中考数学复习第10讲四边形试题
2022年人教版中考数学一轮复习:四边形综合 专项练习题2(Word版,含答案)
2022年人教版中考数学一轮复习:四边形综合专项练习题21.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).2.如图1,平行四边形纸片ABCD的面积为120,AD=15.今沿两对角线将四边形ABCD剪成甲、乙.丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊的两条对角线长度之和为.3.如图,菱形ABCD的两条对角线AC,BD交于点O,BE⊥AD于点E,若AC=8,BD=6,则BE的长为.4.如图,在▱ABCD中,∠A=70°,DB=DC,CE⊥BD于E,则∠BCE=.5.如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点H,若CG=1,则S=.四边形BCDG6.如图,正方形瓷砖图案是四个全等且顶角为45°的等腰三角形.已知该瓷砖的面积是1m2,则中间小正方形的面积为m2.7.如图所示,在Rt△ABC外作等边△ADE,点E在AB边上,AC=5,∠ABC=30°,AD=3.将△ADE沿AB方向平移,得到△A′D′E′,连接BD′.给出下列结论:①AB=10;②四边形ADD′A′为平行四边形;③AB平分∠D′BC;④当平移的距离为4时,BD′=3.其中正确的是(填上所有正确结论的序号).8.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.9.如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD 的边长为cm.10.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.11.如图,在正方形ABCD内有一点P,若AP=4,BP=7,DP=9,则∠APB的度数为.12.如图是两个边长分别为2a,a的正方形,则△ABC的面积是.13.如图,点P是正方形ABCD内一点,连接AP、BP、DP,若AP=1,PD=,∠APB=135°,则正方形ABCD的面积为.14.如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C向A 运动.连接EP,若AC=10,CF=8.则EP的最小值是.15.如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②∠EAH=45°;③BD=2GF;④GE平分∠FEC.正确的是(填序号).16.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是.17.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为.18.如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是.19.如图,矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若∠DAE=3∠BAE.则的值为.20.将矩形ABCD按如图所示的方式折叠,BE、EG、FG为折痕,若顶点A、C、D都落在点O 处,且点B、O、G在同一条直线上,同时点E、O、F在另一条直线上.(1)的值为.(2)若AD=4,则四边形BEGF的面积为.参考答案1.解:①∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形;②∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形;③∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,因此∠ABC=∠ADC时,四边形ABCD还是平行四边形;故答案为:①.2.解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=1520,∴BC=AD=15,EF×AD=×120,∴EF=8,又BC=15,∴则图形戊中的四边形两对角线之和为20+3=23,故答案为23.3.解:∵四边形ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AD===5,=AD×BE=×AC×BD,∵S菱形ABCD∴BE=,故答案为:.4.解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=70°,∵DB=DC,∴∠DBC=∠BCD=70°,∵CE⊥BD,∴∠CEB=90°,∴∠BCE=20°.故答案为:20°.5.解:过点C作CM⊥GB于M,CN⊥GD,交GD的延长线于N.∵四边形ABCD为菱形,∴AB=AD=CD=BC,∵AB=BD,∴AB=BD=AD=CD=BC,∴△ABD为等边三角形,△BCD是等边三角形,∴∠A=∠BDF=60°,∠ADC=60°,在△ADE和△DBF中,,∴△ADE≌△DBF(SAS),∴∠ADE=∠DBF,∵∠FBC =60°+∠DBF ,∠NDC =180°﹣(120°﹣∠ADE )=60°+∠ADE ,∴∠NDC =∠FBC ,在△CDN 和△CBM 中,,∴△CDN ≌△CBM (AAS ),∴CM =CN ,在Rt △CBM 与Rt △CDN 中,,∴Rt △CBM ≌Rt △CDN (HL ),∴S 四边形BCDG =S 四边形CMGN .S 四边形CMGN =2S △CMG ,∵∠CGM =60°,∴GM =CG =,CM =CG =,∴S 四边形BCDG =S 四边形CMGN =2S △CMG =2×××=, 故答案为:.6.解:如图,作大正方形的对角线,作小正方形的对角线并延长交大正方形各边于中点, 设小正方形的边长为xm , 则大正方形的边长为x +x x =(1)xm , ∵瓷砖的面积是1m 2,∴大正方形的边长为1m ,即(1)x =1, 解得x =﹣1, ∴中间小正方形的面积为()2=3﹣2, 故答案为:3﹣2.7.解:∵∠ACB=90°,AC=5,∠ABC=30°,∴AB=2AC=10,故①正确;由平移的性质得:A'D'=AD,A'D'∥AD,∴四边形ADD′A′为平行四边形,故②正确;当平移的距离为4时,EE'=4,∴BE'=AB﹣AE﹣EE'=10﹣3﹣4=3,由平移的性质得:∠A'D'E'=∠A'E'D'=∠AED=60°,A'D'=D'E'=DE=AD=3,∴BE'=D'E',∴∠E'BD'=∠E'D'B=∠A'E'D'=30°,∴∠A'D'B=60°+30°=90°,∴BD'=A'D'=3,故④正确;由④得:当平移的距离为4时,∠E'BD'=∠ABC=30°,故③错误;故答案为:①②④.8.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S=OA•OB=AB•OP,△ABO∴OP==,∴EF的最小值为,故答案为:.9.解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴AH=HE=AE=a,∴AG=AH+GH=a+2,∵四边形ABCD是正方形,∴BE∥AD,∴==,∴GE=AG=(a+2),∵GE=HE﹣GH=a﹣2,∴(a+2)=a﹣2,解得,a=,∴AB=3a=.故答案为:.10.解:设图1中分成的直角三角形的长直角边为a,短直角边为b,,得,∴图1中菱形的面积为:×4=48,故答案为48.11.解:∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△BAP绕点A逆时针旋转90°可得△ADE,连接PE,由旋转的性质得,ED=BP=7,AE=AP=4,∠PBE=90°,∠AED=∠APB,∴△APE为等腰直角三角形,∴PE=AP=4,∠AEP=45°,在△PED中,∵PD=9,ED=7,PE=4,∴DE2+PE2=DP2,∴△PED为直角三角形,∠PED=90°,∴∠AED=90°+45°=135°,∴∠APB=135°,故答案为:135°.12.解:∵两个正方形的边长分别为2a,a,∴△ABC的的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.13.解:如图,将△APB绕点A逆时针旋转90°得到△AHD,连接PH,过点A作AE⊥DH交DH的延长线于E,∴△APB≌△AHD,∠PAH=90°,∴PB=DH,AP=AH=1,∠APB=∠AHD=135°,∴PH=AP=,∠APH=∠AHP=45°,∴∠PHD=90°,∴DH===2,∵∠AHD=135°,∴∠AHE=45°,∵AE⊥DH,∴∠AHE=∠HAE=45°,∴AE=EH,AH=AE,∴AE=EH=,∴DE=,∵AD2=AE2+DE2=13,∴正方形的面积为13,故答案为:13.14.解:如图,过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,∵正三角形ABC与正方形CDEF的顶点B,C,D三点共线,∴∠ACB=60°,∠FCD=90°,∴∠ACF=30°,∴∠CGP=∠EGF=60°,∵∠F=90°,∴∠FEG=30°,设PG=x,则CG=2x,∴FG=CF﹣CG=8﹣2x,∴EG=2FG=2(8﹣2x),∵FG=EF,∴8﹣2x=8×,∴x=4﹣,∴EP=EG+PG=2(8﹣2x)+x=16﹣3x=4+4.故答案为:4+4.15.解:连接GC,延长EG交AD于点L,∵四边形ABCD为正方形,∴AD∥CB,AD=CD,∠ADG=∠CDG=45°,∵DG=DG,∴△ADG≌△CDG(SAS),∴AG=GC,∠HCG=∠DAG,∵∠HCG+∠GCB=90°,∴∠DAG+∠GCB=90°,∵GE⊥AH,∴∠AGL=90°,∴∠ALG+∠LAG=90°,∵AD∥CB,∴∠ALG=∠GEC,∴∠GEC+∠LAG=90°,∴∠GEC=∠GCE,∴GE=GC,∴AG=EG,故①正确;∵GE⊥AH,∴∠AGE=90°,∵AG=EG,∴∠EAH=45°,故②正确;连接AC交BD于点O,则BD=2OA,∵∠AGF+∠FGE=∠GEF+∠EGF=90°,∴∠AGF=∠GEF,∵AG=GE,∠AOG=∠EFG=90°,∴△AOG≌△GFE(AAS),∴OA=GF,∵BD=2OA,∴BD=2GF,故③正确.过点G作MN⊥BC于点N,交AD于点M,交BC于点N,∵G是动点,∴GN的长度不确定,而FG=OA是定值,∴GE不一定平分∠FEC,故④错误;故答案为:①②③.16.解:将△ABD绕点D顺时针旋转90°,得△MCD,如图:由旋转不变性可得:CM=AB=4,AD=MD,且∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,AD最大,只需AM最大,而在△ACM中,AM<AC+CM,∴当且仅当A、C、M在一条直线上,即不能构成△ACM时,AM最大,且最大值为AC+CM =AC+AB=7,此时AD=AM=,故答案为:.17.解:连接BE,如图:∵四边形ABCD是正方形,∴∠ABC=90°,又EF⊥AB于点F,EG⊥BC,∴四边形FBGE是矩形,∴FG=BE,所以当BE最小时,FG就最小,根据垂线段最短,可知当BE⊥AC时,BE最小,当BE⊥AC时,在正方形ABCD中,△AEB是等腰直角三角形,在Rt△ABE中,根据勾股定理可得2BE2=AB2=64,解得BE=4,∴FG最小为4;故答案为4.18.解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2,CE=,由勾股定理得,DE===5,=CD×CE=DE×CH,∵S△DCE∴CH=2,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴=,∴=,∴CF=5,∴HF=CF﹣CH=3,∴=,故②正确;如图,过点A作AM⊥DE于点M,∵DC=2,CH=2,由勾股定理得,DH===4,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=2,AM=DH=4,∴MH=DM=2,又∵AM⊥DH,∴AD=AH,故④正确;∵DE=5,DH=4,∴HE=1,∴ME=HE+MH=3,∵AM⊥DE,CF⊥DE,∴∠AME=∠GHE,∵∠HEG=∠MEA,∴△MEA∽△HEG,∴=,∴=,∴HG=,故③错误.综上,正确的有:①②④.故答案为:①②④.19.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵∠DAE=3∠BAE,∴∠BAE=×90°=22.5°,∵AE⊥BD,∴∠OAB=∠OBA=90°﹣22.5°=67.5°,∴∠OAE=67.5°﹣22.5°=45°,∴△AOE是等腰直角三角形,∴OA=OE,设OE=a,则OB=OA=a,∴BE=OB﹣OE=(﹣1)a,BD=2OB=2a,∴DE=BD﹣BE=2a﹣(﹣1)a=(+1)a,∴==,故答案为:.20.解:(1)由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=OB=2a,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,在Rt△BCG中,CG2+BC2=BG2,∴a2+(2b)2=(3a)2,∴b=a,∴===,由折叠可得:∠ABE=∠EBG,∠AEB=∠BEO,∠DEG=∠GEO,∵∠AEB=∠BEO+∠DEG=∠GEO=180°,∴∠BEG=90°,∵∠A=∠BEG=90°,∠ABE=∠EBG,∴△ABE∽△EBG,∴==,故答案为:;(2)∵AD=BC=2b=4,∴b=2,a=2,∴AB=OB=4,CG=2,AE=OE=2,∴BG=6,∵∠OBF =∠CBG ,由折叠可得∠BOF =∠BCG =90°, ∴△BOF ∽△BCG , ∴=, 即=,∴OF =,∴S 四边形EBFG =S △BEG +S △BFG =×6×2+×6×=9. 故答案为:9.。
【2019-2020】中考数学试题分项版解析汇编第04期专题10四边形含解析
教学资料参考范本【2019-2020】中考数学试题分项版解析汇编第04期专题10四边形含解析撰写人:__________________部门:__________________时间:__________________一、选择题1. (2017贵州遵义第10题)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【答案】A.考点:三角形中位线定理;三角形的面积.2. (2017湖南株洲第9题)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形【答案】C.考点:中点四边形;平行四边形的判定;矩形的判定;轴对称图形.3. (2017广西百色第2题)多边形的外角和等于()A. B. C. D.【答案】B【解析】试题分析:多边形的外角和是360°,故选B.考点:多边形内角与外角.4. (2017黑龙江绥化第10题)如图,在中,相交于点,点是的中点,连接并延长交于点,已知,则下列结论:①,②,③,④∽,其中正确的是()A.①②③④ B.①④ C.②③④D.①②③【答案】D考点:1.相似三角形的判定与性质;2.平行四边形的性质.5. (2017湖北孝感第10题)如图,六边形的内角都相等,,则下列结论成立的个数是①;②;③;④四边形是平行四边形;⑤六边形即是中心对称图形,又是轴对称图形()A. B. C. D.【答案】D考点:1.平行四边形的判定和性质;2.平行线的判定和性质;3.轴对称图形;4.中心对称图形.6. (2017内蒙古呼和浩特第9题)如图,四边形是边长为1的正方形,,为所在直线上的两点,若,,则以下结论正确的是()A. B. C. D.四边形的面积为【答案】C考点:1.正方形的性质;2.解直角三角形.7. (2017青海西宁第7题)如图,点是矩形的对角线的中点,交于点,若,则的长为()A. 5 B. 4 C. D.【答案】D考点:矩形的性质.8. (2017上海第6题)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABDD.∠BAC=∠ADB【答案】C【解析】试题分析:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD 是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.考点:1.矩形的判定;2.平行四边形的性质;3.菱形的判定.9. (2017海南第11题)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【答案】C.考点:菱形的性质,勾股定理.10. (2017河池第11题)如图,在中,用直尺和圆规作的平分线,若,则的长是()A. B. C. D.【答案】B.【解析】试题分析:连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA==4,∴AG=2AO=8.故选B.考点:作图—基本作图;平行四边形的性质.11. (2017贵州六盘水第4题)如图,梯形中,,( )A. B. C.D.【答案】B.试题分析:已知AB∥CD,∠A=45°,由两直线平行,同旁内角互补可得∠ADC=180°-∠A=135°,故选B.考点:平行线的性质.12. (2017贵州六盘水第10题)矩形的两边长分别为a、b,下列数据能构成黄金矩形的是( )A. B. C. D.【答案】D.考点:黄金分割.13. (2017新疆乌鲁木齐第5题)如果边形每一个内角等于与它相邻外角的倍,则的值是()A. B. C. D.【答案】C.【解析】试题解析:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选C.考点:多边形内角与外角.14. (2017新疆乌鲁木齐第9题)如图,在矩形中,点在上,点在上,把这个矩形沿折叠后,使点恰好落在边上的点处,若矩形面积为且,则折痕的长为()A. B. C. D.【答案】C.考点:翻折变换(折叠问题);矩形的性质.二、填空题1. (2017贵州遵义第14题)一个正多边形的一个外角为30°,则它的内角和为.【答案】1800°.【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.2. (2017内蒙古通辽第15题)在平行四边形中,平分交边于,平分交边于.若,,则 .【答案】8或3②在▱ABCD中,∵BC=AD=11,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∴AB=BE=CF=CD∵EF=5,∴BC=BE+CF=2AB+EF=2AB+5=11,∴AB=3;综上所述:AB的长为8或3.故答案为:.考点:平行四边形的性质3. (2017湖北咸宁第14题)如图,点的矩形纸片的对称中心,是上一点,将纸片沿折叠后,点恰好与点重合,若,则折痕的长为.【答案】6.考点:矩形的性质;翻折变换(折叠问题).4. (2017湖南常德第15题)如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为.【答案】(0<x<2).考点:根据实际问题列二次函数关系式;正方形的性质.5. (2017哈尔滨第19题)四边形是菱形,,,对角线与相交于点,点在上,若,则的长为.【答案】4或2【解析】试题分析:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB= BD=3,∴OC=OA= =3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2.考点:菱形的性质.6. (2017哈尔滨第20题)如图,在矩形中,为边上一点,连接,过点作,垂足为,若,,则的长为.【答案】考点:1.矩形的性质;2.全等三角形的判定与性质.7. (2017黑龙江齐齐哈尔第13题)矩形的对角线,相交于点,请你添加一个适当的条件,使其成为正方形(只填一个即可).【答案】AB=BC(答案不唯一)考点:1.正方形的判定;2.矩形的性质.8. (2017黑龙江齐齐哈尔第16题)如图,在等腰三角形纸片中,,,沿底边上的高剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.【答案】10cm或2cm或4cm.【解析】试题分析:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10cm,BC=12cm,∴BD=DC=6cm,∴AD=8cm,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图②所示:AD=8cm,连接BC,过点C作CE⊥BD于点E,则EC=8cm,BE=2BD=12cm,则BC=4 cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC= =2cm,故答案为:10cm或2cm或4cm.考点:图形的剪拼.9. (2017黑龙江绥化第13题)一个多边形的内角和等于,则这个多边形是边形.【答案】七考点:多边形内角与外角.10. (2017湖北孝感第14题)如图,四边形是菱形,于点,则线段的长为.【答案】【解析】试题分析:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB= =13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH= ,∴BH= = .考点:1.菱形的性质;2.勾股定理.11. (2017内蒙古呼和浩特第15题)如图,在中,,,是两条对角线的交点,过点作的垂线分别交边,于点,,点是边的一个三等分点,则与的面积比为.【答案】3:4.考点:1.相似三角形的判定与性质;2.平行四边形的性质.12. (2017青海西宁第13题)若正多边形的一个外角是40°,则这个正多边形的边数是.【答案】9【解析】试题分析:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.考点:多边形内角与外角.13. (2017青海西宁第20题)如图,将沿对折,使点落在点处,若,则的长为___.【答案】考点: 1.翻折变换(折叠问题);2.平行四边形的性质.14. (2017湖南张家界第14题)如图,在正方形ABCD中,AD=,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.【答案】.考点:旋转的性质;正方形的性质;综合题.15. (2017辽宁大连第11题)五边形的内角和为.【答案】540°.【解析】试题分析:根据多边形的内角和公式(n﹣2)•180°计算即可.(5﹣2)•180°=540°.故答案为540°..考点:多边形内角与外角.16. (2017海南第17题)如图,在矩形ABCD中,AB=3,AD=5,点E 在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【答案】.考点:轴对称的性质,矩形的性质,余弦的概念.17. (2017河池第18题)如图,在矩形中,,是的中点,于点,则的长是.【答案】.【解析】试题分析:根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE=,BD=,根据三角形的面积公式得到BF=,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,考点:勾股定理;矩形的性质,相似三角形的判定与性质.18. (2017贵州六盘水第16题)如图,在正方形中,等边三角形的顶点、分别在边和上,则【答案】75°.试题分析:∵正方形,∴AD=AB,∠BAD=∠B=∠D=90°,∵等边三角形,∴AE=AF,∠EAF=60°,∴△ABE≌△ADF,∴∠BAE=∠DAF=15°,∴∠AEB=75°.考点:正方形、等边三角形、全等三角形.19. (2017贵州六盘水第18题)如图,在平行四边形中,对角线、相交于点,在的延长线上取一点,连接交于点,若,,,则【答案】.考点:平行四边形,相似三角形.20. (2017新疆乌鲁木齐第12题)如图,在菱形中,,则菱形的面积为.【答案】2【解析】考点:菱形的性质.