浅析伺服电机在使用中的常见问题

合集下载

伺服电机系统常见故障及维修

伺服电机系统常见故障及维修

伺服电机系统常见故障及维修一、电机不转或转动无力的故障可能原因及维修方法1.1 电机供电异常电机供电异常可能是由于电源线路的接触不良或电源开关故障引起的。

首先,检查电源线路是否插好,是否存在破损或接触不良的情况,若有问题,重新连接或更换电源线路。

同时,检查电源开关是否正常工作,如有问题,及时维修或更换。

1.2 控制器故障控制器故障可能导致电机无法正常工作。

检查控制器的指示灯是否点亮,若无亮灯提示,说明可能存在控制器故障。

此时应先尝试重新启动控制器,如果问题仍然存在,需要检查控制器的电路板和连接线路是否损坏,如有损坏,可尝试修复或更换。

1.3 电机零部件损坏电机零部件损坏也会导致电机无法正常转动或转动无力。

常见的损坏部件包括电刷、轴承和绕组等。

若发现电刷磨损、轴承磨损或绕组烧毁等情况,需要及时更换损坏部件。

二、电机发热过高的故障可能原因及维修方法2.1 过载工作过载工作是导致电机发热过高的常见原因之一。

检查电机负载是否超过额定工作范围,如果超载,则需要减小负载或更换功率较大的电机。

2.2 电机通风不良电机通风不良会导致散热不畅,进而引发过热问题。

检查电机周围是否存在堵塞物或灰尘等,清除堵塞物并保持通风良好。

2.3 绕组短路或接触不良绕组短路或接触不良会导致电流过大,进而使电机发热过高。

检查电机绕组是否存在损坏或接触不良的情况,如有问题,需重新绝缘或修复绕组。

三、电机震动较大的故障可能原因及维修方法3.1 电机不平衡电机不平衡是导致震动的常见原因之一。

检查电机固定是否牢固,如发现松动,需重新固定电机。

3.2 机械部件损坏机械部件损坏也会导致电机震动较大。

检查电机的传动装置,如发现齿轮磨损、轴承松动等情况,应及时更换损坏部件。

3.3 电机负载不均衡电机负载不均衡也可能导致电机震动。

检查负载的均衡性,如需要,调整或重新安装负载,以平衡电机负载。

综上所述,伺服电机系统常见故障主要包括电机不转或转动无力、电机发热过高和电机震动较大等问题。

伺服电机使用过程中常见的故障原因及排除措施

伺服电机使用过程中常见的故障原因及排除措施

伺服电机使用过程中常见的故障原因及排除措施在很多的工业企业中,三相交流伺服电动机应用最为广泛,但通过长期运行后,会发生各种故障,及时判断故障原因,进行相应处理,是防止故障扩大,保证设备正常运行的一项重要的工作。

所以今天小编就给大家详细的介绍一下伺服电机使用过程中常见的故障原因及排除措施,希望对大家有所帮助。

一、通电后电动机不能转动,但无异响,也无异味和冒烟1.故障原因①电源未通(至少两相未通);②熔丝熔断(至少两相熔断);③过流继电器调得过小;④控制设备接线错误。

2.故障排除①检查电源回路开关,熔丝、接线盒处是否有断点,修复;②检查熔丝型号、熔断原因,换新熔丝;③调节继电器整定值与电动机配合;④改正接线。

二、通电后电动机不转有嗡嗡声1.故障原因①转子绕组有断路(一相断线)或电源一相失电;②绕组引出线始末端接错或绕组内部接反;③电源回路接点松动,接触电阻大;④电动机负载过大或转子卡住;⑤电源电压过低;⑥小型电动机装配太紧或轴承内油脂过硬;⑦轴承卡住。

2.故障排除①查明断点予以修复;②检查绕组极性;判断绕组末端是否正确;③紧固松动的接线螺丝,用万用表判断各接头是否假接,予以修复;④减载或查出并消除机械故障,⑤检查是否把规定的面接法误接;是否由于电源导线过细使压降过大,予以纠正;⑥新装配使之灵活;更换合格油脂;⑦修复轴承。

三、电动机起动困难,额定负载时,电动机转速低于额定转速较多1.故障原因①电源电压过低;②面接法电机误接;③转子开焊或断裂;④转子局部线圈错接、接反;③修复电机绕组时增加匝数过多;⑤电机过载。

