运筹学PPT完整版

合集下载

运筹学PPT完整版胡运权

运筹学PPT完整版胡运权

C
m n
基可行解:满足变量非负约束条件的基本解,简称基可
行解。
可行基:对应于基可行解的基称为可行基。
可 行 解
非可行解
基解
基可行解
线性规划问题的数学模型
例1.4 求线性规划问题的所有基矩阵。
Page 30
解: 约束方程的系数矩阵为2×5矩阵 r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 4
线性规划问题的数学模型
约束方程的转换:由不等式转换为等式。
aij x j bi
aij x j xni bi
xni 0 称为松弛变量
aij x j bi
aij x j xni bi
xni 0 称为剩余变量
变量 x j 的变0换 可令 xj x,j 显x然j 0
Page 23
用 x3 x3 替换 x3 ,且 x3 , x3 0
线性规划问题的数学模型
Page 25
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0

运 筹 学 课 件

运 筹 学 课 件

12/3 4
z
1 2
x4
x5 42
x3
2 3
x4
1 3
x5
4
新典式
主元化 为1,主 元所在
x2
1 2
x4
6
列的其 余元素
x1
2 3
x4
1 3
x5
4
化为0
观察最后一个典式,所有检验数均为非负, 故其对应的基本可行解为最优解,即
X * 4,6,6,0,0T z* 42
去掉引入变量,得原问题的最优解为:
运筹学课件
目录
运筹学概论 第一章 线性规划基础 第二章 单纯形法 第三章 LP对偶理论 第四章 灵敏度分析 第五章 运输问题 第六章 整数规划 第七章 动态规划 第八章 网络分析
第二章 单纯形法
(SM-Simplex Method)
1947年,美国运筹学家Dantzig提出,原理是 代数迭代。
单纯形法中的单纯形的这个术语,与该方法毫 无关系,它源于求解方法的早期阶段所研究的一 个特殊问题,并延用下来。
CB B1b B1b
z
CB B1N CN X N X B B1NX N
CB B1b B1b
上述方程组的矩阵形式为
10
0 I
CB
B1N B1N
CN
z XB XN
CB B1b B1b
上式的系数增广阵称为对应于基B的单纯形表:
T(B)
CB B1b B1b
0 I
CB
B1N B1N
CN
形式的LP问题,必须解决三个问题: ⑴初始基本可行解的确定; ⑵解的最优性检验; ⑶基本可行解的转移规则。 这里先放一下⑴,研究⑵和⑶,为此,

运筹学PPT完整版

运筹学PPT完整版
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
(2)
x j 0, j 1,2,, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 27
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
最优解:使目标函数达到最大值的可行解。
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
Page 2
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美国有人把运筹
学称之为管理科学(Management Science)。运筹学所研究的 问题,可简单地归结为一句话: “依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
Page 3
运筹学的主要内容
Page 4
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 5
❖选用教材 ➢ 《运筹学基础及应用》胡运权主编 哈工大出版社
❖参考教材 ➢ 《运筹学教程》胡运权主编 (第2版)清华出版社 ➢ 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 ➢ 《运筹学》(修订版) 钱颂迪主编 清华出版社

运筹学基础及应用(全套课件296P) ppt课件

运筹学基础及应用(全套课件296P)  ppt课件

我国朴素的运筹学思想:田忌赛马、丁渭修皇宫
1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为
“Operations Research”这个ppt课名件字一直延用至今。
2
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
16 y3
4 X2 1Leabharlann y4X1 0 , X2 0
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
ppt课件
6
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学;
大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际运筹学会 成立
ppt课件
11
第 2 章 线性规划的对偶 理论

运筹学ppt课件

运筹学ppt课件
– 无穷多个最优解。若将例1中的目标函数变为 max z=50x1+50x2,则线段BC上的所有点都代表 了最优解;
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划

整数规划

动态规划

多目标规划

双层规划
最优计数问题

组 合
网络优化

优 排序问题 化 统筹图

对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,

2024版清华大学出版《运筹学》第三版完整版课件

2024版清华大学出版《运筹学》第三版完整版课件

要点三
金融服务与投资管理
在金融服务和投资管理中,存储论可用 于优化资金配置和投资组合,降低风险 和提高收益。例如,通过定期订货模型 的运用,可以制定合理的投资策略和资 产配置方案,实现资产的保值增值和风 险控制。
2024/1/28
31
07
排队论
2024/1/28
32
排队论的基本概念
2024/1/28
清华大学出版《运筹 学》第三版完整版课

