非参数检验--非参数检验的过程

合集下载

非参数检验的基本原理

非参数检验的基本原理

非参数检验的基本原理非参数检验是一种利用统计方法来检验假设的一种方法,与参数检验相比,非参数检验不需要对总体的分布做出假设,更为灵活。

本文将介绍非参数检验的基本原理。

一、概述非参数检验是一种统计方法,既不要求数据符合特定分布,也不对总体参数做出假设。

与之相反,参数检验通常假设数据服从特定的分布,例如正态分布。

非参数检验的主要优点是可以更全面地处理数据,更适用于复杂的情况。

然而,非参数检验的统计效率通常较低,需要更多的样本来达到相同的置信水平。

二、基本原理1. 秩次转换非参数检验通常使用秩次转换来处理数据。

所谓秩次转换是将原始的数值转换为它们在样本中的秩次,从而消除数值的大小差异。

对于同一组数据,秩次转换后,可以应用更广泛的统计方法。

2. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数检验方法,主要应用于配对样本或者两组独立样本之间的差异比较。

它的基本思想是对每个观测值计算它们的符号秩,然后通过比较两组样本的秩和来判断差异是否显著。

3. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于比较两组独立样本之间的差异。

它的基本原理是将两组样本中的所有观测值汇总,然后对这些观测值进行秩次转换,并计算两组样本排名和。

通过比较两组样本排名和的大小来判断差异是否显著。

4. Kruskal-Wallis H检验Kruskal-Wallis H检验是一种非参数的方差分析方法,用于比较三组或以上独立样本之间的差异。

它的基本原理是将所有样本的观测值汇总,然后进行秩次转换,并计算各组样本排名和的平均值。

通过比较平均排名和的大小来判断差异是否显著。

三、案例研究为了更好地理解非参数检验的原理,我们以某家公司销售部门的两个月销售额作为例子进行案例研究。

假设第一个月公司销售额为[100, 80, 120, 90, 110],第二个月公司销售额为[95, 85, 115, 100, 105]。

非参数检验的检验方法

非参数检验的检验方法

非参数检验的检验方法非参数检验是一种假设检验的方法,它不依赖于总体分布的具体形式,而是基于样本数据进行推断。

相比于参数检验,非参数检验更加灵活和普适,可以适用于更广泛的情况。

非参数检验的主要思想是通过对样本数据的排序或者秩次变换,来推断总体的性质。

下面将介绍几种常见的非参数检验方法:1. Mann-Whitney U检验(又称Wilcoxon秩和检验):Mann-Whitney U检验用于比较两个独立样本的总体中位数是否相等。

它的基本思想是将两组样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算两组数据秩次和之差的绝对值,该值即为检验统计量U,根据U的大小可以进行推断。

2. Kruskal-Wallis H检验:Kruskal-Wallis H检验用于比较多个独立样本的总体中位数是否相等。

它的基本思想是将所有样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算每个样本的秩次和,以及总体的秩次和。

根据这些秩次和的差异来进行推断。

3. 秩和检验:秩和检验是一类常见的非参数检验方法,包括Wilcoxon符号秩检验和符号秩和检验。

这两种方法都是用来比较两个相关样本的总体中位数是否相等。

基本思想是将两个样本的差的符号进行标记,并用秩次表示绝对值大小的顺序。

然后根据秩次和的大小来进行推断。

4. Friedman检验:Friedman检验用于比较多个相关样本的总体中位数是否相等。

它的基本思想是将所有样本的数据进行秩次变换,并计算每个样本的秩次和。

然后根据秩次和的差异来进行推断。

在进行非参数检验时,需要注意以下几点:1. 样本独立性:非参数检验通常要求样本之间是独立的,即样本之间的观测值不受其他样本观测值的影响。

如果样本之间存在相关性,应考虑使用相关性检验或者非参数检验的相关版本。

2. 样本大小:非参数检验对样本的大小没有严格要求,但样本大小较小时可能会影响检验的统计功效。

参数检验和非参数检验

参数检验和非参数检验

统计推断是从总体中抽取部分样本,通过对抽取部分所得到的带有随机性的数据进行合理的分析,进而对总体作出科学的判断,它是伴随着一定概率的推测,特点是:由样本推断总体,统计推断是数理统计的核心部分,统计推断的基本问题可以分为两大类:一类是参数估计问题;另一类是假设检验问题。

