数学人教版九年级上册正多边形和圆
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。
本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。
本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。
但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。
2.难点:正多边形和圆的关系,圆的性质和应用。
五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。
4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。
六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。
2.教学素材:准备相关的实物、图片等教学素材。
3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。
七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。
人教版数学九年级上册24.3.2《正多边形和圆》教案
人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。
本节内容主要介绍了正多边形的定义、性质以及与圆的关系。
通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。
二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。
但是对于正多边形和圆的关系的理解可能存在一定的困难。
因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。
三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。
–能够理解圆的定义和性质。
–能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。
–通过小组合作,培养学生的合作能力和沟通能力。
3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。
–培养学生的自主学习能力和解决问题的能力。
四. 教学重难点•正多边形的定义和性质。
•圆的定义和性质。
•正多边形和圆的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。
2.通过实例和图形的演示,帮助学生建立直观的认识。
3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。
–提出问题,引导学生思考正多边形和圆的关系。
2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。
–解释正多边形和圆的关系,引导学生理解圆的定义和性质。
3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。
–教师引导学生进行讨论和交流,解答学生的疑问。
人教版初中九年级上册数学课件 《正多边形和圆》圆
解:要使△PCD 的周长最小,即 PC+PD 的值最小.根
据正多边形的性质,得点 C 关于 BE 的对称点为点 A,连接 AD
交 BE 于点 P,那么有 PC+PD=AD 最小.易知四边形 ABCD
为等腰梯形,∠BAD=∠CDA=60°.作 BM⊥AD 于点 M,CN
⊥AD 于点 N.∵AB=2,∴AM=12AB=1,∴DN=AM=1,∴
能超过( A )
A.12 mm
B.12 3 mm
C.6 mm
D.6 3 mm
3.已知圆内接正三角形的面积为 3,则该圆的内接正六边形的边心距是( B )
A.2
B.1
C. 3
D.
3 2
7
4.【贵州贵阳中考】如图,正六边形 ABCDEF 内接于⊙O,连接 BD.则∠CBD 的度数是( A )
A.30° C.60°
10
8.【教材P106练习T3变式】如图,正八边 形ABCDEFGH的半径为2,求它的面积.
11
解:连接 AO、BO、CO、AC. ∵正八边形 ABCDEFGH 的半径为 2,∴AO= BO=CO=2,∠AOB=∠BOC=360°×18=45°,∴∠AOC=90°,∴AC=2 2,此时 AC⊥BO,∴S 四边形 ABCO=12BO·AC=12×2×2 2=2 2,∴正八边形 ABCDEFGH 的面 积为 2 2×4=8 2.
B.45° D.90°
8
5.如图,正六边形 ABCDEF 内接于半径为 4 的圆,则 B、E 两点间的距离为___8___.
9
6.将一个边长为 1 的正六边形补成如图所示的矩形,则矩形的周长等于 ___4_+__2__3____.(结果保留根号)
43 7.【山东滨州中考】若正六边形的内切圆半径为 2,则其外接圆半径为___3___.
人教版数学九年级上册第二十四章《24.3 正多边形和圆》课件(共19张PPT)
对于一些特殊的正多边形,还可以用圆规和直尺来作图. 再如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作 出正方形.
用尺规等分圆: 用尺规作图的方法等分圆周,然后依次连接圆上各分点得到正多边形,这 种方法有局限性,不是任意正多边形都能用此法作图,这种方法从理论上 讲是一种准确方法.
2.如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
归纳新知
正多边形 的画法
用量角器等分圆 用尺规等分圆
此方法可将圆任意n等分,所以用 该方法可作出任意正多边形,但边 数很大时,容易产生较大的误差.
度量法③:
用圆规在⊙O 上顺次截取6条长度等于半径(2 cm)的弦,连接其中的 AB, BC,CA 即可.