三、解答题1. (2017贵州遵义第26题)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【答案】(1)证明见解析;(2)当x=3或1时,CE=BC;(3). 结论:PF=EQ,理由见解析.(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC=,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴ ,考点:四边形综合题.2. (2017湖南株洲第22题)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【答案】①.证明见解析;②证明见解析.∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.考点:相似三角形的判定;全等三角形的判定与性质;等腰直角三角形;正方形的性质.3. (2017内蒙古通辽第25题)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第次操作余下的四边形是菱形,则称原平行四边形为阶准菱形,如图1,□为1阶准菱形.(1)猜想与计算邻边长分别为3和5的平行四边形是阶准菱形;已知□的邻边长分别为(),满足,,请写出□是阶准菱形.(2)操作与推理小明为了剪去一个菱形,进行如下操作:如图2,把□沿折叠(点在上),使点落在边上的点处,得到四边形.请证明四边形是菱形.【答案】(1)3,12(2)证明见解析(2)由折叠知:∠ABE=∠FBE,AB=BF,∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形考点:四边形综合题4. (2017湖北咸宁第18题)如图,点在一条直线上,.⑴求证:;⑵连接,求证:四边形是平行四边形.【答案】详见解析.考点:全等三角形的判定与性质;平行四边形的判定.5. (2017广西百色第22题)矩形中,分别是的中点,分别交于两点.求证:(1)四边形是平行四边形;(2)【答案】(1)证明见解析;(2)证明见解析.考点:1.矩形的性质;2.平行四边形的判定与性质.6. (2017广西百色第26题)以菱形的对角线交点为坐标原点,所在的直线为轴,已知,,,为折线上一动点,内行轴于点,设点的纵坐标为(1)求边所在直线的解析式;(2)设,求关于的函数关系式;(3)当为直角三角形,求点的坐标.【答案】(1)直线BC的解析式为y=x﹣2;(2)当点P在边BC上时, y=10a2+24a+48;当点P在边CD上时,y= 10a2﹣40a+48;(3)点P的坐标为(,2﹣),(4,0).Ⅰ、当∠POM=90°时,∴OP2+OM2=PM2,∴5a2﹣16a+16+16=5a2﹣24a+32,∴a=0,∴P(4,0),Ⅱ、当∠MPO=90°时,OP2+PM2=5a2﹣16a+16+5a2﹣24a+32=10a2﹣40a+48=OM2=16,∴a=2+ (舍)或a=2﹣,∴P(,2﹣),即:当△OPM为直角三角形时,点P的坐标为(,2﹣),(4,0).考点:四边形综合题.7. (2017黑龙江齐齐哈尔第26题)如图,在平面直角坐标系中,把矩形沿对角线所在的直线折叠,点落在点处,与轴相交于点.矩形的边,的长是关于的一元二次方程的两个根,且.(1)求线段,的长;(2)求证:,并求出线段的长;(3)直接写出点的坐标;(4)若是直线上一个动点,在坐标平面内是否存在点,使以点,,,为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.【答案】(1)OA=8,OC=4;(2)OE=3;(3)D(﹣,);(4)存在;P(﹣,2+3),(,3﹣2),(4,5),(,).考点:四边形综合题.8. (2017黑龙江绥化第28题)如图,在矩形中,为边上一点,平分,为的中点,连接,过点作分别交于,两点.(1)求证:;(2)求证:;(3)当时,请直接写出的长.【答案】(1)证明见解析;(2)证明见解析;(3)4 .理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH∥BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴,即EF2=AF•GF,∵AF•GF=28,∴EF=2 ,∴CE=2EF=4.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.矩形的性质.9. (2017湖北孝感第20题)如图,已知矩形 .(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①以点为圆心,以的长为半径画弧交边于点,连接;②作的平分线交于点;③连接;(2)在(1)作出的图形中,若,则的值为 .【答案】(1)画图见解析;(2) .考点:1.作图﹣基本作图;2.全等三角形的判定与性质;3.解直角三角形.10. (2017内蒙古呼和浩特第18题)如图,等腰三角形中,,分别是两腰上的中线.(1)求证:;(2)设与相交于点,点,分别为线段和的中点.当的重心到顶点的距离与底边长相等时,判断四边形的形状,无需说明理由.【答案(1)证明见解析;(2)四边形DEMN是正方形.(2)四边形DEMN是正方形,理由:∵E、D分别是AB、AC的中点,∴AE=AB,AD=AC,ED是△ABC的中位线,∴ED∥BC,ED=BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN=BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离=BC,∴BD⊥CE,∴四边形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.11. (2017青海西宁第23题)如图,四边形中,相交于点,是的中点,.(1)求证:四边形是平行四边形;(2)若,求的面积.【答案】(1)证明见解析;(2)24.。
2020年中考数学二轮复习压轴专题四边形(含解析)
《四边形》1.【习题再现】课本中有这样一道题目:如图1,在四边形ABCD中,E,F,M分别是AB,CD,BD的中点,AD=BC.求证:∠EFM =∠FEM.(不用证明)【习题变式】(1)如图2,在“习题再现”的条件下,延长AD,BC,EF,AD与EF交于点N,BC与EF 交于点P.求证:∠ANE=∠BPE.(2)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,交BA的延长线于点G,连接GD,∠EFC=60°.求证:∠AGD=90°.【习题变式】解:(1)∵F,M分别是CD,BD的中点,∴MF∥BP,,∴∠MFE=∠BPE.∵E,M分别是AB,BD的中点,∴ME∥AN,,∴∠MEF=∠ANE.∵AD=BC,∴ME=MF,∴∠EFM=∠FEM,∴∠ANE=∠BPE.(2)连接BD,取BD的中点H,连接EH,FH.∵H,F分别是BD和AD的中点,∴HF∥BG,,∴∠HFE=∠FGA.∵H,E分别是BD,BC的中点,∴HE∥AC,,∴∠HEF=∠EFC=60°.∵AB=CD,∴HE=HF,∴∠HFE=∠EFC=60°,∴∠A GF=60°,∵∠AFG=∠EFC=60°,∴△AFG为等边三角形.∴AF=GF,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=60°+30°=90°.2.(1)问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),连接AD,过点A作AE⊥AD,并满足AE=AD,连接CE.则线段BD和线段CE的数量关系是BD=CE,位置关系是BD⊥CE.(2)探索:如图2,当D点为BC边上一点(不与点B,C重合),Rt△ABC与Rt△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.试探索线段BD2、CD2、DE2之间满足的等量关系,并证明你的结论;(3)拓展:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=3,CD=1,请直接写出线段AD的长.解:(1)问题:在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故答案为:BD=CE,BD⊥CE;(2)探索:结论:DE2=BD2+CD2,理由是:如图2中,连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∴DE2=BD2+CD2;(3)拓展:如图3,将AD绕点A逆时针旋转90°至AG,连接CG、DG,则△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=3,Rt△CGD中,∵CD=1,∴DG===2,∵△DAG是等腰直角三角形,∴AD=AG=2.3.如图1,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)BE和DG的数量关系是BE=DG,BE和DG的位置关系是BE⊥DG;(2)把正方形ECGF绕点C旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD的边长为4,正方形ECGF的边长为3,正方形ECGF绕点C旋转过程中,若A、C、E三点共线,直接写出DG的长.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.4.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点D从点C出发,沿CA方向匀速运动,速度为2cm/s;同时,动点E从点A出发,沿AB方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.设点D,E运动的时间是t(s)(0<t<5).过点D作DF⊥BC于点F,连接DE,EF.(1)t为何值时,DE⊥AC?(2)设四边形AEFC的面积为S,试求出S与t之间的关系式;(3)是否存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,若存在,求出t的值;若不存在,请说明理由;(4)当t为何值时,∠ADE=45°?解:(1)∵∠B=90o,AB=6 cm,BC=8 cm,∴AC===10(cm),若DE⊥AC,∴∠EDA=90°,∴∠EDA=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴=,即:=,∴t=,∴当t=s时,DE⊥AC;(2)∵DF⊥BC,∴∠DFC=90°,∴∠DFC=∠B,∵∠C=∠C,∴△CDF∽△CAB,∴=,即=,∴CF=,∴BF=8﹣,BE=AB﹣AE=6﹣t,∴S=S△ABC﹣S△BEF=×AB•BC﹣×BF•BE=×6×8﹣×(8﹣t)×(6﹣t)=﹣t2+t;(3)若存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,根据题意得:﹣t2+t=××6×8,解得:t1=,t2=(不合题意舍去),∴当t=s时,S四边形AEFC:S△ABC=17:24;(4)过点E作EM⊥AC与点M,如图所示:则∠EMA=∠B=90°,∵∠A=∠A,∴△AEM∽△ACB,∴==,即==,∴EM=t,AM=t,∴DM=10﹣2t﹣t=10﹣t,在Rt△DEM中,当DM=ME时,∠ADE=45°,∴10﹣t=t,∴t=∴当t=s时,∠ADE=45°.5.我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如图(1),△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS)(1)熟悉模型:如图(2),已知△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,求证:BD=CE;(2)运用模型:如图(3),P为等边△ABC内一点,且PA:PB:PC=3:4:5,求∠APB 的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连结CM,通过转化的思想求出了∠APB的度数,则∠APB的度数为150 度;(3)深化模型:如图(4),在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC =45°,求BD的长.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150;(3)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(4)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE===,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.6.(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO =2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=75 °,AB=3(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点0,AC⊥AD,AO=,∠ABC=∠ACB =75°,BO:OD=2:1,求DC的长解:(1)如图2中,过点B作BD∥AC,交AO的延长线于点D,∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==2,.又∵AO=,∴OD=2AO=2,∴AD=AO+OD=3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=3;故答案为75,3.(2)如图3中,过点B作BE∥AD交AC于点E.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴===2.∵BO:OD=1:3,∵AO=,∴EO=2,∴AE=3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4BE2)2+BE2=(2BE)2,解得:BE=3,∴AB=AC=6,AD=在Rt△CAD中,AC2+AD2=CD2,即62+()2=CD2,解得:CD=(负根已经舍弃).7.正方形ABCD中,AB=4,点E、F分别在AB、BC边上(不与点A、B重合).(1)如图1,连接CE,作DM⊥CE,交CB于点M.若BE=3,则DM= 5 ;(2)如图2,连接EF,将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;再将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…,①如图3,线段EF经过两次操作后拼得△EFD,其形状为等边三角形,在此条件下,求证:AE=CF;②若线段EF经过三次操作恰好拼成四边形EFGH,(3)请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;(4)以1中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.解:(1)如图1中,∵四边形ABCD是正方形,∴∠B=∠DCM=90°,∵BE=3,BC=4,∴CE===5,∵DM⊥EC,∴∠DMC+∠MCE=90°,∠MCE+∠CEB=90°,∴∠DMC=∠CEB,∵BC=CD,∴△BCE≌△CDM(AAS),∴DM=EC=5.故答案为5.(2)如题图3,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.故答案为等边三角形.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH是菱形,由△EGM≌△FHN,可知EG=FH,∴四边形EFGH的形状为正方形.∴∠HEF=90°∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,,∴△AEH≌△BFE(ASA)∴AE=BF.故答案为正方形,AE=BF.(4)利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.8.已知:如图1,在平面直角坐标系中,长方形OABC的顶点B的坐标是(6,4).(1)直接写出A点坐标( 6 ,0 ),C点坐标(0 , 4 );(2)如图2,D为OC中点.连接BD,AD,如果在第二象限内有一点P(m,1),且四边形OADP的面积是△ABC面积的2倍,求满足条件的点P的坐标;(3)如图3,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N 从点A出发.以每秒2个单位的速度沿线段AO运动,当N到达O点时,M,N同时停止运动,运动时间是t秒(t>0),在M,N运动过程中.当MN=5时,直接写出时间t的值.解:(1)∵四边形OABC是长方形,∴AB∥OC,BC∥OA,∵B(6,4),∴A(6,0),C(0,4),故答案为:6,0,0,4;(2)如图2,由(1)知,A(6,0),C(0,4),∴OA=6,OC=4,∵四边形OABC是长方形,∴S长方形OABC=OA•OC=6×4=24,连接AC,∵AC是长方形OABC的对角线,∴S△OAC=S△ABC=S长方形OABC=12,∵点D是OC的中点,∴S△OAD=S△OAC=6,∵四边形OADP的面积是△ABC面积的2倍,∴S四边形OADP=2S△ABC=24,∵S四边形OADP=S△OAD+S△ODP=6+S△ODP=24,∴S△ODP=18,∵点D是OC的中点,且OC=4,∴OD=OC=2,∵P(m,1),∴S△ODP=OD•|m|=×2|m|=18,∴m=18(由于点P在第二象限,所以,m小于0,舍去)或m=﹣18,∴P(﹣18,1);(3)如图3,由(2)知,OA=6,OC=4,∵四边形OABC是长方形,∴∠AOC=∠OCB=90°,BC=6,由运动知,CM=t,AN=2t,∴ON=OA﹣AN=6﹣2t,过点M作MH⊥OA于H,∴∠OHM=90°=∠AOC=∠OCB,∴四边形OCMH是长方形,∴MH=OC=4,OH=CM=t,∴HN=|ON﹣CM|=6﹣2t﹣t|=|6﹣3t|,在Rt△MHN中,MN=5,根据勾股定理得,HN2=MN2﹣MH2,∴|6﹣3t|2=52﹣42=9,∴t=1或t=3,即:t的值为1或3.9.综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB =2,PC=3.你能求出∠APB的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点P是正方形ABCD外一点,PA=3,PB=1,,求∠APB的度数.拓展应用(3)如图3,在边长为的等边三角形ABC内有一点O,∠AOC=90°,∠BOC=120°,则△AOC的面积是.解:(1)思路一,如图1,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',则△ABP'≌△CBP,AP'=CP=3,BP'=BP=2,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=1,∴AP2+P'P2=1+8=9,又∵P'A2=32=9,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°.思路二、同思路一的方法.(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP'.则△ABP'≌△CBP,,BP'=BP=1,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=3,∴AP2+P'P2=9+2=11,又∵,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.(3)如图,将△ABO绕点B顺时针旋转60°,得到△BCE,连接OE.则△BAO≌△BCE,∠AOB=∠BEC=360°﹣90°﹣120°=150°,∵△BOE是等边三角形,∴∠BEO=∠BOE=60°,∴∠OEC=90°,∠OEC=120°﹣60°=60°,∴sin60°==,设EC=k,OC=2k,则OA=EC=k,∵∠AOC=90°,∴OA2+OC2=AC2,∴3k2+4k2=7,∴k=1或﹣1(舍弃),∴OA=,OC=2,∴S△AOC=•OA•OC=××2=.故答案为.10.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形AB CD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.11.在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是1<AD<7 .(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.解:(1)延长AD到点E,使AD=DE,连接BE,如图①所示:∵点D是BC边上的中点,∴BD=CD,在△A DC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=EB=6,在△ABE中,AB﹣BE<AE<AB+BE,∴8﹣6<AE<8+6,即2<AE<14,∴1<AD<7,故答案为:1<AD<7;(2)①延长ED到点N,使ED=DN,连接CN、FN,如图②所示:∵点D是BC边上的中点,∴BD=CD,在△NDC和△EDB中,中,,∴△NDC≌△EDB(SAS),∴BE=CN=4,∵DF⊥DE,ED=DN,∴EF=FN,在△CFN中,CN﹣CF<FN<CN+CF,∴4﹣2<FN<4+2,即2<FN<6,∴2<EF<6;②CE⊥ED;理由如下:延长CE与DA的延长线交于点G,如图③所示:∵点E是AB中点,∴BE=AE,∵∠BCD=150°,∠ADC=30°,∴DG∥BC,∴∠GAE=∠CBE,在△GAE和△CBE中,,∴△GAE≌△CBE(ASA),∴GE=CE,AG=BC,∵BC=CF,DF=AD,∴CF+DF=BC+AD=AG+AD,即:CD=GD,∵GE=CE,12.如图,在平行四边形ABCD中,AB⊥AC,对角线AC、BD相交于点O,将直线AC绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC、AD于点E、F,已知AB=1,,连接BF.(1)如图①,在旋转的过程中,请写出线段AF与EC的数量关系,并证明;(2)如图②,当α=45°时,请写出线段BF与DF的数量关系,并证明;(3)如图③,当α=90°时,求△BOF的面积.解:(1)AF=CE;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠FAO=∠ECO,∴在△AFO与△CEO中,,∴△AFO≌△CEO(ASA),(2)BF=DF;理由如下:∵AB⊥AC,∴∠BAC=90°,∴AC===2,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO=AC=1,∴AB=AO,又∵AB⊥AC,∴∠AOB=45°,∵α=45°,∠AOF=45°,∴∠BOF=∠AOB+∠AOF=45°+45°=90°,∴EF⊥BD,∵BO=DO,∴BF=DF;(3)∵AB⊥AC,∴∠CAB=90°,∴∠CAB=∠AOF=α=90°,∴AB∥EF,∵四边形ABCD是平行四边形,∴AF∥BE,∴四边形ABEF是平行四边形,∴AB=EF=1,由(1)得:△AFO≌△CEO,∴OF=OE=EF=,由(2)得:AO=1,∵AB∥EF,AO⊥EF,∴S△BOF=S△AOF=AO•OF=×1×=.13.综合与实践(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.请写出∠AEB的度数及线段AD,BE之间的数量关系,并说明理由.(2)类比探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.填空:①∠AEB的度数为90°;②线段CM,AE,BE之间的数量关系为AE=BE+2CM.(3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC的面积为35 .解:(1)∠AEB=60°,AD=BE,理由如下:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.AD=BE,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)猜想:①∠AEB=90°,②AE=BE+2CM.理由如下:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM;(3)由(2)得:∠AEB=90°,AD=BE=4,∵△DCE均为等腰直角三角形,CM为△DCE中DE边上的高,∴CM⊥AE,DE=2CM=6,∴AE=AD+DE=4+6=10,∴四边形ABEC的面积=△ACE的面积+△ABE的面积=AE×CM+AE×BE=×10×3+×10×4=35;故答案为:35.14.如图,正方形OABC的边长为8,P为OA上一点,OP=2,Q为OC边上的一个动点,分别以OP\PQ为边在正方形OABC内部作等边三角形OPD和等边三角形PQE.(1)证明:DE=OQ;(2)直线ED与OC交于点F,点Q在运动过程中.①∠EFC的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由;②连结AE,求AE的最小值.(1)证明:如图1中,∵△OPD和△PQE是等边三角形,∴PO=PD,PQ=PE,∠OPD=∠QPE=60°,∴∠OPQ=∠DPE,∴△OPQ≌△DPE(SAS),∴DE=OQ.(2)①∵△OPQ≌△DPE,∴∠EDP=∠POQ=90°,∵∠DOP=∠ODP=60°∴∠FDO=∠FDO=30°,∴∠EFC=∠FOC+∠FDO=60°.②如图2中,当点Q与点C重合时,以PQ为边作正三角形PQM.∵∠EFC=60°为定值,点E的运动路径为线段DM,过点P作PH⊥EA,垂足为H,∴当AE⊥DE时,AE的值最小∵∠PDE=∠DEH=∠PHE=90°,∴四边形PDEH是矩形,∴∠DPH=90°,EH=PD=2,∴EH=DP=2,在△PHA中,∠AHP=90°,∠HPA=30°∴AH=PA=3,∴AE=EH+AH=2+3=5.15.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,CG=AC=4,BE=AB,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴AB===5,BE=AB=5,∴GE2=CG2+BE2﹣BC2=(4)2+(5)2﹣32=73,∴GE=.。
