(-3,k )的夹角是钝角,则k 的取值范围是__________. 解析:因为a ,b 的夹角θ是钝角,所以-1<cos θ<0.又因为a =(6,2),b =(-3,k ),所以cos θ=a ·b|a ||b |=k -9109+k 2,即-1<k -9109+k 2<0.解得k <9且k ≠-1.故所求k 的取值范围为(-∞,-1)∪(-1,9).答案:(-∞,-1)∪(-1,9)7.若平面向量a ,b 满足|a +b |=1,a +b 平行于x 轴,b =(2,-1),则a =__________. 解析:设向量a 的坐标为 (m ,n ),则a +b =(m +2,n -1),由题设,得⎩⎪⎨⎪⎧ (m +2)2+(n -1)2=1,n -1=0,解得⎩⎪⎨⎪⎧ m =-1,n =1,或⎩⎪⎨⎪⎧m =-3,n =1.∴a =(-1,1)或(-3,1). 答案:(-1,1)或(-3,1)8.如图,半圆O 中AB 为其直径,C 为半圆上任一点,点P 为AB 的中垂线上任一点,且|CA →|=4,|CB →|=3,则AB →·CP →=__________.解析:AB →·CP →=AB →·(CO →+OP →)=AB →·CO →+AB →·OP →=(CB →-CA →)·CO →+AB →·OP →=(CB →-CA →)·CA →+CB →2+0=12(|CB →|2-|CA →|2)=12(32-42)=-72.答案:-729.给出下列命题:①若a 与b 为非零向量,且a ∥b 时,则a -b 必与a 或b 中之一的方向相同;②若e 为单位向量,且a ∥e ,则a =|a |e ;③a ·a ·a =|a |3;④若a 与b 共线,又b 与c 共线,则a 与c 必共线,其中假命题有__________.解析:①命题中a -b 有可能为0,其方向是任意的,故错;③命题中三个向量的数量积应为向量,故为假命题.答案:①②③④10.若向量AB →=(3,-1),n =(2,1),且n ·AC →=7,那么n ·BC →=__________.解析:n ·BC →=n ·(AC →-AB →)=n ·AC →-n ·AB →=7-5=2. 答案:211.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态,已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为__________.解析:由于质点处于平衡状态,所以F 1+F 2+F 3=0,则F 3=-(F 1+F 2),所以|F 3|2=F 23=[-(F 1+F 2)]2=F 21+2F 1·F 2+F 22=22+42+2×2×4×12=4+16+8=28,所以F 3=27. 答案:2712.(2010年高考四川卷改编)设M 是线段BC 的中点,点A 在直线BC 外,|BC →|2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|等于__________.解析:∵|BC →|2=16,∴|BC →|=4.又|AB →-AC →|=|CB →|=4,∴|AB →+AC →|=4.∵M 为BC 的中点,∴AM →=12(AB →+AC →),∴|AM →|=12|AB →+AC →|=2.答案:213.(2010年高考辽宁卷改编)平面上O ,A ,B 三点不共线,设OA →=a ,OB →=b ,则△OAB 的面积等于__________.解析:设a 、b 间的夹角为θ,则S △OAB =12|a ||b |·sin θ=12|a ||b |·1-cos 2θ=12|a ||b | 1-⎝⎛⎭⎫a ·b |a ||b |2 =12|a ||b |·|a |2|b |2-(a ·b )2|a |2|b |2 =12|a |2|b |2-(a ·b )2. 答案:12|a |2|b |2-(a ·b )214.(2010年高考山东卷改编)定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np .下面说法错误的是__________.①若a 与b 共线,则a ⊙b =0; ②a ⊙b =b ⊙a ;③对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b ); ④(a ⊙b )2+(a ·b )2=|a |2|b |2.解析:若a =(m ,n )与b =(p ,q )共线,则mq -np =0,依运算“⊙”知a ⊙b =0,即①正确.由于a ⊙b =mq -np ,且b ⊙a =np -mq ,因此a ⊙b =-b ⊙a ,即②不正确.对于③,由于λa =(λm ,λn ),因此(λa )⊙b =λmq -λnp ,又λ(a ⊙b )=λ(mq -np )=λmq -λnp ,即③正确.对于④,(a ⊙b )2+(a ·b )2=m 2q 2-2mnpq +n 2p 2+(mp +nq )2=m 2(p 2+q 2)+n 2(p 2+q 2)=(m 2+n 2)(p 2+q 2)=|a |2|b |2,即④正确.故选②答案:②二、解答题(本大题共6小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +k c )∥(2b -a ),求实数k 的值;(2)设d =(x ,y )满足(d -c )∥ (a +b )且|d -c |=1,求d .解:(1)∵(a +k c )∥(2b -a ),且a +k c =(3+4k,2+k ),2b -a =(-5,2),∴2×(3+4k )-(-5)×(2+k )=0,∴k =-1613.(2)∵d -c =(x -4,y -1),a +b =(2,4),(d -c )∥(a +b )且|d -c |=1,∴⎩⎪⎨⎪⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=1, 解得⎩⎨⎧x =4+55,y =1+255,或⎩⎨⎧x =4-55,y =1-255.∴d =⎝⎛⎭⎪⎫20+55,5+255或d =⎝ ⎛⎭⎪⎫20-55,5-255. 16.