复变函数与积分变(北京邮电大学)课后的习题答案[1]1

合集下载

(完整版)复变函数与积分变换习题答案

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

复变函数与积分变量课后习题答4(全).doc

复变函数与积分变量课后习题答4(全).doc

(1)% =解 (1)当刀f 8⑵I …殍(3卜=M / _ J|2”=cos 2n0 + i sin 2月们贫-► 8时,cos 2sin 2H0的极限都不存在,故z n=$土发散.故急捉+)发散.习题四1.下列序列是否有极限?如果有极限,求出其极限.+ 土 (2)% =吗气(3)礼=(号). n n \z ) 时,衫不存在极限,故%的极限不存在.0 (n — 8),故[血z n — 0. ir —8 令m 二厂普r 2n.=信)"无极限.2. 下列级数是否收敛?是否绝对收敛?⑴§(螺+ :);⑵名首;(3疙(l+i )". 解(1)因无上A 】n⑵»1彳=史吉收敛:故(2)绝对收敛.91-1 M • I Al n•(3) lini (l + i )rt= lim (再)%孕,*0,故发散.庶—8 ”一>8 3. 试证级数£ (2之尸当J I <号时绝对收敛.当危\(2z)n\= 2” •\(2z)n\ = (2r)n < 1. S(2r)rt收敛,故S(2z)n绝对收敛.M a 1 It « 1解⑴击4. 试确定下列慕级数的收敛半径. ⑴、狎(2)£(1 +』)心气(3)S解 (1) lim 勺为 | — lim "-— 1,故 R 二 1, n —^8| >1—8 Tl(2) lim V \C n \ = lim J (1 + —) = lim(l + —)n= e,l|f 8A Y \Tl f ”—8 fl故R =』・ e(3) lim I 1 = lim y~~“ = lim —= 0,Wf 8 I C n I 闻f 8 ( Tl + I / ! JI —8 ?1 + 1故 R = 8.5. 将下列各函数展开为z 的幕级数,并指出其收敛区域.⑴ 7~~~~j ; (2) 7 ----- K ---- (a 工 0,& 会 0);1 + z \z - a)\z - b)fl N〈3) ~ ; (4)ch z; (5)sir?z ; (6)6*-1. (1 + z )]1- (- z') 8 8、(-/)”=云(-I)”』,原点到所有奇点的距离最小值为1 ,故I Z | < 1.(2)1 .(a = b )4- a -Z-an oc=z -=an 0原式收敛区域:2.(a h b )1 ( 1a -b z - a原式)2 尊一=、(- 1)1 次”-2,力=1(4)ch ze[+e" ―2—z2n一2(:〃!二 n!S(2”)!,1 一cos2z< 8.-[1 V (2z)H • (- 1)”2 一 2 2 乙_ JL 小(一1)2 •一2:(2Q!(5)sin2in =0(2n)!< 8.E)=广•六(。

复变函数与积分变(北京邮电大学)课后的习题答案

复变函数与积分变(北京邮电大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换习题解答

复变函数与积分变换习题解答

练 习 一1.求下列各复数的实部、虚部、模与幅角。

(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。

1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。

(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。

证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。

复变函数与积分变换课后答案

复变函数与积分变换课后答案

1 ∴ Res e z 1 ,1 1 .
2. 利用各种方法计算 f(z)在有限孤立奇点处的留数.
3z 2 (1) f z 2 z z 2 3z 2 解: f z 2 的有限孤立奇点处有 z=0,z=-2.其中 z=0 为二级极点 z=-2 为一级极 z z 2
1 1 2 解: z 1 sin z 2 2 z 1 sin z z 1 1 1 1 1 z 2 2 z 1 3 5 5! z z 3! z 1 ∴ Res f z , 0 1 3!
为在 c 内 tanπz 有 zk k
sin πz 由于 Res f z , zk cos πz
1 π
1 ∴ tan πzdz 2 πi Res f z , zk 2πi 2n 4ni c π k (2)
3 i 10
6. 计算下列积分.
(1)
π
0
cos m d 5 4 cos 1 π cos m d 2 π 5 4 cos
因被积函数为 θ 的偶函数,所以 I 令 I1
1 π sin m d 则有 2 π 5 4 cos
1 π eim d 2 π 5 4 cos
z 0
所以由留数定理.