初中考数学专题总复习《四边形》矩形、菱形、正方形
∵BE=DF,
∴OE=OF.(2分)
在△AOE和△COF中,
OA=OC
∠AOE=∠COF
OE=OF ∴△AOE≌△COF(SAS), ∴AE=CF;(4分)
第2题图
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
(2)解:∵OA=OC,OB=OD,AC=BD, ∴OA=OB. ∵∠AOB=∠COD=60°, ∴△AOB是等边三角形, ∴OA=AB=6, ∴AC=2OA=12,(6分) 在Rt△ABC中,由勾股定理得BC= AC 2 AB2 =6 3 , ∴S矩形ABCD=AB·BC=6×6 3 =36 3 .(8分)
第5题图
(1)证明:∵对角线AC的中点为O, ∴AO=CO. ∵AG=CH, ∴AO-AG=CO-CH.即GO=HO. ∵四边形ABCD是矩形, ∴AB∥CD. ∴∠OAE=∠OCF. 又∵∠AOE=∠COF, ∴△OAE≌△OCF(ASA).
第5题图
∴OE=OF. ∴GH与EF互相平分, ∴四边形EHFG是平行四边形;
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
第1题图
∴AC=BD,OA=OC,OB=OD. ∴OC=OD,∴四边形OCED是菱形.
母题变式 改变条件、增加设问→在矩形基础上构造菱形,增加设问及解题难度. 2. (2020德阳)如图,四边形ABCD为矩形,G是对角线BD的中点,连接GC并延长 至F,使CF=GC,以DC,CF为邻边作菱形DCFE.连接CE. (1)判断四边形CEDG的形状,并证明你的结论;
第6题图
(2)若∠ABE=∠CBE,求证:四边形AFBE为矩形.
(2)∵点D、E分别为AB、AC的中点, ∴DE∥BC,∴∠DEB=∠CBE, ∵∠ABE=∠CBE, ∴∠DEB=∠ABE,∴BD=DE, ∵AD=BD,DF=DE, ∴AD+BD=DE+DF,即AB=EF, ∴四边形AFBE是矩形.
成都市中考核心考点-第十讲 几何图形综合(25题)(B卷)
则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.
第一讲:考点1-考点6,第二讲:考点7-考点10,第三讲:考点11-考点14,第四点21,………第十三讲:考点28.(从考点20开始,每个考点一讲)。
第二轮过关B卷攻略专攻B卷重难,五年考点扫描,专题考向攻略。
暂定:B填空7-8讲,应用题1讲,几何综合3讲,抛物线综合5讲
成都中考核心考点(成都版)简介
--只要抓住核心考点,就能拿到卷子上80%的分数
在历年的成都中考数学试题中,核心考点虽然只占总考点的20%,却占总分值的80%。掌握了核心考点,相当于用20%的时间来把握80%的分数,在最短的时间内实现快速提分。
本文共分两轮复习:
第一轮过关核心考点聚焦常考考点,五年真题回顾,三年诊断精选。
13. (18郫都区二诊)如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两,若AC=14,CD=4, ,则BD的值为___________.
14.(18高新区一诊)如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.
10.(10成都)如图, 内接于 , , 是 上与点 关于圆心 成中心对称的点, 是 边上一点,连结 .已知 , , 是线段 上一动点,连结 并延长交四边形 的一边于点 ,且满足 ,则 的值为_______________.
河北省中考数学系统复习第三单元函数第10讲第1课时一次函数的图象与性质(8年真题训练)练习
第10讲 一次函数第1课时 一次函数的图象与性质命题点1 一次函数的图象与性质1.(2011·河北T5·2分)一次函数y =6x +1的图象不经过(D)A .第一象限B .第二象限C .第三象限D .第四象限2.(2014·河北T6·2分)如图,直线l 经过第二、三、四象限,l 的解析式是y =(m -2)x +n ,则m 的取值范围在数轴上表示为(C)A BC D3.(2015·河北T14·2分)如图,直线l: y =-23x -3与直线y =a(a 为常数)的交点在第四象限,则a 可能在(D)A .1<a <2B .-2<a <0C .-3≤a ≤-2D .-10<a <-44.(2016·河北T5·3分)若k ≠0,b <0,则y =kx +b 的图象可能是(B)A B C D命题点2 确定一次函数的解析式5.(2017·河北T24·10分)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E.点B ,E 关于x 轴对称,连接AB.(1)求点C ,E 的坐标及直线AB 的解析式;(2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.解:(1)把y =0代入y =-38x -398,得x =-13.∴C(-13,0).1分把x =-5代入y =-38x -398,得y =-3.∴E(-5,-3).2分∵点B ,E 关于x 轴对称,∴B(-5,3). 设直线AB 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧b =5,-5k +b =3.解得⎩⎪⎨⎪⎧k =25,b =5.∴直线AB 的解析式为y =25x +5.5分(2)∵CD =8,DE =DB =3,OA =OD =5. ∴S △CDE =12×8×3=12,S 四边形ABDO =12×(3+5)×5=20.∴S =32.8分(3)当x =-13时,y =25x +5=-15≠0,∴点C 不在直线AB 上,即A ,B ,C 三点不共线.∴他的想法错在将△CDB 与四边形ABDO 拼接后看成了△AOC.10分6.(2018·河北T24·10分)如图,直角坐标系xOy 中,一次函数y =-12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C(m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.解:(1)把C(m ,4)代入一次函数y =-12x +5,可得4=-12m +5,解得m =2,∴C(2,4).设l 2的解析式为y =ax ,则4=2a ,解得a =2. ∴l 2的解析式为y =2x.(2)过点C 作CD ⊥AO 于点D ,CE ⊥BO 于点E ,则CD =4,CE =2,∵y =-12x +5的图象与x 轴、y 轴交于A ,B 两点,令x =0,则y =5,令y =0,则x =10,∴A(10,0),B(0,5). ∴AO =10,BO =5.∴S △AOC -S △BOC =12×10×4-12×5×2=15.(3)k 的值为32或2或-12.命题点3 一次函数的平移7.(2013·河北T23·10分)见本书P46变式训练3重难点1 一次函数的图象与性质已知,函数y =(1-2m)x +2m +1,试解决下列问题:图1 图2(1)当m ≠12时,该函数是一次函数,当m =-12时,该函数是正比例函数;(2)当m =2时,直线所在的象限是第一、二、四象限; (3)函数的图象如图1所示,则m 的取值范围是-12<m<12;(4)当m<12时,y 随x 的增大而增大;(5)当函数y =(1-2m)x +2m +1向上平移3个单位长度时得到y =(1-2m)x +2,则m 的值为-1; (6)若函数图象与x 轴的交点坐标为A ,与y 轴的交点为B(0,3),则△ABO 的面积为92;(7)函数图象必过点(1,2);(8)若函数图象与直线y =x -1交于点(2,1),则关于x 的不等式x -1>(1-2m)x +2m +1的解集是x>2; (9)当m =0时,y =x +1,将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图2所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 10的坐标是(210-1,29). 【变式训练1】 (2018·湘潭)若b >0,则一次函数y =-x +b 的图象大致是(C)【变式训练2】 (2018·石家庄裕华区一模)一次函数y =(m -1)x +(m -2)的图象上有点M(x 1,y 1)和点N(x 2,y 2),且x 1>x 2,下列叙述正确的是(B)A .若该函数图象交y 轴于正半轴,则y 1<y 2B .该函数图象必过点(-1,-1)C .无论m 为何值,该函数图象一定过第四象限D .该函数图象向上平移一个单位长度后,会与x 轴正半轴有交点 方法指导根据图象经过的象限可确定k ,b 的符号:易错提示养成画图的习惯,注意数形结合的方法. 重难点2 确定一次函数的解析式(2018·唐山乐亭县一模)如图,在平面直角坐标系xOy 中,过点A(-6,0)的直线l 1与直线l 2:y =2x 相交于点B(m ,4).(1)求直线l 1的解析式;(2)直线l 1与y 轴交于点M ,求△AOM 的面积;(3)过动点P(n ,0)且垂直于x 轴的直线与l 1,l 2的交点分别为C ,D ,当点C 位于点D 上方时,直接写出n 的取值范围.【变式】 (4)将(3)中条件“过动点P(n ,0)且垂直于x 轴的直线l 1,l 2的交点分别为C ,D ”保持不变,“当点C 位于点D 上方时”改为“且CD =2”,求点C 的坐标.【思路点拨】 (1)点B 在直线y =2x 上,所以m =2,即点B(2,4),利用待定系数法可得直线l 1的解析式;(2)直线l 1与y 轴的交点坐标,利用三角形的面积公式求出三角形的面积;(3)点C 位于点D 的上方,l 1>l 2,即当n<2时.(4)当CD =2时,需分点C 在点D 上方和下方进行讨论.【自主解答】 解:(1)∵直线y =2x 经过点B , ∴4=2m ,∴m =2,即B(2,4). 设直线l 1的解析式为y =kx +b , ∵直线l 1的经过点A ,B ,∴⎩⎪⎨⎪⎧0=-6k +b ,4=2k +b ,解得⎩⎪⎨⎪⎧k =12,b =3.∴直线l 1的解析式为y =12x +3.(2)∵当x =0时,y =3,∴M(0,3). ∴S △AOM =12×6×3=9.(3)n<2.(4)①当点C 在点D 上方时,有12x +3-2x =2,解得x =23.此时点C 的坐标为(23,103);②当点C 在点D 下方时,有2x -(12x +3)=2,解得x =103.此时点C 的坐标为(103,143).【变式训练3】 (2018·郴州)如图,在平面直角坐标系中,菱形OABC 的一个顶点在原点O 处,且∠AOC =60°,A 点的坐标是(0,4),则直线AC 的解析式是y =-33x +4. 【变式训练4】 (2013·河北T23·10分)如图,A(0,1),M(3,2),N(4,4).动点P 从点A 出发,沿y 轴以每秒1个单位长度的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为t 秒. (1)当t =3时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上. 解:(1)∵直线y =-x +b 交y 轴于点P(0,b), ∴由题意,得b >0,t ≥0,b =1+t. 当t =3时,b =4, ∴y =-x +4.(2)当直线y =-x +b 过点M(3,2)时,2=-3+b , 解得b =5.∵5=1+t ,∴t =4.当直线y =-x +b 过点N(4,4)时,4=-4+b , 解得b =8.∵8=1+t ,∴t =7. ∴4<t <7.(3)当t =1时,该对称点落在y 轴上; 当t =2时,该对称点落在x 轴上.方法指导用待定系数法求函数解析式是必须掌握的一种方法.要熟练掌握解二元一次方程组的方法.一次函数的图象与坐标轴的交点坐标是直线上的特殊点,常常与其他点构成三角形等图形,也是常见的一种命题形式.易错提示注意“分类讨论”思想的应用. 重难点3 一次函数与方程、不等式的关系(2017·台州改编)如图,直线l 1:y =2x +1与直线l 2:y =mx +4相交于点P(1,b).(1)求b ,m 的值;(2)直接写出关于x 的不等式2x +1<mx +4的解集;(3)垂直于x 轴的直线x =a 与直线l 1,l 2分别交于点C ,D.若线段CD 长为2,求a 的值.【思路点拨】 (1)把点P 的坐标代入l 1求出b ,再将(1,b)代入l 2求出m ;(2)观察图象,由两直线的交点P 的横坐标可得;(3)C ,D 两点横坐标相同时,线段CD 的长等于其纵坐标的差,但要注意有两种情况.【自主解答】解:(1)∵点P(1,b)在直线l 1:y =2x +1上,∴b =2×1+1=3.∵点P(1,3)在直线l 2:y =mx +4上, ∴3=m +4.∴m =-1. (2)x<1.(3)当x =a 时,y C =2a +1,y D =4-a.∵CD =2,∴|2a +1-(4-a)|=2,解得a =13或a =53.∴a 的值为13或53.【变式训练5】(2018·河北模拟)观察函数y 1和y 2的图象,当x =0,两个函数值的大小关系为(A)A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1≥y 2 【变式训练6】(2018·呼和浩特)若以二元一次方程x +2y -b =0的解为坐标的点(x ,y)都在直线y =-12x +b -1上,则常数b =(B)A.12B .2C .-1D .1【变式训练7】 (2018·资阳)已知直线y 1=kx +1(k <0)与直线y 2=mx(m >0)的交点坐标为(12,12m),则不等式组mx -2<kx +1<mx 的解集为(B)A .x >12B.12<x <32 C .x <32D .0<x <32方法指导1.解决此类题一般是先找出两函数值相等时x 的值,然后过这点作x 轴的垂线,在这个点的左侧和右侧,必然存在不等关系,最后观察图象,上方的函数值大于下方的函数值.2.在坐标系内的线段长,若线段平行于x(y)轴,则线段长等于其横(纵)坐标的差.,易错提示)线段CD 长为2时,有两种情况,在交点P 的左右都有可能.1.(2018·玉林)等腰三角形底角与顶角之间的函数关系是(B)A .正比例函数B .一次函数C .反比例函数D .二次函数2.(2018·沈阳)在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是(C)A .k>0,b>0B .k>0,b<0C .k<0,b>0D .k<0,b<03.(2017·呼和浩特)一次函数y =kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过(A)A .第一象限B .第二象限C .第三象限D .第四象限4.(2017·怀化)一次函数y =-2x +m 的图象经过点P(-2,3),且与x 轴,y 轴分别交于点A ,B ,则△AOB 的面积是(B)A.12B.14C .4D .85.(2018·唐山乐亭县一模)如图的坐标平面上有四直线l 1,l 2,l 3,l 4,其中方程3x -5y +15=0对应的直线为(A)A .l 1B .l 2C .l 3D .l 46.(2018·济宁)在平面直角坐标系中,已知一次函数y =-2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点.若x 1<x 2,则y 1>y 2.(填“>”“<”或“=”)7.(2017·荆州)将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为4.8.【分类讨论思想】(2018·昆明)如图,点A 的坐标为(4,2),将点A 绕坐标原点O 旋转90°后,再向左平移1个单位长度得到点A ′,则过点A ′的正比例函数的解析式为y =-43x 或y =-4x .9.(2018·淮安)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A(-2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1.(1)求k ,b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.解:(1)当x =1时,y =3x =3, ∴点C 的坐标为(1,3).将A(-2,6),C(1,3)代入y =kx +b ,得⎩⎪⎨⎪⎧-2k +b =6,k +b =3.解得⎩⎪⎨⎪⎧k =-1,b =4.(2)当y =0时,-x +4=0. 解得x =4.∴点B 的坐标为(4,0).设点D 的坐标为(0,m)(m <0), ∵S △COD =13S △BOC ,即-12m =13×12×4×3.解得m =-4.∴点D 的坐标为(0,-4). 10.【数形结合思想】(2018·廊坊模拟)如图,正方形ABCD 的边长为2,BC 边在x 轴上,BC 的中点与原点O 重合,过定点M(-2,0)与动点P(0,t)的直线MP 记作l.(1)若l 的解析式为y =2x +4,判断此时点A 是否在直线l 上,并说明理由; (2)当直线l 与AD 边有公共点时,求t 的取值范围.解:(1)此时点A 在直线l 上. ∵BC =AB =2,点O 为BC 中点, ∴点B(-1,0),A(-1,2).把点A 的横坐标x =-1代入解析式y =2x +4,得 y =2,等于点A 的纵坐标2, ∴此时点A 在直线l 上.(2)由题意可得,点D(1,2),及点M(-2,0),当直线l 经过点D 时,设l 的解析式为y =kx +t(k ≠0),∴⎩⎪⎨⎪⎧-2k +t =0,k +t =2,解得⎩⎪⎨⎪⎧k =23,t =43. 由(1)知,当直线l 经过点A 时,t =4.∴当直线l 与AD 边有公共点时,t 的取值范围是43≤t ≤4.11.(2018·保定竞秀区模拟)如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b(k ≠0)在第一象限交于点M.若直线l 2与x 轴的交点为A(-2,0),则k 的取值范围是(D)A .-2<k<2B .-2<k<0C .0<k<4D .0<k<2 12.【数形结合思想】(2018·宿迁)在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是(C)A .5B .4C .3D .2 13.(2018·河北模拟)若P(m +1,m -1)在直线y =-x +3的下方,则m 的取值范围是m <32.14.(2018·保定竞秀区二模)在平面直角坐标系xOy 中,已知直线l 的解析式为:y =kx +x -k +1.若将直线l 绕A 点旋转,如图所示,当直线l 旋转到l 1位置时,k =2且l 1与y 轴交于点B ,与x 轴交于点C ;当直线l 旋转到l 2位置时,k =-25且l 2与y 轴交于点D.(1)求点A 的坐标;(2)直接写出B ,C ,D 三点的坐标,连接CD ,求△ADC 的面积;(3)已知坐标平面内一点E ,其坐标满足条件E(a ,a),当点E 与点A 距离最小时,直接写出a 的值.解:(1)当k =2时,y =3x -1, 当k =-25时,y =35x +75.解方程组⎩⎪⎨⎪⎧y =3x -1,y =35x +75,得⎩⎪⎨⎪⎧x =1,y =2. ∴点A 的坐标为(1,2).(2)B(0,-1),C(13,0),D(0,75).∴BD =125,OC =13.∴S △ADC =S △ADB -S △BDC=12×125×1-12×125×13 =45. (3)a =32.。
(部编版)2020年中考数学试题分项版解析汇编第期专题10四边形含解析6