B
O
A
C
对于一些特殊的正多边形,还可以用圆规和直尺来作图. 例如,我们也可以这样来作正六边形.由于正六边形的边长等于半径,所以 在半径为R的圆上依次截取等于R的弦,就可以把圆六等分,顺次连接各分 点即可得到半径为R的正六边形.
课堂练习
1.画一个半径为2 cm的正五边形,再作出这个正五边形的各条对角线,画 出一个五角星.
2.面积相等的正三角形与正六边形的边长之比为
.
中考实题
1.已知⊙O如图所示. (1) 求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2) 若⊙O的半径为4,求它的内接正方形的边长.
此方法是一种比较准确的等分圆的方 法,但有局限性,不能将圆任意等分.
再见
合作探究
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法①: 用量角器或 30°角的三角板度量,使∠BAO=∠CAO=30°.
人教版初中九年级上册数学课件 《正多边形和圆形》圆课件
探究四:正多边形和圆的应用
练习:正多边形的一个外角等于20°,则这个正多边形的边数是
。
解:因为外角是20°,360÷20=18,则这个多边形是18边形。
【思路点拨】根据外角和的大小与多边形的边数无关,由外角和 求正多边形的边数,是常见的题目,需要熟练掌握。
探究四:正多边形和圆的应用
活动2 提升型例题
解:如图,三角形的斜边长为a,
∴两条直角边长为,1 a
2
3a 2
∴S空白=1 a 3 a 3 a2
22 4
∵AB=a,
∴OC=,3 a
2
∴S正六边形6= 1 a 3 a 3 3 a2
22
2
∴S阴影=S正六边形﹣S空3白3=a2 3 a2 5 3 a2
2
4
4
S阴影
53 4
a2
5
S空白
3a
探究四:正多边形和圆的应用
例4.如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B
的坐标分别为(1,1),(-1,1),把正方形ABCD绕原点O逆时针
旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分
所形成的正八边形的边长为
。
【思路点拨】如图,首先求出正方形的边长、对角线长;进而求出OA′ 的长;证明△A′MN为等腰直角三角形,求出A′N的长度;同理求出D′M′ 的长度,即可解决问题。
探究一:从旧知识过渡到新知识
活动1 回顾旧知
观察下列图形,从这些图形中找出相应的正多边形。
(1)正六边形;(2)正八边形;(3)等边三角形;(4)正五边形。
探究一:从旧知识过渡到新知识
活动2 整合旧知
正多边形与圆有什么关系呢?
人教版数学九年级上册24.3.1《正多边形和圆》说课稿
人教版数学九年级上册24.3.1《正多边形和圆》说课稿一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第3节的内容。
本节课主要介绍正多边形的定义、性质以及与圆的关系。
通过学习,使学生能够理解正多边形的概念,掌握正多边形的性质,并能够运用这些性质解决实际问题。
教材通过丰富的图片和实例,引发学生的兴趣,引导学生探究正多边形与圆的内在联系,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。
但是,对于正多边形的定义和性质,以及与圆的关系,可能还比较陌生。
因此,在教学过程中,需要注重引导学生从已有的知识出发,探究新知识,激发学生的学习兴趣,帮助学生建立知识体系。
三. 说教学目标1.知识与技能:理解正多边形的定义,掌握正多边形的性质,了解正多边形与圆的关系。
2.过程与方法:通过观察、分析、归纳等方法,探究正多边形的性质,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学的美。
四. 说教学重难点1.教学重点:正多边形的定义,正多边形的性质。
2.教学难点:正多边形与圆的关系,正多边形的性质在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等,引导学生主动探究,积极参与课堂活动。
2.教学手段:利用多媒体课件、实物模型、几何画板等,直观展示正多边形的性质和与圆的关系,提高学生的学习兴趣。
六. 说教学过程1.导入:通过展示一些生活中的正多边形图片,如足球、骰子等,引导学生关注正多边形,激发学生的学习兴趣。
2.探究正多边形的定义和性质:学生分组讨论,每组找出正多边形的定义和性质,最后进行汇报和交流。
3.揭示正多边形与圆的关系:引导学生观察正多边形的特点,引导学生发现正多边形可以看作圆的内接多边形,从而得出正多边形与圆的关系。
九年级数学人教版(上册)24.3正多边形和圆
侵权必究
当堂练习
✓ 当堂反馈 ✓ 即学即用
侵权必究
当堂练习
1. 填表
正多边 形边数
3 4 6
半径 边长 边心距 周长
2 23
22 22
1 23
1
8
3
12
面积
33
4Hale Waihona Puke 632. 若正多边形的边心距与半径的比为1:2,则这 个多边形的边数是 3 .
