20172018学年吉林省长春市田家炳实验中学高二(上)期末数学试卷(文科)
【解析】吉林省长春市田家炳实验中学2017-2018学年高二上学期期末考试语文试题
长春市第五中学、长春市田家炳实验中学2017—2018学年度高二年级上学期期末考试语文试卷一、现代文阅读(一)论述类文本阅读阅读下面的文字,完成下列小题。
有人说到“经”,便有意无意地把它等同于“经典”,而提起“中国经典”,就转换成“儒家经典”,这种观念有些偏狭。
中国经典绝不是儒家一家经典可以独占的,也应包括其他经典,就像中国传统是“复数的”传统一样。
首先,中国经典应当包括佛教经典,也应当包括道教经典。
要知道,“三教合一”实在是东方的中国与西方的欧洲在文化领域中最不同的地方之一,也是古代中国政治世界的一大特色,即使是古代中国的皇帝,不仅知道“王霸道杂之”,也知道要“儒家治世,佛教治心,道教治身”,绝不只用一种武器。
因此,回顾中国文化传统时,仅仅关注儒家的思想和经典,恐怕是过于狭窄了。
即使是儒家,也包含了相当复杂的内容,有偏重“道德自觉”的孟子和偏重“礼法治世”的荀子,有重视宇宙天地秩序的早期儒家和重视心性理气的新儒家。
应当说,在古代中国,关注政治秩序和社会伦理的儒家、关注超越世界和精神救赎的佛教,关注生命永恒和幸福健康的道教,分别承担着传统中国的不同责任,共同构成中国复数的文化。
其次,中国经典不必限于圣贤、宗教和学派的思想著作,它是否可以包括更广泛些?比如历史著作《史记》《资治通鉴》,比如文字学著作《说文解字》,甚至唐诗、宋词、元曲里面的那些名著佳篇。
经典并非天然就是经典,它们都经历了从普通著述变成神圣经典的过程,这在学术史上叫“经典化”。
没有哪部著作是事先照着经典的尺寸和样式量身定做的,只是因为它写得好,被引用得多,被人觉得它充满真理,又被反复解释,有的还被“钦定”为必读书,于是,就在历史中渐渐成了被尊崇、被仰视的经典。
因此,如今我们重新阅读经典,又需要把它放回产生它的时代里面,重新去理解。
经典的价值和意义,也是层层积累的,对那些经典里传达的思想、原则甚至知识,未必需要亦步亦趋“照办不走样”,倒是要审时度势“活学活用”,要进行“创造性的转化”。
吉林省长春市田家炳实验中学2017-2018学年高二上学期化学寒假作业一
2017--2018上学期高二化学寒假作业(一)一、选择题:(每小题只有一个正确选项,每小题3分,共48分)1.下列变化中一定为放热反应的是( )A.H2O(g)===H2O(l) ΔH=-44.0 kJ·mol-1B.N2(g)+O2(g)===2NO(g) ΔH=+182.6 kJ·mol-1C.形成化学键过程中放出862 kJ热量的化学反应D.能量变化如图所示的化学反应2.N4的分子结构类似白磷分子,它的结构如图所示,已知断裂1 mol N—N键需要吸收167 kJ热量,生成1 mol N≡N键需放出942 kJ热量。
根据以上信息和数据,下列说法中正确的是( )A.1 mol N4气体转变为N2将放出775 kJ热量B.1 mol N4气体转变为N2将放出882 kJ热量C.1 mol N4气体转变为N2将吸收775 kJ热量D.1 mol N4气体转变为N2将吸收882 kJ热量3.在下列各说法中,正确的是( )A.ΔH>0表示放热反应,ΔH<0表示吸热反应B.热化学方程式中的化学计量数只表示物质的量,可以是分数C.1 mol H2SO4与1 mol Ba(OH)2反应生成BaSO4沉淀时放出的热叫做中和热D.1 mol H2与0.5 mol O2反应放出的热就是H2的燃烧热4.燃烧1 g乙炔生成二氧化碳和液态水,放出热量50 kJ,则该反应的热化学反应方程式为( )A.2C2H2(g)+5O2(g)===4CO2(g)+2H2O(l) ΔH=+50 kJ·mol-1B.C2H2(g)+5/2O2(g)===2CO2(g)+H2O(l) ΔH=-1 300 kJC.2C 2H2+5O2===4CO2+2H2O ΔH=-2 600 kJD.2C2H2(g)+5O2(g)===4CO2(g)+2H2O(l) ΔH=-2 600 kJ·mol-15.已知热化学方程式:(1)2H2O(l)===2H2(g)+O2(g) ΔH=+571.6 kJ·mol-1(2)2H2(g)+O2(g)===2H2O(g) ΔH=-483.6 kJ·mol-1当1 g液态水变为气态水时,对其热量变化有下列描述:①放出;②吸收;③2.44 kJ;④4.88 kJ;⑤88 kJ。
2017-2018学年高二上学期期末数学试卷(文科) word版含解析
2017-2018学年高二(上)期末数学试卷(文科)一、选择题(每小题5分,共60分.在所给的四个选项中,只有一项是符合题目要求的)1.cos600°=()A.B.﹣C.D.﹣【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.2.设集合A={x|x2﹣5x+6<0},B={x|2x﹣5>0},则A∩B=()A.B. C. D.【解答】解:由A中不等式变形得:(x﹣2)(x﹣3)<0,解得:2<x<3,即A=(2,3),由B中不等式解得:x>,即B=(,+∞),则A∩B=(,3),故选:C.3.复数(i是虚数单位)的共轭复数在复平面内对应的点是()A.(2,﹣2)B.(2,2) C.(﹣2,﹣2) D.(﹣2,2)【解答】解:==2﹣2i(i是虚数单位)的共轭复数2+2i在复平面内对应的点(2,2).故选:B.4.已知数列,则a2016=()A.1 B.4 C.﹣4 D.5【解答】解:数列,∴a3=a2﹣a1=4,同理可得:a4=﹣1,a5=﹣5,a6=﹣4,a7=1,a8=5,…,21·世纪*教育网可得an+6=an.则a2016=a335×6+6=a6=﹣4.故选:C.5.取一根长度为4m的绳子,拉直后在任意位置剪断,则剪得的两段长度都不小于1.5m的概率是()A.B.C.D.【解答】解:记“两段的长都不小于1.5m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1.5,所以事件A发生的概率P(A)=.6.已知==2,且它们的夹角为,则=()A. B. C.1 D.2【解答】解:根据条件:==12;∴.故选A.7.给出下列命题:①a>b⇒ac2>bc2;②a>|b|⇒a2>b2;③|a|>b⇒a2>b2;④a>b⇒a3>b3其中正确的命题是()A.①② B.②③ C.③④ D.②④【解答】解:①a>b⇒ac2>bc2在c=0时不成立,故①错误;②a>|b|⇒|a|>|b|⇒a2>b2,故②正确;③a=﹣2,b=1时,|a|>b成立,但a2>b2不成立,故③错误;④y=x3在R上为增函数,故a>b⇒a3>b3,故④正确;故选:D8.如图所示的程序的输出结果为S=1320,则判断框中应填()A.i≥9 B.i≤9 C.i≤10 D.i≥10【解答】解:首先给循环变量i和累积变量S赋值12和1,判断12≥10,执行S=1×12=12,i=12﹣1=11;判断11≥10,执行S=12×11=132,i=11﹣1=10;判断10≥10,执行S=132×10=1320,i=10﹣1=9;判断9<10,输出S的值为1320.故判断框中应填i≥10.故选:D.9.定义在R上的函数f(x)在(6,+∞)上为增函数,且函数y=f(x+6)为偶函数,则A .f (4)<f (7)B .f (4)>f (7)C .f (5)>f (7)D .f (5)<f (7) 【解答】解:根据题意,y=f (x+6)为偶函数,则函数f (x )的图象关于x=6对称, f (4)=f (8),f (5)=f (7); 故C 、D 错误;又由函数在(6,+∞)上为增函数,则有f (8)>f (7); 又由f (4)=f (8), 故有f (4)>f (7); 故选:B .10.已知一个几何体的三视图如图所示,则该几何体的体积是( )A .B .C .D .【解答】解:由已知中的三视图可得:该几何体是一个以侧视图为底面的四棱锥, 其底面面积S=2×2=4,高h=×2=,故体积V==,故选:C .11.气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”,现在甲、乙、丙三地连续五天的日平均温度的记录数据(记录数据都是正整数,单位℃):21教育名师原创作品甲地:五个数据的中位数是24,众数为22; 乙地:五个数据的中位数是27,平均数为24;丙地:五个数据中有一个数据是30,平均数是24,方差为10. 则肯定进入夏季的地区有( ) A .0个 B .1个 C .2个 D .3个【解答】解:气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”, 由此得到:甲地肯定进入夏季,∵五个数据的中位数是24,众数为22,∴22℃至少出现两次,若有一天低于22℃,中位数就不是24℃,故甲地进入夏季; 乙地不一定进处夏季,如13,23,27,28,29,故乙地不一定进入夏季; 丙地不一定进入夏季,10×5﹣(30﹣24)2≥(24﹣x )2, ∴(24﹣x )2≤14,x=21时,成立,故丙地不一定进入夏季. 故选:B .12.已知圆O 的半径为2,PA 、PB 为圆O 的两条切线,A 、B 为切点(A 与B 不重合),则的最小值为( )2·1·c ·n ·j ·yA .﹣12+4B .﹣16+4C .﹣12+8D .﹣16+8【解答】解:设PA 与PO 的夹角为α,则|PA|=|PB|=,y=•=||||cos2α=•cos2α=•cos2α=4记cos2α=μ.则y=4=4[(﹣μ﹣2)+]=﹣12+4(1﹣μ)+≥﹣12+8.当且仅当μ=1﹣时,y 取得最小值:8.即•的最小值为8﹣12.故选:C .二.填空题:本大题共4小题,每小题5分.13.若函数f (x )=x2﹣|x+a|为偶函数,则实数a= 0 . 【解答】解:∵f (x )为偶函数 ∴f (﹣x )=f (x )恒成立 即x2﹣|x+a|=x2﹣|x ﹣a|恒成立 即|x+a|=|x ﹣a|恒成立 所以a=0故答案为:0.14.某程序框图如图所示,则该程序运行后输出的k 的值是 5 .【解答】解:程序在运行过程中各变量的值如下表示:第一圈k=3 a=43 b=34第二圈k=4 a=44 b=44第三圈k=5 a=45 b=54此时a>b,退出循环,k值为5故答案为:5.15.若平面向量,满足||≤1,||≤1,且以向量,为邻边的平行四边形的面积为,则与的夹角θ的取值范围是.【解答】解:∵以向量,为邻边的平行四边形的面积为,∴.∵平面向量,满足||≤1,||≤1,∴,∵θ∈(0,π),∴.∴与的夹角θ的取值范围是.故答案为:.16.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=.【解答】解:由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,∵P(X=0)=,∴,∴p=,P(X=1)=+=P(X=2)==,P(X=3)=1﹣=,∴E(X)==,故答案为:三、解答题17.在△ABC中,内角A,B,C所对边长分别为a,b,c,,∠BA C=θ,a=4.(1)求bc的最大值;(2)求函数的值域.【解答】解:(1)∵=bc•cosθ=8,由余弦定理可得16=b2+c2﹣2bc•cosθ=b2+c2﹣16,∴b2+c2=32,又b2+c2≥2bc,∴bc≤16,即bc的最大值为16,当且仅当b=c=4,θ=时取得最大值;(2)结合(1)得,=bc≤16,∴cosθ≥,又0<θ<π,∴0<θ≤,∴=2sin(2θ+)﹣1∵0<θ≤,∴<2θ+≤,∴sin(2θ+)≤1,当2θ+=,即θ=时,f(θ)min=2×,当2θ+=,即θ=时,f (θ)max=2×1﹣1=1,∴函数f (θ)的值域为[0,1]18.已知函数的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1). (1)求函数f (x )的最小正周期;(2)若存在,使f (x0)=0,求λ的取值范围.【解答】(本题满分为12分)解:(1)=sin2ωx ﹣cos2ωx ﹣λ=2sin (2ωx ﹣)﹣λ,∵函数f (x )的图象关于直线x=π对称,∴解得:2ωx ﹣=kπ+,可得:ω=+(k ∈Z ),∵ω∈(,1).可得k=1时,ω=,∴函数f (x )的最小正周期T==…6分(2)令f (x0)=0,则λ=2sin (﹣),由0≤x0≤,可得:﹣≤﹣≤,则﹣≤sin (﹣)≤1,根据题意,方程λ=2sin (﹣)在[0,]内有解,∴λ的取值范围为:[﹣1,2]…12分19.向量与的夹角为θ,||=2,||=1,=t,=(1﹣t ),||在t0时取得最小值,当0<t0<时,夹角θ的取值范围是 .【解答】解:由题意可得=2×1×co sθ=2cosθ,=﹣=(1﹣t )﹣t,∴||2==(1﹣t )2+t2﹣2t (1﹣t )=(1﹣t )2+4t2﹣4t (1﹣t )cosθ =(5+4cosθ)t2+(﹣2﹣4cosθ)t+1由二次函数知当上式取最小值时,t0=,由题意可得0<<,解得﹣<cosθ<0,∴<θ<故答案为:20.在四棱锥P ﹣ABCD 中,AD ⊥平面PDC ,PD ⊥DC ,底面ABCD 是梯形,AB ∥DC ,AB=AD=PD=1,CD= (1)求证:平面PBC ⊥平面PBD ;(2)设Q 为棱PC 上一点,=λ,试确定 λ的值使得二面角Q ﹣BD ﹣P 为60°.【解答】(1)证明:∵AD ⊥平面PDC ,PD ⊂平面PCD ,DC ⊂平面PDC ,图1所示.∴AD ⊥PD ,AD ⊥DC ,在梯形ABCD 中,过点作B 作BH ⊥CD 于H , 在△BCH 中,BH=CH=1,∴∠BCH=45°, 又在△DAB 中,AD=AB=1,∴∠ADB=45°, ∴∠BDC=45°,∴∠DBC=90°,∴BC ⊥BD . ∵PD ⊥AD ,PD ⊥DC ,AD ∩DC=D . AD ⊂平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥平面ABCD ,∵BC ⊂平面ABCD ,∴PD ⊥BC ,∵BD ∩PD=D ,BD ⊂平面PBD ,PD ⊂平面PBD . ∴BC ⊥平面PBD ,∵BC ⊂平面PBC ,∴平面PBC ⊥平面PBD ;(2)解:过点Q 作QM ∥BC 交PB 于点M ,过点M 作MN ⊥BD 于点N ,连QN . 由(1)可知BC ⊥平面PDB ,∴QM ⊥平面PDB ,∴QM ⊥BD , ∵QM ∩MN=M ,∴BD ⊥平面MNQ ,∴BD ⊥QN ,图2所示. ∴∠QNM 是二面角Q ﹣BD ﹣P 的平面角,∴∠QNM=60°,∵,∴,∵QM∥BC,∴,∴QM=λBC,由(1)知,∴,又∵PD=1,MN∥PD,∴,∴MN===1﹣λ,∵tan∠MNQ=,∴,∴.21.已知椭圆C:+=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.21教育网(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.22.设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(1)分别求出f(x)、g(x)的导数,求得在x=1处切线的斜率,由两直线垂直的条件,解方程即可得到n;(2)求出y=f(x)﹣g(x)的导数,可得,得的最小值为负,运用基本不等式即可求得m﹣n的范围;(3)假设存在实数a,运用构造函数,求出导数,求得单调区间和最值,结合不等式恒成立思想即有三种解法.【解答】解:(1)当m=1时,,∴y=g(x)在x=1处的切线斜率,由,∴y=f(x)在x=1处的切线斜率k=1,∴,∴n=5.(2)易知函数y=f(x)﹣g(x)的定义域为(0,+∞),又,由题意,得的最小值为负,∴m(1﹣n)>4,由m>0,1﹣n>0,∴,∴m+(1﹣n)>4或m+1﹣n<﹣4(舍去),∴m﹣n>3;(3)解法一、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=,其中x>0,a>0,则θ'(x)=,设,∴δ(x)在(0,+∞)单调递减,δ(x)=0在区间(0,+∞)必存在实根,不妨设δ(x0)=0,即,可得(*)θ(x)在区间(0,x0)上单调递增,在(x0,+∞)上单调递减,所以θ(x)max=θ(x0),θ(x0)=(ax0﹣1)•ln2a﹣(ax0﹣1)•lnx0,代入(*)式得,根据题意恒成立.又根据基本不等式,,当且仅当时,等式成立即有,即ax0=1,即.代入(*)式得,,即,解得.解法二、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0根据条件对任意正数x恒成立,即(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,∴且,解得且,即时上述条件成立,此时.解法三、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0要使得(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,等价于(ax﹣1)(2a﹣x)≤0对任意正数x恒成立,即对任意正数x恒成立,设函数,则φ(x)的函数图象为开口向上,与x正半轴至少有一个交点的抛物线,因此,根据题意,抛物线只能与x轴有一个交点,即,所以.。
吉林省长春市田家炳实验中学2017-2018学年高二上学期数学(理)寒假作业四
