土中应力定义、分布形态和计算方法
土力学:第三章土中应力计算
附加应力的分布规律
平面分布规律
附加应力在平面上的分布呈扩散状,随着深度的 增加而减小。
深度分布规律
在一定深度范围内,附加应力随深度的增加而增 大,达到一定深度后基本保持稳定。
方向分布规律
附加应力在不同方向上的分布不同,与外部荷载 的方向和土体的性质有关。
附加应力的影响因素
01
外部荷载
外部荷载的大小、分布和作用方 式直接影响附加应力的分布和大 小。
在水平方向上,自重应力 表现为均匀分布。
侧向应力
在土体边缘,自重应力表 现为侧向应力,对土体的 稳定性产生影响。
自重应力的影响因素
土的密度
土的密度越大,自重应力越大。
重力加速度
重力加速度越大,自重应力越大。
土体的几何形状和尺寸
土体的几何形状和尺寸对自重应力的分布和大小有显著影响。
04 土中附加应力计算
02
03
土体的性质
边界条件
土体的容重、压缩性、内摩擦角、 粘聚力等性质对附加应力的影响 较大。
土体的边界条件,如固定边界、 自由边界等,对附加应力的分布 和大小也有影响。
05 土中有效应力计算
CHAPTER
有效应力的概念与计算方法
有效应力的概念
有效应力是指土壤颗粒之间的法向应 力,是土壤保持其结构稳定和防止剪 切破坏的主要因素。
土中应力计算的重要性
01
02
03
工程安全
准确的土中应力计算是确 保工程安全的前提,能够 预测可能出现的危险和制 定应对措施。
设计优化
通过土中应力计算,可以 优化设计方案,提高工程 结构的稳定性和经济性。
科学研究
土中应力计算有助于深入 研究土力学性质和规律, 推动土力学学科的发展。
第三章土中的应力
pm in
F G 6e (1 ) lb l
Dr. Han WX
当e<l/6时,基底压力分布图呈梯形,图(a) 当e=l/6时,则呈三角形,图(b) 当e>l/6时,距偏心荷载较远的基底边缘反力为负
基底边缘最大压力:
pmax
2( F G ) 3bk
矩形基础在双向偏心荷载作用下,如基底最小压力 pmin≥0,则矩形基底边缘四个角点处的压力可按下列公式计算:
土 力 学
第3章 土中的应力
Stress
1
《土力学》 第3章 土中的应力
§3.1 概述
震等)的作用下,均可产生土中应力。
土中应力将引起土体或地基的变形,使土工建筑物(如路堤、土坝等)或建 筑物(如房屋、桥梁、涵洞等)发生沉降、倾斜以及水平位移。
Dr. Han WX
土体在自身重力、建筑物荷载、交通荷载或其他因素(如地下水渗流、地
3
《土力学》 第3章 土中的应力
§3.1 概述
Dr. Han WX
土中应力按其作用原理或传递方式可分为有效应力和孔隙应力两种。
土中有效应力是指土粒所传递的粒问应力,它是控制土的体积(或变形)和 强度两者变化的土中应力。
土中孔隙应力是指土中水和土中气所传递的应力,土中水传递的孔隙水应 力,即孔隙水压力;土中气传递的孔隙气应力,即孔隙气压力。 土是由三相所组成的非连续介质,受力后土 粒在其接触点处出现应力集中现象,即在研究土 体内部微观受力时,必须了解土粒之间的接触应
9
Dr. Han WX
《土力学》 第3章 土中的应力
§3.2 土中自重应力
3.2.1 均质土中的自重力
[例题4-1]某建 筑场地的地质柱 状图和土的有关 指标列于图4-5中。 试计算地面下深
第三章 土中应力
课程辅导 >>> 第三章、土中应力和地基应力分布第三章土中应力和地基应力分布一、内容简介土中应力是指自重、建筑物和构筑物荷载以及其他因素(如土中水的渗流、地震等)在土体中产生的应力。
土中应力过大时,会使土体发生破坏乃至发生滑动,失去稳定。
此外,附加应力会引起土体变形,使建筑物发生沉降、倾斜以及水平位移。
土是三相体,具有明显的非线性特征。
为简便起见,将地基土视作连续的、均匀的、各向同性的弹性半无限体,采用弹性理论公式计算土的应力。
这种假定同土体的实际情况有差别,不过其计算结果尚能满足实际工程的要求。
二、基本内容和要求1 .基本内容( 1 )土中一点的应力状态;( 2 )弹性力学平衡方程及边界条件;( 3 )均匀满布荷载及自重应力作用下的应力计算;( 4 )垂直集中荷载、线状荷载、带状荷载、局部面积荷载作用下的应力计算;(5)基底接触压力;(6)刚性基础基底压力的简化计算方法。