侵权必究
当堂练习
3.如图是一枚奥运会纪念币的图案,其形状近似 看作为正七边形,则一个内角为 128 4 ___度.
(1)求图①中∠MON=___1_2_0_°_;图②中∠MON= 90 °;
图③中∠MON= 72 °;
MON 360
(2)试探究∠MON的度数与正n边形的边数n的关系.
n
E
A
A
D
M .O
O M
A
D
O
M
B
NC B
图① 侵权必究
NC
图②
N
B
C
图③
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
正多边形 的对称性
侵权必究
新课导入
观察下列图形他们有什么特点?
侵权必究
讲授新课
✓ 典例精讲 ✓ 归纳总结
侵权必究
讲授新课
知识点 1 正多边形的概念
正三 角形
三条边相等, 三个角相等 (60度).
正方形
四条边相等, 四个角相等 (900).
侵权必究
讲授新课
定义 各边相等,各角也相等的多边形叫做正多边形. 如果一个正多边形有n条边,那么这个正多边 形叫做正n边形.
人教版九年级数学上册 正多边形和圆(含答案)
24.3 正多边形和圆知识点1.________________相等,______________也相等的多边形叫做正多边形.2.把一个圆分成几等份,连接各点所得到的多边形是________________,它的中心角等于______________________________________________.3.一个正多边形的外接圆的____________叫做这个正多边形的中心,外接圆的__________叫做正多边形的半径,正多边形每一边所对的__________叫做正多边形的中心角,中心到正多边形的一边的____________叫做正多边形的边心距.4.正n边形的半径为R,边心距为r,边长为a,(1)中心角的度数为:______________.(2)每个内角的度数为:_______________________.(3)每个外角的度数为:____________.(4)周长为:_________,面积为:_________.5.正n边形都是轴对称图形,当边数为偶数时,它的对称轴有_______条,并且还是中心对称图形;当边数为奇数时,它只是_______________.(填“轴对称图形”或“中心对称图形”)一、选择题1.下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形2.(2013•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:23.(2013山东滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A.6,32B.32,3C.6,3 D.62,324. 如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().第4题A.60°B.45°C.30°D.22.5°5.半径相等的圆的内接正三角形,正方形,正六边形的边长的比为()A.1:2:3B.3:2:1C.3:2:1D.1:2:36. 圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是().A.36°B.60°C.72°D.108°第6题7.(2013•自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()第7题A.4B.5C.6D. 78.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ的度数是()A.60°B.65°C.72°D.75°第8题二、填空题9.一个正n边形的边长为a,面积为S,则它的边心距为__________.10.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于__________度.11.若正六边形的面积是243cm2,则这个正六边形的边长是__________.12.已知正六边形的边心距为3,则它的周长是_______.13.点M、N分别是正八边形相邻的边AB、BC上的点,且AM=BN,点O是正八边形的中心,则∠MON=_____________.14.边长为a的正三角形的边心距、半径(外接圆的半径)和高之比为_________________.15.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要__________cm.16.若正多边形的边心距与边长的比为1:2,则这个正多边形的边数是__________.17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.18.(2013•徐州)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为________cm2.三、解答题19.比较正五边形与正六边形,可以发现它们的相同点与不同点.正五边形正六边形例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)____________________________________________________________________;(2)___________________________________________________________________. 不同点:(1)____________________________________________________________________;第18题(2)____________________________________________________________________.20.