专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .18 【答案】B. 【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n ×150°,解得:n=12.故选B. 考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C.AC BD = D .12∠=∠ 【答案】C.考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20 【答案】D 【解析】试题分析:根据菱形的对角线互相垂直,可知OA=3,OB=4,根据勾股定理可知AB=5,所以菱形的周长为4×5=20. 故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn的值为( ) A .22 B .21C .215-D .随H 点位置的变化而变化【答案】B 【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m=8a , 设CM=x ,DE=y ,则DM=2a-x ,EM=2a-y , ∵∠EMG=90°, ∴∠DME+∠CMG=90°. ∵∠DME+∠DEM=90°, ∴∠DEM=∠CMG ,又∵∠D=∠C=90°△DEM ∽△CMG , ∴CG CM MGDM DE EM==,即22CG x MG a x y a y ==-- ∴CG=(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM+CG+MG=24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a-x )2+y 2=(2a-y )2整理得4ax-x 2=4ay∴CM+MG+CG=2444ax x aya y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( ) A .四边形 B .五边形 C .六边形 D .八边形 【答案】C 【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n-2)·180°=720°,解得n=6,故是六边形. 故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD CD =,则四边形AEDF 是菱形 D .若AD 平分BAC ∠,则四边形AEDF 是菱形 【答案】D 【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形. 若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误; 若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误; 若BD=CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误; 若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721 D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则ta n B D E ∠的值是 ( )A B .14 C .13D【答案】A. 【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DFEB EF BF==,因点E 是边BC 的中点且AD=BC,所以AD AF DFEB EF BF===2,设EF=x ,可得AF=2x ,在Rt △ABE 中,由射影定理可得 ,再由AD AF DFEB EF BF ===2可得,在Rt △DEF 中,tan BDE ∠=4EF DF ==,故选A. 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A ...8【答案】A. 【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点4AF EF EL ∴==∴=,P 是F E 的中点,2PK ∴=DH =1PP CD ∴=高为82S ∴==L K H故答案选A.考点:平行四边形的面积,三角函数.10.(2017江苏苏州第7题)如图,在正五边形CDAB E中,连接BE,则∠ABE的度数为A.30 B.36 C.54 D.72【答案】B.【解析】试题分析:∠ABE=3601=3652︒⨯︒故答案选B.考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE BF=,将,AEH CFG∆∆分别沿,EH FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的116时,则AEEB为()A.53B.2 C.52D.4【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题) 二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【解析】试题分析:连结AC,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG的边长分别为3和1,根据勾股定理可求得,AC=3,即可得AE=2,因P 为AE 的中点,可得,再由正方形的性质可得GM=EM=2,FG 垂直于AC ,在Rt △PGM 中,PM=2 ,由勾股定理即可求得2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB 等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.DC3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③ 【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)A C B OB ∴=,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODFBDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40),F CF OC CFO COF ∴=<∴∠>∠,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似. 则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1,22FG OB FG OB ∴==D E 、 是OB 的三等分点,DE ∴=1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯=解得:1162AN OB=,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确133OD OB == ,故④错误.综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70° 【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70° 考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24 【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA=OC ,OB=OD=12BD=5,CD=AB=4,由sin ∠BDC=35,证出AC⊥CD ,OC=3,AC=2OC=6,得出▱ABCD 的面积=CD•AC=24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD=32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH=EH ,设AH=x ,则DH=EH=8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x=3,即可得AH=3,EH=5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EHBE BF EF==,即3452BF EF ==,解得BF=83 ,EF=103 ,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA+PE 的最小值是 .9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】5. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB=BG=EF=CD=5,AD=GF=3,在Rt △BCG 中,根据勾股定理求得CG=4,再由1122BCGSBC CG BG CM =⋅=⋅,即可求得CM=125,在Rt △BCM 中,根据勾股定理求得95==,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE=MN=3,BM=EN=95,所以CN=MN-CM=3-125=35,在Rt △ECN 中,根据勾股定理求得===.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】5. 【解析】试题分析:连接AG,设DG=x,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC ==''CC BB ∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB,已知菱形的周长为cm 24,根据菱形的性质可得AB=6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE=33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和 三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 , ∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 .考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长.【答案】(1)证明见解析.(2【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解. 本题解析:(1)证明:∵E 为AD 中点,AD=2BC,∴BC=ED, ∵AD ∥BC, ∴四边形ABCD 是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE ∴BE=ED, ∴四边形ABCD 是菱形.(2)∵AD ∥BC,AC 平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT △ACD 中,AD=2,CD=1,考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ,1);(2)1;(3)33(,22-或3(,22. 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A 的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB=2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B ,∴根据题意,由折叠的性质可得△A ’OP ≌△AOP.∴OA ’由OB B A ⊥',得∠A ’BO=90°.在Rt △A ’OB 中,'A B =∴点A ,1).(2) 在Rt △AOB 中,∴2AB ==∵当P 为AB 中点, ∴AP=BP=1,OP=12AB=1. ∴OP=OB=BP,∴△BOP 是等边三角形 ∴∠BOP=∠BPO=60°, ∴∠OPA=180°-∠BPO=120°. 由(1)知,△A ’OP ≌△AOP , ∴∠OPA’=∠OPA =120°,P ’A=PA=1, 又OB=PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B=OP=1.(3)33(22或3(,22. 4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若AP =CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF=4【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由 ,从而可得 .试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC =,185=,∴PC=2CQ =365 ,∴AP=AC-PC=145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC=∠PDF=90°,即∠ADP+∠PDC=∠PDC+∠CDF ,∴∠ADP=∠CDF ,∵∠BCD=90°,OE=OD ,∴OC=12 ED ,在矩形PEFD 中,PF=DE ,∴OC=12PF ,∵OP=OF=12PF ,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,又∵∠OPC +∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,即∠PCD+∠FCD=90°,在Rt △ADC 中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD ,∴△ADP ∽△CDF ,∴34C F C DA P A D==, ,∴CF=4 .5.(2017广东广州第24题)如图13,矩形ABCD的对角线AC,BD相交于点O,COD∆关于CD的对称图形为CED∆.(1)求证:四边形OCED是菱形;(2)连接AE,若6cmAB=,BC=.①求sin EAD∠的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1/cm s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动.当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【答案】(1)详见解析;(2)①2sin3EAD∠=②32AP=和Q走完全程所需时间为32s【解析】(2)①连接OE ,直线OE分别交AB于点F ,交DC于点G COD∆关于CD的对称图形为CED∆,OE DC DC AB∴⊥,OF AB EF AD∴⊥在矩形ABCD中,G为DC的中点,且O为AC的中点OG∴为CAD∆的中位线OG GE∴==同理可得:F为AB的中点,3OF AF==92AE∴===32sin sin932EAD AEFEAD AEF∠=∠∴∠=∠==②过点P作PM AB⊥交AB于点MQ∴由O运动到P所需的时间为3s由①可得,23AM AP=∴点O以1.5/cm s的速度从P到A所需的时间等于以1/cm s从M运动到A即:11OP PAOP MAt t t OP MA=+=+=+Q∴由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到1P ,即1PO AB时,所用时间最短.3t OP MA∴=+=在11Rt APM∆中,设112,3AM x AP x==222221111(3)=(2)AP AM PM x x=+∴解得:12x=32AP∴=32AP∴=和Q走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置 6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
2013年中考数学专题复习第10讲:一元一次不等式(组)(含答案)
2013年中考数学专题复习第十讲:一元一次不等式(组)【基础知识回顾】一、不等式的基本概念:1、不等式:用连接起来的式子叫做不等式2、不等式的解:使不等式成立的值,叫做不等式的解3、不等式的解集:一个含有未知数的不等的解的叫做不等式的解集【名师提醒:1、常用的不等号有等2、不等式的解与解集是不同的两个概念,不等式的解事单独的未知数的值,而解集是一个包围的未知数的值组成的机合,一般由无数个解组成3、不等式的解集一般可以在数轴上表示出来。
注意“>”“<”在数轴上表示为,而“≥”“≤”在数轴上表示为】二、不等式的基本性质:基本性质1、不等式两边都加上(或减去)同一个或同一个不等号的方向,即:若a<b,则a+c b+c(或a-c b-c)基本性质2:不等式两边都乘以(或除以)同一个不等号的方向,即:若a<b,c>0则a c b c(或ac—bc)基本性质3、不等式两边都乘以(或除以)同一个不等号的方向,即:若a<b,c <0则a c b c(或ac—bc)【名师提醒:运用不等式的基本性质解题时要主要与等式基本性质的区别与联系,特别强调:在不等式两边都乘以或除以一个负数时,不等号的方向要】三、一元一次不等式及其解法:1、定义:只含有一个未知数,并且未知数的次数是且系数的不等式叫一元一次不等式,其一般形式为或2、一元一次不等式的解法步骤和一元一次方程的解法相同,即包含等五个步骤【名师提醒:在最后一步系数化为1时,切记不等号的方向是否要改变】一、 一元一次不等式组及其解法:1、定义:把几个含有相同未知数的 合起来,就组成了一个一元一次不等式组2、解集:几个不等式解集的 叫做由它们所组成的不等式组的解集3、解法步骤:先求出不等式组中多个不等式的 再求出他们的 部分,就得到不等式组的解集4、一元一次不等式组解集的四种情况(a <b ) 1【名师提醒:1、求不等式的解集,一般要体现在数轴上,这样不2、一元一次不等式组求解过程中往常出现求特殊解的问题,比如:整数解、非负数解等,这时要注意不要漏了解,特别当出现“≥”或“≤”时要注意两头的数值是否在取值的范围内】五、一元一次不等式(组)的应用: 基本步骤同一元一次方程的应用可分为: 、 、 、 、 、 、 等七个步骤 【名师提醒:列不等式(组)解应用题,涉及的题型常与方案设计型问题相联系如:最大利润,最优方案等】【重点考点例析】 考点一:不等式的基本性质x >b x >a解集 口诀:大大取小X <a X <b 解集 口诀:X >bX >a解集 口诀:X <a X >b解集 口诀:例1 (2012•绵阳)已知a>b,c≠0,则下列关系一定成立的是()A.ac>bc B.C.c﹣a>c﹣b D.c+a>c+b考点:不等式的性质。
专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)
专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
人教版九年级数学下册中考知识点梳理:第10讲一次函数
第10讲一次函数一、知识清单梳理知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎪⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( ) A .方差 B .中位数C .众数D .平均数【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可. 故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差2.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC =C .4CD AC =D .不能确定【答案】B【解析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC. 【详解】∵AB=CD , ∴AC+BC=BC+BD , 即AC=BD , 又∵BC=2AC , ∴BC=2BD , ∴CD=3BD=3AC. 故选B . 【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点. 3.关于二次函数2241y x x =+-,下列说法正确的是( ) A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.72【答案】B【解析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个. 考点:规律题5.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.22C3D3【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN=22.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.6.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线【答案】C【解析】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.7.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【答案】B【解析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1, ∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线, ∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM , ∵∠FCE=∠FCM , ∴∠EFC=∠ECF , ∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2. 故选B .8.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6 【答案】A【解析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.0725【答案】B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.10.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB 的长等于()A.2cm B.3cm C.6cm D.7cm【答案】D【解析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.二、填空题(本题包括8个小题)11.化简:a ba b b a+--22=__________.【答案】a+b【解析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
2024年中考数学二次函数压轴题专题10平行四边形的存在性问题(学生版)
专题10平行四边形的存在性问题_、知识导航考虑到求证平行四边形存在,必先了解平行四边形性质:(1) 对应边平行且相等;(2) 对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:x A -x B =x D - x cy A -y B = yD-y c可以理解为点B 移动到点A,点。
移动到点O,移动路径完全相同.(2)对角线互相平分转化为:\ z 乙,、2 一 2可以理解为AC 的中点也是BQ 的中点.D【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:X A~X B =X D~ X C -y B = yD-y c + x c = + X by A + % = % + 为x A +x c ^x B +x D2 _ 2 \X A +X C=X B +X D总 + % 二 % + 北 U a + %=% + %、2 — 2当AC 和BQ 为对角线时,结果可简记为:A+C = B + D (各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系 中的4个点A 、B 、。
、D 满足"A+O8+ZT,则四边形ABCQ 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCQ 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化, 故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1) 四边形A8CQ 是平行四边形:AC. BQ 一定是对角线.(2) 以A 、B 、。
、。
四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题.1.三定一动已知A (1, 2) B (5, 3) C (3, 5),在坐标系内确定点。
使得以A 、B 、。
、。
四个点为顶点的四边形是 平行四边形.思路1:利用对角线互相平分,分类讨论:设。
中考总复习数学10-第一部分 第10讲 平面直角坐标系与函数
返回题型清单
返回栏目导航ຫໍສະໝຸດ 3.(2022·石家庄国际学校模拟)如图,直线a⊥b,若以平行于a的直线为x轴,以
平行于b的直线为y轴,建立平面直角坐标系,若A(-3,2),B(2,-3),则坐标系的
原点最有可能是( B )
A.O1
B.O2
C.O3
D.O4
1
2
3
4
第10讲
平面直角坐标系与函数— 题型突破
返回题型清单
和分类讨论思想是解答本题的关键.尤其是实际背景下的
函数问题,如果涉及分段函数,需要根据自变量的不同取值
范围分类进行求解,还需要关注函数与方程(不等式)的联系.