2.故障排除①测量电源电压,设法改善;②纠正接法;③检查开焊和断点并修复;④查出误接处予以改正;⑤恢复正确匝数;⑥减载。

四、电动机空载电流不平衡,三相相差大1.故障原因①绕组首尾端接错;②电源电压不平衡;③绕组存在匝间短路、线圈反接等故障。

2.故障排除①检查并纠正;②测量电源电压,设法消除不平衡;③消除绕组故障。

常见的伺服系统故障及其解决方法是什么

常见的伺服系统故障及其解决方法是什么

常见的伺服系统故障及其解决方法是什么伺服系统在工业自动化中扮演着重要角色,能够精确控制运动系统,提高生产效率和产品质量。

然而,伺服系统也存在一些常见的故障问题,如电机运行异常、传感器信号异常等。

本文将介绍几种常见的伺服系统故障,并提供相应的解决方法。

一、电机运行异常电机运行异常是伺服系统故障中最常见的问题之一。

可能的原因包括电机绕组断线、电机轴承磨损、电机电缆接触不良等。

解决这些问题的方法如下:1. 检查电机绕组:使用万用表或欧姆表检查电机绕组是否有断线或短路。

如果发现问题,需要修复或更换绕组。

2. 检查电机轴承:观察电机轴承是否转动灵活,有无异响。

如发现轴承磨损,应及时更换。

3. 检查电缆接触不良:检查电机电缆是否牢固连接在驱动器和电机上。

如果接触不良,要重新紧固连接。

二、传感器信号异常传感器信号异常是导致伺服系统故障的另一个常见问题。

可能的原因包括传感器损坏、接线错误或传感器信号干扰。

以下是解决方法:1. 检查传感器状态:使用测试仪器检查传感器输出信号是否正常。

如果信号异常,需要更换传感器。

2. 检查接线:根据传感器的接线图,检查传感器的接线是否正确。

如果接线错误,要重新进行正确的接线。

3. 降低信号干扰:将传感器与其他电源线隔离,可以降低信号干扰的可能性。

另外,可以使用屏蔽线缆来减少干扰。

三、驱动器故障驱动器故障也是伺服系统常见的问题之一。

可能的原因包括驱动器过载、驱动器配置错误等。

以下是解决方法:1. 调整驱动器参数:检查驱动器的参数配置是否正确,包括电机额定电流、电机类型等。

根据实际情况,调整参数配置。

2. 检查电源电压:检查驱动器所使用的电源电压是否稳定。

如果电源电压过高或过低,可能导致驱动器故障,需要进行调整或更换电源。

3. 隔离过载源:如果驱动器过载,可以尝试隔离过载源,如减小负载、增加驱动器容量等。

综上所述,常见的伺服系统故障包括电机运行异常、传感器信号异常和驱动器故障。

解决这些问题的方法涉及到检查电机绕组、电机轴承和电缆接触状态,检查传感器状态和接线情况,调整驱动器参数和电源电压等。

伺服电机常见故障处理技巧

伺服电机常见故障处理技巧

伺服电机常见故障处理技巧伺服电机常见故障处理技巧如下:一、伺服电机维修窜动现象在进给时出现窜动现象,测速信号不稳定,如编码器有裂纹;接线端子接触不良,如螺钉松动等;当窜动发生在由正方向运动与反方向运动的换向瞬间时,一般是由于进给传动链的反向问隙或伺服驱动增益过大所致;二、伺服电机维修爬行现象大多发生在起动加速段或低速进给时,一般是由于进给传动链的润滑状态不良,伺服系统增益低及外加负载过大等因素所致。

尤其要注意的是,伺服电动机和滚珠丝杠联接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠与伺服电动机的转动不同步,从而使进给运动忽快忽慢;三、伺服电机维修振动现象机床高速运行时,可能产生振动,这时就会产生过流报警。

机床振动问题一般属于速度问题,所以应寻找速度环问题;四、伺服电机维修转矩降低现象伺服电机从额定堵转转矩到高速运转时,发现转矩会突然降低,这时因为电动机绕组的散热损坏和机械部分发热引起的。

高速时,电动机温升变大,因此,正确使用伺服电机前一定要对电机的负载进行验算;五、伺服电机维修位置误差现象当伺服轴运动超过位置允差范围时(KNDSD100出厂标准设置PA17:400,位置超差检测范围),伺服驱动器就会出现“4"号位置超差报警。

主要原因有:系统设定的允差范围小;伺服系统增益设置不当;位置检测装置有污染;进给传动链累计误差过大等; 六、伺服电机维修不转现象数控系统到伺服驱动器除了联结脉冲+方向信号外,还有使能控制信号,一般为DC+24 V继电器线圈电压。

伺服电动机不转,常用诊断方法有:检查数控系统是否有脉冲信号输出;检查使能信号是否接通;通过液晶屏观测系统输入/出状态是否满足进给轴的起动条件;对带电磁制动器的伺服电动机确认制动已经打开;驱动器有故障;伺服电动机有故障;伺服电动机和滚珠丝杠联结联轴节失效或键脱开等。