(本小题满分14分)AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3),BC →∥DA →. (1)求x 与y 的关系式;(2)若有AC →⊥BD →,求x 、y 的值及四边形ABCD 的面积.解:(1)∵AD →=AB →+BC →+CD →=(6,1)+(x ,y )+(-2,-3)=(x +4,y -2),∴DA →=-AD →=(-x -4,2-y ).又BC →∥DA →,BC →=(x ,y ),∴x (2-y )-y (-x -4)=0,即x +2y =0.(2)∵AC →=AB →+BC →=(6,1)+(x ,y )=(x +6,y +1), BD →=BC →+CD →=(x ,y )+(-2,-3)=(x -2,y -3),且AC →⊥BD →,∴AC →·BD →=0,即(x +6)(x -2)+(y +1)(y -3)=0. 又由(1)的结论x +2y =0,∴(6-2y )(-2y -2)+(y +1)(y -3)=0, 化简得y 2-2y -3=0, ∴y =3或y =-1.当y =3时,x =-6.于是有 BC →=(-6,3),AC →=(0,4),BD →=(-8,0). ∴|AC →|=4,|BD →|=8.∴S 四边形ABCD =12|AC →|·|BD →|=16.同理y =-1时,x =2.于是有BC →=(2,-1),AC →=(8,0),BD →=(0,-4). ∴|AC →|=8,|BD →|=4.∴S 四边形ABCD =12|AC →|·|BD →|=16.即⎩⎪⎨⎪⎧ x =-6,y =3,或⎩⎪⎨⎪⎧x =2,y =-1, S 四边形ABCD =16.17.(本小题满分14分)如图所示,一艘小船从河岸A 处出发渡河,小船保持与河岸垂直的方向行驶,经过10 min 到达正对岸下游120 m 的C 处,如果小船保持原来的速度逆水向上游与岸成α角的方向行驶,则经过12.5 min 恰好到达正对岸B 处,求河的宽度d .解:由题意作出示意图.图1为船第一次运动速度合成图.图2为船第二次运动速度合成图.设河水流速为v 水,船速为v 船,由题意,得两次运动时间分别为t 1=d |v 船|,t 2=d|v 船|sin α.沿河岸方向有BC =|v 水|t 1;由第二次垂直河岸,有|v 船|cos α=|v 水|.将t 1=10 min ,t 2=12.5 min ,BC =120 m 代入以上各式,解得d =200 m. 所以河的宽度为200 m.18.(本小题满分16分)已知a +b +c =0,且|a |=3,|b |=5,|c |=7. (1)求a 与b 的夹角θ;(2)是否存在实数k ,使k a +b 与a -2b 垂直?解:(1)因为a +b +c =0,所以a +b =-c ,所以|a +b |=|c |,所以(a +b )2=|c |2,即a 2+2a ·b+b 2=c 2,所以a ·b =c 2-a 2-b 22=152,所以cos θ=a ·b |a ||b |=12,所以θ=60°.(2)若存在实数k ,使k a +b 与a -2b 垂直,则(k a +b )·(a -2b )=k a 2-2b 2-2k a ·b +a ·b =-6k -852=0,解得k =-8512.所以存在实数k 使得k a +b 与a -2b 垂直.19.(本小题满分16分)以原点和A (5,2)为两个顶点作等腰直角三角形OAB ,若B =90°,求点B 和AB →的坐标.解:设B (x ,y ),则|OB →|=x 2+y 2. ∵B (x ,y ),A (5,2), ∴|AB →|=(x -5)2+(y -2)2, ∴x 2+y 2=(x -5)2+(y -2)2, 即10x +4y =29.①又∵OB →⊥AB →, ∴OB →·AB →=0,又∵OB →=(x ,y ),AB →=(x -5,y -2),∴x (x -5)+y (y -2)=0,即x 2-5x +y 2-2y =0.②由①②组成方程组为⎩⎪⎨⎪⎧10x +4y =29,x 2-5x +y 2-2y =0.解得⎩⎨⎧x 1=32,y 1=72,或⎩⎨⎧x 2=72,y 2=-32.∴B 点的坐标为⎝⎛⎭⎫32,72或⎝⎛⎭⎫72,-32. ∴AB →=⎝⎛⎭⎫-72,32或AB →=⎝⎛⎭⎫-32,-72. 20.(本小题满分16分)如图所示,在Rt △ABC 中,已知BC =a ,若长为2a 的线段PQ 以点A 为中点,问PQ →与BC →夹角θ取何值时,BP →·CQ →的值最大?并求出这个最大值.解:法一:∵AB →⊥AC →,∴AB →·AC →=0, ∵AP →=-AQ →,BP →=AP →-AB →,CQ →=AQ →-AC →, ∴BP →·CQ →=(AP →-AB →)·(AQ →-AC →) =AP →·AQ →-AP →·AC →-AB →·AQ →+AB →·AC →=-a 2-AP →·AC →+AB →·AP →=-a 2+AP →·(AB →-AC →)=-a 2+12PQ →·BC →=-a 2+a 2·cos θ.故当cos θ=1即θ=0(PQ →与BC →方向相同)时,BP →·CQ →最大,其最大值为0.法二:以A 为坐标原点,两直角边AB 、AC 分别为x 轴、y 轴建立直角坐标系,如图. 设|AB →|=c ,|AC →|=b ,则A (0,0),B (c,0),C (0,b ), 且|PQ →|=2a ,|BC →|=a ,设点P (x ,y ),则Q (-x ,-y ), ∴BP →=(x -c ,y ),CQ →=(-x ,-y -b ), BC →=(-c ,b ),PQ →=(-2x ,-2y ). ∴BP →·CQ →=(x -c )·(-x )+y (-y -b ) =-(x 2+y 2)+cx -by =-a 2+cx -by .∵cos θ=PQ →·BC →|PQ →|·|BC →|=cx -bya 2,∴cx -by =a 2·cos θ, ∴BP →·CQ →=-a 2+a 2cos θ.故当cos θ=1,即θ=0(PQ →与BC →方向相同)时,BP →·CQ →最大,其最大值为0.。