2024/1/28
1
目录
2024/1/28
• 绪论 • 线性规划 • 整数规划 • 动态规划 • 图与网络分析 • 存储论 • 排队论
2
01
绪论
2024/1/28
3
运筹学的定义与发展
运筹学的定义
运筹学是一门应用数学学科,主要研究如何在有限资源下做出最优决策,以最 大化效益或最小化成本。
目标函数
表示决策变量的线性函数,需要最大化或最 小化。
约束条件
表示决策变量需要满足的线性等式或不等式。
2024/1/28
决策变量
表示问题的未知数,需要在满足约束条件的 情况下求解目标函数的最优值。
8
线性规划问题的图解法
01
可行域
表示所有满足约束条件的决策变量构成的集合。
2024/1/28
02
目标函数等值线
2024/1/28
34
单服务台排队系统
M/M/1排队系统
到达间隔和服务时间均服从负指数分布的单服务台排队系 统。
M/D/1排பைடு நூலகம்系统
到达间隔服从负指数分布,服务时间服从确定型分布的单 服务台排队系统。
表格。
10

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

运筹学所有内容 ppt课件

运筹学所有内容 ppt课件

pj xj
( ) B
X 0
其中: C (c 1c 2 c n )
x1
X
x n
Pj
a
1
j
a mj
b1
B
b m
运筹学所有内容
Page 24
矩阵形式:
max(min)Z CX
AX ( ) B
X
0
其中: C (c 1c 2 c n )
a11 a1n
A
a1 x1 1 a1 x2 2 a1nxn ( ) b1
约束条件: am1x1 am2x2 am xn n ( )bm
x1 0xn 0
n
简写为: max(min)Z cj xj j1
n
aijxj ( )bi (i 1 2m)
j1
xj 0
(j 1 2n)
运筹学所有内容
向量形式: max(min)z CX
“管理运筹学”2.0版包括:线性规划、运输问题、整数规划(0-1整数 规划、纯整数规划和混合整数规划)、目标规划、对策论、最短路径、 最小生成树、最大流量、最小费用最大流、关键路径、存储论、排队论、 决策分析、预测问题和层次分析法,共15个子模块。
运筹学所有内容
Chapter1 线性规划
(Linear Programming)
本章主要内容:
LP的数学模型 图解法 单纯形法 单纯形法的进一步讨论-人工变量法 LP模型的应用
运筹问题 生产和经营管理中经常提出如何合理安排,使人力、 物力等各种资源得到充分利用,获得最大的效益, 这就是规划问题。 线性规划通常解决下列两类问题: (1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)

运筹学教学课件(全)

运筹学教学课件(全)

实用举例
某公司通过市场调研,决定生产高中档新型拉杆箱。 某分销商决定买进该公司3个月内的全部产品。拉杆箱生 产需经过原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用 7/10小时剪裁、5/10小时缝合、1小时定型、1/10小时检 验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时缝合、 2/3小时定型、1/4小时检验包装。由于公司生产能力有限, 3月内各部的最大生产时间为剪裁部630小时、缝合部600 小时、定型部708小时、检验包装部135小时。
D {x | Ax b, x (x1,, xi ,, xn ) 0}
是凸集(凸多面体)。
引理2.1:线性规划的可行解 x (x1 ,, xn )T 为基本可行解的 充分必要条件是x的正分量所对应的系数列向量是线性无关的, 即每个正分量都是一个基变量。
定理2.2:线性规划问题的基本可行解x对应于可行域的顶点
通过分析生产过程,得出:生产中档拉杆箱需要用
7/10小时可剪裁以、通5/1过0小线时性缝合规、划1小求时定解型!、1/10小时
检验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时 缝合、2/3小时定型、1/4小时检验包装。由于公司生产 能力有限,3月内各部的最大生产时间为剪裁部630小时、 缝合部600小时、定型部708小时、检验包装部135小时。
x2
L1:x1=6 L3:2x1+3x2=18
B 可行域
L2:x2=4 最优解
x1
4x1+3x2
解的特殊情况——解的特殊情况——无界解
线性规划的基本性质
若线性规划有最 优解,则最优解必在可 行域的顶点上达到。
X
可行域内部的点 • 可行解? 是 • 最优解? 不