1
2
3
4
5
第10讲
平面直角坐标系与函数— 题型突破
返回题型清单
返回栏目导航
3.(2022·石家庄新华区模拟)用max , 表示a,b两数中较大的数,如
标公式为
x +x y1+y2
,
(如图③).
第10讲
平面直角坐标系与函数— 考点梳理
返回思维导图
返回栏目导航
考点 2 函数及其自变量取值范围
1.函数的相关概念
(1)变量:在某一变化过程中可以取不同数值的量.
(2)常量:在某一变化过程中保持相同数值的量.
(3)函数:一般地,在一个变化过程中如果有两个变量x和y,并且对于x的每一
值范围,根据函数关系式的特点来确定正确的函数图象.
1
2
3
4
5
第10讲
平面直角坐标系与函数— 题型突破
拔高追问
返回题型清单
返回栏目导航
当x等于何值时,函数值y最大?
10讲中考数学解答题部分精选
2、先化简再求值:11131332--+÷--x x x x x ,并从不等式组(){x 3x 22 4x 25x 1-≥+--< 的解中选一个你喜欢的数代入,求原分式的值.3、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、 乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品? 佛山学习前线教育培训中心4、(2011广东省中考)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n的代数式表示:第n行的第一个数是___________________,最后一个数是________________,第n行共有_______________个数;(3)求第n行各数之和.5、(2011•台州)2011年5月19日,中国首个旅游日正式启动.某校组织了八年级800名学生参加的旅游地理知识竞赛,李老师为了了解学生对旅游地理知识的掌握情况,从中随机抽取了部分学生的成绩作为样本,把成绩按优秀、良好、及格和不及格4个级别进行统计,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请根据以上提供的信息,解答下列问题:(1)求被抽取部分学生的人数;(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;(3)请估计八年级800名学生中达到良好和优秀的总人数.6、小红在复习数学知识时,针对“求一元二次方程的解”,整理了以下几种方法,请你按有关内容补充完整:y7、(2011肇庆)如图8,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠ACB =30︒,菱形OCED 的面积为38, 求AC 的长.8、在等腰三角形ABC 中,AB=AC ,O 为AB 上一点,以O 为圆心、OB 长为半径的圆交BC 于D ,DE ⊥AC 交AC 于E.(1)试判断DE 与⊙O 的位置关系,并说明理由. (2)若⊙O 与AC 相切于F ,AB=AC=5cm ,53sin =A ,求⊙O 的半径的长.CE图89、2011年3月10日,云南盈江县发生里氏5.8级地震。
九年级数学中考专题(空间与图形)-第十讲《四边形(二)》课件(北师大版)
B
E
参考答案
一、填空题: 1、180;2、20cm;3、3;4、;5、200 提示:4题过点P作矩形任一边的垂线,利用勾股定理求 解; 5题连结AC,证△ABE≌△ACF得AE=AF,从而△AEF 是等边三角形. 6、 2 1 ;7、2 1 ;8、②
参考答案
二、DDBBA 三、解答题: 14、可证△DEA≌△ABF 15、略证:AE平分∠BAC,且EG⊥AB, EC⊥AC,故EG=EC,易得∠AEC=∠CEF, ∵CF=EC,EG=CF,又因EG⊥AB,CD⊥AB, 故EG∥CF.四边形GECF是平行四边形,又因EG =FG,故GECF是菱形.
A
D G B E F C
能力训练
16、如图,以△ABC的三边为边在BC的同一侧分别作 三个等边三角形,即△ABD、△BCE、△ACF.请回答下 列问题(不要求证明): (1)四边形ADEF是什么四边形? (2)当△ABC满足什么条件时,四边形ADEF是矩形? (3)当△ABC满足什么条件时,以A、D、E、F为顶点 的四边形不存在? E F D
第十讲 四边形(二)
复习目标
1.复习矩形、菱形、正方形的判定与性质. 2.复习运用矩形、菱形、正方形的判定和性质 解决相关的证明和计算问题.
知识要点
1.矩形的四个角都是直角,对角线相等;菱形 的四条边相等,对角线互相垂直平分. 2. 三个角是直角的四边形,或对角线相等的平行 四边形是矩形;四边相等的四边形,或对角线互 相垂直的平行四边形是菱形. 3. 是矩形又是菱形的四边形是正方形.正方形既 具有矩形的性质又具有菱形的性质.
典型例题
例1 如图,已知矩形ABCD中,对角线AC、BD 相交于点O,AE⊥BD,垂足为E, ∠DAE∶∠BAE=3∶1,求∠EAC的度数. 分析:本题充分利用矩形对角线把矩形分成四个 等腰三角形的基本图形进行求解. 答案:45° A D
第10讲 填空小压轴—翻折冲刺2023年中考数学满分应对方法与策略(解析版)
第10讲填空小压轴—翻折【考点梳理】图形翻折的性质和特征:图形翻折的常见题型:【典型例题】一.填空题(共20小题)1.(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是2.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.(2022•松江区校级模拟)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=10,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为或10﹣15.【分析】由△DCM为直角三角形,分两种情况进行讨论:①∠CDM=90°;②∠CMD=90°.分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=10,∴∠C=30°,AB=AC=5,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴MN=AN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=5,∴AN=20﹣10,BN=15﹣10,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=10﹣5,HN=10﹣15,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=10﹣15,∴MN=10﹣15.故答案为:或10﹣15.【点评】本题考查了翻折变换﹣折叠问题,勾股定理,含30°角的直角三角形的性质,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.(2022•虹口区二模)如图,已知正方形ABCD的边长为1,点M是边CD的中点,将△BCM沿直线BM翻折,使得点C落在同一平面内的点E处,联结AE并延长交射线BM于点F,那么EF的长为.【分析】连接CE,交BF于点H,过点B作BN⊥AF于点N,由翻折和等腰三角形三线合一可得△BNF是等腰直角三角形,∠F=45°,△EHF是等腰直角三角形,在Rt△BEM 中,根据勾股定理得BM的长,再根据面积即可求出EH的长,从而求解.【解答】解:连接CE,交BF于点H,过点B作BN⊥AF于点N,由翻折得,BM垂直平分EC,△BEH≌△BCH,∠1=∠2,∵AB=BC=BE=1,BN⊥AF,∴∠ABN=∠NBE,∴∠NBE+∠1=∠ABC=×90°=45°,∴△BNF是等腰直角三角形,∠F=45°,∴△EHF是等腰直角三角形,在Rt△BEM中,BM===,∵S△BEM=BE•EM=BM•EH,∴×1×=×EH,∴EH=,∴EF=EH==,故答案为:.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,等腰三角形的三线合一,勾股定理等知识,解题的关键是恰当作出辅助线,属于中考填空题中的压轴题.4.(2022•徐汇区二模)如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,点D是BC 的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B'DE的位置,B′D交AB于点F,如果△AB′F为直角三角形,那么BE的长为2或.【分析】分两种情况画出图形,①方法一:如图1,当∠AFB′=90°时,由相似三角形的性质及直角三角形的性质可求出答案;方法二:过点E作EH⊥BC于点H,设EH=3a,BE=5a,则BH=4a,由BF的长列出方程,解方程求出a即可;②方法一如图2,当∠AB′F=90°时,由相似三角形的性质及直角三角形的性质可求出答案.方法二:过点E作EG⊥BD于点G,设EG=3a,BG=4a,BE=5a,得出=4,求出a的值则可得出答案.【解答】解:①方法一:如图1,当∠AFB′=90°时.在Rt△ABC中,∵AC=6,BC=8,∴AB===10,∵D是BC的中点,∴BD=CD=BC=4,∵∠AFB'=∠BFD=90°,∠ACB=90°,∴∠DFB=∠ACB,又∵∠DBF=∠ABC,∴△BDF∽△BAC,∴,即,解得:BF=,设BE=B'E=x,则EF=﹣x,∵∠B=∠FB'E,∴sin∠B=sin∠FB'E,∴,∴,解得x=2.∴BE=2.方法二:过点E作EH⊥BC于点H,设EH=3a,BE=5a,则BH=4a,∵将△BDE沿直线DE翻折,∴EF=3a,∴BF=8a=BD•cos∠B=4×,∴a=,∴BE=5a=2;②如图2中,当∠AB′F=90°时,连接AD,作EH⊥AB′交AB′的延长线于H.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=6,∵将△BDE沿直线DE翻折,∴∠B=∠DB'E,∵AB'⊥DB',EH⊥AH,∴DB'∥EH,∴∠DB'E=∠B'EH,∴∠B=∠B'EH,∴sin∠B=sin∠B'EH,设BE=x,则B'H=x,EH=x,在Rt△AEH中,AH2+EH2=AE2,∴,解得x=,∴BE=.则BE的长为.方法二:过点E作EG⊥BD于点G,设EG=3a,BG=4a,BE=5a,∴DG=EG×=a,∵DG+GB=DB,∴,∴a=,∴BE=.故答案为:2或.【点评】本题考查了翻折变换、勾股定理、解直角三角形、相似三角形的判定与性质、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题.5.(2022•嘉定区二模)在正方形ABCD中,AB=5,点E在边BC上,△ABE沿直线AE 翻折后点B落到正方形ABCD的内部点F,联结BF、CF、DF,如图,如果∠BFC=90°,那么DF=.【分析】连接EF,过点F作FH⊥BC于点H,延长HF交AD于点G,先证明四边形GHCD是矩形,可得GD=CH,GH=CD,根据翻折可得∠AFE=∠ABE,BE=FE,再根据∠BFC=90°,可得E是BC的中点,根据正方形的性质,易证△AGF∽△FHE,可得,设EH=m,FH=n,列二元一次方程组,求出m和n的值,再根据勾股定理可得DF的长.【解答】解:连接EF,过点F作FH⊥BC于点H,延长HF交AD于点G,如图所示:∴∠GHC=90°,在正方形ABCD中,∠BCD=∠CDA=90°,∴四边形GHCD是矩形,∴GH=CD,GD=HC,根据翻折,可得△ABE≌△AFE,∴∠AFE=∠ABE,BE=FE,∴∠EBF=∠EFB,∵∠BFC=90°,∴∠FBC+∠FCB=90°,∴∠EFC=∠ECF,∴FE=CE,∴BE=CE,在正方形ABCD中,∠ABE=90°,AB=BC=CD=AD=5,AD∥BC,∴∠AFE=90°,,∴∠AFG+∠EFH=90°,∵∠EFH+∠FEH=90°,∴∠AFG=∠FEH,∵FH⊥BC,且AD∥BC,∴∠AGF=∠FHE=90°,∴△AGF∽△FHE,∴,设EH=m,FH=n,则GF=2m,AG=2n,∵EC=,CH=,∵GD=CH,GH=CD,∴,解得,∴GF=2m=3,GD==1,根据勾股定理,得DF==,故答案为:.【点评】本题考查了正方形的性质,矩形的判定和性质,折叠的性质,直角三角形的性质,相似三角形的判定和性质,勾股定理等,本题综合性较强,属于中考常考题型.6.(2022•闵行区二模)如图,已知Rt△ABC中,∠ACB=90°,点M是AB的中点,将AM沿CM所在的直线翻折,点A落在点A'处,A'M⊥AB,且交BC于点D,A'D:DM的值为.【分析】连接AA',交CM于点P,可设DM=a(a>0),AM=b(b>0),由直角三角形斜边上的中线的定义可得CM是Rt△ABC有斜边上的中线,可得BM=CM=b,AB=AM+BM=2b,再由折叠的性质可得A'M=AM,∠AMC=∠A'MC,AA'⊥CM,从而可求得∠AMC=45°,则可证得△APM是以点P为直角顶点的等腰直角三角形,故有CP=CM﹣MP=b﹣b=b,从而可求得AC=b,再由sin B=,sin B=,得,可求得,,即可求解.【解答】解:连接AA',交CM于点P,如图,设DM=a(a>0),AM=b(b>0),∵M是AB的中点,∠ACB=90°,∴CM是Rt△ABC有斜边上的中线,∴CM=AB,即AM=BM=CM,∴BM=CM=b,AB=AM+BM=2b,∵A'M⊥AB,∴∠A'MB=∠A'MA=90°,即∠DMA=∠DMB=90°,∴DB=,∵AM、A'M关于CM对称,∴A'M=AM,∠AMC=∠A'MC,AA'⊥CM,∴A'M=b,∴A'D=A'M﹣DM=b﹣a.∵∠A'MA=90°,∴∠AMC+∠A'MC=90°,∴2∠AMC=90°,∴∠AMC=45°,∵AA'⊥CM,∴△APM是以点P为直角顶点的等腰直角三角形,∴AP=MP=AM=b,∴CP=CM﹣MP=b﹣b=b,∵AA'⊥CM,∴∠APC=90°,∴AC===,∵b>0,∴,故AC=b,∵在Rt△ABC中,sin B=,在Rt△DMB中,sin B=,∴,∴,∴,∴=,故,∴1+==4+2,∴,∵a>0,b>0,∴,∴,∴,即A'D:DM的值为.解法二:如图,∵A'M⊥AB,∴∠AMA'=∠3=90°,由翻折得:∠1=∠2=∠AMA'=45°,AM=A'M,∵Rt△ABC中,∠ACB=90°,M是AB的中点,∴AM=BM=CM,∴A'M=BM,∴∠A'=∠A'BM=45°,∴∠A'BM=∠1,∴A'B∥CM,∴.故答案为:.【点评】本题主要考查翻折变换(折叠问题),解答的关键是明确折叠的过程中相应的边或角之间的关系.7.(2022•宝山区二模)如图,矩形ABCD中,AB=3,BC=5,F为边CD上一点,沿AF 折叠,点D恰好落在BC边上的点E处,那么线段DF:FC的值为.【分析】由矩形的性质可得AB=CD=3,AD=BC=5,∠B=∠C=90°,由翻折可得AE =AD=5,DF=EF,则BE==4,EC=5﹣4=1,设CF=x,则DF=EF=3﹣x,由勾股定理可得(3﹣x)2=x2+12,解得x=,则CF=,DF=,进而可得出答案.【解答】解:∵四边形ABCD为矩形,∴AB=CD=3,AD=BC=5,∠B=∠C=90°,由翻折可得AE=AD=5,DF=EF,∴BE==4,∴EC=5﹣4=1,设CF=x,则DF=EF=3﹣x,由勾股定理可得(3﹣x)2=x2+12,解得x=,∴CF=,DF=3﹣=,∴DF:FC=.故答案为:.【点评】本题考查翻折变换(折叠问题)、矩形的性质、勾股定理,熟练掌握翻折的性质是解答本题的关键.8.(2022•静安区二模)如图,∠MON=30°,点A在OM上,OA=1,点P在ON上,将∠MON沿AP翻折,设点O落在点O′处,如果AO′⊥AO,那么OP的长为+1或﹣1.【分析】连接OO′交直线AP于点B,过点P作PC⊥OM于点C,则∠OCP=∠ACP=90°,设OP=x,根据折叠的性质可得OAB=∠OAO′=45°,OB=OA•sin∠OAB=1×=,然后分两种情况:若点O′在OM上方,若O′在OM下方,分别根据解直角三角形与勾股定理即可解答.【解答】解:连接OO′交直线AP于点B,过点P作PC⊥OM于点C,则∠OCP=∠ACP =90°,设OP=x,∵∠MON=30°,OA=1,∴PC=OP=x,∵点A在OM上,点P在ON上,将∠MON沿AP翻折,点O落在O′处,∴O′与O关于直线AP对称,O′A=OA=1,∴AP垂直平分OO′,∴O′B=OB=OO′,∠OBP=90°,∴∠OAB=∠O′AB=∠OAO′,∵AO′⊥AO,∴∠OAO′=90°,∴∠OAB=∠OAO′=45°,∴OB=OA•sin∠OAB=1×=,若点O′在OM上方,如图:在Rt△ACP中,AP==x,∴BP=AB﹣AP=,在Rt△OBP中,BP2+OB2=OP2,∴()=x2,整理得:x2+2x﹣2=0,∴x=﹣1±,∵x>0,∴x=﹣1;若O′在OM下方,如图:∴∠CAP=∠OAB=45°,在Rt△ACP中,AP==x,∴BP=AB+AP=x,在Rt△OBP中,BP2+OB2=OP2,∴()=x2,整理得:x=1±,∵x>1,∴x=+1,综上所述,OP的长为+1或﹣1,故答案为:+1或﹣1.【点评】此题考查的是翻折变换、解直角三角形、线段垂直平分线的性质、勾股定理等知识,正确作出辅助线分情况进行讨论是解决此题的关键.9.(2022•松江区校级模拟)如图,已知在△ABC中,AB=AC,,将△ABC翻折,使点C与点A重合,折痕DE交边BC于点D,交边AC于点E,那么的值为.【分析】过点A作AF⊥BC于点F,连接AD.由翻折可知,AE=CE,DE⊥AC,设AF=x,在Rt△ABF中,tan∠B=,可求得BF=CF=2x,再利用勾股定理求出AB=AC =x,在Rt△CDE中,tan∠C=tan∠B=,即可求得DE=,结合勾股定理可得CD==,则BD=BC﹣CD=2BF﹣CD=,进而可得出答案.【解答】解:过点A作AF⊥BC于点F,连接AD.由翻折可知,AE=CE,DE⊥AC,∵AB=AC,∴∠B=∠C,BF=CF.设AF=x,在Rt△ABF中,tan∠B=,∴BF=CF=2x,∴AB=AC=x,在Rt△CDE中,tan∠C=tan∠B=,∵CE=,∴DE=,∴,则BD=BC﹣CD=2BF﹣CD=,∴.故答案为:.【点评】本题考查翻折变换(折叠问题)、解直角三角形、勾股定理,熟练掌握翻折的性质是解答本题的关键.10.(2022•金山区校级模拟)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.将△ABC翻折,使点C落在AB边上的点D处,折痕EF交边AC于点E,交边BC于点F,如果DE∥BC,则线段EF的长为.【分析】根据折叠的性质可得EC=ED,FC=FD,∠CEF=∠DEF,EF是CD的垂直平分线,进而得出四边形CEDF是正方形,设未知数,利用相似三角形、直角三角形的边角关系求解即可.【解答】解:如图,由折叠可知,EC=ED,FC=FD,∠CEF=∠DEF,EF是CD的垂直平分线,∵DE∥BC,∠ACB=90°,∴∠AED=∠ACB=90°,∴∠CEF=∠DEF=45°,∴∠CED=∠ECF=∠EDF=90°∴四边形CEDF是正方形,设CF=x,则AE=6﹣x,BF=8﹣x,由△AED∽△DFB得,=,即,=,解得,x=,在Rt△CEF中,EF=CF=,故答案为:.【点评】本题考查折叠轴对称,正方形的判定和性质,相似三角形以及直角三角形的边角关系,理解折叠轴对称的性质和直角三角形的边角关系是解决问题的关键.11.(2021•浦东新区模拟)如图,已知在△ABC中,AB=AC,BM是腰AC上的中线,且BM=BC,将△BCM沿直线BM翻折,点C落在△ABC所在平面内的点D处,如果BC=7,那么AD=.【分析】由翻折的性质可得BM=BC=BD,根据等腰三角形的性质,可以得出两个底角相等由三角形一个外角等于与它不相邻的两个内角和∠DMC=2∠ADM,根据相似三角形判定,两角对应相等可得△MAD∽△ABC,由相似三角形的性质==即可示AD的值.【解答】解:∵△BCM沿直线BM翻折得到△BMD,∴∠BCM=∠BMC=∠BMD=∠BDM,BD=BM=BC=7,又∵AB=AC,∴∠BCM=∠ABC=∠BMC=∠BMD=∠BDM,∵BM是腰AC上的中线,∴CM=AM,又∵DM=CM,∴AM=DM,∴∠ADM=∠DAM,又∵三角形一个外角等于与它不相邻的两个内角和,∴∠DMC=∠ADM+∠DAM=2∠ADM,∵∠ADM=∠DMC=∠DMB=∠BCA,∠ADM=∠BCA,∠DAM=∠ABC,∴△MAD∽△ABC,又∵MA=AC,∴AD=BC=,故答案为.