2017—2018上学期高二数学寒假作业(四)1.椭圆2299x y +=的长轴长为( ) A .2 B.3 C.6 D. 92.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率 ( )A 31B 33C 21D 233.设抛物线x y 82=的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点,若线段AB 的中点E到y 轴的距离为3,则AB 的长为( )A. 5B. 8C. 10D. 12 4.下列命题中正确命题的个数是( )(1)对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++>;(2)命题“已知,x y R ∈,若3x y +≠,则2x ≠或1y ≠”是真命题;(3)回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x ∧=+;(4)3m =是直线()320m x my ++-=与直线650mx y -+=互相垂直的充要条件. A. 1 B. 2 C. 3 D. 45.执行右面的程序框图,如果输入的x 在[]1,3-内取值,则输出的y 的取值区间为( ) A .[]0,2 B .[]1,2 C .[]0,1 D .[]1,5-7.已知椭圆()2212:11x C y m m +=>与双曲线()2222:10x C y n n-=>的焦点重合, 12,e e 分别为12,C C 的离心率,则( )A. m n >且121e e >B. m n >且121e e < C. m n <且121e e > D. m n >且121e e <8..已知复数122,3z i z i =+=-,其中i 是虚数单位,则复数12z z 的实部与虚部之和为( )A .0B .12C .1D .29.P 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,若∠F 1PF 2=3π,则△F 1PF 2的面积为( )A....9(210.设F 1, F 2分别为双曲线2221x a b2y -=(a>0,b>0)的左、右焦点,P 为双曲线右支上任一点。
7—18学年上学期高二期末考试数学(文)试题(附答案)(2)
长春市十一高中2017-2018学年度高二上学期期末考试数学试题(文科)组题人:高二数学组 2018.1.10一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数iiz 2131+-=,则=z ( ) A. 2B.2C.10D. 52.若原命题为:“若21,z z 为共轭复数,则21z z =”,则该命题的逆命题、否命题、逆否命题真假性的判断依次为( ) A. 真、真、真 B. 真、真、假 C. 假、假、真D. 假、假、假3.下列命题为特称命题的是( ) A. 任意一个三角形的内角和为︒180 B. 棱锥仅有一个底面C. 偶函数的图象关于y 轴垂直D. 存在大于1的实数x ,使21lg <+x 4.“n m =”是“方程322=+ny mx 表示圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件5.设双曲线)0,0(12222>>=-b a bx a y 的离心率是5,则其渐近线的方程为( )A.02=±y xB.02=±y xC. 02=±y xD. 02=±y x6.已知点)1,2,1(-A ,点C 与点A 关于平面xOy 对称,点B 与点A 关于x 轴对称,则=BC ( )A. 72B. 52C. 22D. 47.椭圆16822=+y x 中,以点)1,2(M 为中点的弦所在直线斜率为( ) A.43-B.83-C. 32-D.34-8.若),0(,,321+∞∈x x x ,设133221,,x x c x xb x x a ===,则c b a ,,的值( ) A. 至多有一个不大于1 B. 至少有一个不大于1 C. 都大于1D. 都小于19.点),(y x P 在椭圆191622=+y x 上,则y x 2-的最大值为( ) A.6B. 132C.134D.1010.设函数x x x f ln 1621)(2-=在区间[]2,1+-a a 上单调递减,则实数a 的取值范围是( ) A. )3,1(B. )3,2(C. (]2,1D. []3,211.在ABC Rt ∆中,1==AC AB ,若一个椭圆经过B A ,两点,它的一个焦点为点C ,另一个焦点在边AB 上,则这个椭圆的离心率为( )A.3632-B.23-C.36-D.12-12.已知函数xe x xf 1)(+=,若对任意R x ∈,ax x f >)(恒成立,则实数a 的取值范围是( )A.(]1,1e -B. )1,(e --∞C. [)1,1-eD. ),1(+∞-e二、填空题(本大题共4小题,每小题5分,共20分.)13.在极坐标系中,圆θθρsin 32cos 2-=的圆心的极坐标...是____________. 14.观察下列各式:125355=,6251556=,7578125=,则20165的末四位数字为__________________.15.函数)cos (sin 21)(x x e x f x +=在区间⎥⎦⎤⎢⎣⎡2,0π上的值域为_________________. 16.设21,F F 分别为双曲线124:22=-y x C 的左、右焦点,P 为双曲线C 在第一象限上的一点,若3421=PF PF ,则21F PF ∆内切圆的面积为________________. 三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.(本题满分10分)已知极点为直角坐标系的原点,极轴为x 轴正半轴且单位长度相同的极坐标系中曲线1:1=ρC ,直线⎪⎪⎩⎪⎪⎨⎧+=+-=t y tx C 221221:2(t 为参数). (1)求曲线1C 上的点到直线2C 距离的最小值;(2)若把1C 上各点的横坐标都伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线3C .设)1,1(-P ,直线2C 与曲线3C 交于B A ,两点,求PB PA +.18.(本小题满分12分)如图,在四棱锥ABCD P -中, 底面ABCD 为菱形,⊥PC 平面ABCD ,点E 在棱PA 上. (1)求证:直线⊥BD 平面PAC ;(2)是否存在点E ,使得四面体BDE A -的体积等于四面体BDC P -的体积的31?若存在,求出PAPE的值;若不存在,请说明理由.19.(本题满分12分)已知x xax x f ln )(-+=.R a ∈ (1)若2=a ,求)(x f 的单调区间;(2)当41-≤a 时,若2ln )(-≥x f 在[]e x ,2∈上恒成立,求a 的取值范围.20.(本题满分12分)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,且长轴长是短轴长的2倍.(1)求椭圆C 的标准方程;(2)设)0,2(P ,过椭圆C 左焦点F 作斜率k 直线l 交C 于B A ,两点,若ABP S ∆=求直线l 的方程.21.(本小题满分12分)已知抛物线G :)0(22>=p px y ,过焦点F 的动直线l 与抛物线交于B A ,两点,线段AB 的中点为M .(1)当直线l 的倾斜角为4π时,16=AB .求抛物线G 的方程; (2)对于(1)问中的抛物线G ,设定点)0,3(N ,求证:MN AB 2-为定值.22(本小题满分12分).已知xa x x x f +-+=42)(2. (1)若4=a ,求)(x f 的单调区间;(2)若)(x f 有三个零点,求a 的取值范围.体验 探究 合作 展示长春市十一高中2017-2018学年度高二上学期期中考试数学试题(文科)参考答案一、选择题(每题5分,共60分)二、选择题(每题5分,共20分)13.)3,2(π- 14. 3125 15. ⎥⎦⎤⎢⎣⎡221,21πe 16. π4三、解答题17.解(1)1:221=+y x C ,圆心为)0,0(,半径为1;2:2+=x y C圆心到直线距离222==d --------3分 所以1C 上的点到2C 的最小距离为12-.--------5分(2)伸缩变换为⎩⎨⎧='='yy x x 32,所以134:223='+'y x C --------7分 将2C 和3C 联立,得0102272=-+t t .因为021<t t --------8分72124)(212212121=-+=-=+=+∴t t t t t t t t PB PA --------10分18.解(Ⅰ)因为⊥PC 平面ABCD ,所以BD PC ⊥, 因为底面ABCD 是菱形,所以AC BD ⊥, 因为C AC PC = ,所以⊥BD 平面PAC .(2)在PAC ∆中过点E 作EF ∥PC ,交AC 于点F , 因为⊥PC 平面ABCD , 所以⊥EF 平面ABCD .由ABCD 是菱形可知BCD ABD S S ∆∆=,设存在点E ,使得四面体BDE A -的体积等于四面体BDC P -的体积的31,即BDC P BDA E V V --=31,则PC EF 31=,所以在PAC ∆中,31==PC EF AP AE ,所以32=PA PE .19.解(1)当2=a 时,x x x x f ln 2)(-+=,则2222121)(x x x x x x f --=--=',0>x令0)(>'x f ,解得2>x ,令0)(<'x f ,解得20<<x ,所以)(x f 增区间为),2(+∞,减区间为)2,0(.(2)由22211)(xa x x x x a x f --=--=',[]e x ,2∈,当41-≤a 时,02>--a x x故)(x f 在[]e x ,2∈上为增函数,若2ln )(-≥x f ,则只需2ln 2ln 22)2()(min -≥-+==af x f , 即:4-≥a ,综上有:414-≤≤-a20.解(1)依题意,221,1,2a b c b a =+==,解得1,222==b a ,所以椭圆C 的标准方程为1222=+y x . (2)设直线l :1+=x ty ,代入椭圆消去x 得:012)2(22=--+ty y t ,设),(),,(2211y x B y x A ,则21,22221221+-=+=+t y y t t y y 所以:2102121=-=∆y y FP S ABP , 即:2104)(32121221=-+⨯⨯y y y y ,即:10)24)2(4(92222=+++t t t解得:42=t ,即2±=t ,所以l :012=+±y x21.解(1)由题意知)0,2(p F ,设直线l 的方程为2px y -=,),(),,(2211y x B y x A 由⎪⎩⎪⎨⎧-==222p x y pxy 得:04322=+-p px x ,所以:p x x 321=+ 又由1621=++=p x x AB ,所以4=p ,所以:抛物线G 的方程为x y 82=(2)由(1)抛物线G 的方程为x y 82=,此时设2:-=x ty AB消去x 得:01682=--ty y ,设),(),,(2211y x B y x A , 则:16,82121-==+y y t y y所以:)1(88)(422121+=++=++=t y y t x x ABt y t y y tx M M 4,242)(2221=+=++=,即 )4,24(2t t M + 所以:222216)14(2)1(82t t t MN AB +--+=-6)14(2)1(822=+-+=t t()()222124a .f x x x x=+-+, 则,令0)(='x f ,解得1=x ,且有1>x 时,0)(>'x f ,1<x 时,0)(<'x f ,所以)(x f 在)1,0(),0,(-∞上单调递减,)(x f 在),1(+∞上单调递增.(2)0)(=x f ,即x x x a 4223-+=-,令x x x x g 42)(23-+=,()0x ≠则443)(2-+='x x x g ,解得,所以)(x g 有两个极值,,所以,即.又()40080027a ,a ,,⎛⎫≠∈- ⎪⎝⎭所以.。
吉林省长春市田家炳实验中学2018年高二数学文上学期期末试题含解析
吉林省长春市田家炳实验中学2018年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若命题p:?x∈R,2x2﹣1>0,则该命题的否定是()A.?x∈R,2x2﹣1<0 B.?x∈R,2x2﹣1≤0C.?x∈R,2x2﹣1≤0D.?x∈R,2x2﹣1>0参考答案:C【考点】命题的否定.【专题】计算题.【分析】根据命题否定的定义进行求解,注意对关键词“任意”的否定;【解答】解:命题p:?x∈R,2x2﹣1>0,则其否命题为:?x∈R,2x2﹣1≤0,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;2. 已知O、A、B是平面上的三个点,直线AB上有一点C,满足,则()A. B. C. D.参考答案:B略3. 抛物线的焦点坐标是()A.(2,0) B. (- 2,0) C. (4,0) D. (- 4,0)参考答案:B4. 复数z=的虚部为()A.i B.﹣i C.﹣1 D.1参考答案:C【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,则答案可求.【解答】解:z==,则复数z=的虚部为:﹣1.故选:C.5. 若为虚数单位,则()A. B. C.D.参考答案:C6. 如果f(x)=mx2+(m-1)x+1在区间上为减函数,则m的取值范围()A.(0,B. C. D (0,)参考答案:C解析:依题意知,若m=0,则成立;若m≠0,则开口向上,对称轴不小于1,从而取并集解得C。
7. 用二分法求方程的近似根,精确度为,则当型循环结构的终止条件是( )A. B. C. D.参考答案:D8. 设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(﹣1<ξ<0)等于()A. p B.1﹣p C.1﹣2p D.﹣p参考答案:D【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ服从标准正态分布N(0,1),得到正态曲线关于ξ=0对称,利用P(ξ>1)=p,即可求出P(﹣1<ξ<0).【解答】解:∵随机变量ξ服从正态分布N(0,1),∴正态曲线关于ξ=0对称,∵P(ξ>1)=p,∴P(ξ<﹣1)=p,∴P(﹣1<ξ<0)=﹣p.故选:D.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,本题解题的关键是利用正态曲线的对称性,是一个基础题.9. 已知数列{a n}的通项公式为,则数列的前100项和为( )A. B. C. D.参考答案:B略10. 若A,B是△ABC的内角,且,则A与B的关系正确的是( )A. B. C. D. 无法确定参考答案:B【分析】运用正弦定理实现边角转换,再利用大边对大角,就可以选出正确答案.【详解】由正弦定理可知:,,因此本题选B.【点睛】本题考查了正弦定理,考查了三角形大边对大角的性质.二、填空题:本大题共7小题,每小题4分,共28分11. 以点(2,-1)为圆心,以3为半径的圆的标准方程是_____________________.参考答案:略12. 设F1、F2是椭圆E: =1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则椭圆E的离心率为.参考答案:【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点建立方程,由此可求椭圆的离心率.【解答】解:设x=交x轴于点M,∵△F2PF1是底角为30°的等腰三角形∴∠PF2F1=120°,|PF2|=|F2F1|,且|PF2|=2|F2M|∵P为直线x=上一点,∴2(﹣c)=2c,解之得3a=4c∴椭圆E的离心率为e==故答案为:【点评】本题给出与椭圆有关的等腰三角形,在已知三角形形状的情况下求椭圆的离心率.着重考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.13. 已知各项不为0的等差数列{a n}满足a4﹣2a72+3a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11等于.参考答案:8【考点】等差数列的通项公式.【专题】整体思想;综合法;等差数列与等比数列.【分析】由题意易得a7,进而可得b7,由等比数列的性质可得.【解答】解:设各项不为0的等差数列{a n}公差为d,∵a4﹣2a72+3a8=0,∴(a7﹣3d)﹣2a72+3(a7+d)=0,解得a7=2,∴b7=a7=2,∴b2b8b11=b6b8b7=b73=8,故答案为:8.【点评】本题考查等差数列和等差数列的通项公式,涉及等比数列的性质,属基础题.14. 已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=1200,则AB与平面ADC所成角的正弦值为参考答案:15. 在△ABC中,AC=4,M为AC的中点,BM=3,则?= .参考答案:5【考点】平面向量数量积的运算.【分析】由题意可得=2, =,对两式平方相减即可得出答案.【解答】解:∵M为AC的中点,∴=2,∴=4=36,①∵=,∴+﹣2==16,②①﹣②得:4=20,∴=5.故答案为:5.16. 已知复数(为虚数单位),则复数的模=▲.参考答案:略17. 甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答)参考答案:336三、解答题:本大题共5小题,共72分。
吉林省长春市田家炳实验中学2017-2018学年高二上学期数学(文)寒假作业二+Word版缺答案
假期作业二一.选择题:每题5分,共60分1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( )A .13B .33C .21D .23 2.双曲线121022=-y x 的焦距是( )A .33 B .34 C .23 D .24 3.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( )A .1B .2C .3D .4 4.若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为( )A .2B .3C .4D .5.已知曲线23ln 4x y x =-的一条切线的斜率为21,则切点的横坐标为( ) A .3 B . 2 C .1 D .21 6.“x y =”是“x y =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.下列命题是真命题的为( )A .若11x y=,则x y = B .若21x =,则1x =C .若x y =D .若x y <,则22x y <8.已知βα,表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.原命题为“若n n n a a a <++21,+∈N n ,则{}n a 为递减数列”.关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,假B .假,假,真C .真,真,真 C .假,假,假10.函数x e x x f )3()(-=的单调递增区间是( )A.()2,∞-B.()3,0C.()4,1D.),2(+∞11.如果函数()y f x =的图象如右图,那么导函数()y f x '=的图象可能是( )12.函数()f x =)A .25 B .2 C .12 D .1二.填空题:每题5分,共20分13.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A ,B 两点,且6AB =,则圆C 的方程为 .14.若动点P 到点()0,2F 的距离与它到直线02=+x 的距离相等,则点P 的轨迹方程为______.15.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 ________. 16.已知函数()8123+-=x x x f 在区间[]3,3-上的最大值与最小值分别为M ,m ,则=-m M ____________.三.解答题:共20分17.(10分)设函数()c bx ax x x f 833223+++=在1=x 及2=x 时取得极值.(1)求a ,b 的值;(2)若对于任意的[]3,0∈x ,都有()2c x f <成立,求c 的取值范围.18.(10分)设1F ,2F 分别是椭圆E :12222=+by a x ()0>>b a 的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,113BF AF =.(1)若4=AB ,2ABF ∆的周长为16,求2AF ;(2)若53cos 2=∠B AF ,求椭圆E 的离心率.。