伺服电机常见故障及解决方法

伺服电机常见故障及解决方法

伺服电机常见故障及解决方法一、电机升温过高或冒烟电机故障原因:1.负载过大。

2.两相运行。

3.风道阻塞。

4.环境温度增高。

5.定子绕组相间或匝间短路。

6.定子绕组接地。

7.电源电压过高或过低。

维修方法:1.减轻负载或选择大容量电动机。

2.清除风道。

3.采取降温措施。

4.用万用表、电压表检查输入端电源电压。

二、电机出现外壳带电现象电机故障原因:绕组受潮,绝缘老化,或引出线与接线盒壳碰。

维修方法:对应电机维修方法:干燥、更换绕组。

三、电机振动电机故障原因:1.转子不平衡。

2.轴弯曲。

3.皮带盘不平衡。

4.气隙不均匀产生单边磁拉力。

维修方法:1.校正动静平衡。

2.校直轴或更换轴弯曲不严重时可车去1-2mm然后配上套筒。

3.校正平衡。

4.重新调整。

四、电流三相不平衡电机故障。

原因:1.电源电压严重不足。

2.三相匝数不等。

3.内部接线错误。

维修方法:1.检查电源电压。

2.更换电动机或处理。

3.改正接线。

五、空载电流偏大电机故障原因:1.定转子气隙大。

2.定子绕组匝数太少。

3.装配不当。

维修方法:1.调整并使之减少。

2.重新核实并绕制。

3.重新装配。

六、绝缘电阻降低电机故障原因:1.定子进水受潮。

2.灰尘过多。

3.绝缘损坏。

4.绝缘老化。

维修方法:1.排水除潮。

2.清理积灰。

3.修复。

4.更换。

伺服电机常见故障分析

伺服电机常见故障分析

伺服电机常见故障分析伺服电机是一种利用电子控制系统精确控制位置、速度和加速度的电机。

它具有高精度、高响应速度、高可靠性等优点,在现代工业自动化领域得到广泛应用。

然而,在使用过程中,伺服电机也可能会出现故障,下面将对伺服电机常见故障进行分析。

1.控制器故障:控制器是伺服电机的核心部件,负责接收指令并控制电机运动。

控制器故障可能导致电机无法正常运行。

故障原因可能包括供电电压不稳定、控制器内部元件损坏等。

对于这种故障,需要检查供电线路和控制器内部元件是否损坏,并及时更换。

2.编码器故障:编码器是伺服电机用于反馈位置信息的装置,通过检测电机转子位置,将信息反馈给控制器。

如果编码器故障,将导致控制器无法准确感知电机位置,从而影响电机的运行。

故障原因可能包括连接线路断开、编码器损坏等。

解决方法是检查连接线路是否正常并重新连接,如果编码器损坏,则需要更换新的编码器。

3.电机电源故障:伺服电机需要稳定的电源供应才能正常工作,如果电机电源电压不稳定或出现波动,将导致电机不能正常运行。

故障原因可能包括电源线路接触不良、电源电压异常等。

解决方法是检查电源线路连接是否牢固,并使用稳定的电源供应。

4.电机过热:长时间高负载运行、环境温度过高等原因可能导致电机过热。

过热将使电机内部零部件受损,甚至引起电机烧坏。

解决方法是及时降低负载、提高散热能力,并确保环境温度在合理范围内。

5.电机震动和噪音:电机震动和噪音可能由于电机内部零部件松动、不平衡等原因引起。

这些问题可能导致电机性能下降,甚至损坏其他设备。

解决方法是检查电机内部零部件是否松动,松动部件需要予以紧固。

如果问题仍然存在,可能需要更换新的电机。

6.通信故障:伺服电机控制器通常通过串口或网络与上位机进行通信。

如果通信线路出现故障,将导致控制器不能正常接收指令,从而影响电机的工作。

解决方法是检查通信线路是否正常连接,并修复或更换故障线路。

综上所述,伺服电机常见故障分析主要包括控制器故障、编码器故障、电机电源故障、电机过热、电机震动和噪音以及通信故障等。

常见的伺服驱动器故障及处理方法

常见的伺服驱动器故障及处理方法

常见的伺服驱动器故障及处理方法伺服驱动器是一种用于控制伺服电机的装置,通常用于工业自动化领域。

由于长时间运行和受各种条件的影响,伺服驱动器可能会出现各种故障。

以下是一些常见的伺服驱动器故障及其处理方法。

1.电压不稳定:当电压波动较大时,可能导致伺服驱动器无法正常工作。

解决方法是使用稳压器来稳定电压,或者使用电压稳定器来提供稳定的电压。

2.过载保护:当负载超过伺服驱动器的额定功率时,可能会触发过载保护,导致伺服驱动器停止工作。

解决方法是检查负载是否超过额定功率,并相应调整负载或更换更高功率的伺服驱动器。

3.温度过高:长时间运行或工作环境温度过高可能导致伺服驱动器过热,从而影响其性能和寿命。

解决方法是确保伺服驱动器安装在通风良好的位置,并定期清理散热器或风扇,以确保良好的散热。

4.通信故障:伺服驱动器通常通过串口或以太网进行通信。

当通信线路中断或存在故障,伺服驱动器可能无法接收或发送指令。

解决方法是检查通信线路是否连接良好,并确保使用可靠的通信设备。

5.编码器故障:编码器是伺服驱动器用于检测电机位置和速度的关键部件。

编码器故障可能导致伺服电机无法准确运动。

解决方法是检查编码器连接是否正确,并进行必要的校准或更换编码器。

6.电源故障:伺服驱动器的电源故障可能导致其无法正常工作。

解决方法是检查电源连接是否稳定,并检查电源是否符合伺服驱动器的要求。

7.控制信号故障:伺服驱动器的控制信号故障可能导致无法实现所需的运动。

解决方法是检查控制信号线路是否连接正确,并确保使用可靠的控制设备。

8.软件故障:伺服驱动器的软件故障可能导致其无法正常运行或反应迟缓。

解决方法是重新启动伺服驱动器,并更新或重新安装软件。

9.机械故障:伺服驱动器与机械设备紧密结合,机械故障可能导致伺服驱动器无法正常工作。

解决方法是检查机械部件是否损坏,并进行必要的修复或更换。

总之,及时识别和解决伺服驱动器故障是确保其正常工作和延长寿命的关键。

通过定期维护、良好的使用环境和合理操作,可以减少伺服驱动器故障的发生,并确保其在工业自动化生产中的稳定运行。

伺服电机常见故障分析

伺服电机常见故障分析

伺服电机常见故障分析伺服电机是一种配有编码器的电机,可以对输出的力和位置进行精确控制。

虽然伺服电机具有较高的可靠性和稳定性,但在长时间使用过程中仍然可能出现一些常见故障。

下面将对伺服电机的常见故障进行详细分析。

1.电机不转或启动困难:可能是电源故障导致的,检查电源是否正常供电。

还可能是电机接线不良,进行检查和修复。

此外,还需要检查驱动器是否工作正常,是否有故障信号。

2.电机转速不稳定:这可能是由于驱动器的参数设置不合适或编码器信号异常导致的。

可以通过重新调整驱动器的参数来解决此问题。

如果编码器信号异常,需要进行检查和修复。

3.电机发热过高:这可能是由于电机负载过重、运行时间过长或环境温度过高导致的。

解决方法可能是减少负载,及时停机冷却,或者改善环境温度条件。

4.电机振动过大:这可能是由于机械传动系统不平衡、电机安装不稳定或驱动器参数不合适等原因导致的。

可以通过平衡机械系统、重新安装电机或调整驱动器参数来解决此问题。

5.电机报警或故障停机:这可能是由于驱动器的故障保护功能触发导致的。

检查驱动器的故障代码,根据代码进行相应的处理。

6.电机位置误差过大:这可能是由于编码器信号异常、驱动器参数设置不合适或机械传动系统松动等原因导致的。