【点评】本题考查等腰三角形的性质以及折叠的性质.解本题的关键要熟练掌握相似三角形的判定与性质、等腰三角形的性质和折叠的性质等.12.(2021•浦东新区模拟)如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为2﹣.【分析】由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.【解答】解:设MN与OP交于点E,∵点O、P的距离为4,∴OP=4,∵将∠AOB沿直线MN翻折,∴MN⊥OP,EO=EP=2,在Rt△OME中,ME==2,在Rt△ONE中,NE==,∴MN=ME﹣NE=2﹣,故答案为:2﹣.【点评】本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.13.(2021•虹口区二模)如图,正方形ABCD的边长为4,点M在边DC上,将△BCM沿直线BM翻折,使得点C落在同一平面内的点C′处,联结DC′并延长交正方形ABCD 一边于点N.当BN=DM时,CM的长为2或8﹣4.【分析】分两种情形:如图1中,当BN=DM时,连接CC′交BM于J.如图2中,当BN=DM时,过点C′作C′T⊥CD于T.分别求解即可.【解答】解:如图1中,当BN=DM时,连接CC′交BM于J.∵BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM∥DN,∴∠BMC=∠NDM,∠BMC′=∠DC′M,由折叠知,MC′=MC,∠BMC=∠BMC′,∴∠NDM=∠DC′M,∴MC′=MD,∴CM=DM=CD=2.如图2中,当BN=DM时,过点C′作C′T⊥CD于T.∵CB=CD,BN=DM,∴CN=CM=MC′,在△BCM和△DCN中,,∴△BCM≌△DCN(SAS),∴∠CDN=∠CBM,∵∠CBM+∠BCC′=90°,∠BCC′+∠C′CD=90°,∴∠CBM=∠C′CD,∴∠C′CD=∠DCC′,∴C′D=C′C,∵C′T⊥CD,∴DT=TC=2,∵C′T∥CN,∴DC′=C′N,∴C′T=CN,设C′T=x,则CN=CM=MC′=2x,TM=x,∴2x+x=2,∴x=4﹣2,∴CM=8﹣4,综上所述,CM的值为2或8﹣4.【点评】本题考查翻折变换,正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.14.(2021•嘉定区二模)在矩形ABCD中,AB=6,BC=4(如图),点E是边AB的中点,联结DE.将△DAE沿直线DE翻折,点A的对应点为A',那么点A'到直线BC的距离为.【分析】过A′作FG∥BC交AB于F,交CD于G,过A′作A′H⊥BC于H,先证明△EF A′∽△A′GD得它们对应边的比为,再设EF=3m,F A′=3n,则A′G=4m,DG =4n,根据F A′+A′G=BC=4,AE+EF=DG,列方程即可得到答案.【解答】解:过A′作FG∥BC交AB于F,交CD于G,过A′作A′H⊥BC于H,如图:∵矩形ABCD中,AB=6,BC=4,E是边AB的中点∴∠A=90°,AD=BC=4,CD=AB=6,AE=3,∵△DAE沿直线DE翻折,点A的对应点为A',∴∠DA′E=∠A=90°,A′D=AD=4,A′E=AE=3,又FG∥BC,∴∠A′DG=90°﹣∠DA′G=∠EA′F,而∠EF A′=∠A′GD=90°,∴△EF A′∽△A′GD,∴=,设EF=3m,F A′=3n,则A′G=4m,DG=4n,∵F A′+A′G=BC=4,AE+EF=DG,∴,解得n=,∴DG=4n=,∴CG=CD﹣DG=,∴A′H=故答案为:.【点评】本题考查矩形中的翻折问题,构造相似三角形列方程是解题的关键.15.(2021•闵行区二模)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,点D为AB 中点,将△ACD沿直线CD翻折后,点A落在点E处,设,那么向量用向量表示为2+.【分析】证明DE∥AC,DE=AC,求出,可得结论.【解答】解:如图,∵∠ACB=90°,AD=BD,∴CD=DB=DA,∵∠A=60°,∴△ADC是等边三角形,由翻折的性质可知,ED=EC=AD=AC,∴四边形ACED是菱形,∴AC=DE,AC∥DE,∵=+,∴=2+,∴=2+,故答案为:2+.【点评】本题考查直角三角形斜边中线的性质,菱形的判定和性质,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2021•静安区二模)已知矩形纸片ABCD的边AB=10,BC=12(如图),将它折叠后,点D落在边AB的中点处,那么折痕的长为.【分析】方法一:先画出图形,构造相似三角形求出MF,再利用勾股定理求解.方法二:先根据勾股定理求出PD长,再证明△ADP∽△FEM,根据相似三角形的性质即可求出EF.【解答】解:方法一:如图,设折痕为EF,过点E作EM⊥BC于点M,∵把矩形ABCD折叠,点D与AB中点P重合,点C落在G处,∴EF垂直平分PD,∴∠EDP+∠DEF=90°,∵∠DEF+∠MEF=90°,∴∠EDP=∠MEF,∵∠EMF=90°,∠A=90°,∴△ADP∽△FEM,∴.在矩形ABCD中,AB=10,BC=12,P为AB中点,∴AD=12,AP=5,EM=10,∴,∴,在Rt△EMF中,.方法二:如图,设折痕为EF,过点E作EM⊥BC于点M,则EM=10,在矩形ABCD中,AB=10,P为AB中点,∴AP=5,又∵∠A=90°,AD=12,∴PD=13(勾股定理),由方法一得△ADP∽△FEM,∴,∴,∴EF=.故答案为:.【点评】本题考查折叠的性质、矩形的性质、勾股定理、相似三角形的性质与判定等知识,熟练掌握折叠的性质和勾股定理是解题的关键.17.(2021•杨浦区二模)如图,已知在△ABC中,∠C=90°,∠B=30°,AC=2,点D 是边BC的中点,点E是边AB上一点,将△BDE沿直线DE翻折,点B落在B'处,联结AB',如果∠AB'D=90°,那么线段AE的长为或2.【分析】分两种情况讨论,由折叠的性质和锐角三角函数可求解.【解答】解:在△ABC中,∠C=90°,∠B=30°,AC=2,∴AB=4,BC=AC=2,∵点D是边BC的中点,∴BD=CD=,∵将△BDE沿直线DE翻折,∴B'D=BD=,∴点B'在以点D为圆心,BD为半径的圆上,如图,当点B'与点C不重合时,过点E作EH ⊥BC于H,连接AD,在Rt△ACD和Rt△AB'D中,,∴Rt△ACD≌Rt△AB'D(HL),∴∠DAC=∠DAB',∵∠BDB'+∠B'DC=180°=∠B'AC+∠B'DC,∴∠B'AC=∠BDB',∵折叠,∴∠BDE=∠EDB',∴∠BDE=∠DAC,∴tan∠DAC=tan∠BDE==,∴设EH=x,DH=2x,∵∠B=30°,∴BH=EH=3x,BE=2x∵BH+DH=BD=,∴x=,∴EH=,BE=,∴AE=,当点B'与点C重合时,∠AB'D=90°,∴DE是BC的垂直平分线,∴DE∥AC,∴,∴AE=BE=AB=2,综上所述:AE=或2.故答案为:或2.【点评】本题考查了翻折变换,锐角三角函数,全等三角形的判定和性质等知识,灵活运用这些性质解决问题是本题的关键.18.(2021•奉贤区二模)如图,在△ABC中,AD是BC边上的中线,∠ADC=60°,BC =3AD.将△ABD沿直线AD翻折,点B落在平面上的B′处,联结AB′交BC于点E,那么的值为.【分析】过A作AF⊥BC于F,过B'作B'G⊥BC于G,设AD=m,根据翻折及∠ADC=60°,用m的代数式表示CE、BE即可得出答案.【解答】解:过A作AF⊥BC于F,过B′作B′G⊥BC于G,如图:∵∠ADC=60°,∴∠ADB=120°,∵△ABD沿直线AD翻折,点B落在平面上的B′处,∴∠ADB′=120°,∠CDB′=60°,B′D=BD,∵BC=3AD,AD是BC边上的中线,∴设AD=m,则BC=3m,BD=B′D=m,Rt△ADF中,DF=AD•cos60°=m,AF=AD•sin60°=m,∴BF=BD+DF=2m,CF=BC﹣BF=mRt△B′DG中,DG=B′D•cos60°=m,B′G=B′D•sin60°=m,∴FG=DG﹣DF=m,∵AF⊥BC,B′G⊥BC,∴AF∥B′G,∴==,∵FE+GE=FG=m,∴FE=m,∴BE=BF+EF=m,CE=CF﹣EF=m,∴==,故答案为:.方法二:如图:∵AD是BC边上的中线,∴CD=BD,∵将△ABD沿直线AD翻折,点B落在平面上的B′处,∴B'D=BD=CD,∵∠ADC=60°,∴∠ADB=∠ADB'=120°,∴∠CDB'=60°,∴△CDB'是等边三角形,∴B'C=CD=BD,∠B'CD=60°,∴∠B'CD=∠ADC=60°,AD∥B'C,∴,由BC=3AD,设AD=2m,则BC=6m,B'C=CD=BD=3m,∴,∴CE=CD=m,DE=CD=m,∴BE=BD+DE=m,∴==,故答案为:.【点评】本题考查翻折、特殊角的三角函数及相似三角形性质等综合知识,解题的关键是作垂线把60°角放入直角三角形.19.(2021•黄浦区二模)如图,在等腰梯形ABCD中,AD∥BC.将△ABD沿对角线BD 翻折,点A的对应点E恰好位于边BC上,且BE:EC=3:2,则∠C的余切值是.【分析】过点A作AF⊥BC于F,DH⊥BC于H,设BE=3x,EC=2x,分别求出CH和DH的长,即可求解.【解答】解:如图,过点A作AF⊥BC于F,DH⊥BC于H,∴AF∥DH,又∵AD∥BC,∴四边形ADHF是平行四边形,又∵AF⊥BC,∴四边形ADHF是矩形,∴AF=DH,AD=FH,在Rt△ABF和Rt△DCH中,,∴Rt△ABF≌Rt△DCH(HL),∴BF=CH,∵将△ABD沿对角线BD翻折,∴AB=BE,∠ABD=∠DBC,∵AD∥BC,∴∠ADB=∠DBC=∠ABD,∴AB=AD,∵BE:EC=3:2,∴设BE=3x,EC=2x,∴AB=CD=3x=AD=FH,∴BF=CH=x,∴DH==2x,∴∠C的余切值==,故答案为:.【点评】本题考查了翻折变换,全等三角形的判定和性质,矩形的判定和性质,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键.20.(2021•上海模拟)如图,在矩形ABCD中,点E、F分别在BC、CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD 的交点C′处.则BC:AB的值为.【分析】首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.【解答】解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∵∠CB′C′=∠D=90°,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB,所以∠ACB=30°,∴∠BAC=60°,∴tan∠BAC=tan60°==,BC:AB的值为:.故答案为:.【点评】此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.。
备考2022年中考数学一轮复习-图形的性质_四边形_正方形的性质-综合题专训及答案
备考2022年中考数学一轮复习-图形的性质_四边形_正方形的性质-综合题专训及答案正方形的性质综合题专训1、(2018哈尔滨.中考真卷) 已知:⊙O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F在弧AD上,连接BF,DF,BF与DE、DA分别交于点G、点H,且DA 平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE 于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙0于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.2、(2016常州.中考真卷)(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB 剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.拼成的正三角形边长为;(3)在图2中用虚线画出一种剪拼示意图.(4)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)3、(2019吴兴.中考模拟) 定义:长宽比为:为正整数的矩形称为矩形下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:过点G作CD∥AB,使点D、点C分别落在边AF,BE上.则四边形ABCD 为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.如图b,O是对角线AC的中点,若点N在边BC上,,连接求的值;连结AC,CM,当△AMC为等腰三角形时,将△CBM沿着CM翻折,点B的对称点为B’,连结AB’求的值.4、(2011金华.中考真卷) 在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF 在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.5、(2017谷城.中考模拟) 如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3 时,求线段DH的长.6、(2017武汉.中考模拟) 四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF﹣BF=EF;(2)如图2,在(1)条件下,AG= BG,求;(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE=(直接写出结果)7、(2019永州.中考真卷) 如图(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.8、(2019封开.中考模拟) 已知,如图,在正方形ABCD中,P是BC上的点,且BP =3PC,Q是CD的中点,求证:(1)AQ⊥QP;(2)△ADQ∽△AQP.9、(2017上思.中考模拟) 如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.10、(2017河池.中考真卷) 解答题(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.11、(2013崇左.中考真卷) 如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?12、(2018沙湾.中考模拟) 如图,在正方形中,、分别是、边上的点,且.(1)求证: ;(2)若,,求的长.13、(2017兰州.中考模拟) 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC,PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.14、(2018陇南.中考真卷) 已知矩形ABCD中,E是AD边上的一个动点,点F,G,H 分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.15、(2019吉林.中考模拟) 若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形.(1)下列四边形一定是巧妙四边形的是.(填序号)①平行四边形;②矩形;③菱形;④正方形.(初步应用)(2)如图,在绝妙四边形ABCD中,AC=AD,且AC垂直平分BD,若∠BAD=80°,求∠BCD的度数.(3)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.正方形的性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
2020中考数学复习每日一练 第10讲 平面直角坐标系与点的坐标(原卷版)
2020中考数学复习每日一练第10讲平面直角坐标系与点的坐标(原卷版)一.选择题1.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)3.在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A.(﹣4,﹣3)B.(4,3)C.(4,﹣3)D.(﹣4,3)4.已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)5.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C 的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处7.若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是()A.1 B.3 C.5 D.78. 如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是()A.(﹣1,2)B.(1,4)C.(3,2)D.(﹣1,0)9.在平面直角坐标系中,点P(﹣3,m2+1)关于原点对称点在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)11.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处12.点(﹣1,2)关于原点的对称点坐标是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(2,﹣1)13.如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)14.如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)15.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)16.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3 17.在平面直角坐标系中,点P(﹣3,m2+1)关于原点对称点在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题1.点M(x﹣1,﹣3)在第四象限,则x的取值范围是.2. 中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点.3.若分式34x有意义,则x的取值范围是.4.在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.5.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是.6.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E.F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.三.解答题1. 若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.2.如图,在7×6的方格中,△ABC的顶点均在格点上,试按要求画出线段EF(E,F均为格点),各画出一条即可。
2020蓉城中考数学第十讲 平面直角坐标系及函数概念
蓉城中考
知识回顾
4.对称点:两点关于x轴对称,横坐标__相__同___, 纵坐标__互__为__相__反__数____;关于y轴对称,横坐标 __互__为__相__反__数____,纵坐标__相__同___;关于坐标原 点对称,横、纵坐标均__互__为__相__反__数___;对称可 以用口诀:关谁谁不变,关原全相反.平面内的 点和有序实数对具有__一__一__对__应___的关系.