吉林省2017—2018学年高二第一学期期末模拟考试卷(五)
吉林省2017—2018学年高二第一学期期末模拟考试卷(五)(文科)(考试时间120分钟满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分)1.在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.182.下列说法正确的是()A.a>b⇒ac2>bc2B.a>b⇒a2>b2C.a>b⇒a3>b3D.a2>b2⇒a>b3.函数f(x)=(2πx)2的导数是()A.f′(x)=4πx B.f′(x)=4π2x C.f′(x)=8π2x D.f′(x)=16πx4.若命题p:∀x∈R,2x2﹣1>0,则该命题的否定是()A.∀x∈R,2x2﹣1<0 B.∀x∈R,2x2﹣1≤0 C.∃x∈R,2x2﹣1≤0 D.∃x ∈R,2x2﹣1>05.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为()A. +=1 B. +=1 C. +=1 D. +=16.抛物线y2=8x的焦点到直线的距离是()A. B.2 C.D.17.曲线y=x3+x+1在点(1,3)处的切线方程是()A.4x﹣y﹣1=0 B.4x+y﹣1=0 C.4x﹣y+1=0 D.4x+y+1=08.若双曲线上的一点P到它的右焦点的距离为8,则点P到它的左焦点的距离是()A.4 B.12 C.4或12 D.69.下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2D.a3>b310.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若p∨q为真命题,则p,q均为真命题C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题11.已知双曲线中心在原点且一个焦点为F(,0),直线y=x﹣1与其相交于M、N两点,MN中点的横坐标为﹣,则此双曲线的方程是()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=112.若关于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4内有解,则实数a的取值范围是()A.a<﹣4 B.a>﹣4 C.a>﹣12 D.a<﹣12二.填空题(每题5分,共20分)13.方程+=1表示椭圆,则k的取值范围是.14.设x、y∈R+且=1,则x+y的最小值为.15.设D是不等式组表示的平面区域,则D中的点P(x,y)到直线x+y=10距离的最大值是.16.已知函数f(x)=+lnx(a>0),若函数f(x)在区间(1,+∞)上为增函数,则正实数a的取值范围是.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知p:﹣2≤x≤10;q:x2﹣2x+1﹣m2≤0(m>0),若p是q的必要不充分条件,求实数m的取值范围.18.已知等差数列{a n}满足:a2=5,a5+a7=26,数列{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)设{b n﹣a n}是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.19.已知双曲线C:=1(a>0,b>0)的渐近线方程为:y=±x,右顶点为(1,0).(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线y=x+m与双曲线C交于不同的两点A、B,且线段AB的中点为M(x0,y0).当x0≠0时,求的值.20.设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x ﹣6y﹣7=0垂直,导函数f′(x)的最小值为﹣12.(Ⅰ)求a,b,c的值;(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.21.已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.22.已知函数f(x)=6ln x(x>0)和g(x)=ax2+8x﹣b(a,b为常数)的图象在x=3处有公共切线.(1)求a的值;(2)求函数F(x)=f(x)﹣g(x)的极大值和极小值;(3)若关于x的方程f(x)=g(x)有且只有3个不同的实数解,求b的取值范围.参考答案一、单项选择题1.解:∵等差数列{a n}中,a2=2,a3=4,∴d=a3﹣a2=4﹣2=2,∴a10=a3+7d=4+14=18故选D.2.解:选项A,当c=0时,由a>b,不能推出ac2>bc2,故错误;选项B,当a=﹣1,b=﹣2时,显然有a>b,但a2<b2,故错误;选项C,当a>b时,必有a3>b3,故正确;选项D,当a=﹣2,b=﹣1时,显然有a2>b2,但却有a<b,故错误.故选C3.解:f′(x)=2(2πx)(2πx)′=8π2x故选C4.解:命题p:∀x∈R,2x2﹣1>0,则其否命题为:∃x∈R,2x2﹣1≤0,故选C;5.解:设椭圆G的方程为+=1(a>b>0),∵椭圆上一点到其两个焦点的距离之和为12,∴根据椭圆的定义得2a=12,可得a=6.又∵椭圆的离心率为,∴e==,即=,解之得b2=9,由此可得椭圆G的方程为=1.故选:C6.解:由抛物线y2=8x得焦点F(2,0),∴点F(2,0)到直线的距离d==1.故选D.7.解:∵y=x3+x+1,∴y′=3x2+1令x=1得切线斜率4,∴切线方程为y﹣3=4(x﹣1),即4x﹣y﹣1=0故选A.8.解:设点P到它的左焦点的距离是m,则由双曲线的定义可得|m﹣8|=2×2∴m=4或12故选C.9.解:a>b+1⇒a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.10.解:对于A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,因此不正确;对于B.若p∨q为真命题,则p与q至少有一个为真命题,因此不正确;对于C.“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1≥0”,因此不正确对于D.由于命题“若x=y,则sinx=siny”为真命题,因此其逆否命题为真命题,正确.故选:D.11.解:设双曲线方程为﹣=1.将y=x﹣1代入﹣=1,整理得(b2﹣a2)x2+2a2x﹣a2﹣a2b2=0.由韦达定理得x1+x2=,则==﹣.又c2=a2+b2=7,解得a2=2,b2=5,所以双曲线的方程是.故选D.12.解:原不等式2x2﹣8x﹣4﹣a>0化为:a<2x2﹣8x﹣4,只须a小于y=2x2﹣8x﹣4在1<x<4内的最大值时即可,∵y=2x2﹣8x﹣4在1<x<4内的最大值是﹣4.则有:a<﹣4.故选A.二.填空题13.解:方程+=1表示椭圆,则,解可得k>3,故答案]为k>3.14.解:∵=1,x、y∈R+,∴x+y=(x+y)•()==10+≥10+2=16(当且仅当,x=4,y=12时取“=”).故答案为:16.15.解:如图可行域为阴影部分,由其几何意义为区域D的点A(1,1)到直线x+y=10的距离最大,即为所求,由点到直线的距离公式得:d==4,则区域D中的点到直线x+y=10的距离最大值等于4,故答案为:4.16.解:∵f(x)=+lnx(a>0),∴f′(x)=(x>0);令f′(x)=0,得x=;∴在(0,]上f′(x)≤0,在[,+∞)上f′(x)≥0,∴f(x)在(0,]上是减函数,在[,+∞)上是增函数;∵函数f(x)在区间[1,+∞)内是增函数,∴≤1,又a>0,∴a≥1;∴实数a的取值范围是[1,+∞).故答案为:[1,+∞).三、解答题17.解:p:﹣2≤x≤10;q:x2﹣2x+1﹣m2≤0(m>0)⇔(x﹣(1﹣m))(x﹣(1+m))≤0⇔1﹣m≤x≤1+m,若p是q的必要不充分条件即“q⇒p”⇔{x|1﹣m≤x≤1+m}⊊{x|﹣2≤x≤10},∴,∴m≤3,又m>0所以实数m的取值范围是0<m≤3.18.解:(Ⅰ)设等差数列{a n}的公差为d,因为a2=5,a5+a7=26,所以,解得a1=3,d=2,所以a n=3+2(n﹣1)=2n+1,S n=3n+×2=n2+2n.(Ⅱ)∵{b n﹣a n}是首项为1,公比为3的等比数列,∴b n﹣a n=3n﹣1,所以b n=a n+3n﹣1,∴T n=S n+(1+3+32+33+…+3n﹣1)=n2+2n+.19.解:(Ⅰ)双曲线C:=1(a>0,b>0)的渐近线方程为:y=±x,则由题意得,=,a=1,解得b=,则双曲线的方程为:x2﹣=1;(Ⅱ)联立直线方程和双曲线方程,得到,,消去y,得2x2﹣2mx﹣m2﹣3=0,设A(x1,y1),B(x2,y2),则判别式△=4m2+8(m2+3)>0,x1+x2=m,中点M的x0=,y0=x0+m=m,则有=3.20.解:(Ⅰ)∵f(x)为奇函数,∴f(﹣x)=﹣f(x)即﹣ax3﹣bx+c=﹣ax3﹣bx﹣c∴c=0∵f'(x)=3ax2+b的最小值为﹣12∴b=﹣12又直线x﹣6y﹣7=0的斜率为因此,f'(1)=3a+b=﹣6∴a=2,b=﹣12,c=0.(Ⅱ)f(x)=2x3﹣12x.,列表如下:∵f(﹣1)=10,,f(3)=18∴f(x)在[﹣1,3]上的最大值是f(3)=18,最小值是.21.解:(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,解得:a2=3,b=1,∴椭圆的方程为.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,∴△=(12k)2﹣36(1+3k2)>0…①,设C(x1,y1),D(x2,y2),则而y1•y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(﹣1,0),当且仅当CE⊥DE时,则y1y2+(x1+1)(x2+1)=0,∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③将②代入③整理得k=,经验证k=使得①成立综上可知,存在k=使得以CD为直径的圆过点E.22.解:(1)因f′(x)=,g′(x)=2ax+8,依题意,得f′(3)=g′(3),解得a=﹣1.(2)F(x)=f(x)﹣g(x)=6ln x+x2﹣8x+b.则F′(x)=+2x﹣8=0,得x=1或x=3.∴当0<x<1时,F′(x)>0,F(x)单调递增;当1<x<3时,F′(x)<0,F(x)单调递减;当x>3时,F′(x)>0,F(x)单调递增.∴F(x)的极大值为F(1)=b﹣7;F(x)的极小值为F(3)=b﹣15+6ln 3.(3)根据题意,F(x)=f(x)﹣g(x)=6ln x+x2﹣8x+b的图象应与x轴有三个公共点.即方程f(x)=g(x)有且只有3个不同的实数解的充要条件为解得7<b<15﹣6ln 3.∴b的取值范围为(7,15﹣6ln 3)。
2017-2018学年吉林省长春市十一高中高二上学期期末考试数学(文)试题 解析版
绝密★启用前吉林省长春市十一高中2017-2018学年高二上学期期末考试数学(文)试题一、单选题1.已知复数,则( )A .B .C .D .【答案】B【解析】的实部为,虚部为,故选2.若原命题为:“若12,z z 为共轭复数,则12z z =”,则该命题的逆命题、否命题、逆否命题真假性的判断依次为( )A . 真真真B . 真真假C . 假假真D . 假假假 【答案】C【解析】设1z a bi =+,则2z a b i =-,则12z z ==所以原命题为真命题,故其逆否命题为真命题原命题的否命题为“若12,z z 不互为共轭复数,则12z z ≠”,因为11z =+和22z =不互为共轭复数,但123z z ==,所以否命题为假命题,故原命题的逆命题为假命题 故选C3.下列命题为特称命题的是 ( )A . 任意一个三角形的内角和为0180 B . 棱锥仅有一个底面C . 偶函数的图象关于y 轴垂直D . 存在大于1的实数x ,使lg 12x +<【答案】D【解析】 对于选项A 、B 、C 都为全称命题,选项D 中,根据特称命题的概念,可得命题“存在大于1的实数x ,使lg 12x +>”中含有存在量词,所以D 为特称命题,故选D.4.“m n =”是“方程221mx ny +=表示圆”的( ). A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 【答案】B【解析】0m n ==时,方程等价于01=无意义, 但若221mx ny +=表示圆,则0m n =>.∴“m n =”是“221mx ny +=”表示圆的必要不充分条件. 故选:B5.设双曲线22221(0,0)y x a b a b-=>> )A . 0x =B . 0y ±=C . 20x y ±=D . 20x y ±=【答案】D【解析】双曲线22221(0,0)y x a b a b-=>>可得c a =,即2225a b a+=,可得2ba = 则其渐近线的方程为20x y ±= 故选D 6.已知点,点与点关于平面对称,点与点关于轴对称,则( )A .B .C .D .【答案】D 【解析】 由题意可得:故选7.椭圆中,以点为中点的弦所在直线斜率为()A.B.C.D.【答案】C【解析】设弦的两端点为A(x1,y1),B(x2,y2),代入椭圆得,两式相减得,即,即,又即,即,∴弦所在的直线的斜率为,故选:C.8.若,,,则3个数,,的值( )A.至多有一个不大于1 B.至少有一个不大于1 C.都大于1 D.都小于1【答案】B【解析】设则,,故选9.点在椭圆上,则的最大值为()A.B.C.D.【答案】B【解析】点在椭圆上,,不妨令,则原式则最大值为,故选10.设函数在区间上单调递减,则实数的取值范围是()A.B.C.D.【答案】C【解析】,函数的定义域是,,得函数在区间上单调递减,,解得故选11.在Rt ABC ∆中, 1AB AC ==,若一个椭圆经过,A B 两点,它的一个焦点为点C ,另一个焦点在边AB 上,则这个椭圆的离心率为( ) A .B .C .D .1【答案】C【解析】设另一焦点为DRt ABC ∆中, 1AB AC ==,BC ∴= 2AC AD a +=114AC AB BC a ∴++=+=a ∴=又1AC =,AD ∴=在Rt ACD ∆中焦距2CD ==则c =c e a ∴====故选C点睛:本题主要考查了椭圆的简单性质。
吉林省长春市田家炳实验中学2017-2018学年高二上学期
假期作业三一.选择题:每题5分,共60分1.以双曲线116922=-y x 错误!未指定书签。
的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .091022=+-+x y x 错误!未找到引用源。
B .0161022=+-+x y xC .0161022=+++x y xD .091022=+++x y x2.设F 为抛物线C :x y 32=的焦点,过F 且倾斜角为30的直线交C 于A 、B 两点,则=AB ( )A .330 B .6 C .12 D .37 3.已知0>>b a ,椭圆1C 的方程为12222=+b y a x ,双曲线2C 的方程为12222=-by a x ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为( ) A . 02=±y x B .02=±y x C .02=±y x D .02=±y x4.设点()1,0x M ,若圆O :122=+y x 上存在点N ,使得 45=∠OMN ,则0x 的取值范围是( )A .⎥⎦⎤⎢⎣⎡-21,21B .[]1,1-C .[]2,2- D .⎥⎦⎤⎢⎣⎡-22,22 5.已知命题p :对任意R x ∈,总有0≥x ;q :1=x 是方程02=+x 的根.则下列命题为真命题的是( )A .q p ⌝∧ B .q p ∧⌝ C .q p ⌝∧⌝ D .q p ∧6.设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条件7.已知命题p :0>∀x ,总有()11>+x e x ,则p ⌝为( )A .00≤∃x ,使得()1100≤+x e xB .00>∃x ,使得()1100≤+x e xC .00>∀x ,使得()1100≤+x e xD .00≤∀x ,使得()1100≤+x e x8.观察下列各式:312555=,1562556=,7812557=,…,则20115的末四位数字为( )A .3125B .5625C .0625D .81259.命题“若4πα=,则1tan =α”的逆否命题是( ) A .若4πα≠,则1tan ≠α B .若4πα=,则1tan ≠αC .若1tan ≠α,则4πα≠ D .若1tan ≠α,则4πα=10.函数)(x f 在0x x =处导数存在,若p :()00='x f ;q :0x x =是()x f 的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件11.已知曲线124++=ax x y 在点()2,1+-a 处切线的斜率为8,则=a ( ) A .9 B .6 C .9- D .6-12.设()x x x f ln 2+=,则( ) A .21=x 为()x f 的极大值点 B .21=x 为()x f 的极小值点 C .2=x 为()x f 的极大值点 D .2=x 为()x f 的极小值点二.填空题:每题5分,共20分13.抛物线24y x =的焦点到准线的距离是 .14.过点()1,3作圆()()42222=-+-y x 的弦,其中最短弦的长为_________. 15.观察下列等式:233321=+,23336321=++,23333104321=+++,……,根据上述规律,第五个等式为 .16.曲线35+-=x e y 在点()2,0-处的切线方程为________.三.解答题:共20分17.(10分)设函数()()1123323+++-=x a x x a x f ,其中a 为实数 (1)已知函数()x f 在1=x 处有极值,求a 的值;(2)已知不等式()12+-->'a x x x f 对任意()+∞∈,0a 都成立,求x 的取值范围.18.(10分)已知椭圆C :4222=+y x .(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2=y 上,点B 在椭圆C 上,且OB OA ⊥,求线段AB 长度的最小值.。