2 .基本要求★ 概念及基本原理【掌握】自重应力及附加应力; Winkler 假定;截面核心。
【理解】基底压力的分布规律。
★ 计算理论及计算方法【掌握】均匀满布荷载及自重作用下地基应力的计算;刚性基础基底压力简化算法的基本假定及计算;垂直集中、垂直线状荷载及带状荷载作用下地基应力的简化计算法;角点法;截面核心的计算。
三、重点内容介绍1 .土中一点的应力状态土中一点的应力可用 6 个独立分量即、、、、、来表示。
其中,总可以找到三个相互正交的面,其上的 6 个剪应力分量均为 0 ,相应的法向应力称为主应力,并有。
对平面问题,设坐标系为x - z ,则有( 3-1 )最大主应力的作用方向与竖直线间的夹角θ由下式确定( 3-2 )2 .弹性力学平衡方程设土体的重度为,则相应的平衡方程为在 x 轴方向( 3 -3a )在 y 轴方向( 3-3b )在 z 轴方向( 3 -3c )3 .饱和土的有效应力原理外荷载在饱和土体内某点所产生的正应力由水和颗粒承担:其中,由水承担的应力称为孔隙水压力,颗粒之间的作用力所对应的应力称为有效应力,并有或( 3-4 )上式即为饱和土的有效应力公式。
土力学与地基基础(土中的应力计算)
矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1
4土中应力(自重-地基附加应力)
水对土体有浮力作用,则下部 分柱体取有效重度,即
cz ( w ) z ' z
当地下水位下降,地基中有效自重应力增加,从而引起地面
大面积沉降的严重后果
当地下水位上升时,水位上升引起地基承载力的减小,湿陷
性土的陷塌
原地下水位
1’
1 1
1’
原地下水位
2’
2
2
2’
4.不透水层的影响
四、公式的应用
1.均质地基土的自重应力stress in homogeneous soil
cz Z
2.成层地基土的自重应力
当地基为成层土体时,设各土层 的厚度为hi,重度为i,则在深度z处 土的自重应力计算公式为:
式中n为从天然地面到深度z处的 土层数。
3.地下水的影响
计算点在地下水位下时,由于
不透水层层面的自重应力按上覆土层的水土总重计算
5.自重应力图的绘制 ① 建立直角坐标系 ② 确立特征点并编号 (地面、层面、 地下水位面、不透水层层面)
③ 计算各点的竖向自重应力
④ 按比例绘出特征点自重应力的位置 ⑤ 用直线连接各点 ⑥ 校核 (地下水位处,不透水层处)
§4.3 基底压力
一、概述
土力学中应力符号的规定
z
zx
地基:半无限空间
o
∞ x ∞
y yz
xy
x
∞ y
z
x xy xz ij = yx y yz zx zy z
一. 土力学中应力符号的规定
zx
材料力学
z +
正应力
剪应力
-
zx
土力学
z
土力学第三章土中应力计算详解
特点:一般自重应力不产生地基变形(新填土除 外);而附加应力是产生地基变形的主要原因。
整理ppt
3
概述
有效应力:由土骨架传递或承担的应力
孔隙应力:由土中孔隙水承担的应力 静孔隙应力与超孔隙应力
自重应力:由土体自身重量所产生的应力
附加应力:由外荷载(建筑荷载、车辆荷载、 土中水的渗流力、地震作用等)的作用,在土
整理ppt
均匀 E
1
E2<E
1 50
3.4 有效应力原理
wF2 1ER z2321R 1
整理ppt
34
一. 竖直集中力作用下的附加应力计算-布辛奈斯克课题
z
3F
2
z3 R5
R 2r2z2x2y2z2
z3 2 FR z3 523 [1(r/1z)2]5/2
F z2
3
1
2[1(r/z)2]5/2
集中力作用下的 地基竖向应力系数
整理ppt
z
F z2
查表3.1
a.矩形面积内
z (c Ac Bc Cc D )p
BA
C
h
b.矩形面积外
a
z (c be gc a hf gc c he gc d i ) fp gi
D ig df
整理ppt
b
c e42
c.矩形面积边缘线上
z (cIcI)Ip
d.矩形面积边缘线外侧
z (c I cI IcI II cI )p V
