浙教版九年级上《圆的基本性质》单元复习

合集下载

浙教版九年级上册 《圆的基本性质圆、图形旋转、垂径定理》知识点总结

浙教版九年级上册 《圆的基本性质圆、图形旋转、垂径定理》知识点总结

《圆的基本性质:圆、图形旋转、垂径定理》知识点总结1.圆的定义;在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。

固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”2、与圆有关的概念(1)弦和直径(连结圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径)(2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆),大于半圆的弧叫优弧(优弧用⌒和三个字母表示)、小于半圆的弧叫劣弧(用⌒和两个字母表示)。

(3)等弧:能够互相重合的两段弧(4)等圆(半径相等的两个圆叫做等圆)(5)点和圆的位置关系:如果P是圆所在平面内的一点,d 表示P到圆心的距离,r表示圆的半径,则:(1)d<r → 圆内(2)d=r → 圆上(3)d>r → 圆外(6)不在同一条直线上的三个点确定一个圆。

过不在同一条直线上的三点做圆,能找出圆的圆心(7)三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。

三角形的外心到各顶点距离相等。

一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。

3、图形的旋转:原图形上的所有点都绕着一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转,这个固定的点叫做旋转中心。

图形经过旋转所得到的图形和原图形全等。

对应点到旋转中心的距离相等,任何一对对应点与旋转中心连线所成的角度等于旋转的角度。

旋转作图基本步骤:1、明确旋转三要素(旋转中心、旋转方向、旋转角度);2、找出关键点;3、找出关键点的对应点;4、作出新图形;5、写出结论。

4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)平分弧的直径,垂直平分弧所对的弦。

圆的基本性质复习ppt 浙教版

圆的基本性质复习ppt 浙教版

圆的基本性质复习(一)
知识复习
有关概念
圆心、半径、直径 弧、弦、弦心距
等圆、同心圆
圆心角、圆周角 三角形外接圆、圆的内接三角形、 四边形的外接圆、圆的内接四边形 点和圆的位置关系 不在同一直线上的 三点确定一个圆
圆的 定义
圆的基本性质
圆的中心对称性和旋转不变性
圆的轴对称性
垂径定理
圆心角定理
圆周角定理
B
这个四边形叫做这个圆的内接四边形。
E A O
B C F
D

圆的中心对称性和旋转不变性: 圆心角定理:
AOB= COD
AB=CD
OE=OF (OE AB于E

AB =CD
推论
OF
CD于F)
圆周角定理: 一条弧所对的圆周角等于它所 对的圆心角的一半。
A
C A O
O
B
推论:
B C
半圆(或直径)所对的圆周角是直角, 90圆周角所对的弦是直径。

(BC=BD)
例1、已知圆O的半径为5,弦长为 8,求 AB弦心距的长。
A C B
.O
小结:求圆中弦(或弦心距)的长,常作圆心 到弦的垂线段这一辅助线,这样就可出现与半 径相关的直角三角形,利用垂径定理来求
例2、半径为5的圆中,有两条平行弦AB 和CD, 并且AB 等于6,CD等于8,求AB和CD间的距离.
r
d<r
P
P在圆内;
r
O r P P
d=r
P在圆上;
d>r
P在圆外。
问题:(1)经过一个已知点可以画多少个圆? (2)经过两个已知点可以画多少个圆?这样的圆的 圆心在怎样的一条直线上? (3)过同在一条直线上的三个点能画圆吗?

浙教 版 九年级数学上册 第3章 圆的基本性质 单元测试卷(解析版)

浙教 版 九年级数学上册 第3章 圆的基本性质 单元测试卷(解析版)

第3章圆的基本性质单元测试卷一、选择题1.(3分)已知⊙O的半径为2,点P到圆心O的距离为,则点P在()A.圆内B.圆上C.圆外D.不能确定2.(3分)如图,⊙O的直径AB,C,D是⊙O上的两点,若∠ADC=20°,则∠CAB的度数为()A.40°B.80°C.70°D.50°3.(3分)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3B.4C.5D.84.(3分)若正六边形的边长等于4,则它的面积等于()A.B.C.D.5.(3分)如图,⊙O的半径为6cm,四边形ABCD内接于⊙O,连结OB、OD,若∠BOD =∠BCD,则劣弧的长为()A.4πB.3πC.2πD.1π6.(3分)如图,圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB 的度数是()A.36°B.60°C.72°D.108°7.(3分)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()A.cm B.5cm C.4cm D.cm8.(3分)已知⊙O的直径CD=4,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=2,则∠ACD等于()A.30°B.60°C.30°或60°D.45°或60°9.(3分)如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A.9πm2B.πm2C.15πm2D.πm210.(3分)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.9B.18C.36D.72二、填空题(每题3分,共32分)11.(4分)如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠D=.12.(4分)圆内接正五边形中,每个外角的度数=度.13.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.14.(4分)如图,在⊙O中,半径OA⊥弦BC.若∠ADC=24°,则∠OBC的度数为.15.(4分)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,使点A和点B有且只有一个点在⊙D内,则x的取值范围是.16.(4分)如图,⊙O是△ABC的外接圆,∠A=45°,BC=3,则⊙O的直径为.17.(4分)如图,直角坐标系中,已知点A(﹣3,0),B(0,4),将△AOB连续作旋转变换,依次得到三角形①,②,③,④,…则第19个三角形中顶点A的坐标是.18.(4分)如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.三、简答题(共38分)19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.(结果保留π)20.(10分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.21.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.22.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当BC=CE=2时,求DE的长度.四、解答题(共2小题,满分0分)23.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,AC,BC的中点分别是M,N,PQ若MP+NQ=12,AC+BC=18,则AB的长为()A.9B.C.11D.1524.一个半圆形零件,直径紧贴地面,现需要将零件按如图所示方式,向前作无滑动翻转,使圆心O再次落在地面上止.已知半圆的直径为6m,则圆心O所经过的路线与地面围成的面积是m2.(不取近似值)参考答案一、选择题(每题3分,共30分)1.(3分)已知⊙O的半径为2,点P到圆心O的距离为,则点P在()A.圆内B.圆上C.圆外D.不能确定解:∵点P到圆心的距离,小于圆的半径2,∴点P在圆内.故选:A.2.(3分)如图,⊙O的直径AB,C,D是⊙O上的两点,若∠ADC=20°,则∠CAB的度数为()A.40°B.80°C.70°D.50°解:∵AB是直径,∴∠ACB=90°,∵∠D=∠B=20°,∴∠CAB=90°﹣20°=70°.故选:C.3.(3分)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3B.4C.5D.8解:连接BC,∵∠BOC=90°,∴BC为圆A的直径,即BC过圆心A,在Rt△BOC中,OB=8,OC=6,根据勾股定理得:BC=10,则圆A的半径为5.故选:C.4.(3分)若正六边形的边长等于4,则它的面积等于()A.B.C.D.解:连接正六变形的中心O和两个顶点D、E,得到△ODE,∵∠DOE=360°×=60°,又∵OD=OE,∴∠ODE=∠OED=(180°﹣60°)÷2=60°,则△ODE为正三角形,∴OD=OE=DE=4,∴S△ODE=OD•OM=OD•OE•sin60°=×4×4×=4.正六边形的面积为6×4=24.故选:B.5.(3分)如图,⊙O的半径为6cm,四边形ABCD内接于⊙O,连结OB、OD,若∠BOD =∠BCD,则劣弧的长为()A.4πB.3πC.2πD.1π解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴劣弧BD的长==4π;故选:A.6.(3分)如图,圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB 的度数是()A.36°B.60°C.72°D.108°解:∵五边形ABCDE为正五边形,∴AB=BC=CD,∠ABC=∠BCD=108度,∴∠BAC=∠BCA=∠CBD=∠BDC==36°,∴∠APB=∠DBC+∠ACB=72°,故选:C.7.(3分)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()A.cm B.5cm C.4cm D.cm解:连接AO,∵半径OD与弦AB互相垂直,∴AC=AB=4cm,设半径为x,则OC=x﹣3,在Rt△ACO中,AO2=AC2+OC2,即x2=42+(x﹣3)2,解得:x=,故半径为cm.故选:A.8.(3分)已知⊙O的直径CD=4,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=2,则∠ACD等于()A.30°B.60°C.30°或60°D.45°或60°解:连接OA,∵CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,∴∠AMO=90°,AM=BM=AB==,∵AO=CD=2,∴由勾股定理得:OM===1,∴OM=OA,∴∠OAM=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠ACD=60°;当C和D互换一下位置,如图,∵CD是⊙O的直径,∴∠CAD=90°,∴此时∠ACD=180°﹣90°﹣60°=30°;所以∠ACD=30°或60°,故选:C.9.(3分)如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A.9πm2B.πm2C.15πm2D.πm2解:大扇形的圆心角是90度,半径是6,所以面积==9πm2;小扇形的圆心角是180°﹣120°=60°,半径是2m,则面积==π(m2),则小羊A在草地上的最大活动区域面积=9π+π=π(m2).故选:B.10.(3分)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.9B.18C.36D.72解:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN是半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AED中,DE===3,∴阴影部分的面积=△DMN的面积==.故选:B.二、填空题(每题3分,共32分)11.(4分)如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠D=45°.解:∵四边形ABCD是⊙O的内接四边形,∠B=135°,∴∠D=45°,故答案为:45°.12.(4分)圆内接正五边形中,每个外角的度数=72度.解:360°÷5=72°.故答案为:72.13.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.14.(4分)如图,在⊙O中,半径OA⊥弦BC.若∠ADC=24°,则∠OBC的度数为42°.解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC=2×24°=48°,∴∠OBC=90°﹣∠AOB=90°﹣48°=42°.故答案为42°15.(4分)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,使点A和点B有且只有一个点在⊙D内,则x的取值范围是3<x≤5.解:连接DB,如图,∵四边形ABCD为矩形,∴∠A=90°,∴BD==5,∵点A和点B有且只有一个点在⊙D内,∴点A在圆⊙D内,点D在圆⊙D上或圆⊙D外,∴3<x≤5.故答案为3<x≤5.16.(4分)如图,⊙O是△ABC的外接圆,∠A=45°,BC=3,则⊙O的直径为3.解:连接OB、OC,如图,∵∠BOC=2∠A=90°,而OB=OC,∴△OBC为等腰直角三角形,∴OB=BC=,∴⊙O的直径为3.故答案为3.17.(4分)如图,直角坐标系中,已知点A(﹣3,0),B(0,4),将△AOB连续作旋转变换,依次得到三角形①,②,③,④,…则第19个三角形中顶点A的坐标是(72,4).解:∵A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∵△AOB连续作三次旋转变换回到原来的状态,而19=3×6+1,∴第19个三角形的状态与第1个一样,∴第19个三角形中顶点A的横坐标为6×12=72,纵坐标是4,即第19个三角形中顶点A的坐标是(72,4).故答案为(72,4).18.(4分)如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为2.解:作点A关于MN的对称点A′,连接A′B,与MN的交点即为点P,PA+PB的最小值即为A′B的长,连接OA′、OB、OA,∵A′点为点A关于直线MN的对称点,∠AMN=30°,∴∠AON=∠A′ON=2∠AMN=2×30°=60°,又∵点B是弧AN的中点,∴=,∴∠BON=∠AOB=∠AON=×60°=30°,∴∠A′OB=∠A′ON+∠BON=60°+30°=90°,又∵MN=4,∴OA′=OB=MN=×4=2,∴Rt△A′OB中,A′B==2,即PA+PB的最小值为2.故答案为:2.三、简答题(共38分)19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.(结果保留π)解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.20.(10分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO=(180°﹣∠AOD)=(180°﹣70°)=55°,∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.21.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠DCB=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.22.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当BC=CE=2时,求DE的长度.【解答】(1)证明:∵OD⊥AC,∴=,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OD⊥AC,∴AE=CE=2,在Rt△ABC中,AB==2,∴OD=,∵AE=CE,OA=OB,∴OE为△ABC的中位线,∴OE=BC=1,∴DE=﹣1.四、解答题(共2小题,满分0分)23.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,AC,BC的中点分别是M,N,PQ若MP+NQ=12,AC+BC=18,则AB的长为()A.9B.C.11D.15解:连接OP,OQ,∵DE,FG,,的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BD的中点,∴OH+OI=(AC+BC)=9,∵MH+NI=AC+BC=18,MP+NQ=12,∴PH+QI=18﹣12=6,∴AB=OP+OQ=OH+OI+PH+QI=9+6=15,故选:D.24.一个半圆形零件,直径紧贴地面,现需要将零件按如图所示方式,向前作无滑动翻转,使圆心O再次落在地面上止.已知半圆的直径为6m,则圆心O所经过的路线与地面围成的面积是πm2.(不取近似值)解:圆心O先以A为圆心、以3m为半径,圆心角为90°的弧OO1,接着圆心O从O1平移到O2,且O1O2的长为半圆的长,然后圆心O以B为圆心、以3m为半径,圆心角为90°的弧O2O3,所以圆心O所经过的路线与地面围成的面积=S扇形AOO1+S矩形ABO2O1+S扇形BO2O3=+3••2π•3+=π(m2).故答案为π.。