可以通过检查编码器信号、重新调整驱动器参数或紧固机械传动系统来解决位置误差过大的问题。

7.电机噪音过大:这可能是由于电机负载过重、机械传动系统不平衡或驱动器工作异常导致的。

可以通过减少负载、平衡机械系统或检查驱动器工作情况来降低噪音。

8.电机电流异常:电机电流异常可能是由于负载过重、驱动器故障或电源电压不稳定等原因引起的。

解决方法可能是减少负载、更换驱动器或修复电源故障。

除了以上列举的常见故障之外,还有一些其他故障可能会出现,例如过压、过流、断电等。

针对不同的故障情况,需要根据具体情况进行检查和修复。

此外,定期进行维护和保养也是预防故障的重要措施,可以延长伺服电机的使用寿命。

伺服系统的常见故障及处理方法

伺服系统的常见故障及处理方法

伺服系统的常见故障及处理方法伺服系统是一种广泛应用于工业自动化领域的控制系统,它通过精确控制电机的速度和位置来实现对机械设备的精密控制。

然而,由于长时间使用、操作误差或环境影响等原因,伺服系统也会出现一些常见故障。

本文将介绍几种常见的伺服系统故障,并提供相应的处理方法。

一、电机运转异常1. 电机不转动或转动困难:处理方法:首先检查电机的电源连接是否正确,确认电源供应是否正常。

其次,检查是否存在电机线圈或转子损坏等机械故障。

最后,检查驱动器参数设置是否正确,如转速、转矩控制参数等。

2. 电机转速不稳定:处理方法:检查伺服系统的反馈装置,如编码器、脉冲计数器等,确保其正常工作。

同时,调整驱动器的速度环参数,提高伺服系统的控制精度。

另外,确保电机的供电电压稳定,避免电压波动对转速造成影响。

二、编码器信号异常1. 编码器信号丢失或不稳定:处理方法:检查编码器连接是否牢固,确保连接处没有松动。

同时,检查编码器接口的信号线是否受到干扰,如存在干扰源应及时消除。

另外,还可以通过更换编码器线缆、增加抗干扰滤波器等方式来提高信号的稳定性。

2. 编码器信号误码:处理方法:首先检查编码器光电栅片或磁栅片是否损坏,如果损坏应及时更换。

其次,调整编码器信号校正参数,以提高信号的准确性。

此外,检查编码器接口的连接是否正确,确保与驱动器的匹配性。

三、驱动器故障1. 电机震动:处理方法:检查驱动器的震动抑制功能是否开启,并适当调整其参数。

此外,检查电机的负载情况,是否超过了驱动器的额定输出能力。

2. 驱动器过热:处理方法:确保驱动器的散热设备正常工作,如风扇是否畅通,散热片是否清洁。

另外,调整驱动器的过载保护参数,避免超负荷工作导致过热。

四、控制系统故障1. 控制信号丢失或干扰:处理方法:检查控制信号的连接是否良好,避免控制线路与电源线路或高功率干扰源相交叉。

同时,增加控制系统的抗干扰设备,如光电隔离器、滤波电容等。

2. 控制系统响应慢或不灵敏:处理方法:检查控制器的采样周期是否设置合理,过大的采样周期会导致系统响应慢。

浅析伺服电机在使用中的常见问题

浅析伺服电机在使用中的常见问题

浅析伺服电机在使用中的常见问题本文转载自电机维修一.前言:伺服系统是机电产品中的重要环节,它能提供最高水平的动态响应和扭矩密度,所以拖动系统的发展趋势是用交流伺服驱动取替传统的液压、直流、步进和AC变频调速驱动,以便使系统性能达到一个全新的水平,包括更短的周期、更高的生产率、更好的可靠性和更长的寿命。

为了实现伺服电机的更好性能,就必须对伺服电机的一些使用特点有所了解。

本文将浅析伺服电机在使用中的常见问题。

二.问题问题一:噪声,不稳定客户在一些机械上使用伺服电机时,经常会发生噪声过大,电机带动负载运转不稳定等现象,出现此问题时,许多使用者的第一反应就是伺服电机质量不好,因为有时换成步进电机或是变频电机来拖动负载,噪声和不稳定现象却反而小很多。

表面上看,确实是伺服电机的原故,但我们仔细分析伺服电机的工作原理后,会发现这种结论是完全错误的。

交流伺服系统包括:伺服驱动、伺服电机和一个反馈传感器(一般伺服电机自带光学偏码器)。

所有这些部件都在一个控制闭环系统中运行:驱动器从外部接收参数信息,然后将一定电流输送给电机,通过电机转换成扭矩带动负载,负载根据它自己的特性进行动作或加减速,传感器测量负载的位置,使驱动装置对设定信息值和实际位置值进行比较,然后通过改变电机电流使实际位置值和设定信息值保持一致,当负载突然变化引起速度变化时,偏码器获知这种速度变化后会马上反应给伺服驱动器,驱动器又通过改变提供给伺服电机的电流值来满足负载的变化,并重新返回到设定的速度。

交流伺服系统是一个响应非常高的全闭环系统,负载波动和速度较正之间的时间滞后响应是非常快的,此时,真正限制了系统响应效果的是机械连接装置的传递时间。

举一个简单例子:有一台机械,是用伺服电机通过V形带传动一个恒定速度、大惯性的负载。

整个系统需要获得恒定的速度和较快的响应特性,分析其动作过程:当驱动器将电流送到电机时,电机立即产生扭矩;一开始,由于V形带会有弹性,负载不会加速到象电机那样快;伺服电机会比负载提前到达设定的速度,此时装在电机上的偏码器会削弱电流,继而削弱扭矩;随着V型带张力的不断增加会使电机速度变慢,此时驱动器又会去增加电流,周而复始。

伺服系统的故障分析与维修

伺服系统的故障分析与维修

伺服系统的故障分析与维修伺服系统是一种通过传感器和控制器来监测和调整机械运动的技术。

它广泛应用于工业自动化领域,如机械加工、装配线、印刷机械等。

然而,由于各种原因,伺服系统可能会出现故障。

本文将分析伺服系统的常见故障原因,并提供一些维修和排除故障的建议。

一、故障原因分析:1.电源问题:伺服系统需要稳定的电源供应才能正常工作。

如果电源电压不稳定或存在供电故障,伺服系统可能会失去反馈控制,导致运动失控或停止。

解决方法:检查电源线路是否连接正确,检查电压是否稳定。

如有必要,可以添加稳压器或备用电源。

2.传感器故障:伺服系统使用传感器来监测和反馈运动状态。

如果传感器损坏或出现连接问题,伺服系统将无法正常工作。

解决方法:检查传感器的连接是否牢固,检查传感器的工作状态。

如有必要,更换损坏的传感器。

3.控制器故障:伺服系统的控制器是核心部件,负责接收和处理传感器反馈信号,控制电机和执行器的运动。

解决方法:检查控制器的供电和通信线路是否正常。

如有必要,可以尝试重新启动控制器或更换故障的控制器。

4.电机故障:伺服系统的电机是实现机械运动的关键部件。

如果电机出现故障或损坏,伺服系统将无法正常工作。

解决方法:检查电机的供电线路和连接是否正常。

如有必要,可以检查电机的绝缘和转子,或者更换故障的电机。

5.机械故障:伺服系统的机械部件如传动装置和负载可能会出现故障或损坏,导致伺服系统无法正常运动。

解决方法:检查机械部件的连接和润滑情况。

如果发现故障或损坏的机械部件,及时修复或更换它们。

二、维修和排除故障建议:1.定期维护:定期检查和维护伺服系统,包括清洁机械部件、检查电源和传感器连接、校准控制器等,可以减少故障发生的可能性。

2.故障排除步骤:当伺服系统出现故障时,应按照以下步骤进行排除:(a)检查电源和供电线路的状态和连接;(b)检查传感器和控制器的连接和工作状态;(c)检查电机和负载的连接和工作状态;(d)检查机械部件的连接和润滑情况;(e)根据故障现象和排除步骤的结果,判断故障原因并采取适当的修复措施。