苏教版高中数学必修4章末过关检测卷(二)

苏教版高中数学必修4章末过关检测卷(二)

高中数学学习材料 (灿若寒星 精心整理制作)章末过关检测卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·四川卷)向量a =(2,4)与向量b =(x ,6)共线,则实数x =( )A .2B .3C .4D .6 解析:因为a ∥b ,所以2×6-4x =0,解得x =3. 答案:B2.(AB →+MB →)+(BO →+BC →)+OM →化简后等于( ) A.BC → B.AB → C.AC → D.AM →解析:原式=AB →+BO →+OM →+MB →+BC →=AC →. 答案:C3.(2015·课标全国Ⅱ卷)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( )A .-1B .0C .1D .2解析:法一:因为a =(1,-1),b =(-1,2), 所以a 2=2,a ·b =-3,从而(2a +b )·a =2a 2+a ·b =4-3=1. 法二:因为a =(1,-1),b =(-1,2), 所以2a +b =(2,-2)+(-1,2)=(1,0). 从而(2a +b )·a =(1,0)·(1,-1)=1. 答案:C4.设点A (-1,2),B (2,3),C (3,-1),且AD →=2AB →-3BC →,则点D 的坐标为( )A .(2,16)B .(-2,-16)C .(4,16)D .(2,0)解析:设D (x ,y ),由题意可知AD →=(x +1,y -2),AB →=(3,1),BC →=(1,-4),所以2AB →-3BC →=2(3,1)-3(1,-4)=(3,14).所以⎩⎪⎨⎪⎧x +1=3,y -2=14.所以⎩⎪⎨⎪⎧x =2,y =16.答案:A5.点C 在线段AB 上,且AC →=25AB →,若AC →=λBC →,则λ等于( )A.23B.32 C .-23 D .-32 解析:因AC →=25AB →=25(AC →-BC →),所以35AC →=-25BC →,即AC →=-23BC →=λBC →.所以λ=-23.答案:C6.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( )A .150°B .120°C .60°D .30° 解析:设向量a ,b 夹角为θ, |c |2=|a +b |2=|a |2+|b |2+2|a ||b |cos θ, 则cos θ=-12.又θ∈[0°,180°],所以θ=120°. 答案:B7.(2015·陕西卷)对任意向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2解析:根据a ·b =|a ||b |cos θ,又cos θ≤1,知|a ·b |≤|a ||b |,A 恒成立.当向量a 和b 方向不相同时,|a -b |>||a |-|b ||,B 不恒成立.根据|a +b |2=a 2+2a ·b +b 2=(a +b )2,C 恒成立. 根据向量的运算性质得(a +b )·(a -b )=a 2-b 2,D 恒成立.答案:B8.(2015·课标全国Ⅰ卷)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解析:AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →.答案:A9.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m =( )A .2 3 B. 3 C .0 D .- 3 解析:因为a =(1,3),b =(3,m ), 所以|a |=2,|b |=9+m 2,a·b =3+3m . 又a ,b 的夹角为π6,所以a·b|a |·|b |=cos π6,即3+3m 29+m 2=32. 所以3+m = 9+m 2,解得m = 3.答案:B10.已知向量a =(2,1),a ·b =10,|a +b |=50,则|b |=( ) A .0 B .2 C .5 D .25解析:因为a =(2,1),则有|a |=5,又a·b =10, 又由|a +b |=50, 所以|a |2+2a·b +|b |2=50, 5+2×10+|b |2=50,所以|b |=5. 答案:C11.(2015·安徽卷)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a·b =1D .(4a +b )⊥BC →解析:在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b , 得|b |=2.又|a |=1,所以a·b =|a ||b |cos 120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a·b +|b |2=4×(-1)+4=0.所以(4a +b )⊥BC →. 答案:D12.在△ABC 中,AB =BC =3,∠ABC =60°,AD 是边BC 上的高,则AD →·AC →的值等于( )A .-94 B.94 C.274D .9解析:分别以BC ,AD 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,根据已知条件可求得以下几点坐标:A ⎝ ⎛⎭⎪⎫0,332,D (0,0),C ⎝ ⎛⎭⎪⎫32,0, 所以AD →=⎝ ⎛⎭⎪⎫0,-332,AC →=⎝ ⎛⎭⎪⎫32,-332.所以AD →·AC →=274. 答案:C二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中横线上)13.(2015·江苏卷)已知向量a =(2,1),b =(1,-2),若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:因为 ma +nb =(2m +n ,m -2n )=(9,-8),所以 ⎩⎪⎨⎪⎧2m +n =9,m -2n =-8.所以 ⎩⎪⎨⎪⎧m =2,n =5.所以 m -n =2-5=-3. 答案:-314.(2015·北京卷)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =____________;y =________________.解析:因为AM →=2MC →,所以AM →=23AC →.因为BN →=NC →,所以AN →=12(AB →+AC →).因为MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →,又MN →=xAB →+yAC →,所以x =12,y =-16.答案:12 -1615.若两个向量a 与b 的夹角为θ,则称向量“a ×b ”为“向量积”,其长度|a ×b |=|a ||b |·sin θ,若已知|a |=1,|b |=5,a·b =-4,则|a ×b |=________.解析:由|a |=1,|b |=5,a·b =-4得cos θ=-45,又θ∈[0,π],所以sin θ=35.由此可得|a ×b |=1×5×35=3.答案:316.(2014·湖北卷)若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________.解析:因为OA →=(1,-3),又|OA →|=10=|OB →|, 又OA →·OB →=0,所以∠AOB =90°.所以△AOB 是等腰直角三角形,且|AB →|=2|OA →|=2 5. 答案:2 5三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)不共线向量a ,b 的夹角为小于120°的角,且|a |=1,|b |=2,已知向量c =a +2b ,求|c |的取值范围.解:|c |2=|a +2b |2=|a |2+4a·b +4|b |2=17+8cos θ(其中θ为a 与b 的夹角).因为0°<θ<120°. 所以-12<cos θ<1,所以13<|c |<5.所以|c |的取值范围为(13,5).18.(本小题满分12分)如图所示,在△AOB 中,点P 在直线AB 上,且满足OP →=2tPA →+tOB →(t ∈R),求|PA →||PB →|的值.解:PA →=OA →-OP →,所以OP →=2t (OA →-OP →)+tOB →, 即(1+2t )OP →=2tOA →+tOB →, 得OP →=2t 1+2t OA →+t 1+2tOB →.而P ,A ,B 三点共线,所以存在实数λ使得AP →=λAB →, 即OP →=(1-λ)OA →+λOB →, 由平面向量基本定理,所以2t 1+2t +t 1+2t =(1-λ)+λ=1,解得t =1,所以OP →=2PA →+OB →, 则BP →=2PA →,故|PA →||PB →|=12.19.(本小题满分12分)设e 1,e 2是正交单位向量,如果OA →=2e 1+me 2,OB →=ne 1-e 2,OC →=5e 1-e 2,若A ,B ,C 三点在一条直线上,且m =2n ,求m ,n 的值.解:以O 为原点,e 1,e 2的方向分别为x ,y 轴的正方向,建立平面直角坐标系xOy ,则OA →=(2,m ),OB →=(n ,-1),OC →=(5,-1), 所以AC →=(3,-1-m ),BC →=(5-n ,0).又因为A ,B ,C 三点在一条直线上,所以AC →∥BC →, 所以3×0-(-1-m )·(5-n )=0,与m =2n 构成方程组⎩⎪⎨⎪⎧mn -5m +n -5=0,m =2n ,解得⎩⎨⎧m =-1,n =-12或⎩⎪⎨⎪⎧m =10,n =5.20.(本小题满分12分)已知向量a =(-3,2),b =(2,1),c =(3,-1),t ∈R.(1)求|a +tb |的最小值及相应的t 值; (2)若a -tb 与c 共线,求实数t .解:(1)因为a =(-3,2),b =(2,1),c =(3,-1), 所以a +tb =(-3,2)+t (2,1)=(-3+2t ,2+t ). 所以|a +tb |=(-3+2t )2+(2+t )2= 5t 2-8t +13=5⎝ ⎛⎭⎪⎫t -452+495≥495=755, 当且仅当t =45时取等号,即|a +t b |的最小值为755,此时t =45. (2)因为a -tb =(-3,2)-t (2,1)=(-3-2t ,2-t ), 又a -tb 与c 共线,c =(3,-1), 所以(-3-2t )·(-1)-(2-t )·3=0. 解之可得t =35.21.(本小题满分12分)已知向量OA →,OB →,OC →满足条件OA →+OB →+OC →=0,|OA →|=|OB →|=|OC →|=1.求证:△ABC 为正三角形.证明:因为OA →+OB →+OC →=0, 所以OA →+OB →=-OC →. 所以(OA →+OB →)2=(-OC →)2.所以|OA →|2+|OB →|2+2OA →·OB →=|OC →|2. 所以OA →·OB →=-12.所以cos ∠AOB =OA →·OB →|OA →||OB →|=-12.所以∠AOB =120°.同理∠AOC =120°,∠COB =120°. 即OA →,OB →,OC →中任意两个夹角为120°. 故△ABC 为正三角形.22.(本小题满分12分)在四边形ABCD 中,AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3),BC →∥DA →.(1)求x 与y 的关系式;(2)若AC →⊥BD →,求x ,y 的值以及四边形ABCD 的面积. 解:在四边形ABCD 中,如图所示.(1)因为AD →=AB →+BC →+CD →=(x +4,y -2),所以DA →=-AD →=(-x -4,2-y ).又因为BC →∥DA →,BC →=(x ,y ),所以x (2-y )-(-x -4)y =0,即x +2y =0.(2)由于AC →=AB →+BC →=(x +6,y +1),BD →=BC →+CD →=(x -2,y -3).因为AC →⊥BD →,所以AC →·BD →=0,即(x +6)(x -2)+(y +1)(y -3)=0,所以y 2-2y -3=0,所以y =3或y =-1.当y =3时,x =-6,于是BC →=(-6,3),AC →=(0,4),BD →=(-8,0).所以|AC →|=4,|BD →|=8.所以S 四边形ABCD =12|AC →||BD →|=16. 当y =-1时,x =2,于是有BC →=(2,-1),AC →=(8,0),BD →=(0,-4).所以|AC →|=8,|BD →|=4,S 四边形ABCD =16.综上可知⎩⎪⎨⎪⎧x =-6,y =3或⎩⎪⎨⎪⎧x =2,y =-1, 四边形ABCD 的面积为16.。