浙教版九年级上《第三章圆的基本性质》期末复习试卷(含解析)

浙教版九年级上《第三章圆的基本性质》期末复习试卷(含解析)

期末复习:浙教版九年级数学学上册第三章圆的基本性质一、单选题(共10题;共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°3.如图,AB是圆0的直径,弦CD AB于点E,则下列结论正确的是( )A. OE=BEB.C. △BOC是等边三角形D. 四边形ODBC是菱形4.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦A. 2B. 3C. 4D. 55.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A. B. 2 C. 2 D. 36.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A. 28°B. 56°C. 60°D. 62°7.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°8.如图,AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A. 30°B. 40°C. 45°D. 50°9.如图,CD为⊙O的直径,CD⊥EF,垂点为G,∠EOD=40°,则∠DCF ()A. 80°B. 50°C. 40°D. 20°10.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A. 80°B. 50°C. 40°D. 20°二、填空题(共10题;共30分)11.如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=________.12.如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC= ________.13.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M,N分别是AB、BC 的中点,则MN长的最大值是________.14.平面直角坐标系中,以点P(0,1)为中心,把点A(5,1)逆时针旋转90°,得到点B,则点B的坐标为________.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是________°16.如图,点,,,在上,,,是中点,则的度数为________.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=________.18.如图,⊙O是正方形ABCD的外接圆,点E是上任意一点,则∠BEC的度数为________.19.如图,P是等边三角形ABC中的一个点,PA=2,PB=2 ,PC=4,则三角形ABC的边长为________20.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为________三、解答题(共8题;共60分)21.(2017•宁波)在的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.22.如图,已知AB是⊙O的直径,CD⊥AB ,垂足为点E,如果BE=OE ,AB=12,求△ACD的周长23.已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OH⊥AC于点H.(1)如图1,求证:∠B=∠C;(2)如图2,当H、O、B三点在一条直线上时,求∠BAC的度数;(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和的值.24.如图所示,△ABC中,AB=AC=10,BC=12,求△ABC外接圆的半径.25.如图,△ABC中,AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE.求证:BD=CE.26.如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD平分OB.(2)若点E为弧ADB的中点,连接0E,CE.求证:CE平分∠OCD.(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.27.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.28.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,交OA于点F,连接EF并延长EF交AB于G,且EG⊥AB.(1)求证:直线AB是⊙O的切线;(2)若EF=2FG,AB= ,求图中阴影部分的面积;(3)若EG=9,BG=12,求BD的长.答案解析部分一、单选题1.【答案】A【考点】点与圆的位置关系【解析】【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选A.【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.2.【答案】D【考点】圆周角定理【解析】【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案。