伺服电机的13种故障及维修知识汇总

伺服电机的13种故障及维修知识汇总

伺服电机的13种故障及维修知识汇总伺服电机是一种将电能转化为机械能的设备,广泛应用于各种机械设备中。

尽管伺服电机在工作过程中有着高效、准确和可靠的特点,但是由于各种原因,仍然存在一些故障。

下面将介绍一些常见的伺服电机故障以及相应的维修知识。

1.电机无法启动:-检查电源线路和继电器是否正常。

-检查电机的供电电压是否符合要求。

-检查电机驱动器的软件是否设置正确。

2.电机运行速度不稳定:-检查电机驱动器的PID参数设置是否正确。

-检查电机的编码器是否损坏或松动。

3.电机运行过热:-检查电机的散热器是否正常工作。

-检查电机驱动器的电流限制是否设置正确。

-检查负载是否过重。

4.电机产生噪音:-检查电机的轴承是否需要润滑或更换。

-检查电机的定子线圈是否故障。

5.电机振动:-检查电机是否与机床固定牢固。

-检查电机的平衡性。

6.电机控制精度低:-检查电机驱动器的PID参数设置是否正确。

-检查电机的编码器分辨率是否满足要求。

7.电机出现漏油:-检查电机的密封圈是否损坏。

-检查电机的润滑系统是否正常工作。

8.电机无法停止:-检查电机驱动器的停机指令是否正常传递。

-检查电机的反馈信号是否正常。

9.电机电流过大:-检查电机负载是否过重。

-检查电机驱动器的电流限制是否设置正确。

10.电机震荡:-检查电机的电源线路是否干净稳定。

-检查电机驱动器的PID参数设置是否正确。

11.电机输出功率下降:-检查电机的定子线圈是否烧损。

-检查电机的轴承是否损坏。

12.编码器信号异常:-检查编码器的连接线是否松动。

-检查编码器是否需要校准。

13.电机无法停留在设定位置:-检查电机驱动器的PID参数设置是否正确。

-检查电机的编码器是否损坏或松动。

维修故障通常需要一定的专业知识和技能。

在维修伺服电机时,应首先确保安全,并遵循以下步骤:1.确认故障现象:准确了解电机的故障现象和表现。

2.断电检查:断开电源,确保电机处于安全状态。

3.检查电缆连接:检查电机的电缆连接是否松动或损坏。

伺服电机多走或少走的原因

伺服电机多走或少走的原因

伺服电机多走或少走的原因第一类:机械系统问题机械系统问题是导致伺服电机多走或少走的常见原因之一、这些问题可能包括:1.传动系统问题:包括传动皮带松紧不均匀、螺旋传动机构脱落、传动齿轮磨损等。