2017-2018学年吉林省长春市田家炳实验中学高二上学期数学(文)寒假作业三
假期作业三一.选择题:每题5分,共60分1.以双曲线116922=-y x 错误!未指定书签。
的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .091022=+-+x y x 错误!未找到引用源。
B .0161022=+-+x y xC .0161022=+++x y xD .091022=+++x y x2.设F 为抛物线C :x y 32=的焦点,过F 且倾斜角为30的直线交C 于A 、B 两点,则=AB ( )A .330 B .6 C .12 D .37 3.已知0>>b a ,椭圆1C 的方程为12222=+b y a x ,双曲线2C 的方程为12222=-b y a x ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为( ) A . 02=±y x B .02=±y x C .02=±y x D .02=±y x4.设点()1,0x M ,若圆O :122=+y x 上存在点N ,使得 45=∠OMN ,则0x 的取值范围是( )A .⎥⎦⎤⎢⎣⎡-21,21B .[]1,1-C .[]2,2- D .⎥⎦⎤⎢⎣⎡-22,22 5.已知命题p :对任意R x ∈,总有0≥x ;q :1=x 是方程02=+x 的根.则下列命题为真命题的是( )A .q p ⌝∧ B .q p ∧⌝ C .q p ⌝∧⌝ D .q p ∧6.设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条件7.已知命题p :0>∀x ,总有()11>+x e x ,则p ⌝为( )A .00≤∃x ,使得()1100≤+x e xB .00>∃x ,使得()1100≤+x e xC .00>∀x ,使得()1100≤+x e xD .00≤∀x ,使得()1100≤+x e x8.观察下列各式:312555=,1562556=,7812557=,…,则20115的末四位数字为( )A .3125B .5625C .0625D .81259.命题“若4πα=,则1tan =α”的逆否命题是( ) A .若4πα≠,则1tan ≠α B .若4πα=,则1tan ≠αC .若1tan ≠α,则4πα≠ D .若1tan ≠α,则4πα=10.函数)(x f 在0x x =处导数存在,若p :()00='x f ;q :0x x =是()x f 的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件11.已知曲线124++=ax x y 在点()2,1+-a 处切线的斜率为8,则=a ( ) A .9 B .6 C .9- D .6-12.设()x x x f ln 2+=,则( ) A .21=x 为()x f 的极大值点 B .21=x 为()x f 的极小值点 C .2=x 为()x f 的极大值点 D .2=x 为()x f 的极小值点二.填空题:每题5分,共20分13.抛物线24y x =的焦点到准线的距离是 .14.过点()1,3作圆()()42222=-+-y x 的弦,其中最短弦的长为_________. 15.观察下列等式:233321=+,23336321=++,23333104321=+++,……,根据上述规律,第五个等式为 .16.曲线35+-=x e y 在点()2,0-处的切线方程为________.三.解答题:共20分17.(10分)设函数()()1123323+++-=x a x x a x f ,其中a 为实数 (1)已知函数()x f 在1=x 处有极值,求a 的值;(2)已知不等式()12+-->'a x x x f 对任意()+∞∈,0a 都成立,求x 的取值范围.18.(10分)已知椭圆C :4222=+y x .(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2=y 上,点B 在椭圆C 上,且OB OA ⊥,求线段AB 长度的最小值.。
吉林省吉林市2017-2018学年高二上学期期末考试数学(文)试题Word版含解析
吉林省吉林市2017-2018学年上学期期末考试高二数学(文)试题考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分,考试时间为120分钟.(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 抛物线y x 82=的焦点坐标是 A .)321,0( B .)0,321( C .)0,2( D .)2,0( 2. 已知直线024=-+y mx 与015-2=+y x 互相垂直,则m 的值为 A .10 B .20 C .0 D .-43. 10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设 其平均数为a ,中位数为b ,众数为c ,则有A .c b a >>B .a c b >>C .b a c >>D .a b c >>4. 某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现 采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为A .5,10,15B .3,9,18C .3,10,17D .5,9,165. 在区间]4,4[ππ-上任取一个数x ,则函数x x f 2sin )(=的值不小于21的概率为A .21B .31C .32D .3π6. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 A .2 B .3 C .213+ D .215+7. 某赛季,甲、乙两名篮球运动员都参加了11 场比赛,他们每场比赛得分的情况用如图所示 的茎叶图表示,则甲、乙两名运动员的中位数分别为A .19、13B .13、19C .20、18D .18、208. 已知圆 0152:22=--+x y x C ,直线0743:=++y x l ,则圆C 上到直线l 距离等于2的点的个数为A .1B .2C .3D .4 9. 在区间]1,0[中随机取出两个数,则两数之和不小于45的概率是 A .825 B .925 C .2518 D .172510. 过椭圆)0(12222>>=+b a by a x 的左焦点F 作斜率为1的直线交椭圆于A ,B 两点.若向量+与向量)1,3(-=共线,则该椭圆的离心率为 A .33 B .36 C .43 D .32 11. 某著名纺织集团为了减轻生产成本继续走高的压力,计划提高某种产品的价格,为 此销售部在10月1日至10月5日连续五天对某个大型批发市场中该产品一天的销 售量及其价格进行了调查,其中该产品的价格x (元)与销售量y (万件)之间的数据如 下表所示: 已知销售量y 与价格x 之间具有线性相关关系,其回归直线方程为:y ^=-3.2x +a ^,若该集团提高价格后该批发市场的日销售量为7.36万件,则该产品的价格约为A .14.2元B .10.8元C .14.8元D .10.2元3 4 6 2 2 0 2 3 1 01412. 设直线l 与抛物线24y x =相交于B A ,两点,与圆()()22250x y r r -+=>相切 于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24,第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应位置上) 13. 某中学采用系统抽样方法,从该校高一年级全体800名学生中抽80名学生做牙齿 健康检查.现将800名学生从1到800进行编号.已知从31~40这10个数中取的 数是39,则在第1小组1~10中随机抽到的数是14. 从一个正方体的6个面中任取2个,则这2个面恰好互相平行的概率是 15. 已知下面四个命题:(1)从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样;(2)两个随机变量相关性越强,则相关系数的 绝对值越接近于1;(3)对分类变量X 和Y 的随机变量2K 的观测值k 来说,k 越小, “X 与Y 有关系”的把握程度越大;(4)在回归直线方程y ^=0.4x +12中,当解释变量 x 每增加一个单位时,预报变量大约增加0.4个单位. 其中所有真命题的序号是16. 在平面直角坐标系中,B A ,分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与 直线042=-+y x 相切,则圆C 面积的最小值为三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. (10分)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个, 现从袋中取出2球.(Ⅰ)求取出2球都是白球的概率;;(Ⅱ)若取1个红球记2分,取1个白球记1分,取1个黑球记0分,求取出两球分 数之和为2的概率.18. 已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是短轴长的2倍,直线1+-=x y 与椭圆C 相交于B A ,两点,且弦AB 的长为354,求此椭圆的方程.19.对一批零件的长度(单位:mm)进行抽样检测,检测结果的频率分布直方图如图所示.根据标准,零件长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.(Ⅰ)用频率估计概率,现从该批产品中随机抽取一件,求其为二等品的概率;(Ⅱ)已知检测结果为一等品的有6件,现随机从三等品中取两件,求取出的两件产品中恰有1件的长度在区间[30,35)上的概率.[20.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:六月份的日最高气温不高于32℃的频率为0.8.(Ⅰ)求X ,Y 的值;(Ⅱ)把日最高气温高于32℃称为本地区的“高温天气”,根据已知条件完成下面2×2 列联表,并据此推测是否有95%的把握认为本地区的“高温天气”与冷饮“旺销”有 关?说明理由.附:K 2=a +bc +d a +cb +d21. 抛物线2:4E y x =的焦点是F ,过点F 的直线l 与抛物线E 相交于A 、B 两点, 原点为O .[(Ⅰ)设l 的斜率为1,求⋅的值;(Ⅱ)设FB t AF =,若[2,4]t ∈,求直线l 的斜率的范围.[22. 已知抛物线2:2(0)C y px p =>的焦点为F ,P 为C 上异于原点的任意一点,过点P 的直线l 交C 于另一点Q ,交x 轴的正半轴于点S ,且有||||FP FS =.[当点P 的横坐标为3时,PF PS =.[ (Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E ,(ⅰ)OPE ∆的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由; (ⅱ)证明直线PE 过定点,并求出定点坐标.吉林省吉林市2017-2018学年高二上学期期末考试数学(文)试题参考答案一、选择题二、填空题13. 9 14. 51 15. (1)(2)(4) 16. 54π三、解答题 17.(Ⅰ) 611=P …………..5分 (Ⅱ) 312=P …………..10分 18. 222b a = .…………..3分3824221-=-b x x ,35431342=-=b AB .…………..8分12422=+y x.…………..12分 19. 解:(1)由频率分布直方图可得产品数量在[10,15)频率为0.1,在[15,20) 频率为0.2, [20,25)之间的频率为0.3,在[30,35)频率为0.15,所以在[25,30)上的频率为0.25 ,所以样本中二等品的频率为0.45,所以该批产品中随机抽取一件, 求其为二等品的 概率0.45. …………..6分(2)因为一等品6件,所以在[10,15)上2件,在[30,35)上3件,令[10,15)上2件为a 1, (3)a 2,在[30,35)上3件b 1,b 2,b 3,所以一切可能的结果组成的基本事件空间 Ω={(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3)……}由15个基本事件组成. 恰有1件的长度在区间[30,35)上的基本事件有6个.所以取出的两件产品中恰有1 件的长度在区间[30,35)上的概率P =52.…………..12分20. 解 (1)由题意,P (t ≤32℃)=0.8,∴P (t >32℃)=1-P (t ≤32℃)=0.2.∴Y =30×0.2=6,X =30-(6+12+6)=6. …………..5分 (2) ∴K 2=n ad -bc 2a +bc +d a +cb +d≈10.21∵10.21>3.841, …………..10分 ∴有95%的把握认为本地区的“高温天气”与冷饮“旺销”有关. …………..12分21. (Ⅰ)3-=⋅ ………….. 5分(Ⅱ)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--22,3434,22 …………..12分22. 解 (I )由题意知,02p F ⎛⎫⎪⎝⎭.3=P x ,则3=2p FP FS =+,则()3+,0S p ,或()3,0S -(舍)则FS 中点36,04p +⎛⎫⎪⎝⎭. 因为P F P S =,则3634p +=解得2p =.所以抛物线C 的方程为24y x =. …………..4分(II )(i)由(I )知()1,0F ,设()00,P x y ()000x y ≠,()(),00S S S x x >,因为FP FS =,则011S x x -=+,由0S x >得02S x x =+,故()02,0S x +.故直线PQ 的斜率02PQ y k =-. 因为直线1l 和直线PQ 平行,设直线1l 的方程为02y y x b =-+,代入抛物线方程 得200880b y y y y +-=,由题意20064320b y y ∆=+=,得02b y =-.设(),E E E x y ,则04E y y =-,20041=E x y x =,当204y ≠时,00001E PE E y y yk x x x -==--,可得直线PE 的方程为 ()00001y y y x x x -=--,则O 到直线PE 的距离为1)1(11002000000+=-+--=x y x y y x y x d ,020200200)1()4()1(x x y y x x PE +=++-= …………..6分 所以,OPE ∆的面积24)4()1(2100020000>+=+=+=⨯=∆y y y y x x y d PE S OPE当204y =时,2=∆OPE S所以,OPE ∆的面积有最小值,最小值为2. …………..9分(ii )由(i)知204y ≠时,直线PE 的方程()00001y y y x x x -=--,整理可得()020414y y x y =--,直线PE 恒过点()1,0F .当204y =时,直线PE 的方程为1x =,过点()1,0F . …………..12分。
吉林省长春市2017-2018学年高二上学期期末数学试卷(文科)Word版含解析