浙教版九年级圆知识点

浙教版九年级圆知识点

浙教版九年级圆知识点圆是一种基本的几何图形,它在我们日常生活中无处不在。

在浙教版九年级数学课本中,关于圆的知识点主要包括圆的定义、圆的性质、圆的元素、弧长与扇形面积等内容。

本文将逐一介绍并详细解释这些知识点。

1. 圆的定义圆是由平面内与一个确定点的距离相等于一定长度的所有点组成的图形。

圆通常由一个圆心和半径来确定,圆心即为圆的中心点,而半径则是从圆心到圆上任意一点的距离。

2. 圆的性质(1)圆的任意两点之间的距离都相等,这就是圆的最重要的性质,也被称为圆周上两点之间的弦长。

(2)圆的半径相等的两个或多个弦相等。

(3)半径垂直于弦,并且平分弦。

(4)圆周角是由圆周上的两条弧所对应的角,圆周角的大小等于其所对应的弧所对的圆心角的一半。

3. 圆的元素一个完整的圆通常包括圆心、半径、直径、弧、弦和切线等元素。

(1)圆心:圆的中心点。

(2)半径:从圆心到圆上任意一点的距离。

(3)直径:穿过圆心的线段,它的两个端点在圆上。

(4)弧:圆上的一段弧线,可以用圆心角度数或弧长来表示。

(5)弦:圆上连接两个点的线段,它的两个端点在圆上。

(6)切线:与圆只有一个交点,且与半径垂直的直线。

4. 弧长与扇形面积(1)弧长:弧长是指圆上一段弧线所对应的弧长,可以用度数或弧长来表示。

(2)扇形面积:扇形是由圆周上的弧和两条半径所围成的图形,扇形的面积可以通过圆心角的度数来计算。

通过以上的阐述,我们对浙教版九年级数学课本中关于圆的知识点有了更深入的理解。

圆作为一种常见的几何图形,在生活中存在着广泛的应用和意义。

通过学习圆的定义、性质、元素以及弧长和扇形面积的计算方法,我们可以更好地理解并运用圆的相关概念。

在解决生活和学习中的问题时,我们可以运用这些知识点,帮助我们更好地理解和分析几何图形的性质和关系,提升数学解题能力。

2022-2023学年浙教版数学九年级上册第3章《圆的基本性质》章节复习

2022-2023学年浙教版数学九年级上册第3章《圆的基本性质》章节复习

圆的基本性质_章节复习一、单选题1如图,AB是⊙O的直径,BC=CD=DE,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°2如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定3直角三角形两直角边长分别为3和1,那么它的外接圆的直径是()A.1B.2C.3D.44如图,△ABC内接于⊙O,AB是⊙O的直径,CE平分∠ACB交⊙O于点E,∠E=30°,交AB于点D,连接AE,则S ADC:S△ADE的比值为()A.12B.22C.32D.15如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°6如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图像中,能表示y与x函数关系的图像大致是()A.B.C.D.7如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为()A.43π﹣2 B.43π C.23π D.23π﹣2二、填空题8 如果一个扇形的圆心角为135°,半径为8,那么该扇形的弧长是____.9 如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=433,则AD=______.10 如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在AB上的点D处,折痕交OA于点C,则AD的长为____.11 如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是_________.12如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O 为圆心,OB2长为半径画弧交x轴于点A3,…按此作法进行下去,点B n的坐标为__________(n为正整数).y=xxOyA1A2A3A4B1B2B3B413 如图,有一个圆形工具,请利用直尺和圆规,确定这个圆形工具的圆心.14 已知:如图,在圆O中,弦AB,CD交于点E,AD=CB.求证:AE=CE.15 已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.16 如图,圆内接四边形ABCD,AB是⊙O的直径,OD⊥BC于E.(1)求证:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE.17 如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD 的上方,求AB和CD间的距离.18 如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于E,BD交CE于点F,(1)求证:CF=BF;(2)若CD=12,AC=16,求⊙O的半径和CE的长.19 如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧OB的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.20 如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE等于弧AB,BE 分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.21已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.22如图1,已知在⊙O中,点C为劣弧AB的中点连接AC并延长至D,使CD=CA,连接DB并延长交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O直径为6,AC的长为2,求阴影部分的面积之和.(结果保留π与根号)23 阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于⊙O,AB=2,D为AC上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是__。

最新初中九年级数学浙题库 教版九年级上 第3章圆的基本性质 复习提纲

最新初中九年级数学浙题库 教版九年级上 第3章圆的基本性质 复习提纲

第三章圆的基本性质复习一、 点和圆的位置关系:如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,则:(1)d<r →(2)d=r →(3)d>r →1、两个圆的圆心都是O ,半径分别为1r 、2r ,且1r <OA <2r ,那么点A 在( )A 、⊙1r 内B 、⊙2r 外C 、⊙1r外,⊙2r 内 D 、⊙1r 内,⊙2r 外2、一个点到圆的最小距离为4cm ,最大距离为9cm ,则该圆的半径是( )A 、2.5 cm 或6.5 cmB 、2.5 cmC 、6.5 cmD 、5 cm 或13cm3. ⊙0的半径为13cm ,圆心O 到直线l 的距离d=OD=5cm .在直线l 上有三点P,Q,R ,且PD = 12cm , QD<12cm , RD>12cm ,则点P 在 ,点Q 在 ,点R 在 .4. AB 为⊙0的直径,C 为⊙O 上一点,过C 作CD ⊥AB 于点D ,延长CD 至E ,使DE=CD ,那么点E 的位置 ( )A .在⊙0 内B .在⊙0上C .在⊙0外D .不能确定二、几点确定一个圆问题:(1)经过一个已知点可以画多少个圆?(2)经过两个已知点可以画多少个圆?这样的圆的圆心在怎样的一条直线上?(3)过同在一条直线上的三个点能画圆吗?定理:经过 确定一个圆。

1、三角形的外心恰在它的一条边上,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定2、作下列三角形的外接圆:3、找出下图残破的圆的圆心二、 圆的轴对称性:1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧2、推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧3、推论2:平分弧的直径垂直平分弧所对的弦1、已知,⊙O 的半径OA 长为5,弦AB 的长8,OC ⊥AB 于C,则OC 的长为 _______.2、已知,⊙O 中,弦AB 垂直于直径CD ,垂足为P ,AB=6,CP=1,则 ⊙ O 的半径为 。

浙教版初中数学九年级《圆的基本性质》全章复习与巩固—知识讲解(基础)

浙教版初中数学九年级《圆的基本性质》全章复习与巩固—知识讲解(基础)

《圆的基本性质》全章复习与巩固(基础)【学习目标】1.理解圆及其有关概念,了解点与圆的位置关系.2. 认识图形的旋转,理解图形的旋转的性质.3. 理解圆的性质,垂径定理,圆心角定理,圆周角定理.4. 理解圆内接四边形的性质.5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积.6. 会初步综合应用圆的有关知识,解决一些简单的实际问题.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.(3)不在同一条直线上的三个点确定一个圆.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.点与圆的位置关系判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.定理2:平分弧的直径垂直平分弧所对的弦.4.与圆有关的角圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或者等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.在同圆或者等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.5. 圆内接四边形圆内接四边形的对角互补.要点二、图形的旋转在平面内,一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转.这个定点叫做旋转中心,转过的角叫做旋转角.图形经过旋转所得的图形和原图形全等.对应点到旋转中心的距离相等.任何一对对应点与旋转中心连线所成的角度等于旋转的角度.要点三、正多边形各边相等,各内角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.要点四、弧长及扇形的面积圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC外接圆半径的长度为 .【解析】由已知得BC ∥x 轴,则BC 中垂线为2412x -+== 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0)则 r PA ===【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°, 求CD 的长.【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ 32ABOA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°,∴ 112EF OE ==,∴ OF =.在Rt △DFO 中,OF OD =OA =3,∴DF ===(cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF=cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .【答案】由OM⊥AB,ON⊥AC,得M 、N 分别为AB 、AC 的中点(垂径定理),则MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点O 为圆心的圆交x 轴于点A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .【答案】65°.【解析】连结OD ,则∠D OB = 40°,设圆交y 轴负半轴于E ,得∠D OE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP ≤2,则弦AB 所对的圆周角的度数是( )N MO C BA(第3题)A.60°B.120°C.60°或120°D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、图形的旋转4.如图,图B是图A旋转后得到的,旋转中心是,旋转了 .【思路点拨】确定图形的旋转时,首先要确定旋转前后的对应点,即可确定旋转中心,对应点连线的夹角即为旋转角.【答案】X,180°.【解析】解:观察图形中Z点对应点的位置是图A绕旋转中心X按逆时针旋转180°得到的.故答案为:X;180°.【总结升华】本题考查了图形的旋转变化,主要看清是顺时针还是逆时针旋转,旋转多少度,对应点的连线是否过旋转中心,对应点连线的夹角为旋转角.类型四、圆中有关的计算5.(2016•十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【思路点拨】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【答案】D.【解析】解:过O作OE⊥AB于E,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【总结升华】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,AB所在圆的圆心为O.车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【答案与解析】连接OB,过点O作OE⊥AB,垂足为E,交AB于点F,如图(2).由垂径定理,可知E是AB中点,F是AB的中点,∴ 12AE AB ==EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得222(2)R R =-+.解得R =4.∴ OE =2,12OE AO =,∴ ∠AOE =60°,∴ ∠AOB =120°. ∴ AB 的长为120481803ππ⨯=(m).∴ 帆布的面积为8601603ππ⨯=(m 2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以AB 为底面的圆柱的侧面积.根据题意,应先求出AB 所对的圆心角度数以及所在圆的半径,才能求AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm ,水最深的地方的高度为4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.②如图所示,过O 作OC ⊥AB 于D ,交于C ,∵ OC ⊥AB ,∴.由题意可知,CD=4cm. 设半径为x cm ,则.在Rt △BOD 中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm.。