A.a=b C.a-2b=1
B.a+2b=1 D.a+2b=-1
蓉城中考
课堂精讲
【分析】根据作图方法可得点P在第二象限的角平分 线上,根据角平分线的性质和第二象限内点的坐标符 号可得a+2b-1=0,然后再整理可得答案. 【答案】B
蓉城中考
课堂精讲
考点二 几何点问题 例 4 (2019·娄底)如图,在单位长度为 1 米的平面直角 坐标系中,曲线是由半径为 2 米,圆心角为 120°的A︵B多次复 制并首尾连接而成.现有一点 P 从 A(A 为坐标原点)出发,以每 2 秒3π 米的速度沿曲线向右运动,则在第 2019 秒时点 P 的纵坐 标为( )
蓉城中考
蓉城中考·数学
2020版
蓉第城一中考部分 系统复习
第十讲 平面直角坐标系 及函数概念
蓉城中考
知识回顾
1.定义:同一平面内_互__相__垂__直__且___有__公__共__原__点___的两 条数轴组成平面直角坐标系.两条数轴分别称__x___轴、 ___y__轴或__横___轴、___纵___轴,它们的公共原点O称为直 角坐标系的原点.两条坐标轴把一个坐标平面分成的四 个部分,我们称作是四个__象__限____.坐标轴上的点不属 于任何一个象限内.
蓉城中考
2020年中考数学重点试题分项版解析汇编第05期专题10四边形含解析
专题10 四边形一、选择题1.(2017年贵州省毕节地区第14题)如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFD D.△AE′F是等腰三角形【答案】D.【解析】考点:旋转的性质;线段垂直平分线的性质;等腰三角形的判定;等腰直角三角形;正方形的性质;相似三角形的判定.2.(2017年贵州省黔东南州第8题)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60° B.67.5°C.75° D.54°【答案】A考点:正方形的性质3.(2017年山东省东营市第10题)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④ B.②③ C.①②④D.①③④【答案】C∴DP PH PC DP= , ∴DP 2=PHPC ,故④正确;故选C .考点:1、正方形的性质,2、等边三角形的性质,3、相似三角形的判定和性质4. (2017年山东省泰安市第19题)如图,四边形ABCD 是平行四边形,点E 是边CD 上的一点,且BC EC =,CF BE ⊥交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分CBF ∠;②CF 平分DCB ∠;③BC FB =;④PF PC =.其中正确结论的个数为()A.1 B.2 C.3 D.4【答案】D【解析】∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.考点:1、菱形的判定与性质;2、线段垂直平分线的性质;3、平行四边形的性质5. (2017年山东省威海市第10题)如图,在□ABCD 中,DAB ∠的平分线交CD 于点E ,交BC 的延长线于点G ,ABC ∠的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE .下列结论错误的是( )A .OH BO =B .CE DF = C.CG DH = D .AE AB =【答案】D【解析】试题分析:∵四边形ABC D 是平行四边形,∴AH ∥BG ,AD=BC ,∴∠H=∠HBG ,∵∠HBG=∠HBA ,∴∠H=∠HBA ,∴AH=AB ,同理可证BG=AB ,考点:1、平行四边形的性质,2、等腰三角形的判定和性质6. (2017年山东省潍坊市第12题)点C A 、为半径是3的圆周上两点,点B 为AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为( ). A.5或22 B.5或32 C.6或22 D.6或32【答案】D【解析】试题分析:过B 作直径,连接AC 交AO 于E ,∵点B 为AC 的中点,∴BD ⊥AC ,①如图①,∵点D恰在该圆直径的三等分点上,∴BD=13×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=2,连接OD,∵∴边;考点:1、圆心角、弧、弦的关系;2、菱形的性质7.(2017年湖南省长沙市第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D考点:菱形的性质二、填空题1.(2017年湖北省十堰市第13题)如图,菱形ABCD 中,AC 交BD 于O ,OE ⊥BC 于E ,连接OE ,若∠ABC=140°,则∠OED= .【答案】20°.【解析】试题分析:∵四边形ABCD 是菱形,∴DO=OB ,∵DE ⊥BC 于E ,∴OE 为直角三角形BED 斜边上的中线,∴OE=12BD ,∴OB=OE , ∴∠OBE=∠OEB ,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.考点:菱形的性质、直角三角形斜边上中线的性质.2. (2017年内蒙古通辽市第15题)在平行四边形ABCD 中,AE 平分BAD ∠交边BC 于E ,DF 平分ADC ∠交边BC 于F .若11=AD ,5=EF ,则=AB .【答案】8或3∴AB=8;②在▱ABCD 中,∵BC=AD=11,BC ∥AD ,CD=AB ,CD ∥AB ,∴∠DAE=∠AEB ,∠ADF=∠DFC ,∵AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,∴∠BAE=∠DAE ,∠ADF=∠CDF ,∴∠BAE=∠AEB ,∠CFD=∠CDF ,∴AB=BE ,CF=CD ,∴AB=BE=CF=CD∵EF=5,∴BC=BE+CF=2AB+EF=2AB+5=11,∴AB=3;综上所述:AB 的长为8或3.故答案为:8或3.考点:平行四边形的性质3. (2017年四川省成都市第14题)如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .【答案】15考点:平行四边形的性质4. (2017年贵州省六盘水市第16题)如图,在正方形ABCD 中,等边三角形AEF 的顶点E 、F 分别在边BC和CD上,则AEB=∠度.【答案】75°.试题分析:∵正方形ABCD,∴AD=AB,∠BAD=∠B=∠D=90°,∵等边三角形AEF,∴AE=AF,∠EAF=60°,∴△ABE≌△ADF,∴∠BAE=∠DAF=15°,∴∠AEB=75°.考点:正方形、等边三角形、全等三角形5.(2017年湖北省黄冈市第12题)已知:如图,在正方形ABCD的外侧,作等边三角形ADE,则BED∠=__________度.【答案】45考点:1、正方形,2、等边三角形三、解答题1.(2017年贵州省毕节地区第24题)如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=45,求AF的长.【答案】(1)证明见解析;【解析】考点:相似三角形的判定与性质;平行四边形的性质;解直角三角形.2.(2017年江西省第13题)(1)计算:÷;(2)如图,正方形ABCD 中,点E ,F ,G 分别在AB ,BC ,CD 上,且∠EFG=90°.求证:△EBF ∽△FCG .【答案】(1)12(2)证明见解析【解析】试题分析:(1)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可;(2)先根据正方形的性质得∠B=∠C=90°,再利用等角的余角相等得∠BEF=∠CFG ,然后根据有两组角对应相等的两个三角形相似可判定△EBF ∽△FCG .考点:1、相似三角形的判定;2、分式的乘除法;3、正方形的性质3. (2017年辽宁省沈阳市第18题)如图,在菱形ABCD 中,过点D 做DE AB ⊥于点E ,做DF BC ⊥于点F ,连接EF ,求证:(1)ADE CDE ∆≅∆;(2)BEF BFE ∠=∠【答案】详见解析.【解析】试题分析:(1)根据菱形的性质可得AD=CD ,A C ∠=∠,再由DE AB ⊥,DF BC ⊥,可得090AED CFD ∠=∠=,根据AAS 即可判定ADE CDE ∆≅∆;(2)已知菱形ABCD ,根据菱形的性质可得AB=CB ,再由ADE CDE ∆≅∆,根据全等三角形的性质可得AE=CF ,所以BE=BF ,根据等腰三角形的性质即可得BEF BFE ∠=∠. 试题解析:(1) ∵菱形ABCD ,∴AD=CD ,A C ∠=∠∵DE AB ⊥,DF BC ⊥∴090AED CFD ∠=∠=∴ADE CDE ∆≅∆(2) ∵菱形ABCD,∴AB=CB∵ADE CDE∆≅∆∴AE=CF∴BE=BF∴BEF BFE∠=∠考点:全等三角形的判定及性质;菱形的性质.4.(2017年山东省日照市第18题)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.【答案】(1)详见解析;(2)AD=BC(答案不唯一).【解析】(2)添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA ≌△EAC ,∴∠D=∠E=90°,∴四边形ABCD 为矩形;考点:矩形的判定;全等三角形的判定与性质.5. (2017年湖南省岳阳市第18题)(本题满分6分) 求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程. 已知:如图,在CD AB 中,对角线C A ,D B 交于点O , .求证: .【答案】AC ⊥BD ;四边形ABCD 是菱形.【解析】考点:菱形的判定;平行四边形的性质.6.(2017年浙江省杭州市第21题)如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【答案】(1)AG2=GE2+GF2(2)6【解析】在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质。
中考数学复习专题四边形的性质和判定
中考数学复习专题四边形的性质和判定第一局部知识梳理1.平行四边形①定义:两组对边区分平行的四边形是平行四边形.②性质:平行四边形的对边平行且相等;平行四边形的邻角互补,对角相等;平行四边形的对角线相互平分;平行四边形是中心对称图形,对角线的交点为对称中心;③判定方法定义:两组对边区分平行的四边形是平行四边形;判定方法1:两组对边区分相等的四边形是平行四边形;判定方法2:两组对角区分相等的四边形是平行四边形;判定方法3:对角线相互平分的四边形是平行四边形;判定方法4:一组对边平行且相等的四边形是平行四边形.2.菱形①定义:有一组邻边相等的平行四边形叫做菱形.②性质:具有平行四边形的一切特征;菱形的四条边都相等;菱形的对角线相互垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半;菱形是轴对称图形.③判定方法定义:有一组邻边相等的平行四边形叫做菱形;判定方法1:四条边都相等的四边形是菱形;判定方法2:对角线相互垂直的平行四边形是菱形.3.矩形①定义:有一个内角是直角的平行四边形是矩形.②性质:具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等;矩形既是轴对称图形,又是中心对称图形。
③判定方法定义:有一个角是直角的平行四边形是矩形;判定方法1:有三个角是直角的四边形是矩形;判定方法2:对角线相等的平行四边形是矩形.第二局部精讲点拨考点1.平行四边形的性质【例1】如图,在平行四边形ABCD中,DB=DC.,CE BD于E ,那么.变式1 □ABCD中,CE⊥AB,垂足为E,假设∠A=115°,那么∠BCE= .变式2 在平行四边形ABCD中,点A1.A2.A3.A4和C1.C2.C3.C4区分AB和CD的五等分点,点B1.B2和D1.D2区分是BC和DA的三等分点,四边形A4 B2 C4 D2的面积为1,那么平行四边形ABCD面积为〔〕A.2B.C.D.15变式3 如图,□ABCD中,AD=8㎝, AB=6㎝,DE平分∠ADC交BC边于点E,那么BE等于〔〕A.2cmB.4cmC.6cmD.8cm变式4如图,平分,,,那么.变式5 如图,:平行四边形ABCD中,的平分线交边于,的平分线交于,交于.求证:.考点小结:2.平行四边形的判定【例2】如图,平行四边形ABCD 中,M .N 区分为AD .BC 的中点,连结AN .DN .BM ,且AN .BM 交于点P ,CM .DN 交于点Q .四边形MGNP 是平行四边形吗?为什么?变式 1 如图,在ABCD 的各边AB .BC .CD .DA 上,区分取点K .L .M .N ,使AK =CM .BL =DN ,那么四边形KLMN 为平行四边形吗?说明理由.变式2 如图,□ABCD 中,E .F 区分在BA .DC 的延伸线上,且AE =21AB ,CF =21CD ,试证明AECF 为平行四边形. 变式3 在平行四边形ABCD 中,∠ABC 的平分线交CD 于点E,∠ADC 的平分线交AB 于点F.试证:四边形DFBE 为平行四边形.变式4 如图,在□ABCD 中,点E .F 是对角线AC 上两点,且AE =CF .求证:∠EBF =∠FDE .考点3.平行四边形综分解绩【例3】如图,△ABC 是等边三角形,D.E 区分在边BC.AC 上,且CD=CE ,连结DE 并延伸至点F ,使EF=AE ,连结AF.BE 和CF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十讲四边形10.1 多边形基础盘点多边形的内(外)角和:n边形的内角和为(n-2)×180°,外角和为360°;正n边形的每个内角为n︒⨯-180)2(n,每个外角为n︒360.多边形的外角和是固定不变的.考点呈现考点1 已知边数求角度例1 (2015•无锡)八边形的内角和为()A.180° B.360° C.1080° D.1440°分析:根据多边形的内角和公式直接进行计算.解:当n=8时,(n-2)•180=(8﹣2)•180°=6×180°=1080°,选C.点评:求n边形的内角和,只需将n的值代入公式180(n-2)°即可.考点2 已知角度求边数例2 (2015·南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于().A.60° B.72° C.90° D.108°分析:先由多边形的内角和求出边数,再由正多边形的每个外角都相等求外角度数.解:设此多边形为n边形,根据题意,得180°(n﹣2)=540°,即可求得n=5.而多边形的外角和等于360°,可知这个正多边形的每一个外角等于360°÷5=72°,故选B.点评:已知多边形的内角和求多边形的边数,常应用方程来解决问题.考点3 多边形对角线例3 若凸多边形的内角和为12600,则从一个顶点出发引的对角线条数是___.解析:由内角和得(n-2)×1800=12600,解得n=9.由从多边形一个顶点出发引的对角线条数是n-3,即可知结论为6.点评:多边形每一个顶点引的对角线条数都是(n-3)条, n边形的对角线条数为2)3(-nn.误区点拨例一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.6C.7D.5或6或7错解:设这个多边形截去一个角后的边数为n,则180°(n-2)=720°,解得n=6.因为截去一个角后这个多边形的边数增加1,所以原多边形的边数5,选A.剖析:由于不知道这个多边形截去一个角后的情况,因此要先判断截去一个角后多边形的边数,再分类讨论原多边形的边数.一个多边形截去一个角后,边数可能加1,可能不变,也可能减1.错解误认为只有第一种情况,思考不周造成错误.正解:设这个多边形截去一个角后边数不变,设其边数为n,则180°(n-2)=720°,解得n=6,所以原多边形的边数可能是5或6或7,故选D.跟踪训练1.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A. 四边形B. 五边形C. 六边形D. 七边形2.(2015•资阳)一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______.3. (2014•毕节)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A .13B .14C .15D .1610.2平行四边形基础盘点平行四边形性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对称中心是对角线的交点.平行四边形判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形.考点呈现考点1 平行四边形的性质例1 (1)(2015•梅州)如图1,在□ABCD 中,BE 平分∠ABC ,BC =6,DE =2,则□ABCD的周长等于 .(2)(2015•大连)如图2,在□ABCD 中,点O 是对角线AC 、BD 的交点,AC 垂直于BC ,且AB =10cm ,AD =8cm ,则OB = cm .图1 图2分析:(1)根据□ABCD 可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE ,然后根据已知可求得结果;(2)根据□ABCD 可得BC =AD ,AO=OC ,BO=DO ,则可在Rt△ABC 中求出AC ,进而得到OC ,再在Rt△BOC 中求OB .解:(1)因为四边形ABCD 为平行四边形,所以AE ∥BC ,AD =BC ,所以∠AEB =∠EBC .又BE 平分∠ABC ,所以∠ABE =∠EBC ,所以∠ABE =∠AEB ,所以AB =AE .所以AE +DE =AD =BC =6,所以AE +2=6,所以AE =4,所以AB =CD =4,所以□ABCD 的周长为4+4+6+6=20.(2)因为AC 垂直于BC ,AB =10cm ,BC =AD =8cm ,所以AC =68102222=-=-BC AB ,所以OC =21AC =3cm ,OB =222283+=+BC OC =73(cm ). 点评:解决第(1)题的关键是根据平行线的性质和角平分线的性质得出∠ABE =∠AE B ,解决第(2)题的关键是运用平行四边形的对角线互相平分和勾股定理.