解决方法:定期检查和更换磨损的传动部件,确保传动系统正常工作。

2.导轨问题:导轨的磨损或污垢可能导致摩擦力增大,从而影响伺服电机的行程。

解决方法:定期清洁导轨,并涂抹适当的润滑油,以减小摩擦力。

3.机械结构变形:长时间使用或受力不均可能导致机械结构的变形,从而影响伺服电机的运动精度。

解决方法:定期检查机械结构,确保其完整性和稳定性。

第二类:控制系统问题控制系统问题也是导致伺服电机多走或少走的常见原因之一、这些问题可能包括:1.编码器问题:编码器的故障或误差可能导致伺服电机行程的误差。

解决方法:检查和调整编码器的位置和工作状态,确保其准确性。

2.PID参数设置不当:PID控制器的参数设置不当可能导致伺服电机的不稳定运动。

解决方法:根据实际情况调整PID参数,以获得更好的控制效果。

3.控制器故障:控制器硬件或软件的故障可能导致伺服电机的不良运动。

解决方法:检查和维修控制器,确保其正常工作。

第三类:环境因素环境因素也可能导致伺服电机多走或少走。

这些因素可能包括:1.温度变化:温度的变化可能会引起机械结构的膨胀或收缩,从而影响伺服电机的运动精度。

解决方法:保持温度稳定,或采取温度补偿措施。

2.湿度变化:湿度的变化可能导致机械部件的腐蚀或生锈,从而影响伺服电机的工作。

解决方法:保持环境湿度稳定,并定期检查和维护机械部件。

3.振动和冲击:外界的振动和冲击可能会对伺服电机的运动稳定性造成负面影响。

解决方法:采取减震措施,如使用减震垫或隔音箱等。

第四类:人为因素最后一类原因是人为因素,这些因素可能包括:1.参数设置错误:错误的参数设置可能导致伺服电机的不稳定运动。

解决方法:仔细阅读设备说明书,并正确设置参数。

2.指令错误:操作人员误操作或输入错误的指令可能导致伺服电机的错误运动。

伺服电机系统的常见故障都有哪些

伺服电机系统的常见故障都有哪些

伺服电机系统的常见故障都有哪些伺服电机系统中的故障会对整个设备产生很大的影响。

以下是伺服电机系统中常见的故障及其解决方法。

1. 误差增加在使用伺服电机系统时,深度了解误差增加所导致的问题是非常重要的。

误差增加通常是由于模式开关设置不正确、控制器过载、电机通电鼠咬似的震动等原因导致的。

通过检查电机的状态,可以清楚地了解到误差增加的原因。

在解决这种情况时,应选择适当的解决方案,以便恢复伺服电机系统的正常运行。

2. 缺失控制伺服电机系统的缺失控制可能是由于其电源电压不足、输出阻塞、控制器压力不均等原因导致的。

为了避免这种情况的发生,应该进行常规的维护和调整,确保电机正常工作。

如果出现控制不足的情况,通常可以调整电机控制器的参数,以改善其工作。

3. 过载伺服电机系统中的过载可能是由于负载过大、电机故障或过热等原因导致的。

这时,应停止电机运作并进行深入的检查,以了解问题的本质。

为了避免过载情况的发生,应根据实际需求选择恰当的配置方式,并进行经常性的维护和检查。

4. 震动异常在使用伺服电机系统时,震动的异常是一个非常常见的故障。

通常,这种情况是由于电机的旋转方向不正确或控制器工作不正常导致的。

为了避免这种情况的发生,需要进行常规性的检修和调整,确保伺服电机系统的正常工作。

5. 感应器异常感应器异常通常是由于感应器位置错误或损坏所导致的。

为了解决这种故障,需要进行一些常规性的调整和维护。

这种故障可以通过更换或重新调整传感器来解决。

总而言之,伺服电机系统中常见的故障主要包括误差增加、缺失控制、过载、震动异常和感应器异常等。

需要进行定期维护和检修,并根据实际情况选择适当的解决方案,以确保伺服电机系统的正常工作。

伺服电机出现故障的常见原因有那些?

伺服电机出现故障的常见原因有那些?

伺服电机出现故障的常见原因有那些?伺服电机可以控制速度,位置精度⾮常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转⼦转速受输⼊信号控制,并能快速反应,在⾃动控制系统中,⽤作执⾏元件,且具有机电时间常数⼩、线性度⾼等特性,可把所收到的电信号转换成电动机轴上的⾓位移或⾓速度输出。

分为直流和交流伺服电动机两⼤类,其主要特点是,当信号电压为零时⽆⾃转现象,转速随着转矩的增加⽽匀速下降。

伺服电机常见问题以及正确的维修⽅法1. 电源或驱动器故障⼀种可能是伺服电机电源不⾜或驱动器损坏。

在这种情况下,电机本⾝是好的,但是外部系统的故障会导致它出现故障。

有故障的驱动器或电源可能会通过在流向电机的电源中产⽣电压尖峰或不规则来损坏伺服电机。

通常,绕组需要重绕。

2、轴承故障通常,困扰伺服电机的是轴承故障。

磨损或未润滑的轴承会引起刺⽿的刺⽿噪⾳或呜呜声,因此如果您的电机出现这种症状,则可能是轴承造成的。

有时您可以更改设置和参数来弥补这个问题,但如果这不起作⽤,您可能需要更换伺服电机的轴承。

⼀定要⽴即这样做——随着时间的推移,有故障的轴承会导致电机完全故障。

3. 灰尘刹车布满灰尘的制动器也会导致伺服电机发出尖锐的尖叫声。

如果您的伺服电机有刹车,刹车⽚上的灰尘可能会渗⼊刹车本⾝。

然后灰尘会移动到轴承上,吸收油,并导致摩擦和尖叫。

尽管伺服电机轴承通常有防护罩,但灰尘通常会设法侵⼊并破坏它们。

4、定位误差定位错误也会导致伺服电机出现问题。

如果发⽣这种情况,电机将静⽌不动并发出嗡嗡声或颤动声,输出轴即使处于静⽌状态也会轻微摆动。

5. 设置问题或参数丢失设置问题和参数丢失会导致与定位错误类似的抖动问题。

您可以通过运⾏电机和驱动器的设置程序来检查这些问题是否是导致故障的原因。

如果不是,则电机中的反馈问题可能需要维修。

6. 电⽓故障电容器、电阻器、⼆极管、编码器、旋转变压器和其他电⽓元件都会随着时间的推移⽽磨损。

随着您的电⽓设备性能下降,它最终会开始损害您的电机性能并需要维修。

伺服驱动器在使用中遇到的问题和故障防范

伺服驱动器在使用中遇到的问题和故障防范

伺服驱动器在使用中遇到的问题和故障防范1. 引言伺服驱动器在工业自动化领域中扮演着重要的角色,广泛应用于各种机械设备中。

然而,在使用伺服驱动器的过程中,我们可能会遇到一些问题和故障。

本文将介绍常见的伺服驱动器问题,并提供相应的故障防范措施。

2. 伺服驱动器问题和故障2.1. 过载保护触发过载保护是伺服驱动器的安全机制之一,当负载过大时,会触发过载保护机制以保护伺服驱动器和负载。

然而,有时候我们可能会遇到误触发的情况。

造成过载保护触发的原因可能包括负载异常、过载参数设置不当等。

故障防范措施•确保负载处于正常工作范围内,不超过伺服驱动器的额定负载。

•仔细设置过载保护参数,根据实际负载情况进行调节。

2.2. 温度过高伺服驱动器工作时会产生一定的热量,如果无法有效散热,温度可能会升高,进而导致伺服驱动器故障。

温度过高的原因可能包括环境温度过高、散热装置故障等。

故障防范措施•确保伺服驱动器周围的环境温度不超过额定温度范围。

•定期清理散热装置,确保其正常工作。

2.3. 通信故障伺服驱动器与控制系统之间的通信非常重要,如果出现通信故障,可能导致伺服驱动器无法正常工作。

通信故障的原因可能包括通信线路故障、通信协议设置错误等。

故障防范措施•检查通信线路是否连接正常,排除线路故障。

•检查通信协议设置是否正确,确保与控制系统匹配。

2.4. 电源问题伺服驱动器的电源供应稳定与否直接影响其正常工作。

电源问题可能包括供电电压过高或过低、电源线路不稳定等。

故障防范措施•确保伺服驱动器的供电电压在额定范围内。

•选择稳定可靠的电源线路,避免电源波动影响伺服驱动器的工作。

3. 总结伺服驱动器在使用中可能会遇到过载保护触发、温度过高、通信故障以及电源问题等问题和故障。

为了预防这些问题的发生,需要正确设置参数、合理调整负载、确保散热装置正常工作、保持通信线路畅通、选择稳定的电源等。

通过以上的措施,我们可以最大程度地减少伺服驱动器故障的发生,保证其稳定和可靠的工作。

伺服电动机的常见故障

伺服电动机的常见故障

伺服电动机的常见故障一、前言伺服电动机是现代工业中非常重要的一种电动机,广泛应用于自动化生产线、机床加工、半导体设备等领域。

然而,由于伺服电动机的结构复杂,使用条件苛刻,所以在使用过程中也会出现许多故障。

本文将介绍伺服电动机的常见故障及其解决方法。

二、伺服电动机的基本原理伺服电动机是一种能够控制输出转矩和转速的电动机。

它通过控制输入信号来实现对输出转矩和转速的精确控制。

其基本原理如下:1. 传感器测量伺服系统中通常会设置一个传感器,用于测量输出位置或速度,并将测量结果反馈给控制器。

2. 控制器计算控制器接收传感器反馈信号后,会进行计算,并将计算结果与期望值进行比较。

3. 控制信号输出如果计算结果与期望值不同,则控制器会发送一个控制信号给驱动器,驱动器再将信号传递给电机实现对输出转矩和转速的调节。

三、常见故障及解决方法1. 电机不转或启动困难如果伺服电动机在启动时无法正常运转,或者运转时出现异常,可能是由以下原因造成:(1)电源故障:检查电源是否正常,并检查电源线路是否接触良好。