浙教版九年级上第3章圆的基本性质单元复习课件

浙教版九年级上第3章圆的基本性质单元复习课件
A.24 4 C.32 8 B.32 4 D.16
4.如图,AB为半圆直径,O为圆心,C为半圆上一点,E是 弧AC的中点,OE交弦AC于点D,若AC=8cm,DE=2cm, 求OD的长. 解: ∵E为弧AC的中点,
∴OE⊥AC, 1 ∴ AD AC 4cm , 2 ∵OD=OE-DE=(OE-2)cm,OA=OE,
∴在Rt△OAD中,OA2=OD2+AD2, 即OA2=(OE-2)2+42, 又知OA=OE,解得:OE=5, ∴OD=OE-DE=3cm.
1. 下列说法中,正确的是( C ) A.三点确定一个圆
B.长度相等的弧是等弧
C. 任意一个三角形只有一个外接圆 D.三角形的外心到三角形的三边距离相等 2.给出下列四个说法:①半径确定了,圆就确定了;②直 径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆. 其中错误说法的个数是( B ) A.1 B.2 C.3 D.4
C.
D.
3.3 垂径定理
1.垂径定理:垂直于弦的直径平分这条弦所对的弧. 2.推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的弧. 推论2:平分弧的直径垂直平分弧所对的弦.
3.弧的中点:分一条弧成相等的两条弧的点. 4.弦心距:圆心到圆的一条弦的距离.
1.(2015遂宁)如图,在半径为5cm的⊙O中,弦 B ) AB=6cm,OC⊥AB于点C,则OC=( A.3cm B.4cm C.5cm D.6cm 2.(2015大庆)在⊙O中,圆心O到弦AB的距离 为AB长度的一半,则弦所对圆心角的大小 为(D ) A.30° B.45° C.60° D.90° 3.(2015广元)如图,已知⊙O的直径AB⊥CD于点E,则 下列结论错误的是( B ) A.CE=DE C. BC BD B.AE=OE D. △OCE≌△ODE

2020浙教版九年级数学上《圆的基本性质》章节知识点复习专题

2020浙教版九年级数学上《圆的基本性质》章节知识点复习专题

- 1 -【文库独家】圆的基本性质章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图4图5- 2 -三、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD四、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案一、单选题1.如图,图中的弦共有( )A .1条B .2条C .3条D .4条2.平面直角坐标系中,O 为坐标原点,点A 的坐标为( 3,1),将OA 绕原点O 按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .(1, 3 )B .(-1, 3)C .(- 3 ,1)D .( 3 ,-1)3.如图,⊙O 的直径为10,AB 为弦,OC ⊙AB ,垂足为C ,若OC =3,则弦AB 的长为( )A .8B .6C .4D .104.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是⊙ABC 的( )A .三条高的交点B .重心C .内心D .外心5.如图,点A ,B ,C 是⊙O 上的三点,已知⊙AOB=100°,那么⊙ACB 的度数是( )A .30°B .40°C .50°D .60°6.半径为 a 的圆的内接正六边形的边心距是( )A .2aB .22aC 3aD .a7.如图所示,在O 中30AB AC A ︒=∠=,,则B ∠的度数为( ).A.150︒B.75︒C.60︒D.15︒8.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧(4) 圆是轴对称图形,任何一条直径都是对称轴A.0个B.1个C.2个D.3个9.下列说法不正确的是()A.过不在同一直线上的三点能确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.相等的弧所对的弦相等10.如图,在Rt⊙ABC中,⊙ACB=90°,将⊙ABC绕顶点C逆时针旋转得到⊙A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,⊙BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1二、填空题11.如图,在梯形ABCD中,AD⊙BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于度.12.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且⊙EDF=45°,将⊙DAE绕点D逆时针旋转90°,得到⊙DCM.若AE=1,则FM的长为.13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD 于点E.若AB=6,则⊙AEC的面积为.14.如图,在扇形BOC中,⊙BOC=60°,点D是BC的中点,点E,F分别为半径OC,OB上的动点.若OB=2,则⊙DEF周长的最小值为.三、解答题15.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.16.如图,AB是⊙O的直径,弦CD⊙AB于E,⊙CDB=30°,CD=3,求阴影部分的面积.17.如图,在平面直角坐标系中,⊙ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出⊙A1B1C1,使⊙A1B1C1与⊙ABC关于x轴对称;(2)将⊙ABC绕点O逆时针旋转90°,画出旋转后得到的⊙A2B2C2,并直接写出点B旋转到点B2所经过的路径长.18.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,⊙APC=⊙CPB=60°.判断⊙ABC 的形状,并证明你的结论;19.如图,射线PG 平分⊙EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与⊙EPF 两边相交于A 、B 和C 、D ,连结OA ,此时有OA⊙PE(1)求证:AP=AO ;(2)若弦AB=12,求tan⊙OPB 的值.四、综合题20.如图,在⊙ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线交边AC 于点F.(1)求证:DF⊙AC ;(2)若⊙O 的半径为5,⊙CDF =30°,求弧BD 的长(结果保留π).21.如图,在 O 中 AC CB = , CD OA ⊥ 于点D , CE OB ⊥ 于点E.(1)求证: CD CE = ;(2)若 120,2AOB OA ∠=︒= ,求四边形 DOEC 的面积.22.如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H.(1)求证:ABE FEH ≅;(2)连接BH ,若30EBC ∠=︒,求ABH ∠的度数.23.如图1,⊙O 的直径AB 为4,C 为⊙O 上一个定点,⊙ABC=30°,动点P 从A 点出发沿半圆弧 AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:⊙ABC⊙⊙PDC(2)如图2,当点P 到达B 点时,求CD 的长;(3)设CD 的长为 x .在点P 的运动过程中, x 的取值范围为(请直接写出案).答案解析部分1.【答案】B【解析】【解答】解:图形中有弦AB和弦CD,共2条故答案为:B.【分析】由连接圆上任意两点间的距离就是弦即可判断得出答案.2.【答案】B【解析】【解答】过点B作BC⊙x轴于点C,过点B作BC⊙y轴于点F∵点A的坐标为( 3,1),将OA绕原点O逆时针旋转90°到OB的位置∴BC 3=,CO=1∴点B的坐标为:(﹣1,3).故答案为:B.【分析】先根据旋转的性质作图,利用图象则可求得点B的坐标.3.【答案】A【解析】【解答】解:连接OA∵OA=5,OC=3,OC⊙AB∴AC=22-=4OA OC∵OC⊙AB∴AB=2AC=2×4=8.故答案为:A.【分析】连接OA,利用勾股定理求出AC的长,根据垂径定理可得AB=2AC,从而求出AB的长. 4.【答案】D【解析】【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等∴凳子应放在⊙ABC 的三条垂直平分线的交点最适当.故答案为:D .【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.5.【答案】C【解析】【解答】解:∵⊙AOB 与⊙ACB 都对 AB ,且⊙AOB=100°∴⊙ACB= 12 ⊙AOB=50°故选C【分析】根据图形,利用圆周角定理求出所求角度数即可.6.【答案】C【解析】【解答】解:如图,连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距.∵六边形ABCDEF 为正六边形∴60AOB ∠=︒ ,OA=OB=AB=a ,AH=BH= 2a ∴2222233()24aOH OA AH a a =-=-== 即半径为 a 3a . 故答案为:C.【分析】连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距,根据正六边形的性质用勾股定理可求解.7.【答案】B【解析】【解答】解:∵AB AC =∴AB=AC∴⊙B=⊙C=12(180°-⊙A)=12(180°-30°)=75°.故答案为B:.【分析】利用同圆和等圆中,相等的弧所对的弦相等,可证得AB=AC,利用等边对等角及三角形的内角和定理可求出⊙B的度数.8.【答案】A【解析】【解答】(1)、不符合题意,需要添加前提条件,即在同圆或等圆中;(2)、不符合题意,平分的弦不能是直径;(3)、不符合题意,等弧是指长度和度数都相等的弧;(4)、不符合题意,圆的对称轴是直径所在的直线.故答案为:A.【分析】在同圆或等圆中,相等的圆心角所对的弧相等,据此判断(1);平分弦(不是直径)的直径垂直于弦,据此判断(2);能重合的弧叫做等弧,据此判断(3);圆是轴对称图形,任何一条直径所在的直线都是对称轴,据此判断(4).9.【答案】B【解析】【解答】解:A、过不在同一直线上的三点能确定一个圆,正确,不符合题意;B、平分弦(不是直径)的直径垂直于弦,故原命题错误,符合题意;C、圆既是轴对称图形又是中心对称图形,正确,不符合题意;D、相等的弧所对的弦相等,正确,不符合题意.故答案为:B.【分析】根据确定圆的条件可判断A;根据垂径定理可判断B;根据轴对称图形、中心对称图形的概念可判断C;根据弧、弦的关系可判断D.10.【答案】B【解析】【解答】解:如图连接PC.在Rt⊙ABC中,∵⊙A=30°,BC=2∴AB=4根据旋转不变性可知,A′B′=AB=4∴A′P=PB′∴PC=12A′B′=2∵CM=BM=1又∵PM≤PC+CM,即PM≤3∴PM的最大值为3(此时P、C、M共线).故答案为:B.【分析】连接PC,根据⊙A=30°,BC=2,可知AB的值,根据旋转的性质可知A′B′=AB,进而可知A′P、PB′、PC的知,结合图形和三角形三边关系即可得出PM的取值范围,进而可知P、C、M共线时,PM值最大,即可选出答案.11.【答案】60【解析】【解答】解:连接CC′,如图所示:则B′、C′、C在一条直线上由旋转的性质得:⊙1=⊙2,DC′=DC∴⊙3=⊙4∵A′D′⊙B′C′∴⊙2=⊙3∴⊙1=⊙3=⊙4∴⊙CDC′是等边三角形∴⊙CDC′=60°;故答案为:60.【分析】根据旋转的性质“对应点与旋转中心连线所成的角度都等于旋转的角度”可求解。