吉林省长春市2017-2018学年高二上学期期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.1.命题“∀x∈R,2x2+1>0”的否定是()A.∀x∈R,2x2+1≤0 B.C.D.2.已知某公司现有职员150人,其中中级管理人员30人,高级管理人员10人,要从公司抽取30个人进行身体健康检查,如果采用分层抽样的方法,则职员中“中级管理人员”和“高级管理人员”各应该抽取的人数为()A.8,2 B.8,3 C.6,3 D.6,23.225与135的最大公约数是()A.5 B.9 C.15 D.454.命题“若x=2,则x2﹣3x+2=0”的否命题是()A.若x≠2,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=2C.若x2﹣3x+2≠0,则x≠2 D.若x=2,则x2﹣3x+2≠0相等的十进制数是()5.与二进制数110(2)A.6 B.7 C.10 D.116.曲线的极坐标方程ρ=4sinθ化为直角坐标为()A.x2+(y+2)2=4 B.x2+(y﹣2)2=4 C.(x﹣2)2+y2=4 D.(x+2)2+y2=47.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35 B.20 C.18 D.98.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于10的概率为()A.B.C.D.9.如图,矩形长为5,宽为3,在矩形内随机撒100颗黄豆,数得落在椭圆内的黄豆数为60颗,以此实验数据为依据可以估算椭圆的面积约为()A.11 B.9 C.12 D.1010.过点M(1,1)的直线与椭圆=1交于A,B两点,且点M平分弦AB,则直线AB的方程为()A.4x+3y﹣7=0 B.3x+4y﹣7=0 C.3x﹣4y+1=0 D.4x﹣3y﹣1=011.命题“对任意实数x∈[2,3],关于x的不等式x2﹣a≤0恒成立”为真命题的一个必要不充分条件是()A.a≥9 B.a≤9 C.a≤8 D.a≥812.设F 1,F 2分别是双曲线(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使得,其中O 为坐标原点,且,则该双曲线的离心率为( )A .B .C .D . 二、填空题:本大题共4小题,每小题5分,共20分.13.抛物线y=4x 2的准线方程为 .14.过点(3,1)作圆(x ﹣2)2+(y ﹣2)2=4的弦,其中最短的弦长为 .15.已知样本数据3,2,1,a 的平均数为2,则样本的标准差是 .16.已知圆O :x 2+y 2=1,点M (x 0,y 0)是直线x ﹣y+2=0上一点,若圆O 上存在一点N ,使得,则x 0的取值范围是 .三、解答题:本大题共6小题,共70分.17.在直角坐标系xOy 中,曲线C 1的参数方程为(其中α为参数),曲线,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 1的普通方程和曲线C 2的极坐标方程;(Ⅱ)若射线与曲线C 1,C 2分别交于A ,B 两点,求|AB|.18.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:(Ⅰ)用最小二乘法计算利润额y 对销售额x 的回归直线方程;(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.附:线性回归方程中,,.19.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:(Ⅰ)求图中a的值;(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,若将该样本看成一个总体,从中随机抽取2名学生,求其中恰有1人的分数不低于90分的概率?20.已知圆C经过点A(2,0)、B(1,﹣),且圆心C在直线y=x上.(1)求圆C的方程;(2)过点(1,)的直线l截圆所得弦长为2,求直线l的方程.21.已知抛物线y=4x2,过点P(0,2)作直线l,交抛物线于A,B两点,O为坐标原点,(Ⅰ)求证:为定值;(Ⅱ)求△AOB面积的最小值.22.已知点A,B分别是椭圆的左,右顶点,长轴长为4,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若点P为椭圆C上除长轴顶点外的任一点,直线AP,PB与直线x=4分别交于点M,N,已知常数λ>0,求的取值范围.吉林省长春市2017-2018学年高二上学期期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.命题“∀x∈R,2x2+1>0”的否定是()A.∀x∈R,2x2+1≤0 B.C.D.【考点】全称命题;命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:∵命题∀x∈R,2x2+1>0是全称命题,∴根据全称命题的否定是特称命题得命题的否定是:“”,.故选:C.2.已知某公司现有职员150人,其中中级管理人员30人,高级管理人员10人,要从公司抽取30个人进行身体健康检查,如果采用分层抽样的方法,则职员中“中级管理人员”和“高级管理人员”各应该抽取的人数为()A.8,2 B.8,3 C.6,3 D.6,2【考点】分层抽样方法.【分析】利用要抽取的人数除以总人数,得到每个个体被抽到的概率,用概率乘以各个层次的人数,得到结果.【解答】解:∵公司现有职员150人,其中中级管理人员30人,高级管理人员10人,∴从公司抽取30个人进行身体健康检查,每个个体被抽到的概率是=,∴中级管理人员30×=6人,高级管理人员10×=2人,故选:D.3.225与135的最大公约数是()A.5 B.9 C.15 D.45【考点】辗转相除法;用辗转相除计算最大公约数.【分析】利用两个数中较大的一个除以较小的数字,得到商是1,余数是90,用135除以90,得到商是1,余数45,…,所以两个数字的最大公约数是45,得到结果.【解答】解:∵225÷135=1…90,135÷90=1…45,90÷45=2,∴225与135的最大公约数是45,故选D.4.命题“若x=2,则x2﹣3x+2=0”的否命题是()A.若x≠2,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=2C.若x2﹣3x+2≠0,则x≠2 D.若x=2,则x2﹣3x+2≠0【考点】四种命题.【分析】若原命题的形式是“若p,则q”,它的否命题是“若非p,则非q”,然后再通过方程根的有关结论,验证它们的真假即可.【解答】解:原命题的形式是“若p,则q”,它的否命题是“若非p,则非q”,∴命题:“若x=2,则x2﹣3x+2=0”的否命题是“若x≠2则x2﹣3x+2≠0”.故选:A.5.与二进制数110(2)相等的十进制数是()A.6 B.7 C.10 D.11【考点】进位制.【分析】本题考查的知识点是算法的概念,由二进制转化为十进制的方法,我们只要依次累加各位数字上的数×该数位的权重,即可得到结果.【解答】解:110(2)=0+1×2+1×22=2+4=6(10)故选:A.6.曲线的极坐标方程ρ=4sinθ化为直角坐标为()A.x2+(y+2)2=4 B.x2+(y﹣2)2=4 C.(x﹣2)2+y2=4 D.(x+2)2+y2=4【考点】极坐标系和平面直角坐标系的区别;点的极坐标和直角坐标的互化.【分析】曲线的极坐标方称即ρ2=4ρsinθ,即 x2+y2=4y,化简可得结论.【解答】解:曲线的极坐标方程ρ=4sinθ即ρ2=4ρsinθ,即 x2+y2=4y,化简为x2+(y﹣2)2=4,故选:B.7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35 B.20 C.18 D.9【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=2,n=3,故v=1,i=2,满足进行循环的条件,v=4,i=1,满足进行循环的条件,v=9,i=0,满足进行循环的条件,v=18,i=﹣1不满足进行循环的条件,故输出的v值为:故选:C8.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于10的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=6×6=36,再利用列举法求出所得的两个点数和不小于10包含的基本事件个数,由此能求出所得的两个点数和不小于10的概率.【解答】解:将一颗骰子先后抛掷2次,观察向上的点数,基本事件总数n=6×6=36,则所得的两个点数和不小于10包含的基本事件有:(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,∴所得的两个点数和不小于10的概率为p=.故选:D.9.如图,矩形长为5,宽为3,在矩形内随机撒100颗黄豆,数得落在椭圆内的黄豆数为60颗,以此实验数据为依据可以估算椭圆的面积约为()A.11 B.9 C.12 D.10【考点】几何概型.【分析】欲估计出椭圆的面积,可利用概率模拟,只要利用平面图形的面积比求概率即可.【解答】解:由题意,以面积为测度,则,∴S=15×=9,椭圆故选:B.10.过点M (1,1)的直线与椭圆=1交于A ,B 两点,且点M 平分弦AB ,则直线AB 的方程为( )A .4x+3y ﹣7=0B .3x+4y ﹣7=0C .3x ﹣4y+1=0D .4x ﹣3y ﹣1=0【考点】椭圆的简单性质.【分析】设A (x 1,y 1),B (x 2,y 2),代入椭圆的方程,两式相减,结合中点坐标公式和直线的斜率公式,即可解出直线AB 的斜率k ,由点斜式方程可得直线AB 的方程.【解答】解:设A (x 1,y 1),B (x 2,y 2),代入椭圆的方程可得:+=1, +=1,两式相减可得: +=0,又x 1+x 2=2,y 1+y 2=2, =k ,即为k=﹣=﹣,则直线AB 的方程为:y ﹣1=﹣(x ﹣1),化为3x+4y ﹣7=0.故选:B .11.命题“对任意实数x ∈[2,3],关于x 的不等式x 2﹣a ≤0恒成立”为真命题的一个必要不充分条件是( )A .a ≥9B .a ≤9C .a ≤8D .a ≥8【考点】必要条件、充分条件与充要条件的判断.【分析】命题“对任意实数x ∈[2,3],关于x 的不等式x 2﹣a ≤0恒成立”为真命题,可得a ≥[x 2]max .【解答】解:命题“对任意实数x ∈[2,3],关于x 的不等式x 2﹣a ≤0恒成立”为真命题, ∴a ≥[x 2]max =9.∴命题“对任意实数x ∈[2,3],关于x 的不等式x 2﹣a ≤0恒成立”为真命题的一个必要不充分条件是a ≥8.故选:D .12.设F 1,F 2分别是双曲线(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使得,其中O 为坐标原点,且,则该双曲线的离心率为( )A .B .C .D . 【考点】双曲线的简单性质.【分析】取PF 2的中点A ,利用,可得⊥,从而可得PF 1⊥PF 2,利用双曲线的定义及勾股定理,可得结论.【解答】解:取PF 2的中点A ,则∵,∴⊥ ∵O 是F 1F 2的中点∴OA ∥PF 1,∴PF 1⊥PF 2,∵|PF 1|=3|PF 2|,∴2a=|PF 1|﹣|PF 2|=2|PF 2|,∵|PF 1|2+|PF 2|2=4c 2,∴10a 2=4c 2,∴e=故选C .二、填空题:本大题共4小题,每小题5分,共20分.13.抛物线y=4x 2的准线方程为 . 【考点】抛物线的简单性质.【分析】先把抛物线方程整理成标准方程,进而求得p ,再根据抛物线性质得出准线方程.【解答】解:整理抛物线方程得x 2=y ,∴p= ∵抛物线方程开口向上,∴准线方程是y=﹣故答案为:.14.过点(3,1)作圆(x ﹣2)2+(y ﹣2)2=4的弦,其中最短的弦长为 2 .【考点】直线与圆的位置关系.【分析】由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出. 【解答】解:根据题意得:圆心(2,2),半径r=2,∵=<2,∴(3,1)在圆内,∵圆心到此点的距离d=,r=2,∴最短的弦长为2=2.故答案为:215.已知样本数据3,2,1,a 的平均数为2,则样本的标准差是 .【考点】极差、方差与标准差.【分析】先根据平均值求得a ,再利用方差、标准差的定义,求得样本的标准差.【解答】解:样本数据3,2,1,a 的平均数为2=,∴a=2,样本的方差S 2= [1+0+1+0]=,∴标准差为,故答案为:.16.已知圆O :x 2+y 2=1,点M (x 0,y 0)是直线x ﹣y+2=0上一点,若圆O 上存在一点N ,使得,则x 0的取值范围是 [﹣2,0] .【考点】直线与圆相交的性质.【分析】过M作⊙O切线交⊙C于R,则∠OMR≥∠OMN,由题意可得∠OMR≥,|OM|≤2.再根据M(x0,2+x),|OM|2=x2+y2=2x2 +4x+4,求得x的取值范围.【解答】解:过M作⊙O切线交⊙C于R,根据圆的切线性质,有∠OMR≥∠OMN.反过来,如果∠OMR≥,则⊙O上存在一点N使得∠OMN=.∴若圆O上存在点N,使∠OMN=,则∠OMR≥.∵|OR|=1,OR⊥MR,∴|OM|≤2.又∵M(x0,2+x),|OM|2=x02+y2=x2+(2+x)2=2x2 +4x+4,∴2x02+4x+4≤4,解得,﹣2≤x≤0.∴x的取值范围是[﹣2,0],故答案为:[﹣2,0].三、解答题:本大题共6小题,共70分.17.在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;(Ⅱ)若射线与曲线C1,C2分别交于A,B两点,求|AB|.【考点】参数方程化成普通方程;简单曲线的极坐标方程;平面直角坐标轴中的伸缩变换.【分析】(Ⅰ)利用三种方程的互化方法,求曲线C1的普通方程和曲线C2的极坐标方程;(Ⅱ)将代入曲线C1的极坐标方程得ρ2﹣2ρ﹣3=0,解得ρ1=3,同理将曲线C2的极坐标方程得ρ2=1.可得|AB|=|ρ1﹣ρ2|=2.【解答】(1)由,有曲线C1的普通方程为(x﹣2)2+y2=7.把x=ρcosθ,y=ρsinθ,代入(x﹣1)2+y2=1,得(ρcosθ﹣1)2+(ρsinθ)2=1,化简得,曲线C2的极坐标方程ρ=2cosθ.﹣﹣﹣﹣﹣﹣(2)依题意可设.因为曲线C1的极坐标方程为ρ2﹣4ρcosθ﹣3=0,将代入曲线C1的极坐标方程得ρ2﹣2ρ﹣3=0,解得ρ1=3.同理将曲线C2的极坐标方程得ρ2=1.所以|AB|=|ρ1﹣ρ2|=2.﹣﹣﹣﹣﹣﹣18.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程;(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.附:线性回归方程中,,.【考点】线性回归方程.【分析】(Ⅰ)求出回归系数,即可求出利润额y对销售额x的回归直线方程;(Ⅱ)x=4代入,即可得出结论.【解答】解:(Ⅰ)设回归直线的方程是:,,∴==0.5, =0.4,∴y对销售额x的回归直线方程为: =0.5x+0.4;﹣﹣﹣﹣﹣﹣(Ⅱ)当销售额为4(千万元)时,利润额为: =0.5×4+0.4=2.4(千万元).﹣﹣﹣19.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:(Ⅰ)求图中a的值;(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,若将该样本看成一个总体,从中随机抽取2名学生,求其中恰有1人的分数不低于90分的概率?【考点】频率分布直方图;分层抽样方法.【分析】(1)由频率分布图中小矩形面积和为1,能求出a的值.(2)由直方图,得第3组人数为30人,第4组人数为20人,第5组人数为10人,利用分层抽样在60名学生中抽取6名学生,第3、4、5组分别抽取3人、2人、1人.由此利用列举法能求出第4组的2位同学至少有一位同学入选的概率.【解答】解:(1)由题意得10a+0.01×10+0.02×10+0.03×10+0.035×10=1,所以a=0.005.﹣﹣﹣﹣﹣﹣(2)由直方图,得:第3组人数为:0.3×100=30人,第4组人数为:0.2×100=20人,第5组人数为:0.1×100=10人,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:人,第4组:人,第5组:人,所以第3、4、5组分别抽取3人、2人、1人.设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能如下:(A1,A2),(A1,A3),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),其中恰有1人的分数不低于9的情形有:(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),共5种,所以其中第4组的2位同学至少有一位同学入选的概率为.﹣﹣﹣﹣﹣﹣20.已知圆C经过点A(2,0)、B(1,﹣),且圆心C在直线y=x上.(1)求圆C的方程;(2)过点(1,)的直线l截圆所得弦长为2,求直线l的方程.【考点】直线与圆相交的性质.【分析】(1)求出圆心坐标与半径,即可求圆C的方程;(2)设出直线方程,利用点到直线的距离以及半径半弦长求解即可.【解答】解:(1)AB的中点坐标(,),AB的斜率为.可得AB垂直平分线为x+6y=0,与x﹣y=0的交点为(0,0),圆心坐标(0,0),半径为2,所以圆C的方程为x2+y2=4;(2)直线的斜率存在时,设直线l的斜率为k,又直线l过(1,),∴直线l的方程为y﹣=k(x﹣1),即y=kx+﹣k,则圆心(0,0)到直线的距离d=,又圆的半径r=2,截得的弦长为2,则有,解得:k=﹣,则直线l 的方程为y=﹣x+.当直线的斜率不存在时,直线方程为x=1,满足题意.直线l 的方程:x=1或y=﹣x+.21.已知抛物线y=4x 2,过点P (0,2)作直线l ,交抛物线于A ,B 两点,O 为坐标原点,(Ⅰ)求证:为定值;(Ⅱ)求△AOB 面积的最小值.【考点】直线与抛物线的位置关系;平面向量数量积的运算.【分析】(Ⅰ)设过点P (0,2)的直线l :y=kx+2,联立直线与抛物线方程,令A (x 1,y 1),B (x 2,y 2),利用韦达定理,求解为定值.(Ⅱ)由(Ⅰ)知,利用弦长公式以及原点到直线l 的距离,表示三角形的面积,然后求解最小值即可.【解答】证明:(Ⅰ)设过点P (0,2)的直线l :y=kx+2,由得,4x 2﹣kx ﹣2=0,令A (x 1,y 1),B (x 2,y 2),∴,y 1y 2=k 2x 1x 2+2k (x 1+x 2)+4=4∴=x 1x 2+y 1y 2=4﹣=为定值.﹣﹣﹣﹣﹣﹣解:(Ⅱ)由(Ⅰ)知, =,原点到直线l 的距离∴当k=0时,三角形AOB 的面积最小,最小值是﹣﹣﹣﹣﹣﹣22.已知点A,B分别是椭圆的左,右顶点,长轴长为4,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若点P为椭圆C上除长轴顶点外的任一点,直线AP,PB与直线x=4分别交于点M,N,已知常数λ>0,求的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可知:2a=4,a=2,离心率为e==,c=1,b2=a2﹣c2=3,即可求得椭圆C的标准方程;(Ⅱ)设点P(x0,y),分别求得AP和BP的直线方程,求得M和N点坐标,=,设函数,定义域为(﹣2,2),由函数的单调性即可求得的取值范围.【解答】解:(Ⅰ)由题意得,A(﹣a,0),B(a,0),且长轴长为2a=4,a=2,离心率为e==,c=1,b2=a2﹣c2=3,则a2=4,b2=3.则椭圆方程为.﹣﹣﹣﹣﹣﹣(Ⅱ)设点P(x0,y)(x≠±2).直线AP的方程为,令x=4,,∴点M坐标为.直线BP的方程为,令x=4,,∴点N坐标为.∵,,∴.∵,,∴.∴=.设函数,定义域为(﹣2,2),当时,即λ≥1时,f(x0)在(﹣2,2)上单调递减,f(x)的取值范围为(λ,9λ),当时,即0<λ<1时,f(x)在上单调递减,在上单调递增,f(x)的取值范围为.综上,当λ≥1时,的取值范围为(λ,9λ),当0<λ<1时,的取值范围为.﹣﹣﹣﹣﹣﹣。