已知,如图,正六边形ABCDEF 的边长为6cm ,求这个正六边形的外接圆半径R 、边心距r 6、面积S 6.21.如图,⊙O 的半径为2,⊙O 的内接一个正多边形,边心距为1,求它的中心角、边长、面积.22.已知⊙O 和⊙O 上的一点A.(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.23.如图1、图2、图3、…、图n ,M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五第20题 第21题 第22题边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是_________,图3中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).24.3 正多边形和圆知识点1.各边 各角2.正多边形 正多边形每一边所对的圆心角3.圆心 半径 圆心角 距离4.360(2)180360(1)(2)(3)(4)(5)2n nar na n n n ︒-︒︒g 5.n 轴对称图形一、选择题1.C2.B3.B4.C5.B6.C7.B解:根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即让周角除以30的倍数就可以解决问题.360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.因此n 的所有可能的值共五种情况,故选B .8.D二、填空题 9. 2Sna10.144 11.4cm 12.12 13.45° 14.1:2:3 15. 四 17.2:318.40三、解答题19.相同点:(1)每个内角都相等(或每个外角都相等或对角线都相等);(2)都是轴对称图形(或都有外接圆和内切圆).不同点:(1)正五边形的每个内角是108°,正六边形的每个内角是120°;(2)正五边形的对称轴是5条,正六边形的对称轴是6条.20.222266266.=606=6,11632263331663354326,33,543.OA,OB.O OG AB G AOB OA OBAOB OA OB R OA OB OG ABAG AB Rt AOG r OG OA AG S R cm r cm S cm ⊥∠︒=∴∆∴===⊥∴==⨯=∴∆==-=-==⨯⨯⨯=∴===Q Q 解:连接过点作于,是等边三角形即在中, 21.解:连结OB∵在Rt △AOC 中,AC=2221OA OC -=-=1∴AC=OC ∴∠AOC=∠OAC=45°∵OA=OB OC ⊥AB∴AB=2AC=2 ∠AOB=2∠OAC=2×45°=90°∴这个内接正多边形是正方形.∴面积为22=4∴中心角为90°,边长为2,面积为4.22. (1)作法:①作直径AC;②作直径BD⊥AC;③依次连结A 、B 、C 、D 四点,四边形ABCD 即为⊙O 的内接正方形; ④分别以A 、C 为圆心,以OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点.六边形AEFCGH 即为⊙O 的内接正六边形.(2)证明:连结OE 、DE.∵∠AOD=4360︒=90°,∠AOE=6360︒=60°,第22题∴∠DOE=∠AOD-∠AOE=90°-60°=30°.∴DE为⊙O的内接正十二边形的一边. 23.(1)方法一:连结OB、OC.∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN(SAS).∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON(SAS).∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90° 72°(3)∠MON=n360.。
人教版九年级数学上册第二十四章24.3正多边形和圆教案
在实践活动方面,我发现学生们在分组讨论和实验操作中表现出了很高的积极性。但也有一些小组在讨论过程中出现了一些方向性的错误,这提醒我在今后的教学中,要加强对学生的引导,确保他们能够在正确的方向上进行探索。
3.正多边形与圆的关系:探讨正多边形与圆之间的联系,如正多边形的中心角、半径、边长等之间的关系。
4.正多边形的面积计算:引导学生运用所学的几何知识,求解正多边形的面积。
5.实际应用:通过实际生活中的例子,让学生了解正多边形和圆在实际应用中的价值,提高学生的几何素养。
本节课将以上述内容为核心,结合教材实例,帮助学生深入理解和掌握正多边形和圆的相关知识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正多边形和圆的基本概念。正多边形是指所有边长和角度都相等的多边形,它在几何图形中有着特殊的地位。圆则是我们熟悉的曲线图形,与正多边形结合可以产生许多有趣的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。以正六边形为例,探讨它如何与圆完美结合,以及这种结合在实际中的应用,如蜂巢的结构。
五、教学反思
在本次教学过程中,我发现学生们对正多边形和圆的概念掌握得还算不错,但在具体的性质推导和应用上,部分学生还存在一定的困难。这让我意识到,在今后的教学中,需要更加注重培养学生的逻辑思维能力和实际问题解决能力。
首先,关于正多边形的性质推导,我觉得可以尝试用更直观的方式展示,比如利用实物模型或动态图示,让学生更直观地感受正多边形的性质。此外,通过引导学生主动参与推导过程,让他们在实践中掌握几何证明的方法。
人教版初中数学九年级上册第二十四章24.3正多边形和圆
A
B
E
C
D
类比以上探究过程,你能得出什么结论?