浙教版 初中数学培优讲义 九年级 教师版 第三章 《圆的基本性质》全章复习与巩固—知识讲解(提高)

浙教版  初中数学培优讲义 九年级 教师版  第三章 《圆的基本性质》全章复习与巩固—知识讲解(提高)

《圆的基本性质》全章复习与巩固(提高)【学习目标】1.理解圆及其有关概念,了解点与圆的位置关系.2. 认识图形的旋转,理解图形的旋转的性质.3. 理解圆的性质,垂径定理,圆心角定理,圆周角定理.4. 理解圆内接四边形的性质.5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积.6. 会初步综合应用圆的有关知识,解决一些简单的实际问题.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.(3)不在同一条直线上的三个点确定一个圆.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.点与圆的位置关系判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.定理2:平分弧的直径垂直平分弧所对的弦.4.与圆有关的角圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或者等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.在同圆或者等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.5. 圆内接四边形圆内接四边形的对角互补.要点二、图形的旋转在平面内,一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转.这个定点叫做旋转中心,转过的角叫做旋转角.图形经过旋转所得的图形和原图形全等.对应点到旋转中心的距离相等.任何一对对应点与旋转中心连线所成的角度等于旋转的角度.要点三、正多边形各边相等,各内角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.要点四、弧长及扇形的面积圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识1. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直线与⊙O有公共点, 设OP=x,则x的取值范围是().≤x≤2C.0≤x≤2 D.x>2 A.-1≤x≤1 B.2【答案】C;【解析】如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OA平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果相同.故答案为:0≤OP≤2.【总结升华】本题考查了直线与圆的位置关系问题.关键是通过平移,确定直线与圆相切的情况,求出此时OP的值.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().A.-1≤x<0或0<x≤1 B.0<x≤1 C.-2≤x<0或0<x≤2 D.x>1【答案】∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OB平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0<OP≤2,同理可得,当OP与x轴负半轴相交时,-2≤OP<0,∴-2≤OP<0,或0<OP≤2.故选C.类型二、弧、弦、圆心角、圆周角的关系及垂径定理=,2.如图所示,已知在⊙O中,AB是⊙O的直径,弦CG⊥AB于D,F是⊙O上的点,且CF CB BF交CG于点E,求证:CE=BE.【答案与解析】证法一:如图(1),连接BC,=.∵ AB是⊙O的直径,弦CG⊥AB,∴CB GB∵ CF BC =,∴ CF GB =.∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE .∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ CB BG =.∵ CB CF =,∴ CF BC BG ==.∴ BF =CG ,ON =OD .∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD ,∴ △ONE ≌△ODE ,∴ NE =DE .∵ 12BN BF =,12CD CG =, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ CF BC =,∴ OC ⊥BF .∵ AB 是⊙O 的直径,CG ⊥AB ,∵ BG BC =,CF BG BC ==.∴ BF CG =,ON OD =.∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD .又∠CNE =∠BDE =90°,∠CEN =∠BED ,∴ △CNE ≌△BDE ,∴ CE =BE .【总结升华】上述各种证明方法,虽然思路各异,但都用到了垂径定理及其推论.在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO交BC于点D,过O作OE⊥BC于E.则三角形ABD为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt△ODE中,∠ODE=60°,∠DOE=30°,则DE=12OD=2,BE=BD-DE=10OE垂直平分BC,BC=2BE=20. 故选D类型三、图形的旋转3.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【思路点拨】利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.【答案】B;解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6-4=2,∴平移的距离和旋转角的度数分别为:2,60°.【总结升华】此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.类型四、圆中有关的计算4.如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.【思路点拨】(1)先连接OD、AD,根据点D是的中点,得出∠DAO=∠DAC,进而根据内错角相等,判定OD∥AE,最后根据DE⊥OD,得出DE与⊙O相切;(2)先连接BC交OD于H,延长DF交⊙O于G,根据垂径定理推导可得OH=OF=4,再根据AB是直径,推出OH是△ABC的中位线,进而得到AC的长是OH长的2倍.【答案与解析】解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC交OD于H,延长DF交⊙O于G,由垂径定理可得:OH⊥BC,==,∴=,∴DG=BC,∴弦心距OH=OF=4,∵AB是直径,∴BC⊥AC,∴OH∥AC,∴OH是△ABC的中位线,∴AC=2OH=8.【点评】本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线.本题也可以根据△ODF与△ABC相似,求得AC的长.举一反三:【变式】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5..【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【总结升华】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【总结升华】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为.故选C.《圆的基本性质》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.对于下列命题:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中,正确的有( ).A.1个 B.2个 C.3个 D.4个2.圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2 D.(4+16)πcm23.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.35. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°7.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A.80° B.100° C.80°或100° D.160°或200°8.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A.22.4 C.42 D.8二、填空题9.如下左图,是的内接三角形,,点P在上移动(点P不与点A、C重合),则的变化范围是__ ________.10.如图,⊙0中,弦AB与弦CD交于E,连接AC,OE,BD,若AE=BE,AC∥0E,则∠CDB=.11.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为______cm.12.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为_______.13.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_______.14.已知正方形ABCD2a,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为____ ____,面积为_____ ___.15.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.16.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_______.三、解答题17.(二模)如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.(1)若∠DFC=40°,求∠CBF的度数;(2)求证:CD⊥DF.18.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.【答案与解析】一、选择题1.【答案】B;【解析】任意一个圆的内接三角形和外切三角形都可以作出无数个.①③正确,②④错误,故选B.2.【答案】D.【解析】底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长=cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】B;【解析】∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=12BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时,圆周角为413608092⨯⨯=°°.注意分情况讨论.8.【答案】C;【解析】∵∠A=22.5°,∴∠BOC=2∠A=45°,∵圆O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.二、填空题9.【答案】;10.【答案】90°;【解析】∵AE=BE,∴OE⊥AB,即∠OEB=90°,∵AC∥OE,∴∠CAE=∠OEB=90°,∴∠CDB=∠CAE=90°.11.【答案】45;【解析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴D=BDC,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).12.【答案】2;【解析】将△DAF绕点A顺时针旋转90度到△BAF′位置,根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.13.【答案】50°;【解析】∵BC为,⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°.14.【答案】21)a;2(222)a;【解析】正方形ABCD外接圆的直径就是它的对角线,由此求得正方形边长为a.如图所示,设正八边形的边长为x.在Rt△AEL中,LE=x,AE=AL=22x,∴222x x a⨯+=,21)x a =,即正八边形的边长为(21)a -.222224[(21)](222)AEL S S S a x a a a =-=-=--=-△正方形正八边形.15.【答案】①②④;【解析】连接AD ,AB 是直径,则AD⊥BC,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确; ∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确; ∵∠EBC=22.5°,2EC≠BE,AE=BE ,∴AE≠2CE,③不正确; ∵AE=BE,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.16.【答案】72;【解析】连接OA ,OB ,OC ,作CH 垂直于AB 于H .根据垂径定理,得到BE=12AB=4,CF=12CD=3, 由勾股定理∴OE=3,OF=4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH 中根据勾股定理得到BC=72,则PA+PC 的最小值为72.三、解答题 17.【解析】解:(1)∵∠ADB=∠ACB ,∠BAD=∠BFC ,∴∠ABD=∠FBC,又∵AB=AD,∴∠ABD=∠ADB,∴∠CBF=∠BCF,∵∠BFC=2∠DFC=80°,∴∠CBF==50°;(2)令∠CFD=α,则∠BAD=∠BFC=2α,∵四边形ABCD是圆的内接四边形,∴∠BAD+∠BCD=180°,即∠BCD=180°﹣2α,又∵AB=AD,∴∠ACD=∠ACB,∴∠ACD=∠ACB=90°﹣α,∴∠CFD+∠FCD=α+(90°﹣α)=90°,∴∠CDF=90°,即CD⊥DF.18.【解析】解:(1)过点O作OH⊥EF,垂足为点H,∵OH⊥EF,∴∠AHO=90°,在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,∴OH=AO,∵BC=10cm,∴BO=5cm.∵AO=AB+BO,AB=3cm,∴AO=3+5=8cm,∴OH=4cm,即圆心O到AQ的距离为4cm.(2)连接OE,在Rt△EOH中,∵∠EHO=90°,∴EH 2+HO 2=EO 2, ∵EO=5cm ,OH=4cm , ∴EH===3cm ,∵OH 过圆心O ,OH ⊥EF , ∴EF=2EH=6cm .19.【解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=.20.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE, ∵DC=DE,∴∠DCE=∠AEB, ∴∠A=∠AEB;(2)∵∠A=∠AEB, ∴△ABE 是等腰三角形, ∵EO⊥CD, ∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.。