运筹学全册精品完整课件

运筹学全册精品完整课件
否则,目标函数等值线与可行域 将交于无穷远处,此时称无有限最 优解。
36
例2-2 考虑例2-1
某工厂拥有A、B、C 三种类型的设备,
生产甲、乙两种产品。每件产品在生产中 需要占用的设备机时数,每件产品可以获 得的利润以及三种设备可利用的时数如下 表所示。问题:工厂应如何安排生产可获 得最大的总利润?
一、线性规划问题的提出
在实践中,根据实际问题的要求,常常 可以建立线性规划问题数学模型。
例2-1 我们首先分析开篇案例提到的问题。 解:设变量 xi 为第 i 种(甲、乙)产品的 生产件数(i=1,2)。根据题意,我们知道 两种产品的生产受到设备能力(机时数)的 限制。对设备A:两种产品生产所占用的机时 数不能超过65,于是我们可以得到不等式:
运筹学是运用科学的方法(如 分析、试验、量化等)来决定如何 最佳地运营和设计各种系统的一门 学科。
4
运筹学概述
运筹学能够对经济管理系统中 的人力、物力、财力等资源进行统 筹安排,为决策者提供有依据的最 优方案,以实现最有效的管理。
通常以最优、最佳等作为决策 目标,避开最劣的方案。
5
运筹学的产生和发展
8பைடு நூலகம்
运筹学在管理中的应用
生产计划:生产作业的计划、日程表的
编排、合理下料、配料问题、物料管 理等。
库存管理:多种物资库存量的管理,库
存方式、库存量等。
运输问题:确定最小成本的运输线路、
物资的调拨、运输工具的调度以及建
厂地址的选择等。
9
运筹学在管理中的应用
• 人事管理:对人员的需求和使用的 预测,确定人员编制、人员合理分 配,建立人才评价体系等。
x1 ,x2 ,… ,xn ≥ 0

《运筹学》全套课件清华大学

《运筹学》全套课件清华大学
通过线性规划分配有限的资源 ,使得整体效益最大化。
运输问题
通过线性规划求解运输问题中 的最优运输方案,使得总运费 最小化。
投资组合
通过线性规划确定最优的投资 组合,使得风险最小化或收益
最大化。
03
整数规划
整数规划问题的数学模型
整数规划问题的定义和分类
介绍整数规划问题的基本概念、分类以及与其 他优化问题的关系。
03

Bellman-Ford算法
适用于存在负权边的图,通过不断松弛边的方式求解最短路。
网络最大流问题
网络最大流问题的定义
给定一个有向带权图,找到从源点到汇点的最大流 量。
增广路算法
通过不断寻找增广路来增加流量,直到没有增广路 为止。
Edmonds-Karp算法
对增广路算法进行优化,使用广度优先搜索寻找增 广路。
整数规划问题的应用
生产计划问题
阐述整数规划在生产计划问题中的应用,如 生产批量计划、生产排程等。
金融投资问题
分析整数规划在金融投资问题中的应用,如 投资组合优化、风险管理等。
物流配送问题
探讨整数规划在物流配送问题中的应用,如 车辆路径问题、设施选址问题等。
其他应用领域
介绍整数规划在其他领域的应用,如计算机 科学、生物医学工程等。
运筹学的应用领域
工业工程
在生产计划、物流管理、设施规划等领域 ,运筹学可以帮助企业提高生产效率、降 低成本、优化资源配置。
其他领域
如金融工程、医疗健康、环境保护等领域 ,运筹学也发挥着重要作用,为各种实际 问题提供有效的解决方法。
交通运输
在交通规划、交通控制、航空运输等领域 ,运筹学可以优化交通网络设计、提高运 输效率、减少交通拥堵等问题。

《高等运筹学》课件

《高等运筹学》课件

动态规划的应用案例
总结词
列举几个动态规划在实际问题中的应用案例,包括生产与存储问题、背包问题、排程问 题等。
详细描述
动态规划的应用案例包括生产与存储问题,通过动态规划方法确定最佳的生产和存储策 略,以最小化总成本;背包问题,通过动态规划求解给定重量限制和价值总和最大的物 品组合;排程问题,通过动态规划安排任务或活动的最佳顺序,以最小化总完成时间。
详细描述
整数规划的数学模型可以表示为 在满足一系列约束条件下,最小 化或最大化一个目标函数,其中 决策变量是整数。约束条件可以 是等式或不等式,并且可以包含 其他决策变量。
整数规划的求解方法
总结词
整数规划的求解方法可以分为精确求解和近似求解两大类。
详细描述
精确求解方法包括分支定界法、割平面法等,这些方法可以找到整数规划问题的最优解,但计算复杂度较高,对 于大规模问题难以求解。近似求解方法包括启发式算法、元启发式算法等,这些方法可以在较短的时间内找到近 似最优解,但解的质量与问题的规模和约束条件有关。
整数规划的应用案例
总结词
整数规划在金融领域也有广泛应用, 如投资组合优化、风险管理等。
详细描述
在投资组合优化中,整数规划可以用 于确定最优的投资组合方案,实现风 险和收益的平衡。在风险管理中,整 数规划可以用于确定最优的风险控制 策略,降低风险损失。
04
非线性规划
非线性规划的定义与模型
总结词
非线性规划是一种数学优化方法,用于解决 目标函数和约束条件均为非线性函数的问题 。
06
动态规划
动态规划的定义与模型
总结词
详述动态规划的基本定义,包括其核心思想、特点以 及在优化问题中的应用。
详细描述