吉林省吉林高二上期末数学试卷(文)含答案解析.doc
2017-2018学年吉林省吉林高二(上)期末数学试卷(文科)一、选择题(共12个小题,每小题5分,合计60分,每题只有一个正确的选项!)1.(5分)等差数列{a n}中,a3=4,a7=10,则a6=()A.B.C.D.2.(5分)在△ABC中,a=18,B=60°,C=75°,则b=()A.6 B.9 C.4 D.93.(5分)不等式(x+5)(1﹣x)≥8的解集是()A.{x|x≤1或x≥﹣5}B.{x|x≤﹣3或x≥﹣1}C.{x|﹣5≤x<1}D.{x|﹣3≤x≤﹣1}4.(5分)已知焦点在y轴上,对称轴为坐标轴的椭圆,半短轴长为3,焦距为4,则该椭圆的标准方程为()A.B.C.D.5.(5分)等比数列{a n}中,a1a2a3=3,a10a11a12=24,则a13a14a15=()A.48 B.72 C.144 D.1926.(5分)在△ABC中,sin2A+sin2B+sinAsinB=sin2C,则角C等于()A.30°B.60°C.120° D.150°7.(5分)已知x>0,y>0,且+=2,则x+y的最小值为()A.6 B.7 C.8 D.98.(5分)已知两定点F1(0,﹣5),F2(0,5),平面内动点P到F1、F2的距离之差的绝对值是6,则点P的轨迹方程为()A.B.C.D.9.(5分)在△ABC中,A=60°,AB=4,S△ABC=2,则BC边等于()A.2 B.2 C.D.310.(5分)已知数列{a n}满足a1=1,a n+1=a n+2n,则a10=()A.1024 B.1023 C.2048 D.204711.(5分)函数f(x)=2x2﹣4lnx的单调减区间为()A.(﹣1,1)B.(1,+∞)C.(0,1) D.[﹣1,0)12.(5分)抛物线y=x2+bx+c在点(1,2)处的切线n的倾斜角是135度,则过点(b,c)且与切线n垂直的直线方程为()A.x﹣y+3=0 B.x﹣y+7=0 C.x﹣y﹣1=0 D.x﹣y﹣3=0二、填空题(共4个小题,每个小题5分,合计20分,要求:答案书写时规范、标准.)13.(5分)已知x、y满足约束条件,则z=2x+4y的最小值是.14.(5分)函数y=的定义域为R,则k的取值范围.15.(5分)已知点P到点F(0,1)的距离比它到直线y=﹣5的距离小4,若点P的轨迹与直线x﹣4y+2=0的交点为A、B,则线段AB的中点坐标为.16.(5分)函数f(x)=x3﹣x2﹣x+k的图象与x轴刚好有三个交点,则k的取值范围是.三、解答题(共6个小题,第17题10分,第18--22题,每小题10分,合计70分.要求:书写规范,步骤清晰,按步骤赋分,没有过程,不给评分)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2﹣a2=c(b ﹣c),a=4,(1)若b=,求B;(2)若△ABC面积为4,求b与c的值.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=2a(1)求角B的大小.(2)若b=4,sinAcosB+cosAsinB=2sinA,求△ABC的面积.19.(12分)已知等差数列{a n}中,a7=9,S7=42(1)求a15与S20(2)数列{c n}中c n=2n a n,求数列{c n}的前n项和T n.20.(12分)已知数列{a n}的前n项和为S n,若S n=n2+5n.(1)证明数列{a n}是等差数列;(2)求数列{}的前n项和T n.21.(12分)已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m椭圆左焦点F1且斜率为1,交椭圆于A、B两点,求弦长|AB|.22.(12分)已知函数f(x)=lnx+kx2+(2k+1)x(1)讨论f(x)的单调性;(2)当k<0时,证明f(x).2017-2018学年吉林省吉林高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12个小题,每小题5分,合计60分,每题只有一个正确的选项!)1.(5分)等差数列{a n}中,a3=4,a7=10,则a6=()A.B.C.D.【解答】解:∵等差数列{a n}中,a3=4,a7=10,∴,解得,∴a6=1+5×=.故选:C.2.(5分)在△ABC中,a=18,B=60°,C=75°,则b=()A.6 B.9 C.4 D.9【解答】解:∵在△ABC中,a=18,B=60°,C=75°,∴A=45°,由正弦定理=得:b===9,故选:C.3.(5分)不等式(x+5)(1﹣x)≥8的解集是()A.{x|x≤1或x≥﹣5}B.{x|x≤﹣3或x≥﹣1}C.{x|﹣5≤x<1}D.{x|﹣3≤x≤﹣1}【解答】解:∵(x+5)(1﹣x)≥8,∴(x+3)(x+1)≤0,解得:﹣3≤x≤﹣1,故选:D.4.(5分)已知焦点在y轴上,对称轴为坐标轴的椭圆,半短轴长为3,焦距为4,则该椭圆的标准方程为()A.B.C.D.【解答】解:根据题意,要求椭圆的半短轴长为3,焦距为4,即b=3,2c=4,解可得b=3,c=2;则a==,又由椭圆的焦点在y轴上,则椭圆的方程为+=1;故选:D.5.(5分)等比数列{a n}中,a1a2a3=3,a10a11a12=24,则a13a14a15=()A.48 B.72 C.144 D.192【解答】解:设等比数列{a n}的公比为q,∵a1a2a3=3,a10a11a12=24,∴(q9)3==8,解得:q9=2.则a13a14a15=q36•a1a2a3=24×3=48,故选:A.6.(5分)在△ABC中,sin2A+sin2B+sinAsinB=sin2C,则角C等于()A.30°B.60°C.120° D.150°【解答】解:∵sin2A+sin2B+sinAsinB=sin2C,由正弦定理可得,a2+b2+ab=c2,由余弦定理可得,cosC===﹣,∴由C∈(0°,180°),可得:C=120°.7.(5分)已知x>0,y>0,且+=2,则x+y的最小值为()A.6 B.7 C.8 D.9【解答】解:∵x>0,y>0,且+=2,∴+=1,∴x+y=(x+y)(+)=5++≥5+2 =5+3=8,当且仅当y=3x=6时取等号.故选:C.8.(5分)已知两定点F1(0,﹣5),F2(0,5),平面内动点P到F1、F2的距离之差的绝对值是6,则点P的轨迹方程为()A.B.C.D.【解答】解:根据题意,两定点F1(0,﹣5),F2(0,5),则|F1F2|=10,若动点P到F1、F2的距离之差的绝对值是6,则有6<10,则P的轨迹是以F1(0,﹣5),F2(0,5)为焦点的双曲线,其中c=5,a=3,则b==4,则双曲线的方程为:﹣=1;故选:C.9.(5分)在△ABC中,A=60°,AB=4,S△ABC=2,则BC边等于()A.2 B.2 C.D.3=2=AB•AC•sinA=,【解答】解:∵A=60°,AB=4,S△ABC∴AC=2,∴由余弦定理可得:BC===2.10.(5分)已知数列{a n}满足a1=1,a n+1=a n+2n,则a10=()A.1024 B.1023 C.2048 D.2047【解答】解:∵数列{a n}满足a1=1,a n+1=a n+2n,∴a n=a1+(a2﹣a1)+…+(a n﹣a n﹣1)=1+21+22+…+2n﹣1==2n﹣1.(n∈N*).∴a10=210﹣1=1023.故选B.11.(5分)函数f(x)=2x2﹣4lnx的单调减区间为()A.(﹣1,1)B.(1,+∞)C.(0,1) D.[﹣1,0)【解答】解:f(x)的定义域是(0,+∞),f′(x)=4x﹣=,令f′(x)<0,解得:0<x<1,故选:C.12.(5分)抛物线y=x2+bx+c在点(1,2)处的切线n的倾斜角是135度,则过点(b,c)且与切线n垂直的直线方程为()A.x﹣y+3=0 B.x﹣y+7=0 C.x﹣y﹣1=0 D.x﹣y﹣3=0【解答】解:令f(x)=x2+bx+c,则f′(x)=2x+b,∴f(x)在(1,2)处的切线斜率为k=f′(1)=2+b,∴2+b=tan135°=﹣1,∴b=﹣3.又f(x)过点(1,2),∴1﹣3+c=2,即c=4.∴过(﹣3,4)且与n垂直的直线方程为:y﹣4=x+3,即x﹣y+7=0.故选B.二、填空题(共4个小题,每个小题5分,合计20分,要求:答案书写时规范、13.(5分)已知x、y满足约束条件,则z=2x+4y的最小值是﹣6.【解答】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最小,此时z最小,由,解得,即A(3,﹣3),此时z=2×3+4×(﹣3)=﹣6,故答案为:﹣6.14.(5分)函数y=的定义域为R,则k的取值范围[0,2] .【解答】解:要使函数y=的定义域为R,则kx2﹣4kx+6≥0对任意x∈R恒成立.当k=0时,不等式化为6≥0恒成立;当k≠0时,则,解得0<k≤2.综上,k的取值范围是[0,2].故答案为:[0,2].15.(5分)已知点P到点F(0,1)的距离比它到直线y=﹣5的距离小4,若点P的轨迹与直线x﹣4y+2=0的交点为A、B,则线段AB的中点坐标为(,).【解答】解:∵点P到F(0,1)的距离比它到直线y=﹣5的距离小4,∴点P在直线l的上方,点P到F(0,1)的距离与它到直线y=﹣1的距离相等∴点M的轨迹C是以F为焦点,y=﹣1为准线的抛物线,∴曲线C的方程为x2=4y,设A(x1,y1),B(x2,y2),AB的中点为(x0,y0)将直线x﹣4y+2=0代入x2=4y,可得x2=x+2,解得x1=2或x2=﹣1,则y1=1或y2=,∴x0=(2﹣1)=,y0=(1+)=,∴AB的中点为(,),故答案为:(,)16.(5分)函数f(x)=x3﹣x2﹣x+k的图象与x轴刚好有三个交点,则k的取值范围是(﹣,1).【解答】解:f′(x)=3x2﹣2x﹣1,令f′(x)=0得x=﹣或x=1,∴当x<﹣或x>1时,f′(x)>0,当﹣<x<1时,f′(x)<0,∴f(x)在(﹣∞,﹣)上单调递增,在(﹣,1)上单调递减,在(1,+∞)上单调递增,∴当x=﹣时,f(x)取得极大值f(﹣)=+k,当x=1时,f(x)取得极小值f(1)=k﹣1.∵f(x)的图象与x轴刚好有三个交点,∴,解得:﹣<k<1.故答案为:(﹣,1).三、解答题(共6个小题,第17题10分,第18--22题,每小题10分,合计70分.要求:书写规范,步骤清晰,按步骤赋分,没有过程,不给评分)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2﹣a2=c(b ﹣c),a=4,(1)若b=,求B;(2)若△ABC面积为4,求b与c的值.【解答】解:(1)由b2﹣a2=c•(b﹣c)得:a2=b2+c2﹣bc根据余弦定理:a2=b2+c2﹣2bccosA得:又:△ABC中,0°<A<180°,则A=60,由正弦定理:结合解出:又:△ABC中,0°<B<180°﹣60°,则B=45,(2)由a=4,A=60°写出余弦定理:a2=b2+c2﹣2bccosA得:b2+c2﹣bc=16①再由面积公式:及已知得:bc=16②联立①②,且b>0,c>0解得:b=4,c=4.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=2a(1)求角B的大小.(2)若b=4,sinAcosB+cosAsinB=2sinA,求△ABC的面积.【解答】解:(1)化为:,由正弦定理,得:,又三角形中,sinA>0,化简,得:即:,又:△ABC中,0°<B<180°,得:B=60°;(2)把sinAcosB+cosAsinB=2sinA化为:sin(A+B)=2sinA,由三角形内角和定理A+B+C=180°,得:sin(A+B)=sinC=2sinA,根据正弦定理,得:c=2a,又,结合余弦定理:b2=a2+c2﹣2accosB,即为48=5a2﹣4a2•,解得:a=4,c=8,由面积公式:=×4×8×,得:.19.(12分)已知等差数列{a n}中,a7=9,S7=42(1)求a15与S20(2)数列{c n}中c n=2n a n,求数列{c n}的前n项和T n.【解答】解:(1)设等差数列{a n}的公差为d,则由a7=9,S7=42联立:,解得:,则数列的通项公式为:a n=n+2∴.(2)由(1)知:,则:①∴②,①﹣②得:,,﹣﹣(n+2)•2n+1,整理得:.20.(12分)已知数列{a n}的前n项和为S n,若S n=n2+5n.(1)证明数列{a n}是等差数列;(2)求数列{}的前n项和T n.【解答】证明:(1)当n=1时,S1=1+5=6=a1当n≥2时,化简,得:a n=2n+4检验,n=1时,代入上式符合.则;解:(2)由题意知:=,=,解得:.21.(12分)已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m椭圆左焦点F1且斜率为1,交椭圆于A、B两点,求弦长|AB|.【解答】解:(1)由题意,设所求椭圆标准方程为:,焦点距为2c∵抛物线y2=4x的焦点为F(1,0),∴c=1,又离心率,则:再由b2=a2﹣c2得:b2=4;所求椭圆标准方程为:,(2)由(1)知,左焦点为F1(﹣1,0),直线m的方程为:y﹣0=1(x+1)即y=x+1联立:消去y得:9x2+10x﹣15=0,则,由弦长公式|AB|=•=•=22.(12分)已知函数f(x)=lnx+kx2+(2k+1)x(1)讨论f(x)的单调性;(2)当k<0时,证明f(x).【解答】(1)解:,化为:,由于原函数定义域为(0,+∞).∴k≥0时,f'(x)>0恒成立,则原函数在定义域内为单调增函数.当k<0时,令f'(x)=0有正数解:;∴在区间上时,f'(x)<0,此时,原函数为减函数.在区间上时,f'(x)>0,此时,原函数为增函数.综上:k≥0时,原函数为增函数,增区间为(0,+∞),k<0时,原函数的增区间为:减区间为:.(2)证明:由(1)知,当k<0时,在时,原函数有极大值,且为最大值.要证明,只需证明:,作差:=,设:,则:,令:ϕ'(t)=0,解得:t=1,且t>1时,ϕ'(t)<0,原函数为减函数,t<1时,ϕ'(t)>0,原函数为增函数,则:ϕ(1)=ln1﹣1+1=0为函数最大值,∴,即.。
【期末试卷】吉林省长春市2017-2018学年高二上学期期末考试数学试题Word版含答案
长春外国语学校2017-2018学年第一学期期末考试高二年级数学试卷出题人 : 刘 洋 审题人 : 宋志刚本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页。
考试结束后,将答题卡交回。
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于13,则椭圆C 的方程是A . 19822=+y xB . 18922=+y xC . 15922=+y xD . 19522=+y x 2. 在直角坐标系中,点A (-2,2).以坐标原点为极点,轴正半轴为极轴建立极坐标系,点A 的极坐标为 A . ⎪⎭⎫⎝⎛4,22π B .C . ⎪⎭⎫⎝⎛4,2π D . ⎪⎭⎫⎝⎛43,2π3. 运行如图所示的程序框图,输出A ,B ,C 的一组数据为3,-1,2,则在两个判断框内的横线上分别应填(第3题图) (第5题图)A .垂直、相切B .平行、相交C .垂直、相离D .平行、相切 4. 已知双曲线中心在原点且一个焦点为F (,0),直线与其相交于M 、N 两点,MN 中点的横坐标为,则此双曲线的方程是A. B. C. D.5. 根据下边框图,对大于2的整数N ,输出的数列的通项公式是A . n a n 2=B . )1(2-=n a nC .nn a 2= D .12-=n n a6. 在面积为S 的ABC ∆的边AB 上任取一点P ,则PBC ∆的面积大于2S的概率是 A .14 B . 34 C . 12 D . 237. 在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ=的距离为A . 2B . 23C . 1D . 218. 下列说法中正确的是①相关系数r 用来衡量两个变量之间线性关系的强弱, r 越接近于1,相关性越弱; ②回归直线y bx a =+一定经过样本点的中心(),x y ;③随机误差e 的方差()D e 的大小是用来衡量预报的精确度;④相关指数2R 用来刻画回归的效果, 2R 越小,说明模型的拟合效果越好. A . ①② B . ③④ C . ①④ D . ②③ 9. 下列程序执行后输出的结果是A . 600B . 880C . 990D . 110010. 已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,直线x a =与双曲线C的渐近线在第一象限的交点为,A O 为坐标原点,若OAF ∆的面积为2163a ,则双曲线C 的离心率为A .332 B .423 C .26 D .31311. 设不等式组⎩⎨⎧≤≤≤≤2020y x 表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 A .4π B . 22-π C . 6π D . 4-4π12.已知直线52:12x l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=,设点M的直角坐标为,直线l 与曲线C 的交点为A ,B ,||||MA MB ⋅的值为A . 16B . 18C . 8D . 10第Ⅱ卷二、填空题:本题共4小题,每小题5分。
吉林省长春市高二数学上学期期末考试试题文