浙教版九年级上第3章圆的基本性质复习提纲教案

浙教版九年级上第3章圆的基本性质复习提纲教案

第三章圆的基本性质复习点和圆的位置关系:如果(1)(2)(3)P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,则:d<r T ________________d=r 7d>r 71、两个圆的圆心都是0,半径分别为「1、r2,且「1 < OA<「2,那么点A在()O r1内 B 、o「2 外C 、o 「1 外,o r2内 D 、o r1内,o r2外一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()2.5 cm 或6.5 cm B 、2.5 cm C 、6.5 cm D 、5 cm 或13cmO 0的半径为13cm,圆心O到直线丨的距离d=0D=5cm .在直线丨上有三点P,Q,R,且PD = 12cm , QD<12cm , RD>12cm,则点P 在 ______________ ,点Q 在__________ ,点R 在.AB为O 0的直径,C为O 0上一点,过C作CD丄AB于点D,延长CD至E,使DE=CD , 那么点E的位置()A .在O 0内B .在O 0上二、几点确定一个圆问题:(1)经过一个已知点可以画多少个圆?(2)经过两个已知点可以画多少个圆?这样的圆的圆心在怎样的一条直线上?(3)过同在一条直线上的三个点能画圆吗?定理:经过__________________________________ 确定一个圆。

三角形的外心恰在它的一条边上,那么这个三角形是(锐角三角形 B 、直角三角形 C 、钝角三角形作下列三角形的外接圆:2、3.4.1、A2、C .在O 0外D.不能确定)D 、不能确定找出下图残破的圆的圆心3、圆的轴对称性:1、2、3垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧推论1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧推论2:平分弧的直径垂直平分弧所对的弦1已知,O O的半径0A长为5,弦AB的长8,0C丄AB于C,则0C的长为____________ .2、__________________________________________________________________________________ 已知,O 0中,弦AB垂直于直径CD,垂足为P,AB=6,CP=1贝U O O的半径为_________________3、已知,O O的直径为10cm,A是O O内一点,且0A=3cm则O 0中过点A的最短弦长cm 4、如图,P为O 0的弦BA延长线上一点,PA= AB= 2, P0=5,求O 0的半径。

数学浙教版九上-圆的基本性质复习18页PPT

数学浙教版九上-圆的基本性质复习18页PPT
变式一:若图(1)中的直径AB位置变成图(2)的 位置,则(1)中的结论还成立么?试说明理由。
变式二:如图(2),若 ⊙O 的半径为5cm,EF=6cm,
DA= 1cm,则DE= 1cm cm。
A
O
B
DE
FC
图1
A DE
B
O
FC
图2
例3:AB为⊙O的直径,直线CD交⊙O分别于E、F,
AD⊥CD,BC⊥CD垂足分别为D,C。
(2)若把题中的条件“直线AD平分∠BAC”改为 “直线AD平分∠BAC的外角”如图② ,那么(1) 中结论是否仍然成立?请说明理由。
A
O
B
D
C
E
图①
E
A
F
O
B
C
D
图②
这节课我们复习了哪些知识? 你有什么收获? 还有哪些疑惑?
练一练
1、已知 ⊙ O中,弦AB垂直于直径CD,垂足为P,
AB=6,CP=1,则
不在同一直线上的
A
三点的圆(或三角
形的外接圆、找外
心、破镜重圆、到
三个村庄距离相等)
O
二、应用与拓展
例1、如图,已知⊙O的半径为r,AB是⊙O的弦。 (1)若OC⊥AB于C , r=5,AB=8,则OC=_3__;
(2)若C是AB的中点,OC=4,r=5,则AB= 6 ;
(3)若D是弧AB的中点,OD交AB于点C,CD=1,
距离为

C
.E
D
O
A FB (1)
A FB
C
.E D
O
(2)
做这类问题是,思考问题一定要 全面,考虑到多种情况。
思考题 1、某地有一座圆弧形的拱桥,桥下的水面宽

浙教版九年级上《圆的基本性质》单元复习

浙教版九年级上《圆的基本性质》单元复习

浙教版九年级上《圆的基本性质》单元复习考点分析:随着对复杂几何证明要求的降低,对圆一章内容的删减,圆的考题难度有明显降低。

与圆有关的位置关系,试题强调基础,突出能力,源于教材,知识重组,变中求新,重在培养创新意识。

要注意分类讨论和有关圆的问题的多解性,同时结合阅读明白得,条件开放,结论开放的探究题型,结合运动的动态型综合题问题,结合函数的函数几何综合题逐步成为新课程中的热门考点。

【本章知识框架】圆差不多元素:圆的定义,圆心,半径,弧,弦,弦心距的垂径定理认对称性:旋转不变性,轴对称,中心对称(强)识圆心角、弧、弦、弦心距的关系与圆有关的角:圆心角,圆周角弧长,扇形的面积,弓形的面积,及组合的几何图形圆中的有关运算:圆锥的侧面积、全面积一、圆的概念1、圆的定义:线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.点O叫做圆心,线段OP叫做半径。

2、弧:圆上任意两点间部分叫做圆弧,简称弧。

优弧、劣弧以及表示方法。

3、弦,弦心距,圆心角,圆周角,【例1】如图23-1,已知一个圆,请你用多种方法确定圆心.分析:要确定一个圆的圆心,我们能够从两个方面分析:(1) 圆心在弦的中垂线上;(2) 圆心是直径的交点。

【例2】下列命题正确的是( )A.相等的圆周角对的弧相等 B.等弧所对的弦相等C.三点确定一个圆 D.平分弦的直径垂直于弦.【例3】填空:⑴一条弦把圆分成3:1两部分,则劣弧所对的圆心角的度数是;⑵等边△ABC内接于⊙O,∠AOB= 度。

4、判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有:d>r ⇔点P在⊙O 外;d=r ⇔点P在⊙O 上;d<r ⇔点P在⊙O 内。