AB
f z dz
BE
f z dz
EF
f z dz
C
FA
f z dz 2πi ln a


BE
f z dz

R
C
e x Ri ln a dx x Ri 2

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变(北京邮电大学)课后的习题答案

复变函数与积分变(北京邮电大学)课后的习题答案
π i 2 2 4 解: 3 3i= 6 i 6 e 2 2
(1) arg z π; (2) z 1 z ; (3)1 z i | 2; (4) Re z Im z;
k 0,1

3 3i 6 e
1 π 2 i 4


ie2
i
π
③解: 1 eiπ eπi
2 ④解: 8π 1 3i 16π π . 3
z z z w w z w w z zw z w w z w

2
2 2 2
2 Re z w



2
∴ 8π 1 3i 16π e
① 则 :∵设 z=x+iy
3
3
∴当 n 2k 时, Re in 1k , Im in 0 ; 当
k
n 2k 1


R
e i
n
,0
x a iy x a iy z a x iy a x a iy 2 2 z a x iy a x a iy x a y
1 i 3 , ∴ Re 1 2
2.求下列各复数的实部和虚部(z=x+iy)
k n 2k 1 , n i k . ⑤解: ∵ k n 2k 1 1 i,
za (a ); z 3 ; 1 i 3 ; 1 i 3 ; i n . za 2 2
2π 2π ⑤解: cos i sin 9 9

复变函数与积分变换课后习题答案

复变函数与积分变换课后习题答案
解:(1) 内包含了奇点

(2) 内包含了奇点,

19. 验证下列函数为调和函数.
解(1) 设,

从而有
,满足拉普拉斯方程,从而是调和函数.
(2) 设,

从而有
,满足拉普拉斯方程,从而是调和函数.
,满足拉普拉斯方程,从而是调和函数.
20.证明:函数,都是调和函数,但不是解析函数
证明:
∴,从而是调和函数.
(1) sinz=sinxchy+icosx∙shy
证明:
(2)cosz=cosx∙chy-isinx∙shy
证明:
(3)|sinz|2=sin2x+sh2y
证明:
(4)|cosz|2=cos2x+sh2y
证明:
21. 证明当y→∞时,|sin(x+iy)|和|cos(x+iy)|都趋于无穷大.
证明:
解:因为f(z)解析,从而满足C-R条件.
所以.
9. 试证下列函数在z平面上解析,并求其导数.
(1) f(z)=x3+3x2yi-3xy2-y3i
证明:u(x,y)=x3-3xy2, v(x,y)=3x2y-y3在全平面可微,且
所以f(z)在全平面上满足C-R方程,处处可导,处处解析.
.(2) .
证明:
12.指出下列各式中点z所确定的平面图形,并作出草图.
解:
(1)、argz=π.表示负实轴.
(2)、|z-1|=|z|.表示直线z=.
(3)、1<|z+i|<2
解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。
(4)、Re(z)>Imz.
解:表示直线y=x的右下半平面

复变函数与积分变换课后习题答案

复变函数与积分变换课后习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()R e in=,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈C ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈C ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z=12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数及积分变换习题答案

复变函数及积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1)i 解:2cossin22ii e i πππ==+(2)-1解:1cos sin i e i πππ-==+(3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4)1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5)3z解:()3333cos3sin3i z r e r i θθθ==+ (6)1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar21ar21ar2bi ctg kabi ctgabi ctgaπ⎛⎫+⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222iki iiieie ee iπππππππ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭⎛⎫+⎪⎝⎭⎧=+⎪⎪⎪⎨====+⎪⎪⎪=-⎩(3) i i解:()2222ii k ki i e eππππ⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k ke eππππ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i ie eααα-+=,而:()()()()()()()()5555555555cos sin cos sincos sin cos sinn ni nnn ni nne i C ie i C iαααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()5555555543253543251cos5cos sin cos sin21cos sin1125cos sin cos sin cos5cos sin10cos sin cosn n n nnnn n nnnC i iC ii C iααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin5i ie eααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e ie e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案