其中假设检验方法可以分为参数检验和非参数检验两大部分。

1.参数检验:
是在给定或假定总体分布形式的基础上,对总体的未知参数进行估计或检验。

它一方面以明确的总体分布为前提,另一方面需要满足某些总体参数的假定条件
2.非参数检验:
对总体分布不做严格假定,统计过程不涉及总体参数,完全依靠样本数据的顺序、秩等信息进行分析,通常在不符合参数检验的条件下使用。

参数检验的优点是针对性较强,每种方法都有其特定的使用环境,并且利用数据信息充分,一旦符合使用条件,得出的结论会非常准确。

缺点是,对总体的分布要求较高,实际工作中有时无法满足使用条件。

非参数检验的优点是对总体分布没有严格要求,对样本数据类型也没有过多要求,非正态、方差不齐等都能做,适应性较强,计算方法也比较简单。

缺点是对数据信息利用不充分,会降低功效。

由于检验的功效是我们选择分析方法的首要因素,因此在实际工作中,我们还是优先使用参数检验,只有在数据特征不符合参数检验要求时,才考虑使用非参数检验。

非参数检验方法

非参数检验方法

非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。

二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。

2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。

3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。

4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。

三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。

2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。

3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。

4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。

5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。

SPSS的非参数检验

SPSS的非参数检验
非参数检验可以提供更准确的统计推断,特别是在 数据特征不明或数据量较小的情况下。
02
SPSS非参数检验概述
定义与特点
定义
非参数检验是在统计分析中,相对于参数检验的一种统计方法。 它不需要对总体分布做严格假定,只关注数据本身的特点,因此 具有更广泛的适用范围。
特点
非参数检验对总体分布的假设较少,强调从数据本身获取信息, 具有灵活性、稳健性和适用范围广等优点。
局限性
计算量大
对于大规模数据集,非参数检验的计算量可 能较大,需要较长的计算时间。
对数据要求高
非参数检验要求数据具有可比性,对于不可 比的数据集可能无法得出正确的结论。
解释性较差
非参数检验的结果通常较为简单,对于深入 的统计分析可能不够满足。
对异常值敏感
非参数检验对异常值较为敏感,可能导致结 果的偏差。
THANK YOU
感谢聆听
常用非参数检验方法
独立样本非参数检验
用于比较两个独立样本的差异 ,如Mann-Whitney U 检验 、Kruskal-Wallis H 检验等。
相关样本非参数检验
用于比较相关样本或配对样本 的关联性,如Wilcoxon signed-rank 检验、Kendall's tau-b 检验等。
等级排序非参数检验
案例二:两个相关样本的非参数检验
总结词
适用于两个相关样本的比较,如同一班级内不同时间点的成绩比较。
描述
使用SPSS中的两个相关样本的非参数检验,如Wilcoxon匹配对检验,可以比较两个相关样本的总体分布是否相 同。
案例二:两个相关样本的非参数检验
01
步骤
02
1. 打开SPSS软件,输入数据。

第6章 非参数检验

第6章 非参数检验

第六章非参数检验在前面的章节中我们介绍了多种假设检验的方法,例如单个总体的t检验、基于两个独立样本的t检验、基于两个匹配样本的t检验、方差分析等。

在这些检验都需要对总体的分布特征作出某些假设(例如在t检验和方差分析中都需要假设总体服从正态分布),然后根据检验统计量的抽样分布对总体参数(如均值、比率等)进行检验。

这类检验方法称为参数检验。

我们前面强调过,在需要的假设条件不满足的情况下,特别是小样本的情况下,t检验、F检验都是不适用的。

那么,如何检验数据是否来自正态分布或者其他分布?在参数检验假设条件不满足的情况下如何对相应的问题进行分析?非参数检验方法可以帮助我们回答这类问题。

在这一章中,我们将首先简要说明非参数检验的概念和优缺点,然后介绍几种常见的非参数检验方法及其在SPSS中的实现方法。

第一节非参数检验概述非参数检验(nonparametric tests)也称为与总体分布无关的检验(distribution free tests),与参数检验相比,在非参数检验中不需要对总体分布的具体形式作出严格假设,或者只需要很弱的假设。