【例4】⊙O的半径为4 cm,若线段OA的长为10 cm,则OA的中点B在⊙O的______,若线段OA的长为6 cm,则OA的中点B在⊙O的______。

【例5】一个点到圆的最大距离为1l cm,最小距离为5 cm,则圆的半径为______。

浙教版九年级数学上册第3章 圆的基本性质复习题

浙教版九年级数学上册第3章 圆的基本性质复习题

第3章圆的基本性质类型之一点与圆的位置关系1.若⊙O的半径为4 cm,点A到圆心O的距离为3 cm,则点A 与⊙O的位置关系是()A.点A在圆内B.点A在圆上C.点A在圆外D.不能确定2.在等腰三角形ABC中,AB=AC,D为BC的中点,以BC为直径作⊙D.(1)当⊙A等于多少度时,点A在⊙D上?(2)当⊙A等于多少度时,点A在⊙D内部?(3)当⊙A等于多少度时,点A在⊙D外部?3.如图3-X-1,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),以点A为圆心,r为半径画圆.(1)选取的格点中除点A外恰好有3个在圆内时,求r的取值范围;(2)选取的格点中恰好有4个在圆外时,求r的取值范围.图3-X-1类型之二 垂径定理的应用4.如图3-X -2,CD 为⊙O 的直径,弦AB ⊙CD ,垂足为M ,若AB =12,OM ∶MD =5⊙8,则⊙O 的周长为( )图3-X -2A .26πB .13πC.96π5D.3910π55.如图3-X -3所示,某窗户是由矩形和弓形组成的,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工程师求出AB ︵所在圆O 的半径r .图3-X -3类型之三 圆周角与圆心角的关系6.2019·泰安如图3-X -4,△ABC 内接于⊙O ,若⊙A =α,则⊙OBC 等于( )A .180°-2αB .2αC .90°+αD .90°-α3-X -43-X -57.如图3-X -5,点A ,B ,C 在⊙O 上,∠ABO =32°,∠ACO =38°,则⊙BOC 的度数为________.8.已知:如图3-X -6,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD .求证:(1)⊙DAC =⊙DBA ;(2)P 是线段AF 的中点.图3-X -69.如图3-X -7,在锐角三角形ABC 中,AC 是最短边,以AC的中点O 为圆心,12AC 的长为半径作⊙O ,交BC 于点E ,过点O 作OD ⊙BC 交⊙O 于点D ,连结AE ,AD ,DC .求证:(1)D 是AE ︵的中点;(2)⊙DAO =⊙B +⊙BAD .图3-X -7类型之四 弧长及图形面积的计算图3-X -810.2019·长春如图3-X -8,在⊙ABC 中,∠BAC =100°,AB=AC =4,以点B 为圆心,BA 长为半径作圆弧,交BC 于点D ,则AD︵的长为________.(结果保留π)图3-X -911.2019·舟山如图3-X -9,小明自制一块乒乓球拍,正面是半径为8 cm 的⊙O, AB ︵的度数为90°,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为________.12.已知一个半圆形工件,未搬动前如图3-X -10所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50 m ,半圆的直径为4 m ,则圆心O 所经过的路径长是________m(结果用含π的代数式表示).图3-X -1013.如图3-X -11,已知在⊙O 中,AB =4 3,AC 是⊙O 的直径,AC ⊥BD 于点F ,∠A =30°.求图中阴影部分的面积.图3-X -11类型之五数学活动图3-X-1214.如图3-X-12所示,O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是() A.4 B.5 C.6 D.7详解详析1.A[解析] ⊙点A到圆心O的距离为3 cm,小于⊙O的半径4 cm,∴点A在⊙O内.故选A.2.解:如图.(1)当⊙A=90°时,点A在⊙D上.(2)当90°<∠A<180°时,点A在⊙D内部.(3)当0°<∠A<90°时,点A在⊙D外部.3.解:给各点标上字母,如图所示.由勾股定理可得:AB=22+22=2 2,AC=AD=42+12=17,AE=32+32=3 2,AF=52+22=29,AG =AM =AN =42+32=5.且2 2<17<3 2<5<29.(1)当17<r <3 2时,以点A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.(2)当3 2<r <5时,以点A 为圆心,r 为半径画圆,选取的格点中恰好有4个在圆外.4.B [解析] 连结OA ,设OM =5x ,MD =8x ,则OA =OD =13x .又⊙AB =12,由垂径定理可得AM =6,∴在Rt △AOM 中,(5x )2+62=(13x )2,解得x =12,∴OA =132,根据圆的周长公式C =2πr ,得⊙O 的周长为13π.5.解:如图,连结OF ,则点O ,F ,E 在同一直线上,且OE ⊙AB ,连结OA ,由题意知OA =OE =r .∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138.即⊙O 的半径r 是138 m.6.D [解析] 连结OC ,则⊙BOC =2⊙A =2α,因为OB =OC ,所以⊙OBC =⊙OCB =12(180°-2α)=90°-α.7.140°8.证明:(1)⊙BD 平分⊙CBA ,∴∠CBD =⊙DBA .∵∠DAC 与⊙CBD 都是CD ︵所对的圆周角,∴∠DAC =⊙CBD ,∴∠DAC =⊙DBA .(2)⊙AB 为⊙O 的直径,∴∠ADB =90°.又⊙DE ⊙AB 于点E ,∴∠DEB =90°,∴∠ADE +⊙EDB =⊙DBA +⊙EDB =90°,∴∠ADE =⊙DBA .∵∠DAP =⊙CBD =⊙DBA ,∴∠DAP =⊙ADE ,∴PD =P A .又⊙⊙DF A +⊙DAC =⊙ADE +⊙PDF =90°,且⊙ADE =⊙DAC ,∴∠DF A =⊙PDF ,∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点.9.证明:(1)⊙AC 是⊙O 的直径,∴AE ⊥BC .∵OD ∥BC ,∴AE ⊥OD ,∴D 是AE ︵的中点.(2)如图,延长OD 交AB 于点G ,则OG ⊙BC ,∴∠AGD =⊙B .∵OA =OD ,∴∠DAO =⊙ADO .又⊙⊙ADO =⊙BAD +∠AGD ,∴∠DAO =⊙B +⊙BAD .10.8π9 [解析] ⊙在⊙ABC 中,∠BAC =100°,AB =AC ,∴∠B =⊙C =12×(180°-100°)=40°.∵AB =4.⊙AD ︵的长为40π×4180=8π9.11.(48π+32)cm 2 [解析] 连结AO ,OB ,因为AB ︵的度数为90°,所以⊙AOB =90°,所以S 弓形ACB =34S ⊙O +S △OAB =34×π×82+12×8×8=(48π+32)cm 2.12.(2π+50) [解析] 如图,圆心先向前平移O 1O 2的长度,即14圆的周长,然后沿着弧O 2O 3旋转14圆的周长,最后向右平移50 m ,所以圆心总共走过的路程为圆周长的一半加上50 m .由已知得圆的半径为2 m ,则圆心O 所经过的路径长l =(2π+50)m.13.解:如图,连结AD .∵AC ⊥BD ,AC 是⊙O 的直径,∴AC 垂直平分BD ,∴AB =AD ,BF =FD ,BC ︵=CD ︵,∴∠BAD =2⊙BAC =60°,∴∠BOD =120°.∵BF =12AB =2 3,∴AF =6.∵OB 2=BF 2+OF 2,∴(2 3)2+(6-OB )2=OB 2,∴OB =4,∴S 阴影=13S 圆=163π.14.B [解析] 360÷30=12,360÷60=6,360÷90=4,360÷120=3,360÷180=2,因此有五种情况.如图所示:。