高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案

+
1 zn
= 2cos nt

(2) zn − 1 = 2 i sin nt zn
解 (1) zn + 1 = eint + e−int = eint + eint = 2sin nt zn
(2) zn

1 zn
= eint
− e−int
= eint
− eint
= 2 i sin nt
14.求下列各式的值
故 n = 4k, k = 0, ±1, ±2,"。
16.(1)求方程 z3 + 8 = 0 的所有根 (2)求微分方程 y'''+8y = 0 的一般解。
( )1
π i
(1+
2k
)
解 (1) z = −8 3 = 2e 3 ,k=0,1,2。
即原方程有如下三个解:
1 + i 3, −2, 1 − i 3 。
+
4 i)(2
2i

5i)⎤
⎥⎦
+
2kπ
=
2 arctan
26 7

π
+
2kπ
= arctan 26 + (2k −1)π ,
7
k = 0,±1,±2," .
( ) ( ) (4) i8 − 4i21 + i = i2 4 − 4 i2 10i + i = (−1)4 − 4(− )1 10i + i
34
= 1 [5x + 3y − 4]+ i(− 3x + 5y −18) = 1 + i

大学_《复变函数与积分变换》(李江涛著)课后答案下载

大学_《复变函数与积分变换》(李江涛著)课后答案下载

《复变函数与积分变换》(李江涛著)课后答案下载《复变函数与积分变换》(李江涛著)内容介绍第1章复数与复变函数1.1 复数1.1.1 复数域1.1.2 复平面、复数的模与辐角1.1.3 复数的乘幂与方根1.1.4 共轭复数1.1.5 无穷远点与扩充复平面1.2 复平面点集1.1 1平面点集1.2.2 区域1.2.3 Jordan曲线1.2.4 单连通区域与多连通区域1.3 复变函数的极限与连续1.3.1 复变函数的概念1.3.2 复变函数的极限1.3.3 复变函数的连续性习题1第2章解析函数2.1 解析函数的概念2.1.1 复变函数的导数与微分 2.1.2 解析函数2.2 C.-R.条件2.3 初等函数2.3.1 指数函数2.3.2 对数函数2.3.3 幂函数2.3.4 三角函数与双曲函数2.3.5 反三角函数与反双曲函数习题2第3章复变函数的积分3.1 复变函数的积分3.1.1 复变函数积分的`定义3.1.2 积分的存在性与计算3.1.3 复积分的基本性质3.2 Cauchy积分定理3.2.1 单连通区域上的Cauchy积分定理 3.2.2 多连通区域上的Cauchy积分定理 3.3 Cauchy积分公式及其应用3.3.1 Cauchy积分公式3.3.2 解析函数的无穷可微性3.3.3 Cauchy不等式与Liouville定理 3.3.4 Morera定理3.4 解析函数与调和函数的关系习题3第4章解析函数的级数展开及其应用 4.1 复级数的概念及基本性质4.1.1 复数数列4.1.2 复数项级数4.1.3 复变函数项级数4.2 幂级数4.2.1 幂级数收敛圆及收敛半径4.2.2 幂级数的性质4.2.3 Taylor级数4.2 ,4解析函数的唯一性定理4.3 双边幂级数表示及其应用4.3.1 双边幂级数4.3.2 Laurent级数4.3.3 孤立奇点及其分类4.3.4 解析函数在无穷远点的性态习题4第5章留数及其应用5.1 留数5.1.1 留数的概念5.1.2 留数定理5.1.3 留数的计算……第6章共形映射第7章 Fourier变换第8章 Laplace变换《复变函数与积分变换》(李江涛著)课程目录《复变函数与积分变换》全书共8章,内容包括:复数与复变函数,解析函数,复变函数的积分,解析函数的级数展开及其应用,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换等。

复变函数与积分变换课后习题答案详解

复变函数与积分变换课后习题答案详解

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==.∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同理得
所以当y→∞时有|cosz|→∞.
习题三
1.计算积分 ,其中C为从原点到点1+i的直线段.
解设直线段的方程为 ,则 .