dPpdxdy dz 32dPR z35 23p R z35dxdy
z0 b0 ldzz(p,m ,n)
m=l/b, n=z/b
c F(bl ,bz)F(m,n)
dP
土中的应力计算
e x
e xL
Ke
L x K=B/2-
L
压力调整 基底压
y
y
e
3K
y
pmin 0
力合力 与总荷
载相等
pmax
pmin
0 pmax
pmin 0
e<B/6: 梯形
pmax
e=B/6: 三角形
e>B/6: 出现拉应力区
2N
2N
pmax 3KL 3(B 2 e)L
12
2.2.3基底附加压力
H 成层
E1 均匀
E2<E1
25
无限均布荷载作用下的附加应力
当条形荷载在宽度方向增加 到无穷时,此时地基中附加应力 分布仍可按均布条形荷载下土中 应力的公式计算,查表2-10。
相当于薄压缩层:h 0.5b
b,z/b 0, αsz=1.0
基础中点处,任意深度处的附加
应力均等于p0,即在大面积荷载
作用下,地基中附加应力分布与 深度无关。
成层 H
均匀 E1
E2>E1
23
2.变薄交互层地基(各向异性地基) • 当Ex/Ez<1 时,应力集中——Ex相对较小,不利于应力扩散 • 当Ex/Ez>1 时,应力扩散——Ex相对较大,有利于应力扩散
24
3.双层地基(非均质地基)
(1)上层软弱,下层坚硬的成层地基 ▪ 中轴线附近σz比均质时明显增大的现象
21
条形荷载与矩形荷载的附加应力对比图
表明荷载作 用面积越大 附加应力传 递的越深。
22
2.3.4 地基附加应力的应用讨论
1.变形模量随深度增大的地基(非均质地基)
B
土力学与地基基础-第三章.土中应力分布及计算解析
从上式可知,自重应力随深度z线性增
加,呈三角形分布图形。
2019/8/25
土中自重应力的计算
8
3.2 土中自重应力的计算
2. 成层土的压力计算
地基土通常为成层土。当地基为成层土体时,设各土层
的厚度为hi,重度为 ,则在i 深度z处土的自重应力计算公式 为:
n
cz ihi i 1
剪应力
xy
yx
3Q xyz
2
R5
1 2 3
xy(2R z)
R3
(
R
z)2
yz
zy
3Q 2
yz 2 R5
ZX
XZ
3Q 2
xz 2 R5
3.4 集中力作用下土中应力计算
X、Y、Z轴方向的位移
分别为:
刚性基础在中心载荷作用下,地基反力呈马鞍形,随着外 力的增大,其形状相应改变。如下图
2019/8/25
基础底面压力的分布和计算
15
3.3 基础底面压力的分布和计算
2019/8/25
基础底面压力的分布和计算
16
3.3 基础底面压力的分布和计算
2. 地基反力的简化计算方法
根据弹性理论的圣维南原理及土中实测结果,当作用在 基础上的总载荷为定值时,地基反力分布的形状对土中 应力分布的影响,只在一定深度范围内,当基底的深度 超过基础宽度的1.5-2.0倍时,它的影响已不显著。因此, 在实用上采用材料力学方法,即将地基反力分布认为是 线性分布的简化计算方法。
因此,基底附加压力p0是上部结构和基础传到基底的地基反力 与基底处原先存在于土中的自重应力之差(新增加的应力)(如图)
土力学与地基基础——第章地基土中应力计算
理论:弹性力学解求解“弹性”土体中的应力
方法:解析方法优点:简单,易于绘成图表等
土力学中应力符号的规定
zx z+
-
材料力学
xz
x
- zx
z
+
土力学
xz x
正应力
剪应力
拉为正 顺时针为正 压为负 逆时针为负
压为正 逆时针为正 拉为负 顺时针为负
3.2 土中自重应力计算
(a)
(b)
(c)
刚性基础下压力分布
(a)马鞍形 (b)抛物线形 (c)钟形
二、基底压力的简化计算方法
基底压力的分布 形式十分复杂
圣维南原理: 基底压力分布对土中 应力的影响仅限于一 定深度范围,之外的 地基附加应力只取决 于荷载合力的大小、 方向和位置
现场实测结果:
一般距基底的深度 超过基础宽度的 1.5~2.0倍时,它的 影响已很不显著。
基础结构 的外荷载
基底反力
基底压力
附加应力
地基沉降变形
第三节 基底压力分布和计算