《运筹学》全套课件(完整版)

《运筹学》全套课件(完整版)
负指数分布、几何分布、爱尔朗分布等。
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。

运筹学PPT完整版

运筹学PPT完整版
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
s.t

n j1
aij
xj
bi
(i 1,2,,m)
(2)
xj 0, j 1,2,,n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 28
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
maxZ 2x1 x2 3(x3 x3)0x4 0x5
5x1 x2 (x3 x3) x4 7
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
线性规划问题的数学模型
Page 17
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints

运筹学PPT完整版

运筹学PPT完整版

C 变量:决策变量和非决策变量
B 约束条件:线性等式或不等式
A 目标函数:求最大值或最小值
非线性规划
目标函数:非线性函数
约束条件:非线性不等式
求解方法:梯度下降法、 牛顿法、拟牛顿法等
应用领域:生产计划、资 源分配、投资决策等
动态规划
基本概念:将复杂问题分解为若干子 0 1 问题,通过求解子问题来解决原问题
运筹学广泛应用于生产、运输、库存、销售、人力 资源等各个领域。
运筹学通过建立数学模型,求解最优解,以实现资 源的合理配置和高效利用。
运筹学的应用领域
生产与运营管理 项目管理 交通与运输规划
供应链管理 财务管理 资源分配与调度
运筹学的发展历程
起源:二战期间, 军事需求推动运 筹学的发展
20世纪50年代: 运筹学逐渐应用 于工业、经济等 领域
适用范围:解决资源分配、路径规划、 02 生产调度等问题
主要步骤:划分阶段、确定状态、建 0 3 立状态转移方程、求解最优解
特点:具有最优子结构性质,能够高 04 效地求解复杂问题
运筹学的实际应 用
生产计划与调度
生产计划:根据市场需求和生产能力制定生产计划, 包括生产数量、生产时间、生产地点等
生产调度:根据生产计划,合理分配生产资源,包 括人员、设备、原材料等
场趋势
运筹学在生物学中 的应用:分析生物 种群数量变化,预
测生物进化趋势
运筹学在工程学中 的应用:优化工程 设计,提高工程效