把一个圆分成相等的一些弧,可以作出这个圆的内接正多 边形 ,这个圆就是这个正多边形的外接圆.
阅读课本107页,思考:如何利用等分圆弧的方法来作正n边形?
方法1:用量角器等分圆周.
对于任意正n边形,用量角器作一个等于
360
0
的圆心角,然后
n
在圆上依次截取与这条弧相等的弧,就得到圆周的n等分点,从
E
O
A
D
B
C
解: 由于ABCDEF是正六边形,所以
它的中心角等于360 60, 6
OBC是等边三角形,从而正
六边形的边长等于它的半径.
F
E
O
A
.. R
D
r
∴亭子的周长 l=6×4=24(m)
BP
C
在RtOPC中,OC 4,PC BC 4 2 22
根据勾股定理,可得边 心距r 42 22 2 3
.
.
23
3
3.通过上边的探究,你能得到哪些结论?
结论:
(1)正n边形的中心角等于360
0
,外角等于
360
0
,正多边形的
n
n
中心角与外角相等.
(2)正多边形的半径、边心距、边长的一半构成直角三角形.
例 如图有一个亭子,它的地基是半径为4m的正六边形,
求地基的周长和面积(结果保留小数点后一位).
F
亭子的面积 S 1 Lr 1 24 2 22
3 41.6(m2)
课堂小结:
1.正多边形和圆的关系:任意正多边形都有它的外接圆. 2.和正多边形有关的概念:中心、半径、中心角、弦心距. 3.用等弧法作正多边形.
人教版九年级数学上册_24.3 正多边形和圆
感悟新知
知1-练
1-2.若一个四边形的外接圆与内切圆是同心圆,则 这个四边形一定是( C ) A. 矩形 B. 菱形 C. 正方形 D. 不能确定
感悟新知
知识点 2 正多边形的有关计算
1. 正 n 边形的每个内角都等于(n-2)n· 180°. 2. 正 n 边形的每个中心角都等于 36n0°. 3. 正 n 边形的每个外角都等于 36n0°.
感悟新知
知3-讲
特别提醒 1. 画圆内接正n边形,实质是找圆的 n 等分点 . 2. 用量角器等分圆是一种简单常用的方法,但边数
很大时,容易产生较大误差. 3. 尺规作图是一种比较准确的等分圆的方法,但只
限于作一些特殊的正多边形 .
感悟新知
例3 作一个正三角形,使其半径为 0.9 cm.
知3-练
感悟新知
知3-讲
2. 用尺规等分圆 对于一些特殊的正 n 边形,如正方形、正 六边形等,可以用圆规和直尺作图,如图 24.3-2② . 在⊙ O 中,用直尺和圆规作两条互相垂直的直径,就 可把圆四等分,从而作出正方形 , 若再逐次平分各边所对的弧,就可 以作边数逐次倍增的正多边形, 如正八边形、正十六边形等 .
边形的半径 .
(3)正多边形的中心角: 正多边形每一边所对的圆心角叫
作正多边形的中心角 .