吉林省长春市2016-2017学年高二数学上学期期末考试试题 文一、选择题(本题共12题,每题4分,共48分)1、 抛物线24(0)y ax a =<的焦点坐标是 ( )(A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a ) 2、圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( ) (A)21(B ) 23 (C)1 (D) 33、已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是( ) (A)k <1 (B)k >2 (C)k <1或k >2 (D)1<k <24、如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( )5、方程x 2+y 2+2ax —by+c=0表示圆心为C(2,2),半径为2的圆,则a 、b 、c 的值依次为( ) (A )2、4、4; (B )-2、4、4; (C)2、—4、4; (D )2、—4、-46、若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )A (7,14)±B (14,14)±C (7,214)±D (7,214)-±7、过点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )(A )5 (B) 3 (C) 10(D ) 58、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B)1362022=+y x (x ≠0) (C)120622=+y x (x ≠0) (D)162022=+y x (x ≠0) 9、函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个; B .2个; C .3个; D .4个.10、函数2()2ln f x x x =-的递增区间是( ) A.1(0,)2 B.11(,0)(,)22-+∞及 C 。
吉林省长春市田家炳实验中学2017-2018学年高二上学期数学(文)寒假作业四含答案
2017—2018上学期高二数学寒假作业命题人:徐徽1.下列说法正确的是A .函数在其定义域内若有最值与极值,则其极大值便是最大值,极小值便是最小值B .闭区间上的连续函数一定有最值,也一定有极值C .若函数在其定义域上有最值,则一定有极值;反之,若有极值,则一定有最值D .若函数在给定区间上有最值,则有且仅有一个最大值,一个最小值,但若有极值,则可有多个极值2.设函数()e x f x x =,则A .x =1为()f x 的极大值点B .x =1为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点3.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x =-'的图象如图所示,则下列结论中一定成立的是A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f4.已知a 为函数()3–12f x x x =的极小值点,则a =A .–4B .–2C .4D .25.已知函数1()()2ln ()f x a x x a x =--∈R ,()a g x x =-,若至少存在一个0[1,e]x ∈,使00()()f x g x >成立,则实数a 的范围为 A .2[,)e +∞ B .(0,)+∞ C .[0,)+∞D .2(,)e +∞ 6.函数()()()321121132f x x b x b b x =-+++在()0,2内有极小值,则A .01b <<B .02b <<C .11b -<<D .12b -<<7.若函数31()3f x xx =-在2(,10)a a -上有最小值,则实数a 的取值范围为_________. 8.已知函数32()(6)1f x xax a x =++++有极大值和极小值,则a 的取值范围是_________.9.已知32()26f x x x m =-+(m 为常数)在[]2,2-上有最大值3,那么此函数在[]2,2-上的最小值为_________。
2017-2018学年吉林省长春市田家炳实验中学高二(上)期末数学试卷(文科)
2017-2018学年吉林省长春市田家炳实验中学高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分)1.(5分)直线的倾斜角为()A.B.C. D.2.(5分)命题“∀x>0,x2+x>0”的否定是()A.∃x0>0,x02+x0>0 B.∃x0>0,x02+x0≤0C.∀x>0,x2+x≤0 D.∀x≤0,x2+x>03.(5分)在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.(5分)复数i(3﹣i)的共轭复数是()A.1+3i B.1﹣3i C.﹣1+3i D.﹣1﹣3i5.(5分)若f′(x)是函数f(x)=x3+2x+1的导函数,则f′(﹣1)的值为()A.1 B.3 C.1或3 D.46.(5分)已知F1、F2是椭圆+=1的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为()A.8 B.16 C.25 D.327.(5分)当函数y=x•2x取极小值时,x等于()A. B.﹣C.﹣ln 2 D.ln 28.(5分)函数y=lnx﹣x在x∈(0,e]上的最大值为()A.e B.1 C.﹣e D.﹣19.(5分)双曲线=1的焦距是()A.4 B.2 C.6 D.与m有关10.(5分)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.11.(5分)已知P是圆C:x2+y2﹣2x+2y=0上一个动点,则点P到直线x﹣y+1=0距离最大值与最小值的积为()A.B. C.5 D.12.(5分)设P是椭圆+=1上一点,F 1,F2是椭圆的两个焦点,•=0,则△F1PF2面积是()A.5 B.10 C.8 D.9二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为.14.(5分)已知函数Y=f(x)及其导函数Y=F′(x)的图象如图所示,则曲线y=f(x)在点P处的切线方程是.15.(5分)已知动点P(x,y)在椭圆上,若F(3,0),|PF|=2,且M为PF 中点,则|OM|= .16.(5分)给出下列命题:①椭圆的离心率,长轴长为;②抛物线x=2y2的准线方程为;③双曲线的渐近线方程为;④方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率.其中所有正确命题的序号是.三、解答题(本大题共6小题,共70分)17.(10分)已知直线l1:x﹣2y+4=0与l2:x+y﹣2=0相交于点P(1)求交点P的坐标;(2)设直线l3:3x﹣4y+5=0,分别求过点P且与直线l3平行和垂直的直线方程.18.(12分)已知命题p:关于x的方程x2+2x+a=0有实数解,命题q:关于x的不等式x2+ax+a>0的解集为R,若(¬p)∧q是真命题,求实数a的取值范围.19.(12分)已知复数z=(k2﹣3k﹣4)+(k﹣1)i(k∈R):(1)若复数z在复平面上对应的点位于第二象限,求k的取值范围;(2)若复数z•i∈R,求复数z的模|z|?20.(12分)已知抛物线C:y2=2px(p>0)的焦点为F并且经过点A(1,﹣2).(1)求抛物线C的方程;(2)过F作倾斜角为45°的直线l,交抛物线C于M,N两点,O为坐标原点,求△OMN的面积.21.(12分)设函数f(x)=x3﹣x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(1)求b,c的值;(2)若a>0,求函数f(x)的单调区间;(3)设已知函数g(x)=f(x)+2x,且g(x)在区间(﹣2,﹣1)内存在单调递减区间,求实数a的取值范围.22.(12分)已知椭圆C:的中心在坐标原点O,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形.(1)求椭圆C的标准方程;(2)若斜率为k的直线l经过点M(4,0),与椭圆C相交于A,B两点,且,求k的取值范围.2017-2018学年吉林省长春市田家炳实验中学高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)直线的倾斜角为()A.B.C. D.【解答】解:直线的斜率为,设其倾斜角为θ(0≤θ<π),∴tanθ=,则θ=.故选:B.2.(5分)命题“∀x>0,x2+x>0”的否定是()A.∃x0>0,x02+x0>0 B.∃x0>0,x02+x0≤0C.∀x>0,x2+x≤0 D.∀x≤0,x2+x>0【解答】解:因为全称命题的否定是特称命题,所以命题“∀x>0,x2+x>0”的否定为:∃x0>0,x02+x0≤0.故选:B.3.(5分)在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解答】解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=,是必要条件,故选:C.4.(5分)复数i(3﹣i)的共轭复数是()A.1+3i B.1﹣3i C.﹣1+3i D.﹣1﹣3i【解答】解:∵i(3﹣i)=3i﹣i2=1+3i,∴复数i(3﹣i)的共轭复数是1﹣3i.故选:B.5.(5分)若f′(x)是函数f(x)=x3+2x+1的导函数,则f′(﹣1)的值为()A.1 B.3 C.1或3 D.4【解答】解:因为函数f(x)=x3+2x+1,所以其导函数f′(x)=x2+2,所以f′(﹣1)=(﹣1)2+2=3.故选B.6.(5分)已知F1、F2是椭圆+=1的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为()A.8 B.16 C.25 D.32【解答】解:利用椭圆的定义可知,|F1M|+|F2M|=2a=8,|F1N|+|F2N|=2a=8∴△MNF2的周长为|F1M|+|F2M|+F1N|+|F2N|=8+8=16故选B7.(5分)当函数y=x•2x取极小值时,x等于()A. B.﹣C.﹣ln 2 D.ln 2【解答】解:y′=2x+x•2x ln2=(1+xln2)•2x=0,即1+xln2=0,x=﹣.故选:B.8.(5分)函数y=lnx﹣x在x∈(0,e]上的最大值为()A.e B.1 C.﹣e D.﹣1【解答】解:f′(x)=﹣1=,当x∈(0,1)时,f′(x)>0,当x∈(1,e)时,f′(x)<0,所以f(x)在(0,1)上递增,在(1,e)上递减,故当x=1时f(x)取得极大值,也为最大值,f(1)=﹣1.故选:D.9.(5分)双曲线=1的焦距是()A.4 B.2 C.6 D.与m有关【解答】解:由双曲线=1,可得4﹣m2>0,即有a2=5+m2,b2=4﹣m2,可得c2=a2+b2=9,解得c=3,即有双曲线的焦距为2c=6.故选:C.10.(5分)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.【解答】解:由题,∴即∴,∴,解之得:(负值舍去).故答案选C.11.(5分)已知P是圆C:x2+y2﹣2x+2y=0上一个动点,则点P到直线x﹣y+1=0距离最大值与最小值的积为()A.B. C.5 D.【解答】解:圆C:x2+y2﹣2x+2y=0即(x﹣1)2+(y+1)2=2,表示以C(1,﹣1)为圆心,半径为的圆.由于圆心C(1,﹣1)到直线x﹣y+1=0的距离d=,故动点P到直线x﹣y+1=0的距离的最小值与最大值分别为+、﹣,故动点P到直线x﹣y+1=0的距离的最小值与最大值之积为,故选A.12.(5分)设P是椭圆+=1上一点,F 1,F2是椭圆的两个焦点,•=0,则△F1PF2面积是()A.5 B.10 C.8 D.9【解答】解:在△PF1F2中,|PF1|=m,|PF2|=n,则m+n=10①,由勾股定理得80=m2+n2,②①2﹣②,可得mn=10,∴S△PF1F2=mn=5.故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为(1,2).【解答】解:由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=﹣1.如图所示,过点A作AM⊥l,垂足为M.则|AM|=|AF|.因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值3﹣(﹣1)=4.此时y A=2,代入抛物线方程可得22=4x A,解得x A=1.∴点A(1,2).故答案为:(1,2).14.(5分)已知函数Y=f(x)及其导函数Y=F′(x)的图象如图所示,则曲线y=f(x)在点P处的切线方程是x﹣y﹣2=0 .【解答】解:根据图象可知P坐标为(2,0),且f′(2)=1,即切线的斜率k=1,则曲线y=f(x)在点P处的切线方程是y=x﹣2,即x﹣y﹣2=0.故答案为:x﹣y﹣2=015.(5分)已知动点P(x,y)在椭圆上,若F(3,0),|PF|=2,且M为PF 中点,则|OM|= 4 .【解答】解:∵椭圆∴a=5,b=4,c=3根据椭圆的定义得:2a﹣|PF|=8∵M为PF中点三角形中位线得:|OM|=4故答案为:416.(5分)给出下列命题:①椭圆的离心率,长轴长为;②抛物线x=2y2的准线方程为;③双曲线的渐近线方程为;④方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率.其中所有正确命题的序号是②④.【解答】解:根据题意,依次分析4个命题:对于①,椭圆中a=,b=,则c==1,则椭圆的离心率e==,长轴长2a=2,故①错误;对于②,抛物线x=2y2的标准方程为y2=x,其准线方程,故②正确;对于③,双曲线的标准方程为﹣=1,其渐近线方程为y=±x,故③错误;对于④,方程2x2﹣5x+2=0的两根为和2,可分别作为椭圆和双曲线的离心率,故④正确;综合可得:②④正确;故答案为:②④.三、解答题(本大题共6小题,共70分)17.(10分)已知直线l1:x﹣2y+4=0与l2:x+y﹣2=0相交于点P(1)求交点P的坐标;(2)设直线l3:3x﹣4y+5=0,分别求过点P且与直线l3平行和垂直的直线方程.【解答】解:(1)得,∴P(0,2)…(4分)(2)与l3平行直线方程,即3x﹣4y+8=0…(7分)与l3垂直直线方程,即4x+3y﹣6=0…(10分)18.(12分)已知命题p:关于x的方程x2+2x+a=0有实数解,命题q:关于x的不等式x2+ax+a>0的解集为R,若(¬p)∧q是真命题,求实数a的取值范围.【解答】解:因为(¬p)∧q是真命题,所以¬p和q都为真命题,即p为假命题且q为真命题,①若p为假命题,则△1=4﹣4a<0,即a>1,②若q为真命题,则,所以0<a<4,由①②知,实数a的取值范围是{a|1<a<4}.19.(12分)已知复数z=(k2﹣3k﹣4)+(k﹣1)i(k∈R):(1)若复数z在复平面上对应的点位于第二象限,求k的取值范围;(2)若复数z•i∈R,求复数z的模|z|?【解答】解:(1)依题意得:…(2分)得…(4分)∴1<k<4…(6分)(2)z•i=(k2﹣3k﹣4)i﹣(k﹣1)…(9分)又∵z•i∈R∴k2﹣3k﹣4=0…(10分)∴k=﹣1或k=4当k=﹣1时,z=﹣2i,∴|z|=2当k=4时,z=3i,∴|z|=3…(12分).20.(12分)已知抛物线C:y2=2px(p>0)的焦点为F并且经过点A(1,﹣2).(1)求抛物线C的方程;(2)过F作倾斜角为45°的直线l,交抛物线C于M,N两点,O为坐标原点,求△OMN 的面积.【解答】解:(1)把点A(1,﹣2)代入抛物线C:y2=2px(p>0),可得(﹣2)2=2p ×1,解得p=2.∴抛物线C的方程为:y2=4x.(2)F(1,0).设M(x1,y1),N(x2,y2).直线l的方程为:y=x﹣1.联立,化为x2﹣6x+1=0,∴x1+x2=6,x1x2=1.∴|MN|===8.原点O到直线MN的距离d=.∴△OMN的面积S===2.21.(12分)设函数f(x)=x3﹣x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(1)求b,c的值;(2)若a>0,求函数f(x)的单调区间;(3)设已知函数g(x)=f(x)+2x,且g(x)在区间(﹣2,﹣1)内存在单调递减区间,求实数a的取值范围.【解答】解:(1)f′(x)=x2﹣ax+b.由题意得,即.所以b=0,c=1.(2)由(1)得f′(x)=x2﹣ax=x(x﹣a)(a>0).当x∈(﹣∞,0)时,f′(x)>0,当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,所以函数f(x)的单调增区间为(﹣∞,0),(a,+∞);单调减区间为(0,a).(3)g′(x)=x2﹣ax+2,依题意,存在x∈(﹣2,﹣1),使不等式g′(x)=x2﹣ax+2≤0成立.当x∈(﹣2,﹣1)时,a≤x+≤﹣2,所以满足要求的a的取值范围是a≤﹣2.22.(12分)已知椭圆C:的中心在坐标原点O,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形.(1)求椭圆C的标准方程;(2)若斜率为k的直线l经过点M(4,0),与椭圆C相交于A,B两点,且,求k的取值范围.【解答】解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,∴2c=2,a=2,∴b2=a2﹣c2=3∴椭圆C的标准方程为.…(4分)(2)设直线l的方程为y=k(x﹣4),设A(x1,y1),B(x2,y2)联立,消去y可得((3+4k2)x2﹣32k2x+64k2﹣12=0∵直线l与椭圆C相交于A,B两点,∴△>0由△=(32k2)2﹣4(3+4k2)(64k2﹣12)>0解得设A(x1,y1),B(x2,y2)则,…(7分)解得∴∴k的取值范围是﹣或.…(12分)。
2017-2018学年吉林省长春市十一高中高二数学上期末考试(文)试题
长春市十一高中2017-2018学年度高二上学期期末考
试数学试题(文科)
组题人:高二数学组 2018.1.10
一、选择题(本大题共 12小题,每小题5分,共60分•在每小题给出的四个选项中,只有 一项是符合题目要求的•)
1 _3i
1•已知复数z = ------------ ,贝U z =()
1 +2i
A. 2
B. .2
C. ■. 10
D. 5
—2.若原命题为:"若z 1,z 2为共轭复数,则Z ! = Z 2 ”,则该命题的逆命题、否命题、逆 否命题真假性的判断依次为( )