苏教版高中数学必修4章末过关检测卷二.docx

苏教版高中数学必修4章末过关检测卷二.docx

章末过关检测卷(二) 第2章 平 面 向 量(测试时间:120分钟 评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·辽宁卷)已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 答案: A2.(2014·广东卷)已知向量a =(1,2),b =(3,1),则b -a =( )A .(-2,1)B .(2,-1)C .(2,0)D .(4,3) 答案: B3.已知a =()-1,2,b =()3,m ,若a ⊥b ,则m 的值为( ) A .1 B.32 C .2 D .4答案: B4.(2014·重庆卷)已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 D.152答案: C5.已知两个力F 1,F 2的夹角为90°,它们的合力大小为20 N ,合力与F 1的夹角为π3,那么F 2的大小为 ( ) A .10 N B .10 2 N C .10 3 N D .20 N 答案: C6.(2013·大纲全国卷)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-1 答案: B7.设OA →=a ,OB →=b ,OC →=c ,当c =λa +μb ()λ,μ∈R ,且λ+μ=1时,点C 在( )A .在线段AB 上 B .在直线AB 上C .在直线AB 上,除去点AD .在直线AB 上,除去点B 答案: B8.已知 a =()0,1,b =()2,0, 则||2a +b =( ) A. 3 B .2 2 C .8 D .12 答案: B9.(2013·福建卷)在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( )A. 5 B .2 5 C .5 D .10解析:∵AC→·BD→=(1,2)·(-4,2)=-4+4=0,∴AC→⊥BD→.∴S四边形ABCD=12|AC→|·|BD→|=12×5×25=5.答案:C10.设点M是线段BC的中点,点A在直线BC外,|BC→|2=16,|AB→+AC→|=|AB→-AC→|,则|AM→|=( )A.8 B.4 C.2 D.1解析:由|BC|2=16,得|BC|=4.|AB→+AC→|=|AB→-AC|=|BC→|=4,而|AB→+AC→|=2|AM→|,故|AM→|=2.答案:C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a +b)∥c,则m=________.解析:a+b=(1,m-1),由(a+b)∥c得1×2-(m-1)×(-1)=0,所以m=-1.答案:-112.(2014·重庆卷)已知向量a与b的夹角为60°,且a=(-2,-6),|b|=10,则a·b=________.解析:先求向量a的模,再由向量的数量积的定义求解.∵a=(-2,-6),∴|a|=(-2)2+(-6)2=210.∴a ·b =210×10cos 60°=10. 答案:1013.(2014·江西卷)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.解析:先计算两个向量的模和数量积,再利用向量的夹角公式求解.∵|a |=(3e 1-2e 2)2=9+4-12×1×1×13=3,|b |=(3e 1-e 2)2=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8.∴cos β=83×22=223.答案:22314.(2013·山东卷)在平面直角坐标系xOy 中,已知OA →=(-1,t ),OB→=(2,2),若∠ABO =90°,则实数t 的值为________. 解析:利用向量垂直的充要条件,列方程求解. ∵∠ABO =90°,∴AB →⊥OB →. ∴OB →·AB →=0.又AB →=OB →-OA→=(2,2)-(-1,t )=(3,2-t ),∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5. 答案:5三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)已知a =()1,2,b =()-3,2,若ka +2b 与2a -4b 平行,求实数k 的值.解析:∵ka +2b =k ()1,2+2()-3,2=()k -6,2k +4, 2a -4b =2()1,2-4()-3,2=()14,-4, 又ka +2b 与2a -4b 平行, ∴()k -6()-4-()2k +4×14=0. 解得k =-1.16.(本小题满分12分)设||a =||b =1,||3a -2b =3,求||3a +b 的值.解析:由||3a -2b =3得9a 2-12a ·b +4b 2=9.又||a =||b =1,∴a ·b =13.故||3a +b =()3a +b 2=9a 2+6a ·b +b 2=9+6×13+1=2 3.17.(本题满分14分)(2013·新课标全国卷Ⅰ)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b ,若b ·c =0,求t 的值.解析:∵a ·b =|a ||b |cos 60°=12,∴b ·c =[ta +(1-t )b ]·b=0,即ta ·b +(1-t )b 2=0,所以t2+1-t =0,解得t =2.18.(本题满分14分)(2013·北京卷)已知点A (1,-1),B (3,0),C (2,1),若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,求平面区域D 的面积.解析:利用向量的坐标运算公式表示出点P 坐标满足的关系式,利用数形结合思想求解.设P (x ,y ),则AP →=(x -1,y +1),由题意知AB →=(2,1),AC →=(1,2).由AP →=λAB →+μAC →知(x -1,y +1)=λ(2,1)+μ(1,2),即⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1.∴⎩⎪⎨⎪⎧λ=2x -y -33,μ=2y -x +33.∵1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧3≤2x -y -3≤6,0≤2y -x +3≤3.作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出M (4,2),N (6,3),故|MN |= 5.又x -2y =0与x -2y -3=0之间的距离为d =35,故平面区域D 的面积为S =5×35=3.19.(本小题满分14分)如图,质量为2.0 kg 的木块,在平行于斜面向上的拉力15 N 作用下,沿倾斜角θ=30°的光滑斜面向上滑行s =2.0 m 的距离,请分别求物体所受各力在这一过程中对物体做的功(g =10 m/s 2).解析:重力G =mg =20 N ,位移与重力夹角是120°,W 重=G ·s =||G ||s cos 120°=-20()J .支持力做功:由于N 与s 的夹角为90°,所以W 支=0. 拉力做功: W 拉=F ·s =||F ||s cos 0°=30()J .20.(本小题满分14分)已知向量OA →, OB →, OC → 满足条件 OA →+OB →+OC →=0,⎪⎪⎪⎪OA →=⎪⎪⎪⎪OB →=⎪⎪⎪⎪OC →=1. 求证:△ABC 为正三角形.证明:∵OA →+OB →+OC →=0, ∴OA →+OB →=-OC→, ∴⎝⎛⎭⎫OA →+OB →2=⎝⎛⎭⎫-OC →2. ∴⎪⎪⎪⎪OA →2+⎪⎪⎪⎪OB →2+2OA →·OB →=⎪⎪⎪⎪OC →2. ∴OA →·OB →=-12.∴cos ∠AOB =OA →·OB →⎪⎪⎪⎪OA →⎪⎪⎪⎪OB→=-12.∴∠AOB =120°.同理∠AOC =120°,∠COB =120° 即OA →,OB →,OC →中任意两个夹角为120°. 故△ABC 为正三角形.。