新浙教版数学九年级上册圆的基本性质复习

新浙教版数学九年级上册圆的基本性质复习

课题 圆的基本性质的复习主要知识点梳理:请先自主写出一下相关的知识点 也可以写关键字圆的定义及其画法,对称性垂径定理及其逆定理:{五点}圆弧,圆心角和圆周角的关系:圆弧,圆心角,圆周角,弦,弦心距之间的关系:圆中如何找相等的角:{五种}圆的基本辅助线:精讲例题,提高知识点应用能力:1、下列判断中正确的是( )A 、平分弦的直线垂直于弦B 、平分弧的直线必平分这条弧所对的弦C 、弦的中垂线必平分弦所对的两条弧D 、平分弦的直线必平分弦所对的两条弧2、已知点A 、B ,且AB >4,画经过A 、B 两点且半径为2的圆有( )A 、0个B 、1个C 、2个D 、无数个3、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC =110°,AD ∥OC ,则∠AOD =( ) A70° B 、60° C 、50° D 、40°4、如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为弧AD 上任意一点,若AC =5,则四边形ACBP 周长的最大值是( )A 、15B 、20C 、2515+D 、5515+(第3题) (第4题) (第5题) (第6题)5、如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 的路线作匀速运动,设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是( )A B C D6、如图,在Rt △ABC 中,∠C =90°,AB =10,若以点C 为圆心,CB 长为半径的圆恰好经过AB的中点D ,则AC 的长等于( )A 、35B 、5C 、25D 、67、图示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠ECB 相等的角有( )A 、2个B 、3个C 、4个D 、5个8、如图,用一块直径为a 的圆桌布平铺在对角线长为a 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( )A 、a )12(-B 、a 212-C 、a 422- D 、a )22(- 9、如图,水平地面上有一面积为302cm π的扇形AOB ,半径OA =6cm ,且OA 与地面垂直,在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )A 、20cmB 、24cmC 、10πcmD 、30πcm(第7题) (第8题) (第9题)10、如图,Rt △ABC 中,∠ACB =90°,∠CAB =30°,BC =2,O ,H分别为边AB 、AC 的中点,将△ABC 绕点B 顺时针旋转120°到△11BC A 的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分的面积)为( )A 、38737-π B 、38734+π C 、π D 、334+π11、⊙O 是正三角形ABC 的外接圆,点P 是圆上异于A 、B 、C 的任意一点,则∠BPC 的度数为 .12、如图,以点P 为圆心的圆弧与x 轴交于A 、B 两点,点P 的坐标为(4,2),点A 的坐标为(32,0),则点B 的坐标为 .13、如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,第18秒,点E 在量角器上对应的度数是 度.(第12题) (第13题) (第14题) (第16题)14、如图,两正方形彼此相邻,且内接于半圆,若小正方形的面积为162cm ,则该半圆的半径为 .15、一根水平放置的圆柱形输水管道横截面中有水部分水面宽312米,半径为12米,则积水部分面积为 .16、如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD .(1)求证:∠ADB =∠E ;(2)当AB =5,BC =6,求⊙O 的半径.17、在平面直角坐标系中,已知A (2,0),B (3,1),C (1,3)(1)将△ABC 沿x 轴负方向平移2个单位至△111C B A ,画图并写出1C 的坐标 ;(2)以1A 点为旋转中心,将△111C B A 逆时针方向旋转90°得△221C B A ,画图并写出2C 的坐标 ;(3)求在平移和旋转过程中线段BC 扫过的面积.重点综合认识:1.如图16,高A 城气象台测得台风中心在A 城正西300方向千米的B 处,以每小时10 3千米的速度向北偏东60度的BF 方向移动,距台风200中心千米的范围内是受到台风的区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆的基本性质》单元复习
考点分析:
随着对复杂几何证明要求的降低,对圆一章内容的删减,圆的考题难度有明显降低。

与圆有关的位置关系,试题强调基础,突出能力,源于教材,知识重组,变中求新,重在培养创新意识。

要注意分类讨论和有关圆的问题的多解性,同时结合阅读理解,条件开放,结论开放的探索题型,结合运动的动态型综合题问题,结合函数的函数几何综合题逐渐成为新课程中的热门考点。

【本章知识框架】
圆基本元素:圆的定义,圆心,半径,弧,弦,弦心距
的垂径定理
认对称性:旋转不变性,轴对称,中心对称(强)
识圆心角、弧、弦、弦心距的关系与圆有关的角:圆心角,圆周角
弧长,扇形的面积,弓形的面积,及组合的几何图形
圆中的有关计算:
圆锥的侧面积、全面积
一、圆的概念
1、圆的定义:线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.点O
叫做圆心,线段OP叫做半径。

2、弧:圆上任意两点间部分叫做圆弧,简称弧。

优弧、劣弧以及表示方法。

3、弦,弦心距,圆心角,圆周角,
【例1】如图23-1,已知一个圆,请你用多种方法确定圆心.
分析:要确定一个圆的圆心,我们可以从两个方面分析:
(1) 圆心在弦的中垂线上;(2) 圆心是直径的交点。

【例2】下列命题正确的是( )
A.相等的圆周角对的弧相等B.等弧所对的弦相等
C.三点确定一个圆D.平分弦的直径垂直于弦.
【例3】填空:
⑴一条弦把圆分成3:1两部分,则劣弧所对的圆心角的度数是;
⑵等边△ABC内接于⊙O,∠AOB= 度。

4、判定一个点P是否在⊙O上.
设⊙O的半径为R,OP=d,则有:
d>r ⇔点P在⊙O 外;
d=r ⇔点P在⊙O 上;
d<r ⇔点P在⊙O 内。

【例4】⊙O的半径为4 cm,若线段OA的长为10 cm,则OA的中点B在⊙O的______,若线段OA 的长为6 cm,则OA的中点B在⊙O的______。

【例5】一个点到圆的最大距离为1l cm,最小距离为5 cm,则圆的半径为______。

【例6】P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若x、y都是整数,则这样的点共有()
A 4个
B 8个
C 12个
D 16个
5、三角形的外接圆,外心
三角形的外心:是三角形三边垂直平分线的交点,它是三角形外接圆的圆心。

知识点:锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部。

三角形外心到三角形三个顶点的距离相等。

A B D C O F E O C B A 相关知识:三角形重心,是三角形三边中线的交点,在三角形内部。

【例7】(2004.北京东城)如图,已知△ABC 内接于⊙O ,∠A=45°,BC=2,求⊙O 的面积。

答案:2π。

二、圆的性质 1、旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;
2、圆是中心对称图形,对称中心是圆心.
性质:在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个弦心距中有一对量相等,那么它们所对应的其余各对量也分别相等。

3、轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.
【例8】(浙江)世界上因为有了圆的图案,万物才显得富有生机,以下来自生活中的图形中都有圆(如图3所示).
图中的(1),(2),(3)三个图看上去多么美丽与和谐,这正是因为圆具有轴对称性和中心对称性.
⑴ 请问(1),(2),(3)三个图形中是轴对称图形的有 ,是中心对称图形的有 ;(用(1),(2),(3)这三个图形的代号填空)
⑵ 请在图(4),(5)的两个圆内,按要求分别画出与上面图案不重复的图案(草图),(用尺规画,或徒手画均可,但要尽可能准确些、美观些)要求图4是轴对称图形,但不是中心对称图形;图5既是轴对称图形,又是中心对称图形。

【例9】如图,OE 、OF 分别是⊙O 的弦AB 、CD 的弦心距,如果OE =OF ,那么 (只需写出一个正确的结论).
【例10】(2003•北京市)如图23-10,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10,CD =8,那么AE 的长为( )
A 2
B 3
C 4
D 5
答案:A .
【例11】(2002•青海省)⊙O 的半径为10cm ,弦AB ∥CD ,AB =12cm ,CD =16cm ,则AB 和CD 的距离为( )
A .2cm
B .14cm
C .2cm 或14cm
D .10cm 或20cm
【例12】(2001•吉林省)如图23-14,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点,那么OP 的长的取值范围是_________.
4、与圆有关的角
D C O A P
B A
C ⑴ 圆心角:顶点在圆心的角叫圆心角。

圆心角的性质:圆心角的度数等于它所对的弧的度数。

⑵ 圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角。

圆周角的性质:
① 圆周角等于它所对的弧所对的圆心角的一半.
② 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.
③ 90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.
【例13】(2001•青海省)如图23-18,四边形ABCD 是⊙O 的内接四边形,且AD ∥BC ,对角线AC 、BD 交于点E ,那么圆中共有_________对全等三角形,_________对相似比不为1的相似三角形.
【例14】(江西)如图所示,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD 。

P 是圆上一动点(不与C 、D 重合),试说明∠CPD 与∠COB 与有什么数量关系,并加以说明.
答案:相等或互补。

三、弧、扇形、圆锥侧面的计算
⑴ 圆的面积:2R S π=,周长:R C π2=
⑵ 圆心角为n °,半径为R 的弧长180
R n l π= . ⑶ 圆心角为n °,半径为R ,弧长为l 的扇形的面积3602R n S π= 或 lR S 2
1=. 知识点:弓形的面积要转化为扇形和三角形的面积和、差来计算。

⑷ 圆锥的侧面展开图为扇形。

底面半径为R ,母线长为l ,高为h 的圆锥的侧面积为Rl S π=,全面积为2
R Rl S ππ+= ,母线长、圆锥高、底面圆的半径之间有222h R l +=。

【例15】扇形的半径为30cm,圆心角为1200,用它做成一个圆锥的侧面,则圆锥底面半径为
( )
A 10cm B 20cm C 10πcm D 20πcm
【例16】在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( )
A 2∶3
B 3∶4
C 4∶9 D5∶12
【例17】如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 。

四、作图
平分已知弧;作三角形的外接圆。

五、辅助线
圆中常见的辅助线
1.作半径,利用同圆或等圆的半径相等;
2.作弦心距,利用垂径定理进行证明或计算;
3.作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算;4.作弦构造同弧或等弧所对的圆周角;
5.作弦、直径等构造直径所对的圆周角——直角;
6.遇到三角形的外心常连结外心和三角形的各顶点。

相关文档
最新文档