大部分非参数检验都是针对总体的分布进行的检验,但也可以对总体的某些参数进行检验。

与参数检验相比,非参数检验主要有以下几个方面的特点:(1)非参数检验不需要严格假设条件,因而比参数检验有更广泛的适用面。

(2)非参数检验几乎可以处理包括定类数据和定序数据在内的所有类型的数据,而参数检验通常只能用于定量数据的分析。

(3)虽然对于满足参数检验的假设条件的数据也可以采用非参数检验法进行分析,但在参数检验和非参数检验都可以使用的情况下,由于非参数检验没有充分利用样本内所有的数量信息,因此其检验的功效(power)要低于参数检验方法。

也就是说,在备择假设为真的情况下,采用参数检验方法拒绝原假设的概率要高于非参数检验的方法,从而更容易发现显著的差异。

在假设检验中,犯取伪错误的概率记为β,则1-β越大,意味着当备择假设为真时,拒绝原假设的概率越大,检验的判别能力就越好;1-β越小,意味着当备择假设为真时,拒绝原假设的概率越小,检验的判别能力就越差。

8非参数检验

8非参数检验

②正态近似法:
u | T n0 ( N 1) / 2 | n1n2 ( N 1) / 12
本例u 2.205 0.05/ 2 1.96
N3 N ; 3 3 N N (ti ti )
i
*校正公式(当相同秩次较多时)
uc u c; c
ti为第i个相同秩号的数据个数
假定:两组样本的总体分布形状相同
如果两总体 分布相同
基本思想
两样本来自同一总体 任一组秩和不应太大或太小
T 与平均秩和 n0 (1 N ) / 2 应相差不大
较小例数组的秩和, n1 n2 T min( R1 , R2 ), n1 n2
N n1 n2 n0 min( n1 , n2 )
控制 显效 有效 近控
65 18 30 13 126
107 24 53 24
1-107 108-131 132-184 185-208
54 119.5 158 196.5
编号 1 2
病情 单纯型 单纯型合并肺气肿
疗效 控制 显效
3
4 … 206 207
单纯型合并肺气肿
单纯型 … 单纯型 单纯型合并肺气肿
10 12(12 1) / 4 | R n(n 1) / 4 | u 2.275 n(n 1)(2n 1) / 24 12(12 1)(2 12 1) / 24
查标准正态分布表,得 P 值 校正公式: (当相同秩次个数较多时)
u
| R n(n 1) / 4 | n(n 1)(2n 1) / 24 (ti3 ti ) / 48 10 12(12 1) / 4
第一节 非参数检验的概念

非参数检验

非参数检验

两种方法治疗扁平足效果观察
建立假设
病例号
原始记录 A法 B法
量化值 A法 B法
差值
秩次
H0:两法疗效差值的总体中位数
1 2
为0;
3
4
H1:差值的总体中位数不为0。
5
6
=0.05
7
8
计算检验统计量
9
10
编秩:
11
12
求秩和:T+=61.5,T-
13
=4.5
14 15
















秩和(rank sum): 同组秩次之和;在一定程度上反映了等级 的分布位置。
秩和检验:就是通过秩次的排列求出秩和,进行假设检验。
11
非参数检验 (nonparametric test )
非参数检验的最常用方法——秩和检验( rank test ) 利用秩的大小进行推断就避免了不知道背景分布的
困难。这也是非参数检验的优点。 多数非参数检验明显地或隐含地利用了秩的性质;
但也有一些非参数方法没有涉及秩的性质。 掌握对数据进行编秩的方法是学习秩和检验的基本
要求。
12
非参数检验 (nonparametric test )
非参数检验的最常用方法——秩和检验( rank test )
A组: - 、、+、+、+、+、++、++、++、++、+++、+++
适用条件: (1)上述两种设计类型的资料不满足参数检 验条件。 (2)配对设计等级资料的比较。