2016-2017学年高中数学苏教版选修4-2章末综合检测2 含解析

2016-2017学年高中数学苏教版选修4-2章末综合检测2 含解析

章末综合检测(二)1。

当k〉0时,你能猜想错误!表示的变换吗?并对你的猜想作出证明.【解】猜想错误!表示的变换是将平面图形作沿y轴方向伸长(k>1)或压缩(0〈k<1)或恒等(k=1)变换,证明如下:对于平面上任意一点P(x,y),在矩阵错误!的作用下,错误!错误!=错误!,横坐标不变,纵坐标变为原来的k倍.2。

若点A错误!在矩阵M=错误!对应的变换作用下得到点为B(1,0),求α的值。

【导学号:30650022】【解】由题意知错误!错误!=错误!,所以错误!解得错误!从而可知,α=2kπ-错误!,(k∈Z)。

3.已知直线l与直线3x+5y+6=0平行,且过点(5,6),求矩阵错误!将直线l变成了什么图形?并写出方程。

【解】由已知得直线l的方程为3x+5y-45=0,设P(x,y)为l上的任意一点,点P在矩阵对应的变换下对应点P′(x′,y′)。

则错误!=错误!错误!=错误!,∴错误!∴错误!代入3x+5y-45=0,得3x′+25y′-45=0,∴直线l变换成直线3x+25y-45=0。

4.求直线y=2x在矩阵错误!确定的变换作用下得到的图形的表达式。

【解】设点(x,y)为直线y=2x上的任意一点,其在矩阵错误!确定的变换作用下得到的点为(x′,y′),则错误!→错误!=错误!错误!=错误!,即错误!所以错误!将其代入y=2x,并整理得2x′-7y′=0,所以直线y=2x在矩阵错误!确定的变换作用下得到的图形的表达式是2x-7y=0。

5。

切变变换矩阵错误!把直线x+y=1变成什么几何图形?【解】设P(x,y)在该变换下的象为P′(x′,y′),则错误!=错误!错误!=错误!=错误!,故错误!所以切变变换矩阵错误!把直线x+y=1变成与y轴平行的直线x=1.6。

若曲线x2+4xy+2y2=1在矩阵M=错误!的作用下变换成曲线x2-2y2=1,求a,b的值.【解】设(x,y)为曲线x2+4xy+2y2=1上的任意一点,其在矩阵M的作用下变换成点(x′,y′),则(x′,y′)在曲线x2-2y2=1上,错误!=错误!错误!=错误!,即错误!将其代入x2-2y2=1,并整理,得(1-2b2)x2+(2a-4b)·xy+(a2-2)y2=1,比较系数得错误!解得错误!7。