基础底面的压力分布问题是涉及到基础与地基土 两种不同物体间的接触压力问题,在弹性理论中称 为接触压力问题。这是一个复杂的问题,影响它的 因素很多,如基础的刚度、形状、尺寸、埋置深度, 以及地基土的性质、荷载大小等。
基础底面的压力分布问 题是涉及到基础与地 基土两种不同物体间 的接触压力问题,在 弹性理论中称为接触 压力问题。这是一个 复杂的问题,影响它 的因素很多,主要受 荷载条件、基础条件 和地基条件的影响
第三章 土中应力计算
土的应力问题是研究地基和工程结构变形及稳定问题的依据
主要内容
3.1 概述 3.2 土中自重应力计算 3.3 基础底面的压力分布与计算 3.4 地基土中的附加应力
土中应力计算__
第2章土中应力计算一、知识点:概述土中自重应力基底压力(接触应力)2.3.1 基底压力的简化计算基底附加压力地基附加应力2.4.1 竖向集中力下的地基附加应力 2.4.2 矩形基础下的地基附加应力2.4.3 线荷载和条形荷载下的地基附加应力非均质和各向异性地基中的附加应力地基沉降的弹性力学公式二、考试内容:重点掌握内容1.自重应力在地基土中的分布规律,均匀土、分层土和有地下水位时土中自重应力的计算方法。
2.基底接触压力的概念,基底附加压力的概念及计算方法。
3.基底附加压力的概念,基底附加压力在地基土中的分布规律。
应用角点法计算地基土中任意一点的竖向附加应力。
三、本章内容:§ 概述建筑物的建造使地基土中原有的应力状态发生变化,从而引起地基变形,出现基础沉降。
由于建筑物荷载差异和地基不均匀等原因,基础各部分的沉降或多或少总是不均匀的,使得上部结构之中相应地产生额外的应力和变形。
基础不均匀沉降超过了一定的限度,将导致建筑物的开裂、歪斜甚至破坏,例如砖墙出现裂缝、吊车轮子出现卡轨或滑轨、高耸构筑物倾斜、机器转轴偏斜以及与建筑物连接管道断裂等等。
因此,研究地基变形,对于保证建筑物的正常使用、经济和牢固,都具有很大的意义。
地基的沉降,必须要从土的应力与应变的基本关系出发来研究。
对于地基土的应力一般要考虑基底附加应力、地基自重应力和地基附加应力。
地基的变形是由地基的附加应力导致,变形都有一个由开始到稳定的过程。
我们把地基稳定后的累计变形量称为最终沉降量。
地基应力一般包括由土自重引起的自重应力和由建筑物引起的附加应力,这两种应力的产生条件不相同,计算方法也有很大差别。
此外,以常规方法计算由建筑物引起的地基附加应力时,事先确定基础底面的压力分布是不可缺少的条件。
从地基和基础相互作用的假设出发,来分析地基上梁或板的内力和变形,以便设计这类结构复杂的连续基础时,也要以本章的有关内容为前提。
地基土的变形都有一个由开始到稳定的过程,各种土随着荷载大小等条件的不同,其所需时间的差别很大,关于地基变形随时间而增长的过程是土力学中固结理论的研究内容。
4 土中应力计算
8
z 10m :
z zi 4 0.045 0.047 0.368kPa
i 1
8
第五节 竖向分布荷载作用下 土中应力计算
分布荷载作用下土中应力计算
• 在基底范围取元素 面积dF,作用在 元素面积上的分布 集中力可以用集中 力dQ表示。
dF d d dQ p( , )d d
第四章 土中应力计算
第一节 概述
• 土中应力:是指土体在自身重力、构筑 物荷载以及其它因素(土中水渗流、地 震等)作用下,土中所产生的应力。土 中应力包括自重应力与附加应力。 • 计算方法:主要采用弹性力学公式,也 就是把地基土视为均匀的、各向同性的 半无限弹性体。
土的应力-应变关系
• 连续介质问题 • 线性弹性体问题 • 均质、等向问题
• 某建筑场地 的地质柱状 图和土的有 关指标列于 图中。计算 地面下深度 为2.5m、 3.6m、 5.0m、 6.0m、 9.0m 处的自重应 力,并绘出 分布图。
例 题 4.1
例 题4.2
• 计算绘制地基中自重应力沿深度分布曲线。
第三节 基础底面的 压力分布与计算
基础底面压力分布的概念
• 接触压力问题及其 影响因素:基础刚 度、尺寸、埋深、 土性、荷载大小
• 绝对柔性基础 • 柔性基础 • 刚性基础
基础底面压力分布的概念
• 刚性基础:基础各点的沉降是相同的,基 底压力分布随荷载的增大依次呈马鞍形分 布、抛物线形分布及钟形分布。
接触压力计算方法