非参数检验

非参数检验

非参数检验非参数检验是一种统计方法,用于比较两组或多组数据的差异或关联性,它并不依赖于数据的分布假设。

相比于参数检验,非参数检验通常更为灵活,可应用于各种数据类型和样本量,尤其在数据不满足正态分布的情况下表现优势。

本文旨在介绍非参数检验的基本原理、应用领域以及常见方法。

首先,非参数检验的基本原理是依赖于样本中的秩次,即将原始数据转化为秩次数据进行统计分析。

秩次是数据在全体中的相对位置,将数据转化为秩次可以消除异常值对统计结果的影响,并使数据的分布不再成为限制因素。

非参数检验的应用领域广泛,包括但不限于以下几个方面。

一、假设检验非参数检验可用于假设检验,比如检验两组样本的中位数是否存在差异。

常见的方法有Wilcoxon符号秩检验、Mann-Whitney U检验等。

在实际应用中,如果数据的分布无法满足正态分布假设,非参数检验则是一种理想的选择。

二、相关性分析非参数检验可用于判断两个变量之间的关联性。

常见的方法有Spearman秩相关系数检验、Kendall秩相关系数检验等。

这些方法的核心思想是将原始数据转化为秩次数据,通过秩次数据之间的比较来判断两个变量之间是否存在显著相关。

三、分组比较非参数检验可用于比较多个样本之间的差异。

常见的方法有Kruskal-Wallis检验、Friedman检验等。

这些方法可用于比较三个以上的样本组之间的差异,而不依赖于数据的分布假设。

在实际应用中,非参数检验需要注意以下几个问题。

一、样本容量非参数检验对样本容量的要求相对较低,适用于小样本和大样本。

然而,在样本容量较小的情况下,非参数检验可能会产生较大的误差,因此应根据实际情况选择合适的方法。

二、数据类型非参数检验可应用于各种数据类型,包括连续型数据和离散型数据。

但对于有序分类数据、定序数据和名义数据,非参数检验相较于参数检验有更好的适用性。

三、分布假设非参数检验不需要对数据的分布做出假设,这使得它更加灵活。

但是,如果数据满足正态分布假设,参数检验也是一种较为有效的选择。

SPSS 非参数检验过程

SPSS 非参数检验过程

非参数检验Nonparametric Tests菜单非参数统计是统计分析的重要组成部分,其优点是适用范围广(通用的统计方法),可用于等级资料和开口资料,缺点是检验效能低。

在SPSS中,提供了8种非参数检验方法,放入了Nonparametric Tests菜单中,分为两大类:(一)分布类型的检验过程:亦称拟合优度检验方法,即检验样本所来自的总体是否服从某种理论分布。

1、Chi-square test:用卡方检验来检验变量的几个取值所占百分比是否和我们期望的比例有统计学差异。

比如我们在人群中抽取了一个样本,可以用该方法来分析四种血型所占的比例是否相同(都是25%),或者是否符合我们所给出的一个比例(如分别为10%、30%、40%和20%)。

2、Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以是连续性变量,然后按你给出的分界点一分为二。

3、Runs Test:用于检验某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。

一般来说,如果该检验P值有统计学意义,则提示有其他变量对该变量的取值有影响,或该变量存在自相关。

4、单样本K-S检验(One-Sample Kolmogorov-Smirnov Test)是用来检验样本分布是否服从某种理论分布,包括:正态分布(Normal)、均匀分布(Uniform)、泊松分布(Poisson)和指数分布(Exponential)。