苏教版高中数学必修4模块综合检测卷

苏教版高中数学必修4模块综合检测卷

高中数学学习材料金戈铁骑整理制作模块综合检测卷(测试时间:120分钟 评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·湖北卷)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4)则向量AB→在CD →方向上的投影为( ) A.322 B.3152 C .-322 D .-3152解析:∵AB →=(2,1),CD →=(5,5),∴AB →·CD →=(2,1)·(5,5)=15,|CD→|=52+52=5 2.所以向量AB →在CD →方向上的投影为|AB →|cos<AB →,CD →>=AB →·CD →|CD →|=1552=322,故选A.答案:A2.(2013·浙江卷)已知α∈R ,sin α+2cos α=102,则tan 2α=( )A.43B.34 C .-34 D .-43解析:由已知可求得tan α=-3或13,∴tan 2α=-34,故选C.答案:C3.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫其中A >0,|φ|<π2的图象如图所示,则f (0)=( )A .1 B.12 C.22 D.32解析:由图象知A =1,T =4⎝ ⎛⎭⎪⎫7π12-π3=π,∴ω=2.把⎝ ⎛⎭⎪⎫7π12,-1代入函数式中,可得φ=π3, f (x )=A sin(ωx +φ)=sin ⎝⎛⎭⎪⎫2x +π3,故f (0)=sin π3=32.答案:D4.若O 、A 、B 是平面上不共线的任意三点,则以下各式中成立的是 ( )A.AB→=OA →+OB → B.AB →=OB →-OA → C.AB→=-OB →+OA → D.AB →=-OB →-OA → 解析:根据向量的表示可知选B. 答案:B5.(2014·安徽卷)设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎪⎫23π6=( ) A.12 B.32 C .0 D .-12解析:根据已知条件判断出f (x )是以2π为周期的周期函数,然后进行求解.∵f (x +π)=f (x )+sin x , ∴f (x +2π)=f (x +π)-sin x .∴f (x +2π)=f (x )+sin x -sin x =f (x ). ∴f (x )是以2π为周期的周期函数.又f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫4π-π6=f ⎝ ⎛⎭⎪⎫-π6, f ⎝ ⎛⎭⎪⎫-π6+π=f ⎝ ⎛⎭⎪⎫-π6+sin ⎝ ⎛⎭⎪⎫-π6, ∴f ⎝ ⎛⎭⎪⎫5π6=f ⎝ ⎛⎭⎪⎫-π6-12. ∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎪⎫5π6=0. ∴f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫-π6=12.故选A. 答案:A6.为了得到函数y =2sin ⎝ ⎛⎭⎪⎫x 3+π6,x ∈R 的图象,只需把函数y=2sin x ,x ∈R 的图象上所有的点( )A .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的13(纵坐标不变) B .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)C .向右平移π6个单位长度,再把所得各点的横坐标缩短到原来的13(纵坐标不变) D .向右平移π6个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)解析:f (x )=2sin x 向左平移π6得f ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝⎛⎭⎪⎫x +π6=g (x ),把g (x )图象横坐标伸长到原来的3倍得g ⎝ ⎛⎭⎪⎫13x =2sin ⎝ ⎛⎭⎪⎫13x +π6.答案:B7.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( )A .-π4 B.π6 C.π4 D.3π4解析:2a +b =(3,3),a -b =(0,3), 则(2a +b )·(a -b )=3×0+3×3=9,|2a +b |=32,|a -b |=3.设2a +b 与a -b 的夹角为θ,且θ∈[0,π], 则cos θ=932×3=22,得θ=π4,故选C.答案:C 8.函数f (x )=sin x -12,x ∈(0,2π)的定义域是( )A.⎣⎢⎡⎦⎥⎤π6,π2B.⎣⎢⎡⎦⎥⎤π6,5π6 C.⎣⎢⎡⎦⎥⎤π2,5π6 D.⎣⎢⎡⎦⎥⎤π3,5π3 解析:如下图所示,∵sin x ≥12,∴π6≤x ≤5π6.答案:B9.(2013·湖南卷)已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .[1,2+2]解析:因为a ·b =0,即a ⊥b ,又|a |=|b |=1,所以|a +b |=2,不妨让a ,b 固定,设u =a +b ,则|c -u |=1,即c 的终点在以u 对应点为圆心,半径为1的圆上.则当c 与u 方向相同时,|c |max =2+1,当c 与u 方向相反时,|c |min =2-1,所以|c |的取值范围是[2-1,2+1].故选A.答案:A10.已知在△ABC 中,向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12, 则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:如图,设AB →⎪⎪⎪⎪AB →=AE →,AC →⎪⎪⎪⎪AC →=AF →,则原式化为:(AE →+AF →)·BC→=0,即AD →·BC →=0,∴AD→⊥BC →. ∵四边形AEDF 是菱形, ∴∠EAD =∠DAC .∵AE →·AF →=⎪⎪⎪⎪AE →⎪⎪⎪⎪AF →cos ∠BAC =12, ∴cos ∠BAC =12.∴∠BAC =60°,∴∠BAD =∠DAC =30°. △ABH ≌△ACH ⇒AB =AC ,∵∠BAC =60°, ∴△ABC 是等边三角形.答案:D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.(2014·天津卷)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.解析:根据条件把向量AF →,AE →用向量AB →,AD →表示出来,然后根据向量数量积公式求解.AE →·AF →=(AB →+BE →)·(AD →+DF →)=⎝⎛⎭⎪⎫AB →+13BC →·⎝⎛⎭⎪⎫AD →+1λDC →=AB→·AD →+1λAB →·DC →+13BC →·AD →+13λBC →·DC →=2×2×cos 120°+1λ×2×2+13×2×2+13λ×2×2×cos 120°=-2+4λ+43-23λ=103λ-23, 又∵AE→·AF →=1,∴103λ-23=1.∴λ=2. 答案:212.(2013·上海卷)若cos x cos y +sin x sin y =12,sin 2x +sin 2y =23,则sin(x +y )=________.解析:cos(x -y )=12,sin 2x +sin 2y =2sin(x +y )·cos(x -y )=23,故sin(x +y )=23.答案:2313.(2013·新课标全国卷Ⅰ)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=_____________________________________.