2.计算积分 ,其中积分路径C为
(1)从点0到点1+i的直线段;
(2)沿抛物线y=x2,从点0到点1+i的弧段.
解(1)设 .
(2)设 .
3.计算积分 ,其中积分路径C为
(1)从点-i到点i的直线段;
证明: 在上面第五题的证明已经证明了.
下面证 .

.从而得证.

几何意义:平行四边形两对角线平方的和等于各边的平方的和.
7.将下列复数表示为指数形式或三角形式
①解:
其中 .
②解: 其中 .
③解:
④解: .

⑤解:
解:∵ .

8.计算:(1)i的三次根;(2)-1的三次根;(3) 的平方根.
⑴i的三次根.
(1) f(z)=x3+3x2yi-3xy2-y3i
证明:u(x,y)=x3-3xy2, v(x,y)=3x2y-y3在全平面可微,且
所以f(z)在全平面上满足C-R方程,处处可导,处处解析.
.(2) .
证明:
处处可微,且
所以 ,
所以f(z)处处可导,处处解析.
10.设
求证:(1) f(z)在z=0处连续.
(2)沿单位圆周|z|=1的左半圆周,从点-i到点i;
(3)沿单位圆周|z|=1的右半圆周,从点-i到点i.
解(1)设 .
(2)设 . 从 到
(3)设 . 从 到
6.计算积分 ,其中 为 .

∵ 在 所围的区域内解析

从而

7.计算积分 ,其中积分路径 为
(1) (2) (3)
(4)
解:(1)在 所围的区域内, 只有一个奇点 .
(2)
(3)
16.求下列积分的值,其中积分路径C均为|z|=1.
(1) (2) (3)
解(1)
(2)
(3)
17.计算积分 ,其中积分路径 为
(1)中心位于点 ,半径为 的正向圆周
(2)中心位于点 ,半径为 的正向圆周
解:(1) 内包含了奇点

(2) 内包含了奇点 ,

19.验证下列函数为调和函数.
解(1)设 ,
其中G为C所围内部区域.
证明:在D内任取一点Z,并取充分大的R,作圆CR: ,将C与Z包含在内
则f(z)在以C及 为边界的区域内解析,依柯西积分公式,有
因为 在 上解析,且
所以,当Z在C外部时,有

设Z在C内,则f(z)=0,即
故有:
习题四
1.复级数 与 都发散,则级数 和 发散.这个命题是否成立?为什么?
复变函数与积分变换
主编:马柏林
——课后习题答案
习题一
1.用复数的代数形式a+ib表示下列复数
.
①解
②解:
③解:
④解:
2.求下列各复数的实部和虚部(z=x+iy)
R);
1:∵设z=x+iy
则 ∴ , .
②解:设z=x+iy
∵ ∴ , .
③解:∵
∴ , .
④解:∵
∴ , .
⑤解:∵ .
∴当 时, , ;
(2)在 所围的区域内包含三个奇点 .故
(3)在 所围的区域内包含一个奇点 ,故
(4)在 所围的区域内包含两个奇点 ,故
10.利用牛顿-莱布尼兹公式计算下列积分.
(1) (2) (3)
(4) (5) (6)
解(1)
(2)
(3)
(4)
(5)
(6) 11.计算积分 ,其中 为
(1) (2) (3)
解(1)

从而有
, 满足拉普拉斯方程,从而是调和函数.
(2) 设 ,

从而有
, 满足拉普拉斯方程,从而是调和函数.
, 满足拉普拉斯方程,从而是调和函数.
20.证明:函数 , 都是调和函数,但 不是解析函数
证明:
∴ ,从而 是调和函数.
∴ ,从而 是调和函数.
但∵
∴不满足C-R方程,从而 不是解析函数.
22.由下列各已知调和函数,求解析函数
而f(z)为解析函数,所以
所以 即
从而v为常数,u为常数,即f(z)为常数.
(3) Ref(z)=常数.
证明:因为Ref(z)为常数,即u=C1,
因为f(z)解析,C-R条件成立。故 即u=C2
从而f(z)为常数.
(4) Imf(z)=常数.
证明:与(3)类似,由v=C1得
因为f(z)解析,由C-R方程得 ,即u=C2
(2)f(z)在z=0处满足柯西—黎曼方程.
(3)f′(0)不存在.
证明.(1)∵