(二)分布位置的检验过程:1、Two-Independent-Samples Tests:即成组设计的两样本比较的非参数检验。

2、Tests for Several Independent Samples:成组设计的多个样本比较的非参数检验,此处不提供两两比较方法。

3、Two-Related-Samples Tests:配对设计两样本的非参数检验。

4、Tests for Several Related Samples:配伍设计多个样本的非参数检验,此处同样不提供两两比较。

非参数检验的概念与过程

非参数检验的概念与过程
Test Variables: a b c Test type:选一种或多种 比较有用的结果:看sig值,sig<.05, 拒绝零假设,
认为顾客对三种款式衬衫的喜爱程度是不相同的。
补充:非参数检验
以下的讲义是吴喜之教授有关
非参数检验的讲义,
我觉得比书上讲得清楚。
非参数检验
为什么用非参数方法?
非参数检验
说明:非参数检验这章,请看下面吴 喜之教授的讲义,更为具体的可参看 《统计分析与SPSS的应用》薛薇 编著 人大出版社,2002.7第二次印刷
非参数检验的概念
是指在总体不服从正态分布且分布情况 不明时,用来检验数据资料是否来自同 一个总体假设的一类检验方法。由于这 些方法一般不涉及总体参数故得名。 这类方法的假定前提比参数性假设检验 方法少的多,也容易满足,适用于计量 信息较弱的资料且计算方法也简单易行, 所以在实际中有广泛的应用。
Cochran Q:要求样本数据为二值的(1-满意 0-不满意) Friedman:利用秩实现 Kendall协同系数检验:H0:协同系数为0(评分标准不相关的
或者是随机的) 实例 :9个顾客对三种款式衬衫的喜爱程度(1-最喜爱 2-其
次 3-不喜爱)。数据data12-09(3个变量: 款式A,款式B, 款式C, 27个cases)。试问顾客对三种款式衬衫的喜爱程度 是否相同。 Analyze-> Nonparametric Tests-> k related Samples
Test Pairs: dlq-dlh Test type:选一种或多种 比较有用的结果:看sig值,sig<.05, 拒绝零假设,
认为锻炼前后的晨脉有显著性的差异。
12.8 多个相关样本检验

第十讲非参数检验详解

第十讲非参数检验详解

4
第一节 非参数检验简述
表 11-1 参数检验与非参数检验的区别 非参数检验 推断总体分布,如中位数是否相等,是 否符合某种分布 参数检验 推断总体的参数,如算数均数、方 差、率是否相等 已知总体分布:如正态分布、二项 分布、poission 分布
推断目的
总体分布
未知总体分布
检验方法 检验效能
t 检验、 z 检验、 F 分析等
中医药统计学与软件应用
曹治清
成都中医药大学管理学院 数学与统计教研室 czq9771@
第10讲 非参数检验
非参数检验简述
秩和检验
Ridit分析
2
第10讲 非参数检验—引言
假设检验分为参数检验(parametric tests)和 非参数检验(nonparametric tests)。参数检验是 在总体分布形式已知的情况下,用样本指标对 总体分布的参数进行推断的方法。常用的参数 检验方法有t、z、F检验等。非参数检验 (nonparametric tests)是在总体分布未知情况 下,比较总体分布或分布位置是否相同的统计 方法。

T 检验、 H 检验、 M 检验等

非参数检验适用于:
(1)资料的总体分布类型未知或偏态;(2)方差不齐; (3)一端或两端开口的资料;(4)等级资料。
5
第二节秩和检验 ——基本思想
将原始数据转化为秩次,计算各组秩次之和, 比较各组秩和的不同来推断总体分布有无差异。 若比较组之间的秩和接近,则认为各组间没有 差别;反之,如果各组间的秩和相差悬殊,则 认为各组间存在差别。
10
第二节秩和检验 —成组设计资料的秩和检验
表 11-3 糖尿病早期微血管病变患者疗效

第十一章非参数检验

第十一章非参数检验

第十一章 非参数检验前面有关章节讨论的参数检验都要求总体服从一定的分布,对总体参数的检验是建立在这种分布基础上的。

例如,两样本平均数比较的t 检验和多个样本平均数比较的F 检验,都要求总体服从正态分布,推断两个或多个总体平均数是否相等。

本章引入另一类检验——非参数检验(non-parametric test )。

非参数检验是一种与总体分布状况无关的检验方法,它不依赖于总体分布的形式,应用时可以不考虑被研究的对象为何种分布以及分布是否已知。

非参数检验主要是利用样本数据之间的大小比较及大小顺序,对两个或多个样本所属总体是否相同进行检验,而不对总体分布的参数如平均数、标准差等进行统计推断。

当样本观测值的总体分布类型未知或知之甚少,无法肯定其性质,特别是观测值明显偏离正态分布,不具备参数检验的应用条件时,常用非参数检验。

非参数检验具有计算简便、直观,易于掌握,检验速度较快等优点。

非参数检验法从实质上讲,只是检验总体分布的位置(中位数)是否相同,所以对于总体分布已知的样本也可以采用非参数检验法,但是由于它不能充分利用样本内所有的数量信息,检验的效率一般要低于参数检验方法。

例如,非配对资料的秩和检验,其效率为t 检验的86.4%,就是说以相同概率判断出差异显著,t 检验所需的样本个数要少13.6%。

非参数检验内容很多,本章只介绍常用的符号检验(sign test ),秩和检验(rank-sum test )和等级相关分析(rank correlation analysis )三种。