解析:先利用三角恒等变换求得函数的最大值,再利用方程思想求解.y =sin x -2cos x =5⎝ ⎛⎭⎪⎫15sin x -25cos x ,设15=cos α,25=sin α,则y =5(sin x cos α-cos x sin α)=5sin(x -α).∵x ∈R ,∴x -α∈R. ∴y max = 5.又∵x =θ时,f (x )取得最大值, ∴f (θ)=sin θ-2cos θ= 5. 又sin 2θ+cos 2θ=1,∴⎩⎨⎧sin θ=15,cos θ=-25,即cos θ=-255.答案:-25514.已知函数f (x )=sin ωx ,g (x )=sin ⎝⎛⎭⎪⎫2x +π2,有下列命题:①当ω=2时,f (x )g (x )的最小正周期是π2;②当ω=1时,f (x )+g (x )的最大值为98;③当ω=2时,将函数f (x )的图象向左平移π2个单位长度可以得到函数g (x )的图象.其中正确命题的序号是______________(把你认为正确的命题的序号都填上).解析:①ω=2时,f (x )g (x )=sin 2x ·cos 2x =12sin 4x ,周期T =2π4=π2.故①正确. ②ω=1时,f (x )+g (x )=sin x +cos 2x =sin x +1-2sin 2x =-2⎝ ⎛⎭⎪⎫sin x -142+98,故当sin x =14时,f (x )+g (x )取最大值98.故②正确.③当ω=2时,将函数f (x )的图象向左平移π2得到sin 2⎝⎛⎭⎪⎫x +π2=-sin 2x ,故③不正确.答案:①②三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15.(本题满分14分)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC→·BE →=1,求AB 的长. 解析:∵E 为CD 的中点,∴BE→=BC →+CE →=AD →-12DC →=AD →-12AB→.∵AC →·BE →=1,AC →=AD →+AB →,∴AC →·BE →=⎝⎛⎭⎪⎫AD →-12AB →·(AD→+AB →)=|AD →|2-12|AB →|2+12AB →·AD →=1,即1-12|AB →|2+12|AB →|cos 60°=1,∴-12|AB →|2+14|AB →|=0,解得|AB →|=12.16.(本小题满分12分)已知tan ⎝⎛⎭⎪⎫α+π4=13.(1)求tan α的值;(2)求2sin 2α-sin(π-α)sin ⎝ ⎛⎭⎪⎫π2-α+sin 2⎝ ⎛⎭⎪⎫3π2+α的值.解析:(1)∵tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=13,∴tan α=-12.(2)原式=2sin 2α-sin αcos α+cos 2α=2sin 2α-sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-tan α+1tan 2α+1=2×⎝ ⎛⎭⎪⎫-122-⎝ ⎛⎭⎪⎫-12+1⎝ ⎛⎭⎪⎫-122+1=85. 17.(本小题满分14分)(2014·广东卷)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π4,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=32. (1)求A 的值;(2)若f (θ)+f (-θ)=32,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫3π4-θ. 解析:(1)∵f ⎝ ⎛⎭⎪⎫5π12=A sin ⎝ ⎛⎭⎪⎫5π12+π4=A sin 2π3=A sin π3=32A =32,∴A = 3.(2)由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫x +π4,故f (θ)+f (-θ)=3sin ⎝⎛⎭⎪⎫θ+π4+3sin ⎝⎛⎭⎪⎫-θ+π4=32, ∴3⎣⎢⎡⎦⎥⎤22(sin θ+cos θ)+22(cos θ-sin θ)=32. ∴6cos θ=32.∴cos θ=64. 又θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin θ=1-cos 2θ=104. ∴f ⎝ ⎛⎭⎪⎫3π4-θ=3sin(π-θ)=3sin θ=304. 18.(本题满分14分)(2013·安徽卷)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间[0,2]上的单调性.解析:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎪⎫ωx +π4=22cos ωx (sin ωx +cos ωx )=2(sin 2ωx +cos 2ωx +1)=2sin ⎝⎛⎭⎪⎫2ωx +π4+2⇒2π2ω=π⇒ω=1.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π4+2,ω=1.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,⎝⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,令2x +π4=π2解得x =π8, ∴y =f (x )在⎣⎢⎡⎦⎥⎤0,π8上单调递增;在⎣⎢⎡⎦⎥⎤π8,π2上单调递减. 19.(本题满分14分)(2013·上海卷)(6分+8分)已知函数f (x )=2sin(ωx ),其中常数ω>0.(1)若y =f (x )在⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,求ω的取值范围; (2)令ω=2,将函数y =f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度,得到函数y =g (x )的图象,区间[a ,b ](a ,b ∈R 且a <b )满足:y =g (x )在[a ,b ]上至少含有30个零点,在所有满足上述条件的[a ,b ]中,求b -a 的最小值.解析:(1)因为ω>0,根据题意有⎩⎨⎧-π4ω≥-π2,2π3ω≤π2⇒0<ω≤34. (2)f (x )=2sin 2x ,g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+1=2sin ⎝⎛⎭⎪⎫2x +π3+1. g (x )=0⇒sin ⎝⎛⎭⎪⎫2x +π3=-12⇒x =k π-π4或x =k π-712π,k ∈Z ,即g (x )的零点相离间隔依次为π3和2π3,故若y =g (x )在[a ,b ]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.20.(本小题满分14分)已知向量m =(sin x ,-cos x ),n =(cos θ,-sin θ),其中0<θ<π.函数f (x )=m·n 在x =π处取得最小值.(1)求θ的值;(2)设A ,B ,C 为△ABC 的三个内角,若sin B =2sin A ,f (C )=12,求A . 解析:(1)∵f (x )=m ·n =sin x cos θ+cos x sin θ=sin(x +θ),且函数f (x )在x =π处取得最小值,∴sin(π+θ)=-1, 即sin θ=1.又0<θ<π,∴θ=π2. ∴f (x )=sin ⎝⎛⎭⎪⎫x +π2=cos x . (2)∵f (C )=12,∴cos C =12. ∵0<C <π,∴C =π3. ∵A +B +C =π,∴B =2π3-A . 代入sin B =2sin A 中,∴sin ⎝ ⎛⎭⎪⎫2π3-A =2sin A . ∴sin 2π3cos A -cos 2π3sin A =2sin A . ∴tan A =33.π∵0<A<π,∴A=6.。