同理

∴f(z)在z=0处连续.
(2)考察极限
当z沿虚轴趋向于零时,z=iy,有

当z沿实轴趋向于零时,z=x,有
它们分别为

∴满足C-R条件.
(3)当z沿y=x趋向于零时,有
∴ 不存在.即f(z)在z=0处不可导.
从而f(z)在 处可导,在全平面不解析.
(4) .
解:设 ,则
所以只有当z=0时才满足C-R方程.
从而f(z)在z=0处可导,处处不解析.
7.证明区域D内满足下列条件之一的解析函数必为常数.
(1) ;
证明:因为 ,所以 , .
所以u,v为常数,于是f(z)为常数.
(2) 解析.
证明:设 在D内解析,则
答.不一定.反例:
发散
但 收敛
发散
收敛.
2.下列复数项级数是否收敛,是绝对收敛还是条件收敛?
(1) (2) (3)
(4) (5)
解 (1)
因为 发散,所以 发散
(2) 发散
又因为
所以 发散
(3) 发散,又因为 收敛,所以不绝对收敛.
(4)
因为所以级数不ຫໍສະໝຸດ 对收敛.又因为当n=2k时, 级数化为 收敛
当n=2k+1时, 级数化为 也收敛
答: (1) 不正确,因为幂级数在它的收敛圆周上可能收敛,也可能发散.
(2) 不正确,因为收敛的幂级数的和函数在收敛圆周内是解析的.
证明:
(3)|sinz|2=sin2x+sh2y
证明:
(4)|cosz|2=cos2x+sh2y
证明:
21.证明当y→∞时,|sin(x+iy)|和|cos(x+iy)|都趋于无穷大.
证明:


当y→+∞时,e-y→0,ey→+∞有|sinz|→∞.
当y→-∞时,e-y→+∞,ey→0有|sinz|→∞.
故α-β=90°
所以 在α处切于圆周T的关于β的充要条件是α-β=90°.
12.指出下列各式中点z所确定的平面图形,并作出草图.
解:
(1)、argz=π.表示负实轴.
(2)、|z-1|=|z|.表示直线z= .
(3)、1<|z+i|<2
解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。
(4)、Re(z)>Imz.
显然当取不同的值时f(z)的极限不同
所以极限不存在.
(3) ;
解: = .
(4) .
解:因为
所以 .
4.讨论下列函数的连续性:
(1)
解:因为 ,
若令y=kx,则 ,
因为当k取不同值时,f(z)的取值不同,所以f(z)在z=0处极限不存在.
从而f(z)在z=0处不连续,除z=0外连续.
(2)
解:因为 ,
从而 在D1内解析
13.计算下列各值
(1) e2+i=e2∙ei=e2∙(cos1+isin1)
(2)
(3)
(4)
14.设z沿通过原点的放射线趋于∞点,试讨论f(z)=z+ez的极限.
解:令z=reiθ,
对于 θ,z→∞时,r→∞.
故 .
所以 .
15.计算下列各值.
(1)
(2)
(3)ln(ei)=ln1+iarg(ei)=ln1+i=i
解:表示直线y=x的右下半平面
5、Imz>1,且|z|<2.
解:表示圆盘内的一弓形域。
习题二
1.求映射 下圆周 的像.
解:设 则
因为 ,所以
所以 ,
所以 即 ,表示椭圆.
2.在映射 下,下列z平面上的图形映射为w平面上的什么图形,设 或 .
(1) ;(2) ;
(3) x=a, y=b.(a, b为实数)
所以
所以f(z)在整个z平面连续.
5.下列函数在何处求导?并求其导数.
(1) (n为正整数);
解:因为n为正整数,所以f(z)在整个z平面上可导.
.
(2) .
解:因为f(z)为有理函数,所以f(z)在 处不可导.
从而f(z)除 外可导.
(3) .
解:f(z)除 外处处可导,且 .
(4) .
解:因为
.所以f(z)除z=0外处处可导,且 .
17.计算下列各值.
(1)
(2)
(3)
18.计算下列各值
(1)
(2)
(3) (4) (5)
(6)
19.求解下列方程
(1) sinz=2.
解:
(2)
解: 即
相关文档
最新文档