(4)正多边形的边心距: 正多边形的中心到正多边形的一
边的距离叫作正多边形的边心距 .
感悟新知
知1-讲
4. 正多边形的对称性 所有的正多边形都是轴对称图形,一个正 n 边形共有
n 条对称轴,每条对称轴都通过正 n 边形的中心 .n 为偶数 时,正 n边形还是中心对称图形,它的中心就是对称中心 .
感悟新知
九年级数学人教版(上册)24.3 正多边形和圆
(3)①∠MON 的度数与正 n 边形的边数 n 的关系是∠MON=36n0° (直接写出结果).
②当 n=8,R=2 时,求 S 四边形 OMBN 的值. 解:易证 S 四边形 OMBN=S△OBC,当 n=8 时,∠BOC=3608°=45°, 如图,过点 B 作 BH⊥OC 于点 H,则 BH= 22OB= 22R= 2, ∴S 四边形 OMBN=S△OBC=12OC·BH=12× 2×2= 2.
11.如图,A,B,C,D 为一个外角为 40°的正多边形的顶点.若 O 为正多边形的中心,则∠OAD= 30° .
12.如图,五边形 ABCDE 是⊙O 的内接正五边形,AF 是⊙O 的直径,则∠BDF 的度数是 54° .
43 13.若正六边形的内切圆半径为 2,则其外接圆半径为 3 .
14.如图,⊙O 是正方形 ABCD 与正六边形 AEFCGH 的外接圆. (1)正方形 ABCD 与正六边形 AEFCGH 的边长之比为 2∶1 .
(2)求正六边形与正方形的面积比.
解:S 正六边形=6×12×R× 23R=323R2,S 正方形=R2,
3 ∴S正六边形=
S正方形
2R32R2=3
2
3.
知识点 2 画正多边形 8.图 1 是我们常见的地砖上的图案,其中包含了一种特殊的平 面图形——正八边形. 如图 2,AE 是⊙O 的直径,用直尺和圆规作⊙O 内接正八边形 ABCDEFGH(不写作法,保留作图痕迹). 解:如图.
(2)连接 BE,BE 是否为⊙O 的内接正 n 边形的一边?如果是,
求出 n 的值;如果不是,请说明理由. 解:BE 是⊙O 的内接正十二边形的一边, 理由:连接 OA,OB,OE, 在正方形 ABCD 中,∠AOB=90°,
人教版九年级数学上24.3正多边形和圆(共32张PPT)
E
A
D
B
C
三条边相等,
四条边相等,
三个角相等
正三 角形
(60度)。
正方形
四个角相等 (900)。
一 .正多边形定义
各边相等,各角也相等的多边形叫做正多边形.
二、说说下列多边形的名称
正五边形
正六边形
正八边形
1、正多边形的各边相等 2、正多边形的各角相等
3、正多边形都是轴对称图形,一个正n边形 共有n条对称轴,每条对称轴都通过n边形 的中心。
E
D
一个正多边形的外接
圆的圆心.
正多边形的半径: 外接圆的半径
F
.半径R O
中心角
C
正多边形的中心角:
360
n
边心距r
正多边形的每一条
A
B
边所对的圆心角.
正多边形的边心距: 中心到正多边形的一边 的距离.
正多边形的周长= 正多边形的面积=
中心角 360
中心角 E
D
n
边心距把△AOB分成 F
2个全等的直角三角形
AOG BOG 180 n
.. O R
AG
C a
B
正n边形被相邻周半径长分为成L=na
___n___个全等的等腰三角
形.被边心距边分心成距__r_2_n个全R 2
等的直角三角形,
(1 2
a )2
设正多边形面的积S边长 为12 aar,n边心12距lr为r,半经为R.