第一节 符号检验一、配对资料的符号检验(一)配对资料符号检验的意义 配对资料符号检验是根据样本各对数据之差的正负符号多少来检验两个总体分布位置的异同,而不去考虑差值的大小。

每对数据之差为正值用“+”表示,负值用“-”表示。

可以设想如果两个总体分布位置相同,则正或负出现的次数应该相等。

若不完全相等,至少不应相差过大,否则超过一定的临界值就认为两个样本所来自的两个总体差异显著,分布的位置不同。

生物统计学:非参数检验

生物统计学:非参数检验

{ n+,n-}= n+=2 。
3、统计推断 当n=15时, 查附表11 得 临 界 值K0.05(15)=3 , K0.01(15) = 2 , 因 为 K = 2 = K0.01(15),P≤0.01,表明噪数与总体中位数比较的符号检验
1、建立假设 HO:样本所在的总体中位数=已知总体中 位数; HA :样本所在的总体中位数≠已知总体 中位数。 (若将备择假设 HA 中的“≠”改为“<” 或“>”,则进行一尾检验)
依赖于特定分布类型, 比较的是参数
优点:方法简便、易学易用,易于推广使用、应用范围广;可 用于参数检验难以处理的资料(如等级资料,或含数值 “>50mg”等)。 缺点:方法比较粗糙,对于符合参数检验条件者,采用非参数 检验会损失部分信息,其检验效能低;样本含量较大时,两者 结论常相同。
第一节 符号检验
非参数检验的弱点 可能会浪费一些信息 特别当数据可以使用参数模型的时候 大样本手算相对麻烦 一些表不易得到
参数检验 (parametric test)
非参数检验 (nonparametric test)
已知总体分布类型,对 未知参数进行统计推断
对总体的分布类型不作严 格要求 不受分布类型的影响, 比较的是总体分布位置
124.3 147.9 -15.7 7.9 +
1、提出无效假设与备择假设
HO :该地成年公黄牛胸围的平均数=140厘米, HA :该地成年公黄牛胸围的平均数≠140厘米。
2、计算差值、确定符号及其个数 样本各观测值与总体 平均数的差值及其符号列于表 11-2 ,并由此得 n+=6 ,n-=4 ,
非参数统计的名字中“非参数”意味着其方法不 涉及描述总体分布的有关参数;

graphpad非参数检验步骤

graphpad非参数检验步骤

graphpad非参数检验步骤
GraphPad软件可以进行多种非参数检验,以下是一般的非参数检验步骤:
1. 打开GraphPad软件并导入数据:将需要进行非参数检验的数据导入到GraphPad软件中。

可以直接复制粘贴数据,或者导入Excel或文本文件。

2. 选择适当的非参数检验:根据你的研究设计和数据类型,选择适合的非参数检验方法。

GraphPad提供了多种非参数检验方法,如Mann-Whitney U检验、Wilcoxon符号秩检验、Kruskal-Wallis单因素方差分析等。

3. 设置分组变量:如果你的数据涉及到多个组别,在GraphPad中需要设置分组变量。

将不同组别的数据正确分配到相应的组别上。

4. 运行非参数检验:根据你选择的非参数检验方法,在GraphPad中进行相应的设置并运行检验。

输入要比较的组别或条件,并设定置信水平。

5. 解读结果:GraphPad会生成非参数检验的结果报告。

仔细阅读结果报告,包括检验统计量、P值和置信区间等。

根据结果来判断是否存在显著差异或关联。

请注意,以上步骤是一般的流程,具体操作可能会根据你的数据和研究问题而有所不同。

建议在使用GraphPad进行非参数检验时,参考软件提供的帮助文档或相关教程,以确保
正确使用并解读结果。

非参数检验的方法

非参数检验的方法

非参数检验的方法
嘿,你知道非参数检验吗?这可是个超厉害的统计方法呢!非参数检验不需要对总体分布做出假设,哇,这多牛啊!那它的步骤是啥呢?先确定研究问题和数据,然后选择合适的非参数检验方法,比如秩和检验啥的。