(2)控制器故障:检查控制器的输入和输出信号是否正常,并检查控制器的软件程序是否正确。

(3)驱动器故障:检查驱动器的输入和输出信号是否正常,并检查驱动器的参数设置是否正确。

(4)传感器故障:检查传感器的接线和工作状态,确保传感器能够正确测量输出位置或速度。

2. 电机振荡或噪音过大如果伺服电动机在运转时出现振荡或噪音过大的情况,可能是由以下原因造成:(1)机械结构问题:检查伺服系统中各部件之间的连接状态,确保各部件之间没有松动或磨损。

(2)负载过重:检查负载是否超出了伺服电动机的额定负载范围,如果超出了,则需要降低负载并重新调整参数。

(3)控制参数设置不当:根据实际情况调整控制参数,确保控制器能够正确控制输出转矩和转速。

3. 电机温度过高如果伺服电动机的温度过高,可能会导致电机烧毁或损坏。

常见的原因包括:(1)环境温度过高:检查伺服电动机所处的环境温度是否超出了额定范围。

伺服电机走走停停的原因

伺服电机走走停停的原因

伺服电机走走停停的原因1. 什么是伺服电机?伺服电机,听起来是不是很高大上?实际上,它就像你生活中的一个勤勤恳恳的打工人,负责让机器转动得精准又流畅。

它的工作原理简单粗暴,就是通过反馈控制,让电机的转动跟随指令走。

但是,如果这位打工人突然走走停停,嘿,那可就让人尴尬了!那么,伺服电机走走停停到底是因为什么呢?2. 常见原因分析2.1 电源问题首先,电源不稳定是一个大问题。

想象一下,如果你家里电压时高时低,结果电器们都懵了,伺服电机也一样!电压不稳,就像喝了兴奋剂的孩子,时而兴奋得转个不停,时而又没电了,彻底停下来。

咱们可以试着检查一下电源,确保它供给稳定,给电机一个良好的工作环境。

2.2 反馈系统故障再来,反馈系统的问题也是个常见的“捣乱鬼”。

反馈系统就像伺服电机的眼睛,它得知道自己在做什么,才能继续工作。

如果眼睛坏了,电机肯定会“走神”,甚至停下来。

比如说,编码器出问题了,电机根本不知道自己转了多少圈,最后只能是一头雾水。

所以,检查一下反馈系统,可能会发现问题的根源。

3. 机械故障3.1 传动系统的障碍再说说机械部分,传动系统是不是顺畅也是关键。

就像一辆车,轮子卡了,那肯定开不动。

伺服电机的轴承、齿轮等零部件,常常因为磨损、污染或其它原因,导致转动不畅。

定期检查、清洁和更换零部件,可以避免这种情况。

想象一下,定期保养就像给车子洗个澡,嘿嘿,能让它跑得更快更远!3.2 负载过重还有,负载过重也会让伺服电机喘不过气来。

就像你背了十个西瓜去爬山,肯定累得半死,伺服电机也是如此。

它设计的负载范围是有限的,一旦超出,就会“走走停停”,甚至烧毁。

所以,合理计算负载,确保在范围内工作,才能让它持续稳定地转动。

4. 温度问题温度也是个隐形杀手。

如果伺服电机的环境温度过高,电机就会自动保护自己,停下来休息。

这就像人一样,太热了也得喝水休息,伺服电机也是个“娇气”的小家伙。

要确保环境通风良好,避免过热,让电机在舒适的“气候”中工作。

伺服电机常见故障及解决方法【干货合集】

伺服电机常见故障及解决方法【干货合集】

伺服电机可使控制速度、位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电机轴上的角位移或角速度输出,使用过程中会出现诸多故障问题,下面小编就给大家列举9个我们都会遇到的故障问题及对策。

1.轴承故障是最常见的电机故障之一。

作为伺服电机中最主要的磨损件,一半以上伺服电机故障通常都归因于轴承问题。

其具体表现多种多样,轻则电机转动时产生抖动、异响等,重则导致电机转轴卡死。

值得注意的是,轴承故障如未得到及时的处理,通常还会带来次生损害。

例如,轴承锈蚀的碎屑飞入制动器或电机编码器,造成更加严重的损失。

对策:①在使用伺服电机时不能长时间超过额定负载运行;②对于有轴电流的场合,增加导电刷或者采用含绝缘轴承的电机;③对伺服电机进行预防性维护。

2.对于电机应用(尤其是电机轴与机械设备的连接处)暴露在污染环境的场合,伺服电机通常需要配备油封。

电机轴工业级骨架油封能够阻隔污染物(油类、杂质类)来延长电机寿命。

轴密封较易磨损,需定期检查和替换。

对策:预防性维护;根据使用情况,建议每3 个月替换一次,最长不超过12 个月。

3.当绕组发生故障时,电机的一部分会发生短路,导致电机内部烧灼。

对策:①在使用伺服电机时不能长时间超过额定负载运行;②监控电流及电流随时间的积累;③监控绕组温度。

4.与异步电机不同,伺服电机的转子通常由永磁体构成。

永磁体磁片通过贴面或者嵌入的方式,固定在电机的转轴上。

对策:①在额定的负载下运行;②避免意外的碰撞。

5.电机反馈装置(旋转变压器、编码器等)将位置信号反馈给驱动器,从而使驱动器发出精确地电流以便进行精准的位置控制。

多圈绝对值编码器则另具圈数记录的功能。

采用后备电池技术的多圈绝对值编码器,依赖外部电池的电能记录转子圈数信息。

而采用机械齿轮结构的多圈编码器,通过霍尔原理可以永久的记录圈数而无需维护,但成本相对较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析伺服电机在使用中的常见问题
一.前言:
伺服系统是机电产品中的重要环节,它能提供最高水平的动态响应和扭矩密度,所以拖动系统的发展趋势是用交流伺服驱动取替传统的液压、直流、步进和AC变频调速驱动,以便使系统性能达到一个全新的水平,包括更短的周期、更高的生产率、更好的可靠性和更长的寿命。