THANK YOU
汇报人:稻小壳
运筹学与人工智 能的结合,拓展
2 了运筹学的应用
领域
3 运筹学与人工智
能的结合,推动 了运筹学的理论 研究和实践应用

第三部分运筹学方法 ppt课件

第三部分运筹学方法  ppt课件

s.t.
x1 x2 12 x1 3课x件2 18
x1, x2 0
28
• (1)第一步,求可行解域:
• 可行解域是所有满足约束条件的数组,四 个不等式是四个半平面,而可行解域就是 这四个半平面的公共部分。其形状为一个 凸多边形区域,可行解是凸多边形内的一 个点,如图5.1。
课件
29
15
• 定义5.2 某个线性规划模型的全体可行解 组成的集合,称为该线性规划模型的可 行解域。
课件
23
二.线性规划模型的标准型
• 线性规划模型的标准型为:
目标函数 max Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
约束条件(s.t.)
a21 x1
利润 Z 2x1 5x2 最大;
第三步,确定约束条件:在这个问题中,约束条件是设 备及材料的限制,
设备 A: x1 2x2 8
材料 A: 6x1 24
材料 B: 5x2 15
课件
14
则这一问题的线性规划模型为:
max Z 2x1 5x2
x1 2x2 8
6x1 24 5x2 15
s.t
. x1 , x2 0
课件
15
• 例题5.2(合理下料问题)某厂生产 过程中需要用长度分别为3.1米、 2.5米和1.7米的同种棒料毛坯分 别为200、100和300根,而现在只 有一种长度为9米的原料,问应如何 下料才能使废料最少?
课件
16
解 解决下料问题的关键在于找出所有可能的下料方法
5xx11
x2 x2
10 5
解出
B
点坐标为
5 4
,
15 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划通常解决下列两类问题: (1)当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源 (如资
金、设备、原标材料、人工、时间等)去完成确定的任务或目标
(2)在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产 品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮 所围成的容积最大?
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0 x a 6
线性规划问题的数学模型
例1.2 某企业计划生产甲、乙两种产品。这些产品分别要在A、B、C、 D、四种不同的设备上加工。按工艺资料规定,单件产品在不同设备上 加工所需要的台时如下表所示,企业决策者应如何安排生产计划,使企
国有人把运筹学称之为管理科学 (Management Science)。运筹学所研究的 问题,可简单地归结为一句话:
“依照给定条件和目标,从众多方案中选择 最佳方案”
故有人称之为最优化技术。
运筹学简述
运筹学的历史
“运作研究(Operational Research)小组”:解决复杂的战略和战 术问题。例如:
Chapter1 线性规划
(Linear Programming)
本章主要内容:
LP的数学模型 图解法
单纯形法 单纯形法的进一步讨论-人工变量法
LP模型的应用
线性规划问题的数学模型
1. 规划问题 生产和经营管理中经常提出如何合理安排,使人力、物力等各种资 源得到充分利用,获得最大的效益,这就是规划问题。
经济学核心课程
运筹学
( Operations Research )
绪论
本章主要内容:
(1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美
业总的利润最大?
设备 产品
A
B
C
D 利润(元)

2
1
4
0
2

2
2
0Hale Waihona Puke 43有效台时
12
8
16 12
线性规划问题的数学模型
解:设x1、x2分别为甲、乙两种产品的产量, 则数学模型为ma:x Z = 2x1 + 3x2
2x1 + 2x2 ≤ 12
x1 + 2x2 ≤ 8
4x1
≤ 16
s.t.
4x2 ≤ 12
1. 生产计划 2. 运输问题 3. 人事管理 4. 库存管理 5. 市场营销 6. 财务和会计
另外,还应用于设备维修、更新和可靠性 分析,项目的选择与评价,工程优化设计 等。
运筹学在工商管理中的应用
组织 联合航空公司 Citgo石油公司 AT&T 标准品牌公司 法国国家铁路公司 Taco Bell Delta航空公司
约束条件:
am1 x1 am2 x2 amn xn ( ) bm
x1 0 xn 0
简写为:
n
max(min) Z c j x j j1
n
aij x j ( ) bi (i 1 2m)
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜艇攻击时损失
最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深度,才能增加
对德国潜艇的杀伤力等。
运筹学的主要内容
数学规划(线性规划、整数规划、目 标规划、动态规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
x1 ≥ 0 , x2 ≥ 0
线性规划问题的数学模型
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
怎样辨别一个模型是线性规划模型? 其特征是:
(1)问题的目标函数是多个决策变量的线性函数,通常是求最大值或 最小值;
运筹学的研究的主要步骤:
真实系统
系统分析 问题描述
数据准备
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业 学科总成绩
平时成绩 (40%)
期末成绩 (60%)
课堂考勤 (50%)
平时作业 (50%)
运筹学在工商管理中的应用
运筹学在工商管理中的应用涉及几个方面 :
本课程的教材及参考书
选用教材
《运筹学基础及应用》胡运权主编 哈工大出版社
参考教材
《运筹学教程》胡运权主编 (第2版)清华出版社 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 《运筹学》(修订版) 钱颂迪主编 清华出版社
本课程的特点和要求
先修课:高等数学,基础概率、线性代数 特点:系统整体优化;多学科的配合;模型方法的应用
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
每年节约成本1500万美元, 年收入大幅增加。 每年节约成本1300万美元
优化配置上千个国内航线航班来实现利润 每年节约成本1亿美元 最大化
“管理运筹学”软件介绍
“管理运筹学”2.0版包括:线性规划、运输问题、整数规划(0-1整 数规划、纯整数规划和混合整数规划)、目标规划、对策论、最短 路径、最小生成树、最大流量、最小费用最大流、关键路径、存储 论、排队论、决策分析、预测问题和层次分析法,共15个子模块。
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
(2)问题的约束条件是一组多个决策变量的线性不等式或等式。
线性规划问题的数学模型
3. 线性规划数学模型的一般形式
目标函数: max (min) z c1 x1 c2 x2 cn xn
a11 x1 a12 x2 a1n xn ( ) b1




相关文档
最新文档