• 简化方法——材料力学轴心和偏心受 压公式 • 弹性地基上的梁板理论——弹性力学 理论,考虑基础刚度的影响
例题 4.7
某基础为方形,基础 深度范围内土的重度 γ=18kN/m3,试计算 基础最大压力边角下 深度z=2m处的附加 应力。
第3章土体中的应力
p0 p D
(3-13)
3.4 地基中的附加应力 Section 4 Increased stress in foundation
3.4.1 附加应力的空间问题 Spacial problem of additional stress
2P pmax 3KL B K e 2
(3-10)
2. 条形基础(L>10B)(Strip footing)
p max
min
P1 6e 1 B B
(3-11)
3.3.3 偏心斜向荷载 Eccentric inclined load
1. 铅直向基底压力 Vertical Contact pressure
p( x , y ) My P Mx y x A Ix Iy
LB 3 Iy 12
(3-8)
BL3 Ix 12
单向偏心时(例如 x 轴)
p max
min
P 6e 1 A B
(3-9)
讨论(Discussion): B 基底压力分布为梯形(Trapezoid) e 6 B 基底压力分布为三角形(Triangular) e 6 B 基底一侧的压力将出现零值,基底压力分布仍为 e 6 三角形(Triangular)
i 1
图3-1 土体中的自重应力分布
竖直向自重应力:土体中无剪应力存在,故地基中Z深 度处的竖直向自重应力等于单位面积上的土柱重量
• 均质地基:
• 成层地基:
sz z
sz
地面
i Hi
1 H1 2 H2 3 H3 sy
土力学 第三章 土体中的应力计算
第五章土体中的应力计算第一节概述大多数建筑物是造建在土层上的,我们把支承建筑物的这种土层称为地基。
由天然土层直接支承建筑物的称天然地基,软弱土层经加固后支承建筑物的称人工地基,而与地基相接触的建筑物底部称为基础。
地基受荷以后将产生应力和变形,给建筑物带来两个工程问题,即土体稳定问题和变形问题。
如果地基内部所产生的应力在土的强度所允许的范围内,那么土体是稳定的,反之,土体就要发生破坏,并能引起整个地基产生滑动而失去稳定,从而导致建筑物倾倒。
地基中的应力,按照其因可以分为自重应力和附加应力两种:自重应力:由土体本身有效重量产生的应力称为自重应力。
一般而言,土体在自重作用下,在漫长的地质历史上已压缩稳定,不再引起土的变形(新沉积土或近期人工充填土除外)。
附加应力:由于外荷(静的或动的)在地基内部引起的应力称为附加应力,它是使地基失去稳定和产生变形的主要原因。
附加应力的大小,除了与计算点的位置有关外,还决定于基底压力的大小和分布状况。
一、应力~应变关系的假定真实土的应力~应变关系是非常复杂的,目前在计算地基中的附加应力时,常把土当成线弹性体,即假定其应力与应变呈线性关系,服从广义虎克定律,从而可直接应用弹性理论得出应力的解析解。
1、关于连续介质问题弹性理论要求:受力体是连续介质。
而土是由三相物质组成的碎散颗粒集合体,不是连续介质。
为此假设土体是连续体,从平均应力的概念出发,用一般材料力学的方法来定义土中的应力。
2、关于线弹性体问题理想弹性体的应力与应变成正比直线关系,且应力卸除后变形可以完全恢复。
土体则是弹塑性物质,它的应力应变关系是呈非线性的和弹塑性的,且应力卸除后,应变也不能完全恢复。
为此进行假设土的应变关系为直线,以便直接用弹性理论求土中的应力分布,但对沉降有特殊要求的建筑物,这种假设误差过大。
3、关于均质、等向问题理想弹性体应是均质的各向同性体。
而天然地基往往是由成层土组成,为非均质各向异性体。
土体中的应力计算
土体中的应力计算土体中的应力计算是土力学中的重要内容之一,应力是描述土体内部单元之间相互作用的物理量,应力计算可以帮助工程师了解土体行为,并为工程设计和分析提供依据。
本文将从应力的概念、计算方法和应力分析的应用等方面进行详细探讨。
一、应力的概念应力是描述物体内部受力情况的物理量,是单位面积上的力,通常用σ表示。
根据应力的作用方向,可以将应力分为正应力和剪应力两种类型。