A.真、真、真
B.真、真、假
C.假、假、真
D.假、假、假 3.下列命题为特称命题的是( )
D.既不充分也不必要条件 2 2
y x — 5.设双曲线 一
2 - =1(a ■ 0,b - 0)的离心率是'..5,则其渐近线的方程为(
a b
B. .. 2 x 二 y = 0
C. 2x 士 y = 0 中 Ei iS:*
体验探究合作展示
A.任意一个三角形的内角和为 180
B.棱锥仅有一个底面
C.偶函数的图象关于 y 轴垂直
D.存在大于1的实数x ,使|g x • 1 ::: 2
4.“ m =n ”是“方程 mx $ • ny $ =3 表示圆一”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件。
吉林省长春市田家炳实验中学2017-2018学年高二上学期数学(文)寒假作业一 Word版缺答案
2017—2018上学期高二数学寒假作业(一)命题人:徐徽一.选择题:每题5分,共60分1.双曲线122=-y x 的顶点到渐近线的距离等于( ) A .21 B .22 C .1 D .2 2.垂直于直线1+=x y 且与圆122=+y x 相切于第一象限的直线方程是( )A .02=-+y xB .01=++y xC .01=-+y xD .02=++y x3.若实数k 满足50<<k ,则曲线151622=--k y x 与曲线151622=--y k x 的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等4.抛物线x y 82=的焦点到直线03=-y x 的距离是( )A .32B .2C .1D .3 5.设已知双曲线C :12222=-by a x ()0,0>>b a 的离心率为25,则C 的渐近线方程为( )A .x y 41±=B .x y 31±=C .x y 21±= D .x y ±= 6.已知圆1C :()()13222=-+-y x ,圆2C :()()94322=-+-y x ,M ,N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )A .425-B .117-C .226-D .177.过点()1,3--P 的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )A .⎥⎦⎤ ⎝⎛6,0πB .⎥⎦⎤ ⎝⎛3,0πC .⎥⎦⎤⎢⎣⎡6,0πD .⎥⎦⎤⎢⎣⎡3,0π 8.曲线x x y 32+=在点()10,2A 处的切线的斜率=k ( )A .4B .5C .6D .79.函数xx y 12-=的导数是( ) A .x x 12- B .221x x + C .221x x - D .221xx - 10.已知一个物体运动方程是12++=t t s ,其中s 的单位是米,t 的单位是秒,那么该物体在3秒末的瞬时速度是( )A .6米/秒 B .7米/秒 C .8米/秒 D .9米/秒11.若曲线4x y =的一条切线l 与直线084=-+y x 垂直,则l 的方程为( )A .034=--y xB .054=-+y xC .034=+-y xD .034=++y x12.已知()2323++=x ax x f ,若()31='f ,则=a ( ) A .319 B .316 C .1- D .313 二.填空题:每题5分,共20分13.直线250x y -+=与圆228x y +=相交于A ,B 两点,则AB∣∣= . 14.已知抛物线x y 42=的焦点F 的直线交该抛物线于A ,B 两点,2=AF ,则=BF ___________.15.函数()543++=x x x f 的图象在1=x 处的切线与坐标轴围成的三角形面积为________.16.已知函数()x f y =的图象在点()()1,1f M 处的切线方程为221+=x y ,则()()='+11f f ____________.三.解答题:共20分17.(6分)求下列函数的导数:(1)2cos 2sin 22sin 2cos 22x x x x y +-=;(2)()x x y x ln 110++=.18.(6分)已知曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程.19.(8分)在直角坐标系xOy 中,已知中心在原点,离心率为21的椭圆E 的一个焦点为圆C :02422=+-+x y x 的圆心.(1)求椭圆E 的方程;(2)设P 是椭圆E 上一点,过P 作两条斜率之积为21的直线1l ,2l ,当直线1l ,2l 都与圆C 相切时,求P 的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年吉林省长春市田家炳实验中学高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分)1.(5分)直线的倾斜角为()A.B.C. D.2.(5分)命题“∀x>0,x2+x>0”的否定是()A.∃x0>0,x02+x0>0 B.∃x0>0,x02+x0≤0C.∀x>0,x2+x≤0 D.∀x≤0,x2+x>03.(5分)在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)复数i(3﹣i)的共轭复数是()A.1+3i B.1﹣3i C.﹣1+3i D.﹣1﹣3i5.(5分)若f′(x)是函数f(x)=x3+2x+1的导函数,则f′(﹣1)的值为()A.1 B.3 C.1或3 D.46.(5分)已知F1、F2是椭圆+=1的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为()A.8 B.16 C.25 D.327.(5分)当函数y=x•2x取极小值时,x等于()A. B.﹣C.﹣ln 2 D.ln 28.(5分)函数y=lnx﹣x在x∈(0,e]上的最大值为()A.e B.1 C.﹣e D.﹣19.(5分)双曲线=1的焦距是()A.4 B.2 C.6 D.与m有关10.(5分)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.11.(5分)已知P是圆C:x2+y2﹣2x+2y=0上一个动点,则点P到直线x﹣y+1=0距离最大值与最小值的积为()A.B.C.5 D.12.(5分)设P是椭圆+=1上一点,F1,F2是椭圆的两个焦点,•=0,则△F1PF2面积是()A.5 B.10 C.8 D.9二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为.14.(5分)已知函数Y=f(x)及其导函数Y=F′(x)的图象如图所示,则曲线y=f (x)在点P处的切线方程是.15.(5分)已知动点P(x,y)在椭圆上,若F(3,0),|PF|=2,且M为PF中点,则|OM|=.16.(5分)给出下列命题:①椭圆的离心率,长轴长为;②抛物线x=2y2的准线方程为;③双曲线的渐近线方程为;④方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率.其中所有正确命题的序号是.三、解答题(本大题共6小题,共70分)17.(10分)已知直线l1:x﹣2y+4=0与l2:x+y﹣2=0相交于点P(1)求交点P的坐标;(2)设直线l3:3x﹣4y+5=0,分别求过点P且与直线l3平行和垂直的直线方程.18.(12分)已知命题p:关于x的方程x2+2x+a=0有实数解,命题q:关于x的不等式x2+ax+a>0的解集为R,若(¬p)∧q是真命题,求实数a的取值范围.19.(12分)已知复数z=(k2﹣3k﹣4)+(k﹣1)i(k∈R):(1)若复数z在复平面上对应的点位于第二象限,求k的取值范围;(2)若复数z•i∈R,求复数z的模|z|?20.(12分)已知抛物线C:y2=2px(p>0)的焦点为F并且经过点A(1,﹣2).(1)求抛物线C的方程;(2)过F作倾斜角为45°的直线l,交抛物线C于M,N两点,O为坐标原点,求△OMN的面积.21.(12分)设函数f(x)=x3﹣x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(1)求b,c的值;(2)若a>0,求函数f(x)的单调区间;(3)设已知函数g(x)=f(x)+2x,且g(x)在区间(﹣2,﹣1)内存在单调递减区间,求实数a的取值范围.22.(12分)已知椭圆C:的中心在坐标原点O,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形.(1)求椭圆C的标准方程;(2)若斜率为k的直线l经过点M(4,0),与椭圆C相交于A,B两点,且,求k的取值范围.2017-2018学年吉林省长春市田家炳实验中学高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)直线的倾斜角为()A.B.C. D.【解答】解:直线的斜率为,设其倾斜角为θ(0≤θ<π),∴tanθ=,则θ=.故选:B.2.(5分)命题“∀x>0,x2+x>0”的否定是()A.∃x0>0,x02+x0>0 B.∃x0>0,x02+x0≤0C.∀x>0,x2+x≤0 D.∀x≤0,x2+x>0【解答】解:因为全称命题的否定是特称命题,所以命题“∀x>0,x2+x>0”的否定为:∃x0>0,x02+x0≤0.故选:B.3.(5分)在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=,是必要条件,故选:C.4.(5分)复数i(3﹣i)的共轭复数是()A.1+3i B.1﹣3i C.﹣1+3i D.﹣1﹣3i【解答】解:∵i(3﹣i)=3i﹣i2=1+3i,∴复数i(3﹣i)的共轭复数是1﹣3i.故选:B.5.(5分)若f′(x)是函数f(x)=x3+2x+1的导函数,则f′(﹣1)的值为()A.1 B.3 C.1或3 D.4【解答】解:因为函数f(x)=x3+2x+1,所以其导函数f′(x)=x2+2,所以f′(﹣1)=(﹣1)2+2=3.故选B.6.(5分)已知F1、F2是椭圆+=1的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为()A.8 B.16 C.25 D.32【解答】解:利用椭圆的定义可知,|F1M|+|F2M|=2a=8,|F1N|+|F2N|=2a=8∴△MNF2的周长为|F1M|+|F2M|+F1N|+|F2N|=8+8=16故选B7.(5分)当函数y=x•2x取极小值时,x等于()A. B.﹣C.﹣ln 2 D.ln 2【解答】解:y′=2x+x•2x ln2=(1+xln2)•2x=0,即1+xln2=0,x=﹣.故选:B.8.(5分)函数y=lnx﹣x在x∈(0,e]上的最大值为()A.e B.1 C.﹣e D.﹣1【解答】解:f′(x)=﹣1=,当x∈(0,1)时,f′(x)>0,当x∈(1,e)时,f′(x)<0,所以f(x)在(0,1)上递增,在(1,e)上递减,故当x=1时f(x)取得极大值,也为最大值,f(1)=﹣1.故选:D.9.(5分)双曲线=1的焦距是()A.4 B.2 C.6 D.与m有关【解答】解:由双曲线=1,可得4﹣m2>0,即有a2=5+m2,b2=4﹣m2,可得c2=a2+b2=9,解得c=3,即有双曲线的焦距为2c=6.故选:C.10.(5分)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.【解答】解:由题,∴即∴,∴,解之得:(负值舍去).故答案选C.11.(5分)已知P是圆C:x2+y2﹣2x+2y=0上一个动点,则点P到直线x﹣y+1=0距离最大值与最小值的积为()A.B.C.5 D.【解答】解:圆C:x2+y2﹣2x+2y=0即(x﹣1)2+(y+1)2=2,表示以C(1,﹣1)为圆心,半径为的圆.由于圆心C(1,﹣1)到直线x﹣y+1=0的距离d=,故动点P到直线x﹣y+1=0的距离的最小值与最大值分别为+、﹣,故动点P到直线x﹣y+1=0的距离的最小值与最大值之积为,故选A.12.(5分)设P是椭圆+=1上一点,F1,F2是椭圆的两个焦点,•=0,则△F1PF2面积是()A.5 B.10 C.8 D.9【解答】解:在△PF1F2中,|PF1|=m,|PF2|=n,则m+n=10①,由勾股定理得80=m2+n2,②①2﹣②,可得mn=10,=mn=5.∴S△PF1F2故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为(1,2).【解答】解:由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=﹣1.如图所示,过点A作AM⊥l,垂足为M.则|AM|=|AF|.因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值3﹣(﹣1)=4.此时y A=2,代入抛物线方程可得22=4x A,解得x A=1.∴点A(1,2).故答案为:(1,2).14.(5分)已知函数Y=f(x)及其导函数Y=F′(x)的图象如图所示,则曲线y=f (x)在点P处的切线方程是x﹣y﹣2=0.【解答】解:根据图象可知P坐标为(2,0),且f′(2)=1,即切线的斜率k=1,则曲线y=f(x)在点P处的切线方程是y=x﹣2,即x﹣y﹣2=0.故答案为:x﹣y﹣2=015.(5分)已知动点P(x,y)在椭圆上,若F(3,0),|PF|=2,且M为PF中点,则|OM|=4.【解答】解:∵椭圆∴a=5,b=4,c=3根据椭圆的定义得:2a﹣|PF|=8∵M为PF中点三角形中位线得:|OM|=4故答案为:416.(5分)给出下列命题:①椭圆的离心率,长轴长为;②抛物线x=2y2的准线方程为;③双曲线的渐近线方程为;④方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率.其中所有正确命题的序号是②④.【解答】解:根据题意,依次分析4个命题:对于①,椭圆中a=,b=,则c==1,则椭圆的离心率e==,长轴长2a=2,故①错误;对于②,抛物线x=2y2的标准方程为y2=x,其准线方程,故②正确;对于③,双曲线的标准方程为﹣=1,其渐近线方程为y=±x,故③错误;对于④,方程2x2﹣5x+2=0的两根为和2,可分别作为椭圆和双曲线的离心率,故④正确;综合可得:②④正确;故答案为:②④.三、解答题(本大题共6小题,共70分)17.(10分)已知直线l1:x﹣2y+4=0与l2:x+y﹣2=0相交于点P(1)求交点P的坐标;(2)设直线l3:3x﹣4y+5=0,分别求过点P且与直线l3平行和垂直的直线方程.【解答】解:(1)得,∴P(0,2)…(4分)(2)与l3平行直线方程,即3x﹣4y+8=0…(7分)与l3垂直直线方程,即4x+3y﹣6=0…(10分)18.(12分)已知命题p:关于x的方程x2+2x+a=0有实数解,命题q:关于x的不等式x2+ax+a>0的解集为R,若(¬p)∧q是真命题,求实数a的取值范围.【解答】解:因为(¬p)∧q是真命题,所以¬p和q都为真命题,即p为假命题且q为真命题,①若p为假命题,则△1=4﹣4a<0,即a>1,②若q为真命题,则,所以0<a<4,由①②知,实数a的取值范围是{a|1<a<4}.19.(12分)已知复数z=(k2﹣3k﹣4)+(k﹣1)i(k∈R):(1)若复数z在复平面上对应的点位于第二象限,求k的取值范围;(2)若复数z•i∈R,求复数z的模|z|?【解答】解:(1)依题意得:…(2分)得…(4分)∴1<k<4…(6分)(2)z•i=(k2﹣3k﹣4)i﹣(k﹣1)…(9分)又∵z•i∈R∴k2﹣3k﹣4=0…(10分)∴k=﹣1或k=4当k=﹣1时,z=﹣2i,∴|z|=2当k=4时,z=3i,∴|z|=3…(12分).20.(12分)已知抛物线C:y2=2px(p>0)的焦点为F并且经过点A(1,﹣2).(1)求抛物线C的方程;(2)过F作倾斜角为45°的直线l,交抛物线C于M,N两点,O为坐标原点,求△OMN的面积.【解答】解:(1)把点A(1,﹣2)代入抛物线C:y2=2px(p>0),可得(﹣2)2=2p×1,解得p=2.∴抛物线C的方程为:y2=4x.(2)F(1,0).设M(x1,y1),N(x2,y2).直线l的方程为:y=x﹣1.联立,化为x2﹣6x+1=0,∴x1+x2=6,x1x2=1.∴|MN|===8.原点O到直线MN的距离d=.∴△OMN的面积S===2.21.(12分)设函数f(x)=x3﹣x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(1)求b,c的值;(2)若a>0,求函数f(x)的单调区间;(3)设已知函数g(x)=f(x)+2x,且g(x)在区间(﹣2,﹣1)内存在单调递减区间,求实数a的取值范围.【解答】解:(1)f′(x)=x2﹣ax+b.由题意得,即.所以b=0,c=1.(2)由(1)得f′(x)=x2﹣ax=x(x﹣a)(a>0).当x∈(﹣∞,0)时,f′(x)>0,当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,所以函数f(x)的单调增区间为(﹣∞,0),(a,+∞);单调减区间为(0,a).(3)g′(x)=x2﹣ax+2,依题意,存在x∈(﹣2,﹣1),使不等式g′(x)=x2﹣ax+2≤0成立.当x∈(﹣2,﹣1)时,a≤x+≤﹣2,所以满足要求的a的取值范围是a≤﹣2.22.(12分)已知椭圆C:的中心在坐标原点O,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形.(1)求椭圆C的标准方程;百度文库- 让每个人平等地提升自我!(2)若斜率为k的直线l经过点M(4,0),与椭圆C相交于A,B两点,且,求k的取值范围.【解答】解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,∴2c=2,a=2,∴b2=a2﹣c2=3∴椭圆C的标准方程为.…(4分)(2)设直线l的方程为y=k(x﹣4),设A(x1,y1),B (x2,y2)联立,消去y可得((3+4k2)x2﹣32k2x+64k2﹣12=0∵直线l与椭圆C相交于A,B两点,∴△>0由△=(32k2)2﹣4(3+4k2)(64k2﹣12)>0解得设A(x1,y1),B (x 2,y2)则,…(7分)解得∴∴k的取值范围是﹣或.…(12分)11。