2016-2017学年高中数学苏教版必修4章末综合测评1 含解析

2016-2017学年高中数学苏教版必修4章末综合测评1 含解析

章末综合测评(一)三角函数(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.若sin α<0且tan α>0,则α是第________象限角.【解析】∵sin α<0,tan α>0,∴α是第三象限角.【答案】三2.已知圆的半径是6 cm,则15°的圆心角与圆弧围成的扇形面积是________.【解析】15°化为弧度为错误!,设扇形的弧长为l,则l=6×错误!=错误!,其面积S=错误!lR=错误!×错误!×6=错误!.【答案】错误!3.cos 675°=________.【解析】cos 675°=cos(675°-720°)=cos(-45°)=cos 45°=错误!.【答案】错误!4.把-错误!表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ的值是________.【解析】∵-错误!=-2π-错误!,∴-错误!与-错误!是终边相同的角,且此时错误!=错误!是最小的.【答案】-错误!5.角α,β的终边关于x轴对称,若α=30°,则β=________。

【解析】画出图形,可知β的终边与-α的终边相同,故β=-30°+k·360°,k∈Z。

【答案】-30°+k·360°,k∈Z6.(2016·南通高一检测)函数y=cos错误!,x∈错误!的值域是________.【解析】由0≤x≤错误!,得错误!≤x+错误!≤错误!,∴-错误!≤cos错误!≤错误!.【答案】错误!7.设α是第二象限角,则错误!·错误!等于________.【解析】因为α是第二象限角,所以错误!·错误!=错误!·错误!=错误!·错误!=错误!·错误!=-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末综合测评(二) 平面向量
(时间120分钟,满分160分)
一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)
1.已知作用在点A (1,1)的三个力F 1=(3,4),F 2=(2,-5),F 3=(3,1),则合力F =F 1+F 2+F 3的终点坐标是________.
【解析】 ∵F =(8,0),∴终点坐标为(8,0)+(1,1)=(9,1). 【答案】 (9,1)
2.BA →-BC →+AB →+AC →
=________.
【解析】 原式=CA →+AC →+AB →=0+AB →=AB →
. 【答案】 AB →
3.若向量a =(1,1),b =(1,-1),c =(-1,2),若c =λa +μb ,则λ,μ的值分别是________.
【解析】 ∵c =λa +μb , ∴(-1,2)=(λ,λ)+(μ,-μ), ∴⎩⎨

-1=λ+μ,2=λ-μ,
∴⎩⎪⎨⎪⎧
λ=12,μ=-3
2.
【答案】 12,-3
2
4.已知两点A (4,1),B (7,-3),则与向量AB →
同向的单位向量的坐标是________.
【解析】 AB →=(3,-4),|AB →|=5,∴e =AB →
|AB →|=15(3,-4)=⎝ ⎛⎭
⎪⎫3
5,-45.
【答案】 ⎝ ⎛⎭
⎪⎫35,-45 5.(2016·镇江高一检测)已知向量a =(3x,1),b =(2,-5),若a ∥b ,则x =________.
【解析】 ∵a ∥b ,∴-15x =2,x =-2
15. 【答案】 -2
15
6.若|a |=1,|b |=2,a·b =-1,则|a -b |=________. 【解析】 ∵|a |=1,|b |=2,a·b =-1 ∴|a -b |=a 2-2a·b +b 2=1+2+4=7. 【答案】
7
7.平面向量a ,b 中,若a =(4,-3),|b |=1,且a·b =5,则向量b =________.
【解析】 设b =(x ,y ),则⎩
⎨⎧
x 2+y 2
=1,
4x -3y =5,
∴⎩⎪⎨
⎪⎧
x =4
5,
y =-35,
即b =⎝ ⎛⎭
⎪⎫4
5,-35.
【答案】 ⎝ ⎛⎭
⎪⎫4
5,-35
8.(2016·扬州高一检测)下列5个说法: ①共线的单位向量是相等向量;
②若a ,b ,c 满足a +b =c 时,则以|a|,|b|,|c|为边一定能构成三角形; ③对任意的向量,必有|a +b |≤|a |+|b |; ④(a·b )c =c (b·c );
⑤(a +b )·c =a·c +b·c .其中正确的是________.
【解析】 共线也有可能反向,故①不正确;若|a |=0,显然不能构成三角形,故②不正确;由数量积的性质知④不正确;由向量加法的三角形法则知③正确;由数量积的性质知⑤正确.
【答案】 ③⑤
9.(2016·南京高一检测)已知a =(1,n ),b =(-1,n ),且2a -b 与b 垂直,则|a |等于________.
【解析】 2a -b =(3,n ),∵(2a -b )·b =0,∴n 2-3=0,∴n 2=3,∴|a |2=1+n 2=4,∴|a |=2.
【答案】 2
10.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN →
的模为________.
【解析】 ∵a ∥b ,∴2×(-2)-(-1)x =0,解得x =4, ∴b =(4,-2),∴a +b =(6,-3),b -c =(1,-2-y ). ∵(a +b )⊥(b -c ),∴(a +b )·(b -c )=0, 即6-3(-2-y )=0,解得y =-4,
∴MN →=(y -x ,x -y )=(-8,8),∴|MN →
|=8 2. 【答案】 8 2
11.(2016·泰州高一检测)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →
=2a +b ,则下列结论正确的是________.
(1)|b |=1;(2)a ⊥b ;(3)a·b =1;(4)(4a +b )⊥BC →
. 【解析】 如图△ABC 是边长为2的等边三角形.
由已知b =AC →-2a =AC →-AB →=BC →,
显然(1)(2)(3)错,(4a +b )·BC →=2AB →·BC →+|BC →|2=2×2×2×cos 2
3π+22=0,∴
(4a +b )⊥BC →
.
【答案】 (4)
12.如图1,非零向量OA →=a ,OB →=b ,且BC ⊥OA ,C 为垂足,若OC →
=λa ,则λ=________.
图1
【解析】 BC →=OC →-OB →=λa -b ,∵BC →⊥OA →,∴a ·(λa -b )=0,则λ=a ·b
|a |2. 【答案】 a ·b |a |2
13.已知向量a =(6,2),b =⎝ ⎛⎭
⎪⎫-4,12,直线l 过点A (3,-1)且与向量a +2b
垂直,则直线l 的方程为________.
【解析】 ∵a +2b =(-2,3),
在l 上任取一点P (x ,y ),则有AP →
⊥(a +2b ), ∴AP →·(a +2b )=0,
∴(x -3,y +1)·(-2,3)=0, ∴2x -3y -9=0. 【答案】 2x -3y -9=0
14.已知OA →=(2,2),OB →=(4,1),O 为坐标原点,在x 轴上求一点P ,使AP →·BP →有最小值,则P 点坐标为________.
【解析】 设P (x,0),∴AP →·BP →=(x -2,-2)·(x -4,-1)=(x -2)(x -4)+2=x 2
-6x +10=(x -3)2
+1,当x =3时,AP →·BP →有最小值,∴P (3,0).
【答案】 (3,0)
二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)
15.(本小题满分14分)在平行四边形ABCD 中,AB →=a ,AD →
=b , (1)如图①,如果E ,F 分别是BC ,DC 的中点,试用a ,b 分别表示BF →,DE →
. (2)如图②,如果O 是AC 与BD 的交点,G 是DO 的中点,试用a ,b 表示AG →
.
图2
【解】 (1)BF →=BC →+CF →=AD →+12CD →=AD →-12AB →=-1
2a +b . DE →=DC →+CE →=AB →-12AD →=a -12b . (2)BD →=AD →-AB →
=b -a ,
∵O 是BD 的中点,G 是DO 的中点,。

相关文档
最新文档