正应力是指与应力面垂直的力,剪应力是指与应力面平行的力。
在土体中,通常将正应力分为垂直应力(垂直于土体中心轴线的应力)和水平应力(与土体中心轴线平行的应力)。
二、应力的计算方法土体中应力的计算可以通过静力平衡方程、弹性理论以及实验和数值模拟等方法进行。
1.静力平衡方程法:利用牛顿第二定律和力学平衡原理,根据土体受力平衡的条件来计算应力。
对于均匀土体来说,可以根据土体所受垂直和水平外荷载以及土体自重的大小来计算应力。
2.弹性理论:应力与应变之间的关系可以用弹性理论来描述。
在土壤力学中,常用的是弹性模量和泊松比来表示土体的弹性性质。
通过应变测量和加载试验,可以计算得到土体的应力应变关系。
3.实验和数值模拟法:通过设计合适的实验和进行数值模拟,可以直接或间接地测量土体中的应力。
例如,可以通过土钉或应变计等仪器来测量土体中的应力分布情况。
同时,通过数值模拟方法如有限元分析等,可以模拟土体中复杂的应力场分布。
三、应力分析的应用应力分析是土力学中的关键研究内容,它可以应用于工程设计和分析等方面。
1.基础工程设计:在土力学中,应力分析是基础工程设计的基础。
通过计算土体中的应力分布情况,可以确定土体中的强度和稳定性,从而指导基础工程的设计和施工。
2.土体力学性质研究:通过对土体中应力的分析,可以研究土体的力学性质和变形规律。
这对于土壤改良和地震灾害分析等方面具有重要意义。
3.岩土工程应用:应力分析可以应用于岩土工程相关的设计和分析。
例如,通过分析土体中的应力分布,可以确定边坡的稳定性和墙体结构的受力情况,从而指导工程设计和施工。
土中应力计算
基础条件:
• 土类 地基条件: • 密度 • 土层结构等
暂不考虑上部结构的 影响,用荷载代替上 部结构,使问题得以 简化
3.2 基地压力 1、基底压力分布
弹性地基,完全柔性基础
基础抗弯刚度EI=0 → M=0 (1)荷载均布时,p(x,y)=常数 基础变形能完全适应地基表面的变 形基础上下压力分布必须完全相同, 若不同将会产生弯矩,基础沉降中 间大,两头小 (2)如果要使柔性基础沉降趋于均匀, 显然就得增大基础边缘的荷载,减 小中间荷载,这是荷载和反力就应 该变为非均匀分布,p(x,y)常数
线弹性体 (应力较小时)
均质各向同性体 (土层性质变化不大)
线弹性
卸载
εp
εe
E、与位置和方向无关 理论:弹性力学解求解“弹性”土体中的应力 方法:解析方法优点:简单,易于绘成图表等
3.1 自重应力
定义:在修建建筑物以前,地基中由土体本身 的有效重量而产生的应力
假定:
地基为均质的 变形是呈线性的 地基是半无限空间的
3P z 3 3p 0 z 3 d z dxdy 5 5 2 R 2 R
P p 0 dxdy
y
p0 x
L
b
z
B
0
L
0
d z z (p 0 , m , n )
z cp 0
z
M
m=L/b, n=z/b
(b荷载面的短边宽)
L z c F (b , L , z ) F ( , ) F (m , n ) b b
z t 1p 0
土体中应力计算
第44页/共68页
a.矩形面积内
b.矩形面积外
两种情况:
角点法
2)竖直均布荷载作用矩形面积下任意点的竖向附加应力
第46页/共68页
第45页/共68页
pt
M(0,0,z)
2. 矩形面积竖直三角形分布荷载作用下地基中的竖向附加应力
将上式沿矩形面积积分,即可得到竖直三角形分布荷载作用下矩形面积角点下的竖向附加应力:
第3章 土体中的应力计算
第4页/共68页
第3页/共68页
y
z
x
o
一. 土力学中应力符号的规定
3.矩阵形式
第5页/共68页
第4页/共68页
一. 土力学中应力符号的规定
摩尔圆应力分析
材料力学
+
-
+
-
土力学
正应力
剪应力
拉为正压为负
顺时针为正逆时针为负
压为正拉为负
=
=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
K0:侧压力系数
第12页/共68页
第11页/共68页
三. 土的应力-应变关系的假定
1、室内测定方法及一般规律
特殊应力状态
一维问题
侧限压缩试验
轴对称问题
常规三轴试验
第13页/共68页