为了实现伺服电机的更好性能,就必须对伺服电机的一些使用特点有所了解。

本文将浅析伺服电机在使用中的常见问题。

二.问题
问题一:噪声,不稳定
客户在一些机械上使用伺服电机时,经常会发生噪声过大,电机带动负载运转不稳定等现象,出现此问题时,许多使用者的第一反应就是伺服电机质量不好,因为有时换成步进电机或是变频电机来拖动负载,噪声和不稳定现象却反而小很多。

表面上看,确实是伺服电机的原故,但我们仔细分析伺服电机的工作原理后,会发现这种结论是完全错误的。

交流伺服系统包括:伺服驱动、伺服电机和一个反馈传感器(一般伺服电机自带光学偏码器)。

所有这些部件都在一个控制闭环系统中运行:驱动器从外部接收参数信息,然后将一定电流输送给电机,通过电机转换成扭矩带动负载,负载根据它自己的特性进行动作或加减速,传感器测量负载的位置,使驱动装置对设定信息值和实际位置值进行比较,然后通过改变电机电流使实际位置值和设定信息值保持一致,当负载突然变化引起速度变化时,偏码器获知这种速度变化后会马上反应给伺服驱动器,驱动器又通过改变提供给伺服电机的电流值来满足负载的变化,并重新返回到设定的速度。

交流伺服系统是一个响应非常高的全闭环系统,负载波动和速度较正之间的时间滞后响应是非常快的,此时,真正限制了系统响应效果的是机械连接装置的传递时间。

举一个简单例子:有一台机械,是用伺服电机通过V形带传动一个恒定速度、大惯性的负载。

整个系统需要获得恒定的速度和较快的响应特性,分析其动作过程:
当驱动器将电流送到电机时,电机立即产生扭矩;一开始,由于V形带会有弹性,负载不会加速到象电机那样快;伺服电机会比负载提前到达设定的速度,此时装在电机上的偏码器会削弱电流,继而削弱扭矩;随着V型带张力的不断增加会使电机速度变慢,此时驱动器又会去增加电流,周而复始。

在此例中,系统是振荡的,电机扭矩是波动的,负载速度也随之波动。

其结果当然会是噪音、磨损、不稳定了。

不过,这都不是由伺服电机引起的,这种噪声和不稳定性,是来源于机械传动装置,是由于伺服系统反应速度(高)与机械传递或者反应时间(较长)不相匹配而引起的,即伺服电机响应快于系统调整新的扭矩所需的时间。

找到了问题根源所在,再来解决当然就容易多了,针对以上例子,您可以:(1)增加机械刚性和降低系统的惯性,减少机械传动部位的响应时间,如把V形带更换成直接丝杆传动或用齿轮箱代替V型带。

(2)降低伺服系统的响应速度,减少伺服系统的控制带宽,如降低伺服系统的增益参数值。

当然,以上只是噪起,不稳定的原因之一,针对不同的原因,会有不同的解决办法,如由机械共振引起的噪声,在伺服方面可采取共振抑制,低通滤波等方法,总之,噪声和不稳定的原因,基本上都不会是由于伺服电机本身所造成。

三.问题二:惯性匹配
在伺服系统选型及调试中,常会碰到惯量问题!具体表现为:1在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;2在调试时(手动模式下),正确设定惯量比
参数是充分发挥机械及伺服系统最佳效能的前题,此点在要求高速高精度的系统上表现由为突出(台达伺服惯量比参数为1-37,JL/JM)。

这样,就有了惯量匹配的问题!
那到底什么是“惯量匹配”呢?
1.根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量J ×角加速度θ角加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。

如果θ变化,则系统反应将忽快忽慢,影响加工精度。

由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。

2.进给轴的总惯量“J=伺服电机的旋转惯性动量J M +电机轴换算的负载惯性动量J L负载惯量J L由(以工具机为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。

J M为伺服电机转子惯量,伺服电机选定后,此值就为定值,而J L则随工件等负载改变而变化。

如果希望J变化率小些,则最好使J L所占比例小些。

这就是通俗意义上的“惯量匹配”。

知道了什么是惯量匹配,那惯量匹配具体有什么影响又如何确定呢?
1.影响:传动惯量对伺服系统的精度,稳定性,动态响应都有影响,惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。

2.确定:衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。

不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。

例如,CNC中心机通过伺服电机作高速切削时,当负载惯量增加时,会发生:1.控制指令改变时,马达需花费较多时间才能达到新指令的速度要求;2.当机台沿二轴执行弧式曲线快速切削时,会发生较大误差 1.一般伺服电机通常状况下,当J L≦J M,则上面的问题不会发生。

2.当J L =3×J M ,则马达的可控性会些微降低,但对平常的金属切削不会有影响。

(高速曲线切削一般建议J L
≦J M)
3.当J L≧3×J M,马达的可控性会明显下降,在高速曲线切削时表现突出
不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,惯性匹配的确定需要根据机械的工艺特点及加工质量要求来确定。

四.问题三:伺服电机选型
在选择好机械传动方案以后,就必须对伺服电机的型号和大小进行选择和确认。

(1)选型条件:一般情况下,选择伺服电机需满足下列情况:
1.马达最大转速>系统所需之最高移动转速。

2.马达的转子惯量与负载惯量相匹配。

3连续负载工作扭力≦马达额定扭力
4.马达最大输出扭力>系统所需最大扭力(加速时扭力)
(2)选型计算:
1.惯量匹配计算(JL/JM)
2.回转速度计算(负载端转速,马达端转速)
负载扭矩计算(连续负载工作扭矩,加速时扭矩)。

相关文档
最新文档