考点2 平行四边形的判定例2 (1)(2015•广州)下列命题中:①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.真命题的个数有( )A .3B .2C .1D .0(2)(2015•绵阳)如图3,在四边形ABCD 中,对角线AC 、BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为( )A.6 B.12 C.20 D.24图3分析:(1)利用平行四边形的判定方法进行判断即可;(2)先在Rt△BEC中求出CE,得到E为AC的中点,进而四边形ABCD是平行四边形,即可利用S四边形ABCD=BC·BD求解.解:(1)对角线互相平分的四边形是平行四边形,①正确,是真命题;两组对角分别相等的四边形是平行四边形,②正确,是真命题;一组对边平行,另一组对边相等的四边形是平行四边形,③错误,例如等腰梯形,也符合一组对边平行,另一组对边相等.故选B;(2)因为∠CBD=90°,所以△BEC是直角三角形.又BC=4,BE=3,所以5CE.因为AC=10,所以E为AC的中点.又BE=ED=3,所以四边形ABCD是平行四边形.而且△DBC是直角三角形,所以S□四边形ABCD=BC·BD=4×6=24.故选D.点评:在平行四边形的判定方法中,只要稍微改动一下说法,就可能成为假命题,若不注意,就会出现似是而非的错误.务必准确掌握判定定理.考点3 平行四边形性质与判定的综合应用例3 (2015•遂宁)如图4,在□ABCD中,点E,F在对角线BD上.且BE=DF.求证:四边形AECF是平行四边形.图4分析:根据平行四边形的性质,可得对角线互相平分,再根据对角线互相平分的四边形是平行四边形,可证明结论.证明:如图4,连接AC,并交对角线BD于点O.因为四边形ABCD是平行四边形,所以OA=OC,OB=OD.因为BE=DF,所以OE=OF.所以四边形AECF是平行四边形.点评:本题证明四边形BEDF是平行四边形的方法很多,这里用“对角线互相平分的四边形是平行四边形”来判定最简捷,你不妨写出其他证明方法,做一个对比.判定四边形是平行四边形常可边、角、对角线三个方面入手,但有简繁之分,在解题时注意比较选择.误区点拨例1在□ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为_________.图5 图6错解:如图5,因为∠EBD=20°,所以∠EDB=70°.又AD=BD,所以∠A=18070552︒︒︒-=.剖析:有些考生由于思维定式,考虑问题不全面,缺少分类,误以为高BE一定在△A BD 的内部,其实高BE也可能在△ABD的外部,如图6所示,因此应分类求解.正解:(1)当高BE 在△ABD 的内部时,同错解可得∠A=55°;(2)当高BE 在△ABD 的外部时,因为∠EBD=20°,所以∠EDB=70°,所以∠ADB=110°.又AD=BD ,所以∠A=180110352︒︒︒-=.综合(1)(2)可知∠A 的度数为55°或35°. 例2 (2015•广州)已知在四边形ABCD 中,∠A=∠C,∠B=∠D.求证:四边形ABCD 是平行四边形.错解:如图7,连接BD ,则∠1+∠3=180°-∠A,∠2+∠4=180°-∠C.因为∠A=∠C,所以∠1+∠3=∠2+∠4,所以∠1=∠4,∠2=∠3,所以AB∥CD,BC∥AD,所以四边形ABCD 是平行四边形.图7剖析:上述错解中,由∠1+∠3=∠2+∠4并不能得到∠1=∠4,∠2=∠3,这种推理其实是不自觉地默认了四边形ABCD 是平行四边形,犯了“循环论证”的错误.正解:因为∠A=∠C,∠B=∠D,∠A+∠B+∠C+∠D=360°,所以∠A+∠B=180°,所以AD∥BC.同理,AB∥CD,所以四边形ABCD 是平行四边形.跟踪训练1.(2015•宁波)如图,□ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为( )A . BE=DFB . BF=DEC . AE=CFD . ∠1=∠2第1题图 第2题图 第3题图2.(2015•牡丹江)如图,四边形ABCD 的对角线相交于点O ,AO=CO ,请添加一个条件_______________(只添一个即可),使四边形ABCD 是平行四边形.3.(2015•哈尔滨)如图①,在口ABCD 中,点0是对角线AC 的中点,EF 过点0,与AD 、BC 分别相交于点E 、F ,GH 过点0,与AB 、CD 分别相交于点G 、H ,连接EG 、FG 、FH 、EH.(1)求证:四边形EGFH 是平行四边形(2)如图②,若EF//AB ,GH//BC ,在不添加任何辅助线的情况下,请直接写出图②中与四边形AGHD 面积相等的所有平行四边形(四边形AGHD 除外).10.3 特殊的平行四边形基础盘点1.矩形性质:(1)矩形的四个角都是直角;(2)矩形的对角线相等;(3)矩形是轴对称图形,有两条对称轴.判定:(1)定义:有一个角是直角的平行四边形是矩形;(2)三个角都是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.2.菱形性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直;(3)菱形是轴对称图形,有两条对称轴;(4)菱形的面积等于两条对角线乘积的一半.判定:(1)定义:有一组邻边相等的平行四边形是菱形;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.3.正方形性质:(1)正方形的四条边都相等;(2)正方形的四个角都是直角;(3)正方形的对角线互相垂直平分且相等;(4)正方形是轴对称图形,有四条对称轴.判定:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.考点呈现考点1 矩形的性质例1 (2015•无锡)如图1,已知矩形ABCD的对角线长为8cm,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长等于__________cm.图1分析:连接AC,BD,根据三角形的中位线求出HG、GF、EF、EH的长即可.解析:连接AC,BD,因为四边形ABCD是矩形,所以AC=BD=8cm.因为E,F,G,H分别是AB,BC,CD、DA的中点,所以HG=EF=AC=4cm,EH=FG=BD=4cm,所以四边形EFGH的周长位4cm+4cm+4cm+4cm=16cm.点评:解题的关键是能求出四边形各边的长,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.考点2矩形的判定例2(2015•临沂)如图2,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能..使四边形DBCE成为矩形的是()A.AB=BEB.BE⊥DCC.∠ADB=90°D. CE⊥DE图2分析:根据矩形的判定方法来分析判断.解:因为四边形ABCD为平行四边形,所以AD//=BC.因为DE=AD,所以DE//BC,=所以四边形EDBC为平行四边形.①假若AB=BE,因为AB=BE,AD=DE,BD=BD,所以△ADB≌△EDB,所以∠BDE=90°,所以四边形EDBC为矩形;②假若BE⊥DC,则只能得到四边形EDBC 为菱形;③假若∠ADB=90°,则∠EDB=90°,所以四边形EDBC为矩形;④假若CE⊥DE,则∠DEC=90,四边形EDBC为矩形.故选B.点评:本题中要谨防将矩形的判定方法与菱形的判定方法相混淆而产生错误.考点3 菱形的性质例3 (2015•漳州)如图3,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.图3分析:(1)由翻折得到ED=EF,GD=GF,再证明FE=FG,即可运用菱形的不同判定方法得到多种证法;(2)设DE=x,则EC=8-x,在Rt△EFC中利用勾股定理求出x,即可求出CEDE的值.解:(1)如图3,由轴对称性质,得∠1=∠2,ED=EF,GD=GF.因为FG∥CD,所以∠1=∠3,则∠2=∠3,所以FE=FG,所以ED=EF=GD=GF,所以四边形DEFG为菱形.(2)设DE=x,由轴对称,得FE=DE=x,EC=8-x.在Rt△EFC中,FC2+EC2=EF2,即42+(8-x)2=x2,解得x=5,CE=8-x=3,所以35 CEDE.点评:菱形的判定方法较多,在解题中要根据具体情况来选择.重视对题目进行一题多解的研究,从多中取好,好中取优,进而提高我们分析问题和解决问题的能力.考点4 正方形的性质例4 (2015•凉山州)如图4,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF,BF,EF三者之间的数量关系,并说明理由.图4分析:根据正方形的性质,可得AB=AD,∠DAB=∠ABC=90°,根据余角的性质,可得∠ADE=∠BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案.解:线段AF,BF,EF三者之间的数量关系AF=BF+EF.理由如下:因为四边形ABCD是正方形,所以AB=AD,∠DAB=∠ABC=90°.因为DE⊥AG于E,BF∥DE交AG于F,所以∠AED=∠DEF=∠AFB=90°,所以∠ADE+∠DAE=90°,∠DAE+∠BAF=90°,所以∠ADE=∠BAF.在△ABF和△DAE中,所以△ABF≌△DAE,所以BF=AE.所以AF=BF+EF.点评:正方形是特殊的矩形,又是特殊的菱形,因此在解决正方形的有关问题时,要充分利用解决矩形和菱形问题时的方法与技巧.在探索线段AF、BF、EF三者之间的数量关系时,可通过观察猜想出结论.考点5 正方形的判定例5(2015•日照)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使平行四边形ABCD成为正方形(如图5)现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④图5分析:利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出结论.解:因为四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故选项A不符合要求;因为四边形ABCD是平行四边形,所以当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故选项B符合要求;因为四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故选项C不符合要求;因为四边形ABCD是平行四边形,所以当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故选项D不符合要求.故选B.ABCD的基础上,需要再同时具备点评:正确掌握正方形的判定方法是解题关键.在矩形和菱形的特征,平行四边形ABCD即可成为正方形.考点6 四边形综合题例6 (2015•泰州)如图6,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)四边形EFGH的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.图6分析:(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH(也可以由勾股定理得到),∠AEH=∠BFE,证出四边形EFGH是菱形,再证明∠HEF=90°,即可得出结论;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证明点O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EFGH面积为S,BE=xcm,则BF=(8﹣x)cm,由勾股定理得出S=x2+(8﹣x)2=2(x﹣4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.解:(1)因为四边形ABCD是正方形,所以∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA.因为AE=BF=CG=DH,所以AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DH G中,所以△AEH≌△BFE≌△CGF≌△DHG,所以EH=FE=GF=GH,∠AEH=∠BFE,所以四边形EFGH是菱形.所以∠BEF+∠BFE=90°,所以∠BEF+∠AEH=90°,所以∠HEF=90°,所以四边形EFGH 是正方形.(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点).理由如下:连接AC、EG,交点为O,如图6所示,因为四边形ABCD是正方形,所以AB∥CD,所以∠OAE=∠OCG.在△AOE和△COG中,所以△AOE≌△COG,所以OA=OC,即O为AC的中点.因为正方形的对角线互相平分,所以O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EF GH面积为S,设BE=xcm,则BF=(8﹣x)cm.根据勾股定理,得EF2=BE2+BF2=x2+(8﹣x)2,所以S=x2+(8﹣x)2=2(x﹣4)2+32.因为2>0,所以S有最小值,当x=4时,S最小值=32,所以四边形EFGH的面积存在最小值,最小值为32cm2.点评:本题的解法很多,第(1)题系统复习了全等三角形、勾股定理、平行四边形、菱形、矩形及正方形等知识;第(2)题是第(1)题的延伸,要判定直线EG是否经过一个定点,由合情推理容易猜想到直线EG一定经过正方形ABCD对角线的交点,再运用演绎推理来进行说理,同时综合复习了全等三角形、平行四边形、正方形、一次函数等知识;第(3)题是第(1)题的拓展,要求正方形EFGH面积的最小值,方法多元,从几何角度思考,可运用菱形的面积公式与垂线段最短的性质;从代数角度思考,可运用乘法公式与函数的有关知识.请你按照上述提示来对本题进行一题多解的研究,并与同伴交流.误区点拨例1(2015•哈尔滨)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE 为菱形,若线段EF的中点为点M,则线段AM的长为__________.错解:如图,在Rt△AEB中,由勾股定理得AE=3,因为EF=5,M是EF的中点,所以EM=2.5,所以AM=3+2.5=5.5.剖析:由于四边形BCFE 为菱形,因此BE=BC=5,而AD=4,因此以点B 为圆心,5为半径画弧与直线AD 应该有两个交点,进而线段AM 的长应该有两个,错解只考虑了其中的一种情况,犯了以偏概全的错误.正解:因为矩形ABCD 中,AD=5,AB=4,所以BC=AD=5,∠BAD=90°;因为四边形BCFE是菱形,所以BE=BC=5,以点B 为圆心,5为半径画弧交直线AD 于点E :(1)当点E 在线段AD 上时,同错解有AM=5.5;(2)当点E 在射线DA 上时,如图22,在Rt△AEB 中,由勾股定理,得AE=3.因为EF=5,M 是EF 的中点,所以EM=2.5,所以AM=3-2.5=0.5.因此线段AM 的长为5.5或0.5.跟踪训练1.(2015•泸州)矩形具有而平行四边形不具有的性质是( )A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D. 对角线相等2.(2015•青岛)如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E 、F 分别是AB 、BC 边上的中点,连接EF .若BD=4,则菱形ABCD 的周长为( )A.4B.第2题图 第3题图3.(2015•长春)如图,点E 在正方形ABCD 的边CD 上,若△ABE 的面积为8,CE =3,则线段BE 的长为__________.4.(2015•内江)如图,将□ABCD 的边AB 延长至E ,使AB =BE ,连接DE ,EC ,DE 交BC 于点O .(1)求证:△ABD ≌△BEC ;(2)连接BD ,若∠BOD =2∠A ,求证:四边形BECD 是矩形.第4题图5.(2015•长春)如图,CE 是△ABC 外角∠ACD 的平分线,AF //CD 交CE 于点F ,FG //AC 交CD 于点G .求证:四边形ACGF 是菱形.BA B第5题图6.(2015•安顺)如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.第6题图参考答案10.1 多边形1.C2.8 3.B10.2 平行四边形1.C2.答案不唯一,从①AB∥CD,②A C∥BD,③∠BAO=∠DCO,④∠ABO=∠CDO,⑤∠DAO=∠BCO,⑥∠ADO=∠CBO,等中任取一个即可3.(1)证明:因为四边形ABCD为平行四边形,所以AD//BC,所以∠EAO=∠FCO.因为OA=OC,∠AOE=∠COF,所以△OAE≌△OCF,所以OE=OF;同理OG=OH,所以四边形EGFH是平行四边形.(2)口GBCH,口ABFE,口EFCD,口EGFH.10.3 特殊平行四边形1.D2.C3.54.证明:(1)因为四边形ABCD是平行四边形,所以AD=BC,AD∥CB,所以∠BAD=∠EBC.又AB=BE,所以△ABD≌△BEC.(2)因为BE=CD,BE∥CD,所以四边形BECD是平行四边形,因为∠BOD=2∠A,所以∠BOD=2∠OCD,所以OD=OC,所以BC=ED,所以四边形BECD是矩形;5.证明:因为AF//CD,FG//AC,所以四边形ACGF为平行四边形,因为CE是△ABC外角∠ACD的平分线,所以∠ACF=∠FCG,因为AF//CG,所以∠AFC=∠FCG,所以∠ACF=∠AFC,所以AF=AC,所以□ACGF为菱形.6.证明:(1)在△ABC中,AB=AC,AD⊥BC,所以∠BAD=∠DAC.因为AN是△ABC外角∠CAM 的平分线,所以∠MAE=∠CAE,所以∠DAE=∠DAC+∠CAE=180°=90°.又AD⊥BC,CE⊥AN,所以∠ADC=∠CEA=90°,所以四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是正方形.理由:因为AB=AC,所以∠ACB=∠B=45°,因为AD⊥BC所以∠CAD=∠ACD=45°,所以DC=AD.因为四边形ADCE为矩形,所以矩形ADCE是正方形.。