第12页/共68页
三. 土的应力-应变关系的假定
③ 均匀一致各向同性体(土层性质变化不大时)
3.3.2 基底压力简化计算方法
1. 中心荷载作用下的基底压力
第27页/共68页
第26页/共68页
土中自重应力的分布特点
土中自重应力的分布特点土体力学是一个重要的学科,它研究土体的力学性质并揭示了土体的力学本质。
土体在受到外力作用时,会产生应力。
其中,自重应力是土体自身重力作用下产生的应力。
它对于土体的力学性质有着重要的影响,因此研究土中自重应力的分布特点对于土体的工程应用有着重要的意义。
土中自重应力的分布特点可以按照分布范围、分布形态、分布深度等不同类型进行划分,下面将从这三个方面进行分析。
1. 分布范围土中自重应力的分布范围可以分为单轴和多轴两种情况。
单轴情况下,土体的自重应力与重力方向相同,因此只有一个应力分量。
多轴情况下,由于土体受到三个不同方向的重力作用,因此自重应力分为三个分量,即径向应力、切向应力和水平应力。
单轴情况下,土中自重应力分布的范围主要受到土体的高度和地面上的作用力大小的影响。
在黑土等比较厚的土层中,自重应力可以达到较高的值。
多轴情况下,土中自重应力的分布范围比单轴情况下更为复杂,需要通过力学分析和实验来确定具体的分布情况。
2. 分布形态土中自重应力的分布形态可以分为均匀和不均匀两种情况。
均匀的分布形态指的是土中自重应力在水平方向上具有相同的分量大小,而在竖直方向上随深度变化而增大。
在一定范围内,自重应力分量与深度之间成线性关系。
当深度增加时,自重应力分量的增加速率逐渐降低。
非均匀的分布形态指的是土地自重应力在水平方向上具有不同的分量大小,而在竖直方向上也随深度变化而不同,即具有梯度分布的特点。
此时的土体通常不是各向同性的。
3. 分布深度土中自重应力的分布深度是指土中自重应力产生的深度范围。
当土体的厚度较小时,土中自重应力的分布深度相对较浅,而且均匀。
随着土体厚度的增加,自重应力产生的深度将逐渐加深,并且在竖直方向上的分量大小也将增大。
总的来说,土中自重应力的分布特点受到土体的高度、重力作用、土型、深度等多重因素的影响。
了解土中自重应力的分布特点对于工程设计和土体的力学本质认识具有重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
σCZ
0
σCZ
0
原地下水位
1
变动后
地下水位
1'
变动后 地下水位
1'
1
原地下水位
பைடு நூலகம்
2' 2
z
(a)地下水位下降
2 2'
z
(b)地下水位上升
分布规律:
▪自重应力分布线的斜率是容重; ▪自重应力在等容重地基中随深度呈直线分布; ▪自重应力在成层地基中呈折线分布; ▪在土层分界面处和地下水位处发生转折。
均质地基
(2)如果要使柔性基础沉降趋于均匀, 显然就得增大基础边缘的荷载,减小 中间荷载,这是荷载和反力就应该变 为非均匀分布,p(x,y)常数
❖ 能运用附加应力计算方法分析计算一般建筑物的地基 附加应力,会分析相邻建筑物之间的影响。
本部分重点 1、应力状态及应力应变关系
地基中的应力状态
应力应变关系
强度问题 变形问题
2、自重应力
建筑物修建以前,地基中由土体 本身的有效重量所产生的应力。
3、附加应力 4、基底压力计算
建筑物修建以后,建筑物重量等 外荷载在地基中引起的应力,所 谓的“附加”是指在原来自重应 力基础上增加的压力。
基础底面与地基之间的接触应力。
土中应力分类
按起因分 自重应力(自重压力) 附加应力(附加压力)
土中应力
按土骨架和
有效应力
土中孔隙的分担作用 孔隙应力(孔隙压力)
应力计算基本假定 均质、各向同性、线性变形体
2.3.1 土的自重应力
本
章 内
2.3.2 基底压力
容 2.3.3 地基中的附加应力
3.1 土的自重应力
60.45kN m2
cz4 cz3 4h4 60.45 16.5 9.8 6
100.65kN m2
cz4 cz4 h3 h4 w 100.65 2 69.8
179.05kN m2
cz5 cz4 5h5 179.05 19.2 3
236.65kN m2
§2.3.1.3 地下水对土中自重应力的影响
天然地面
cz