接着计算检验统计量,最后根据统计量做出决策。

这听起来是不是挺简单?但可别小瞧哦,这里面也有不少要注意的地方呢。

比如数据得独立、随机,不然结果可就不靠谱啦。

那非参数检验安全不?稳定不?嘿,放心吧!它一般都挺安全稳定的,不会像有些方法那样容易出幺蛾子。

非参数检验都啥时候用呢?当数据不满足参数检验条件的时候呗。

比如数据严重偏态,或者分布不明,这时候非参数检验就大显身手啦。

它的优势可不少呢,对数据分布要求低,适用范围广,多棒啊!就好比你去参加一场比赛,参数检验就像有很多严格规则的项目,非参数检验呢,就像那种规则比较灵活的,不管你啥情况都能玩得转。

给你举个实际案例吧。

比如说有两组病人的康复时间数据,不知道是不是有差异。

用非参数检验一分析,哇,发现真的有明显不同呢。

这效果多好啊!非参数检验就是这么厉害,在很多情况下都能帮我们解决问题。

它就像一个万能工具,随时准备为我们服务。

所以啊,非参数检验真的很不错,值得我们在数据分析中好好利用。

统计推断中非参数检验思想及实现过程

统计推断中非参数检验思想及实现过程

统计推断中非参数检验思想及实现过程统计推断是统计学的重要分支,通过对已知样本的分析和推理,从而对未知总体进行推断。

其中,非参数检验作为一种重要的统计方法,具有不依赖总体分布的特点,被广泛应用于各个领域的研究中。

一、非参数检验的思想非参数检验是相对于参数检验而言的,参数检验需要对总体分布做出某些假设,并从中获取相关参数,然后进一步进行区间估计和假设检验。

而非参数检验则不对总体分布做出特定假设,仅通过样本数据进行分析,从而得到对总体的推断。

在非参数检验中,常用的思想包括秩和检验、秩和检验等级、置换检验等。

其中,秩和检验适用于两个样本的推断,而秩和检验等级适用于多个样本的推断。

而置换检验则通过随机重排样本数据,生成更多的虚拟样本,从而评估实际样本的统计显著性。

二、非参数检验的实现过程非参数检验的实现过程通常包括以下几个步骤:1. 提出假设:首先需要明确原假设和备择假设。

原假设是对总体的某一特性提出的假设,备择假设则是对原假设的反命题。

2. 选择适当的检验统计量:根据具体问题的情况,选择合适的非参数检验方法,并计算相应的检验统计量。

3. 计算P值:根据检验统计量的分布,计算P值。

P值是在原假设成立的条件下,观察到的样本统计量大于或等于(或小于)实际观测到的统计量的概率。

4. 判断显著性:比较P值与显著性水平(通常为0.05),若P值小于显著性水平,则拒绝原假设;若P值大于显著性水平,则无法拒绝原假设。

5. 得出结论:根据拒绝或接受原假设,得出对总体的推断结论。

三、非参数检验的优缺点非参数检验相比参数检验具有以下优点:1. 不依赖总体分布:非参数检验不需要对总体分布做出假设,更加灵活适用于各种类型的数据。

2. 更广泛适用范围:非参数检验适用于各个领域的数据分析,无需对数据的特性进行过多假设。

3. 对异常值不敏感:非参数检验通常采用秩次统计量,能够有效应对数据中的异常值。

然而,非参数检验也存在一些缺点:1. 低效性:非参数检验通常需要更大的样本量才能达到与参数检验相同的推断精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


Test Variable:死亡日期 Expected Values: 2.8:1:1:1:1:1:1

比较有用的结果:sig=.256>0.5,不能拒绝零假设,认为心脏病 人猝死人数与日期的关系为2.8:1:1:1:1:1:1 。
来自 中国最大的资料库下载
12.2 二项分布检验 Binomial test
Analyze-> Nonparametric Tests-> Runs

Test Variable: tbh Cut Point:Custom:2

比较有用的结果: 总case数(31)、
Runs T est TBH
游程Run数(21)、
T est V alue a
2

sig=.142>0.5, 不能拒绝零假设,
知 二项分布:在现实生活中有很多的取值是两类的,如人
群的男和女、产品的合格和不合格、学生的三好学生和

非三好学生、投掷硬币的正面和反面。这时如果某一类
出现的概率是P,则另一类出现的概率就是1-P。这种分

布称为二次,变量tbh,1为出

现A面、2为出现A面,试问这挑边器是否均匀。数据

品和个数,Cases 2个:1 19 和0 4) 加权:Data->Weight Cases:个数

Analyze-> Nonparametric Tests-> Binomial
Test Variable:一等品

Test Proportion:0.9 比较有用的结果:两组个数和sig=.193>0.5,不能拒绝零假设,

测数据。其中用1、2、3、4、5、6、7表示是星期几死 的。而人数分别为55、23、18、11、26、20、15。推断

心 脏 病 人 猝 死 人 数 与 日 期 的 关 系 是 否 为 2.8:1:1:1:1:1:1 。 (变量2个:死亡日期和死亡人数,Cases 7个)