1、O是正△ABC的中心,它是△ABC的_外__接__圆__ 与__内__切__圆___圆的圆心。
B
E
边形是正六边形。
C
人教版九年级数学上册24.3.2《正多边形和圆(2)》教案
人教版九年级数学上册24.3.2《正多边形和圆(2)》教案一. 教材分析人教版九年级数学上册第24章《圆》中的第3节《正多边形和圆(2)》是本章的重要内容。
本节主要让学生了解并掌握圆的性质,以及正多边形与圆的关系。
通过本节的学习,学生能够更深入地理解圆的性质,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何基础,对圆的概念有一定的了解。
但是,对于圆的性质和正多边形与圆的关系的理解还有待提高。
因此,在教学过程中,教师需要引导学生通过观察、思考、操作、讨论等方式,自主探索并掌握圆的性质,以及正多边形与圆的关系。
三. 教学目标1.了解圆的性质,掌握圆的基本概念。
2.理解正多边形与圆的关系,提高解决问题的能力。
3.培养学生的观察能力、思考能力和合作能力。
四. 教学重难点1.圆的性质的理解和运用。
2.正多边形与圆的关系的理解。
五. 教学方法采用问题驱动法、合作学习法和操作实践法。
通过提出问题,引导学生思考和探索;通过合作学习,培养学生之间的交流和合作能力;通过操作实践,让学生亲身体验和理解圆的性质和正多边形与圆的关系。
六. 教学准备1.准备相关的教学材料,如课件、黑板、粉笔等。
2.准备一些实际的例子,以便引导学生进行观察和操作。
七. 教学过程1.导入(5分钟)通过提出问题,如“什么是圆?圆有哪些性质?”引导学生回顾圆的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)通过课件或黑板,呈现圆的性质,如圆的直径、半径、圆心等。
同时,给出一些实际的例子,让学生观察和理解圆的性质。
3.操练(10分钟)让学生进行一些实际的操作,如画圆、测量圆的直径、半径等。
通过操作,让学生更深入地理解圆的性质。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的圆的性质。
同时,引导学生将这些性质与正多边形联系起来,理解正多边形与圆的关系。
5.拓展(10分钟)引导学生思考和探索正多边形与圆的更深层次的关系。
例如,讨论在给定边长的情况下,如何找到一个正多边形,使其与给定的圆相切。
人教版数学九年级上册2正多边形和圆课件
)
6
3
6
4
A. 2
B.4
C. 3
D.3
8. 矩形是正多边形吗?菱形呢?正方形呢?为什么? 矩形不是正多边形,因为四条边不都相等;
菱形不是正多边形,因为菱形的四个角不都相等; 正方形是正多边形.因为四条边都相等,四个角都相等.
.O
的半径。
B
D
C
4.正八边形的每个内角是_1_3__5_°_度.
5.边长为6的正三角形的半径是___2__3___.
6.如图,正六边形ABCDEF内接于⊙O,则
∠CFD的度数是( C )
A. 60° B. 45° C. 30° D. 22.5°
当堂训练
7、同圆的内接正三角形与内接正方形的边长
的比是(
半径R
.
F 中心角O..
C
边心距r
当堂检测:
1、⊙O是正五边形ABCDE的外接圆,弦AB的弦心距OF
叫正五边形ABCDE的
,它是正五边形ABCDE
的
圆的半径。
2、 ∠AOB叫做正五边形ABCDE的 角,度数是
D
E
D
E
C
.O
F .O C
A FB
AB
3、图中正六边形ABCDEF的中心角是
,度数是
4、正六边形ABCDEF的半径与边长具有什么数量 关系?为什么?
若将圆分成六、七等分,你的结论还成立吗?
E
弦相等(多边形的边相等)
A
D 弧相等
圆周角相等(多边形的角相等)
B
C
—多边形是正多边形
正多边形的中心:一个正多边形的外接圆的圆心.