G A
A z g A
z
z
11
在距地表深度z处,土体的自重应力为 cz = z cx = cy = k0 cz
上式中k0:土的侧压力系数(静止土压力系数),表示土体 在无侧向变形条件下,水平向应力与竖向应力的比值。
天然地面
cz
z
cy
cz cx
cz z
11
z
σcz= z
§2.3.1.2 成层土的自重应力
土中应力定义、分布形态和计 算方法
▪ 学习目标:
❖ 了解自重应力与地基变形的关系,地下水对自重应力 的影响,应力的积聚、扩散现象和应力的叠加原理, 附加应力的分布规律和影响因素。
❖ 掌握土的自重应力计算及其分布形态,基底附加应力 的概念及其计算,空间问题以及条形基础下地基中的 附加应力的计算原理,会利用表格计算附加应力。
1 (1 2) 2 2
成层地基
2.3.2 基底压力
3.2.1 基底压力分布规律 3.2.2 基底压力的简化计算 3.2.3 基底附加压力
§2.3.2.1 基底压力的概念
建 上部结构
筑
物 基础
设
计 地基
基底压力 (地基反力)
基础结构 的外荷载 基底反力
基底压力
附加应力
基底压力:基础底面传递给地基表面 的压力,也称基底接触压力。
2.3.1.1 均质土层中的自重应力 2.3.1.2 成层土的自重应力 2.3.1.3 地下水对土中自重应力
的影响
定义:在修建建筑物以前,地基中由土体本身 的有效重量而产生的应力
目的:确定土体的初始应力状态
假定:水平地基 半无限空间体 半无限弹性体 有侧限应变条件 一维问题
计算: 地下水位以上用天然容重 地下水位以下用浮容重
半刚性基础 基础具有一定的刚度,是介于柔性和刚性基础之间的类型, 基础有一定的弯曲变形,如:水闸底板等钢筋混凝土基础, 可调节本身的应力和变形。
弹性地基,完全柔性基础
基础抗弯刚度EI=0 → M=0 (1)荷载均布时,p(x,y)=常数 基础变形能完全适应地基表面的变形,
基础上下面压力分布必须完全相同, 若不同将会产生弯矩,基础沉降中间 大,两头小
地基沉降变形
基底压力分布
依据基础刚度、荷载及土的性质等因素分析确定基底压力的分布
基础刚度是指基础的抗弯刚度,基础可分为以下三种:
柔性基础
基础刚度很小,荷载作用下,基础变形和地基变形一致, 如:土坝、路堤、路基等。基底压力分布和大小与荷载分 布和大小相同。
刚性基础
基础刚度很大,荷载作用下,基础本身几乎不变形,基础 底面始终保持为平面,不能适应地基变形。如:混凝土基 础、砖基础、毛石基础等。基底压力分布与荷载大小、土 性及埋深有关,有马鞍形、抛物线形、钟形等。
解:按题中所给资 料,可列成表绘制 自重应力σcz沿深 度的分布曲线图
hi(m)
2.0 1.5 2.5 3.0
i(kN/m3)
18.6 17.5 9.0 9.8
σczi(kPa)
37.2 26.3 22.5 29.4
σcz(kPa)
37.2 63.5 86.0 115.4
有不透水层时的自重应力:
cz h1 1 2 h2
§2.3.1.1 均质土层中的自重应力
三维应力状态(一般应力状态)
o
x
y z
y
z zx xy
yz x
假设土体为均匀连续介质,并为半无限空间体,在半空 间无限体中,任意的竖直面和水平面上只存在法向应力σ, 而剪应力τ=0,土体内相同深度处各点的土体自重应力相等。 土体在自重作用下,只产生竖向变形,而不产生侧向变形和 剪切变形。在图中取单位土柱来研究:
3h3
' 4
h4
h h
w3
4
h1 1 h2 2
h h 3sat 3
4 sat 4
cz1 1h1 15.7 0.5 7.85kN m2
cz2 cz1 2h2 7.85 17.8 2
43.45kN m2
cz3 cz2 3h3 43.45 18.3 9.8 2
若地基是由多层土所组成, 设各层的厚度为 h1、 h2 、…hi、…hn,
则地基中第n层底面处的竖向土 自重应力:
n
cz 1h1 2h2 ...... nhn ihi i1
地下水位以下应采用浮容重度
地面
1 H1
2 H2 地下水 z
3 H3 sz
sy
sx
例3.1 某地基土层剖面如图所示,试计算各分层面处的自重应力,并绘 制自重应力σcz沿深度的分布图