加权:Data->Weight Cases:死亡人数 Analyze-> Nonparametric Tests->Chi Square

分别代表六面的六个点,试问这骰子是否均匀。数据
data12-01(300个cases)。

Analyze-> Nonparametric Tests->Chi Square
Test Variable: lmt 想要检验的变量

由于这是一个均匀分布检测,使用默认选择(Expected Values: All categories equal作为零假设);
这类方法的假定前提比参数性假设检验方法少的多,
变 也容易满足,适用于计量信息较弱的资料且计算方法
也简单易行,所以在实际中有广泛的应用。


来自 中国最大的资料库下载
非参数检验的过程

1. Chi-Square test 卡方检验
识 2. Binomial test 二项分布检验
改 3. Runs test 游程检验
4. 1-Sample Kolmogorov-Smirnov test 一个样本柯尔莫

哥洛夫-斯米诺夫检验

5. 2 independent Samples Test 两个独立样本检验 6. K independent Samples Test K个独立样本检验
运 7. 2 related Samples Test 两个相关样本检验
T otal C ases
31
N umber of Runs
21
认为挑边器出现AB面是随机的。 Z
1.469
A symp. S ig. (2-tailed)
.142
a. U ser-specified.
来自 中国最大的资料库下载
12.4 一个样本柯尔莫哥洛夫-斯米诺夫检验 1-Sample Kolmogorov-Smirnov test

认为该批产品的一等品率达到了90% 。
来自 中国最大的资料库下载
12.3 游程检验Runs test
知 单样本变量随机性检验是对某变量值出现是否随机进行
检验。
识 实例1(同二项分布检验) :掷一枚比赛用的挑边器31
次,变量tbh,1为出现A面、2为出现A面,试问这挑边

器出现AB面是否随机。数据data12-03(31个cases)。
data12-03(31个cases)。

Analyze-> Nonparametric Tests-> Binomial
Test Variable: tbh

由于这是一个均匀分布检测,使用默认选择(Test Proportion: 0.5);
比较有用的结果:两组个数和sig=1.00>0.5,不能拒绝零假设,
8 . K related Samples Test 两个相关样本检验
来自 中国最大的资料库下载
12.1 卡方检验 Chi-Square test
知 这里介绍的卡方检验可以检验列联表中某一个变量的各
个水平是否有同样比例或者等于你所想象的比例(如
识 5:4:1)
实例1:掷骰子300次,变量LMT,1、2、3、4、5、6
非参数检验
说明:非参数检验这章,请看下面吴喜之教授 的讲义,更为具体的可参看《统计分析与SPSS 的应用》薛薇 编著 人大出版社,2002.7第二次 印刷
来自 中国最大的资料库下载
非参数检验的概念


是指在总体不服从正态分布且分布情况不明时,用来 检验数据资料是否来自同一个总体假设的一类检验方
改 法。由于这些方法一般不涉及总体参数故得名。
认为挑边器是均匀。
实例1的数据可以组织成:两个变量(side面和number
次数),2个cases。但在二项分布检验前要求用number
加来权自。中结国果最同大。的资料库下载
补充:二项分布检验实例
知 实例:为验证某批产品的一等品率是否达到90%,现从

该批产品中随机抽取23个样品进行检测,结果有19个一 等品(1-一等品,0-非一等品)。(变量2个:一等
比较有用的结果:sig=.111>0.5,不能拒绝零假设,认为均匀。
运 实例1的数据可以组织成:两个变量(side面和number
次数),6个cases。但在卡方检验前要求用number加权。
结果同。
来自 中国最大的资料库下载
补充:卡方检验实例
知 实例:心脏病人猝死人数与日期的关系,收集168个观
相关文档
最新文档