正多边形的半径:外接圆的半径
正多边形的中心角:正多边形的每一条边所对的圆
人教版九年级上册24.3正多边形和圆说课稿docx
(一)教学策略
在本节课中,我将采用以下主要教学方法:
1.问题驱动法:通过提出与学生生活实际相关的问题,激发学生的思考,引导学生主动探究正多边形和圆的性质。
2.案例分析法:通过分析具体案例,让学生理解正多边形与圆的关系,培养学生解决问题的能力。
3.小组合作法:组织学生进行小组讨论和合作探究,培养学生的团队合作意识和沟通能力。
人教版九年级上册24.3正多边形和圆说课稿docx
一、教材分析
(一)内容概述
人教版九年级上册24.3正多边形和圆,主要讲述了正多边形的定义、性质以及与圆的关系。本节课在整个课程体系中,处于平面几何部分,起着承前启后的作用。主要知识点有:正多边形的定义、正多边形的性质、正多边形与圆的关系、圆的定义等。
(二)学习障碍
在学习本节课之前,学生需要具备平面几何的基本知识,如线段、角度等。他们可能已经了解了平行四边形、三角形等基本图形的性质,但正多边形和圆的知识可能较为陌生。此外,学生可能对正多边形与圆的关系感到困惑,难以理解。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.利用实物模型或图片,让学生直观地感受正多边形和圆的特点,引发他们的好奇心。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我计划采用以下导入方式:
1.利用多媒体展示一些生活中常见的正多边形和圆的图片,如足球、车轮等,让学生观察并猜测这些图形的共同特点。
2.提出问题:“你们知道这些图形之间有什么联系吗?”引导学生思考和讨论。
3.通过学生的回答,引导学生猜测正多边形和圆之间可能存在某种关系。
4.引导发现法:引导学生通过观察、实验、推理等方法,自主发现正多边形和圆的性质,培养学生的探究能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教学过程设计
一、复习引入
请同学们口答下面两个问题:
1.什么叫正多边形?
2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?
老师点评:1.各边相等,各角也相等的多边形是正多边形.
2.实例略.正多边形是轴对称图形,对称轴有无数多条;•正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.
二、探索新知
如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、D、E、F都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
(我们以圆内接正六边形为例证明.)
如图所示的圆,把⊙O•分成相等的6•段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.
∵AB=BC=CD=DE=EF
∴AB=BC=CD=DE=EF(过程略)
∴根据正多边形的定义,各边相等、各角相等、六边形ABCDEF是⊙O的内接正六边形,⊙O是正六边形ABCDEF的外接圆.
为了今后学习和应用的方便:
我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.
外接圆的半径叫做正多边形的半径.
正多边形每一边所对的圆心角叫做正多边形的中心角.
中心到正多边形的一边的距离叫做正多边形的边心距.
例1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.
分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB垂于M,在Rt△AOM•中便可求得AM,又应用垂径定理可求得AB的长.正六边形的面积是由六块正三角形面积组成的.
解:如图所示,(见PPT)
例2.利用你手中的工具画一个边长为3cm的正五边形.
分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径.
解:正五边形的中心角∠AOB=72°,
画法(1)以O为圆心,OA=2.55cm为半径画圆;
(2)在⊙O上顺次截取边长为3cm的AB、BC、CD、DE、EA.
(3)分别连结AB、BC、CD、DE、EA.
则正五边形ABCDE就是所要画的正五边形,如图所示.
二、巩固练习
教材P106 练习1、2、3
三、应用拓展
例3.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.
(1)求△ABC的边AB上的高h.
(2)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.
四、小结
1、提出问题学生归纳
(1)这节课学习的具体内容?
(2)学习用的数学思想方法?
(3)应注意哪些概念之间的联系?
2、归纳基本图形的结论
3、学习了用代数方法解决几何问题的思想方法.
五、练习及检测题
1、教材P106 练习1、
2、3
2、应用拓展
在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC 的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.(1)求△ABC的边AB上的高h.
(2)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.
六、作业设计
必做题:课本108页习题24.3第4、6题。
选做题:8题。