2018-2019学年最新苏教版八年级数学上册第三章《勾股定理》专题练习及答案-精品试题

合集下载

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,△ABC是的内接等边三角形,AB=1.点D,E在圆上,四边形为矩形,则这个矩形的面积是()A. B. C. D.12、如图,Rt△ABC中,∠C=90°,∠B=30°,AC=.按以下步骤作图:①以A为圆心,以小于AC长为半径画弧,分别交AC,AB于点E、D;②分别以D,E为圆心,以大于DE长为半径画弧,两弧相交于点P;③连接AP交BC于点F.那么BF的长为()A. B.3 C.2 D.3、菱形的周长为20cm,两邻角的比为1:2,则较长的对角线长为().A.4.5cmB.4cmC. cmD. cm4、下列各组线段能构成直角三角形的一组是()A.5cm,9cm,12cmB.7cm,12cm,13cmC.30cm,40cm,50cm D.3cm,4cm,6cm5、在△ABC中,∠A=90°,对应三条边分别为a、b、c,则a、b、c满足的关系为()A.a 2+b 2=c 2B.a 2+c 2=b 2C.b 2+c 2=a 2D.b+c=a6、如图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=3,BC=8,则FC的长度为()A.6B.5C.4D.37、如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P 是AB上的动点,则PC+PD的最小值为()A.4B.5C.6D.78、直角三角形的两条边长为5和12,它的斜边长为()A.13B.C.13或D.13或129、如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,BC=12 cm,则其斜边上的高为()A.6 cmB.8.5 cmC. cmD. cm10、如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分B.相等C.互相垂直D.互相垂直平分11、如图①,在边长为2cm的正方形ABCD中,点P以每秒1cm的速度从点A出发,沿AB→BC的路径运动,到点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A. cmB. cmC. cmD. cm12、如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,过点D 作DF⊥AB于点E,交⊙O于点F,OE=1cm,DF=2cm,则CB的长为( )A.4-B.5-C.2D.413、如图,四边形ABCD中∠DAB=60°,∠B=∠D=90°,BC=1,CD=2,则对角线AC的长为()A. B. C. D.14、已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB于点P,则AP:AB=()A. B. C. D.15、一棵大树在一次强台风中于离地面米处折断倒下,倒下部分与地面成夹角,这棵大树在折断前的高度为()A. 米B. 米C. 米D. 米二、填空题(共10题,共计30分)16、如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为________.17、如图,在平面直角坐标系xOy中,已知点A(0,),B(-1,0),菱形ABCD的顶点C在x轴的正半轴上,其对角线BD的长为________。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处,当为直角三角形时,的长为()A.3B.C.2或3D.3或2、如图,已知正方形的边长为,点在正方形内,都是等边三角形,则的长为()A. B. C. D.3、圆的一条弦长为6,其弦心距为4,则圆的半径为()A.5B.6C.8D.104、三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形5、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是( )A.18B.114C.194D.3246、如图是一个利用四边形的不稳定性制作的菱形晾衣架.已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉A、B之间的距离为cm,则∠1等于()A.90°B.60°C.45°D.30°7、下列各组数中,以它们为边长的线段不能构成直角三角形的是().A.6,8,10B.8,15,17C.1,,2D.2,2,8、如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C 的半径为()A.2.3B.2.4C.2.5D.2.69、如图,以数轴的单位长度为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画圆,交数轴正半轴于点A,则点A表示的数是()A. B.1.4 C.D.10、△ABC中,∠B=90º,两直角边AB=7,BC=24,在三角形内有一点P到各边的距离相等,则这个距离是()A.1B.3C.6D.无法求出11、如图,已知△ABC中,BC=13cm,AB=10cm,AB边上的中线CD=12cm,则AC的长是()A.13cmB.12cmC.10cmD. cm12、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.3,5,6B.2,3,5C.5,6,7D.6,8,1013、如图,半圆O的直径AB=4,与半圆O内切的小圆O,与AB切于点M,设1的半径为y,AM=x,则y关于x的函数关系式是()⊙O1A.y= x 2+xB.y=- x 2+xC.y=- x 2-xD.y= x 2-x14、△ABC中,∠C=90°,AC=8,BC=6,则cosA的值是()A. B. C. D.15、如图,分别以数轴的单位长度1和2为直角边长作Rt△OBC,然后以点B 为圆心,线段BC的长为半径画弧,交数轴于点A,那么点A所表示的数为A. B.1+ C. +2 D.3.2二、填空题(共10题,共计30分)16、在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的面积为________.17、如图,矩形中,,点为上一点,将沿折叠得到,点为上一点,将沿折叠得到,且落在线段上,当时,则的长为________.18、如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是________19、如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,在边长为的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF= 的点P的个数是()A.0B.4C.8D.162、满足下列条件的三角形中,不是直角三角形的是有()A.三内角之比为3:4:5B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角比为1:2:33、如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A.76B.72C.68D.524、Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cmB.3cmC.4cmD.5cm5、小明准备测量一段河水的深度,他把一根竹竿直插到离岸边6分米远的水底,竹竿高出水面2分米,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A.7dmB.8dmC.9dmD.10dm6、如图,半径为10的圆中,弦AB垂直平分半径OC,则弦AB的长为()A.5B.C.10D.7、以下列各组数为三角形的边长,能构成直角三角形的是( )A.8,12, 17B.1,2,3C.6,8,10D.5,12,98、如图,在Rt△AED中,∠E=90°,AE=3,ED=4,以AD为边在△AED的外侧作正方形ABCD,则正方形ABCD的面积是()A.5B.25C.7D.109、如图,在正方形ABCD中,点E在BC上,若,,那么BE 的长为()A. B. C.1 D.10、如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A的面积是()A.16B.32C.34D.6411、如图所示,一个圆柱高为8cm,底面圆的半径为5cm,则从圆柱左下角A点出发.沿圆柱体表面到右上角B点的最短路程为()A. cmB. cmC. cmD.以上都不对12、如图,将一根长25cm的细木棒放入长、宽、高分别为的长方体盒子中,则细木棒露在外面的最短长度是()cmA.20B.15C.10D.513、如图,在一笔直的海岸线上有两个测点,,从处测得船在北偏东的方向,从处得船在北偏东的方向,则船离海岸线的距离北的长为()A. B. C. D.14、如图是某地的长方形大理石广场示意图,如果小王从A角走到C角,至少走多少米()A.70B.40C.50D.250015、△ABC中,∠C=90°,AC=8,BC=6,则cosA的值是()A. B. C. D.二、填空题(共10题,共计30分)16、如图:已知:,,垂足分别为、,点是上使的值最小的点.若,,,则________.17、如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB =8,则AE的长为________.18、已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求:(1)AB的长为________=________(2)S△ABC19、如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=,则点F的坐标是________.20、如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B 的坐标为(3,),点C的坐标为(1,0),点P为斜边OB上的一动点,则△PAC周长的最小值为________21、如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为________.22、如图,在平面直角坐标系中,y轴上一点A(0,2),在x轴上有一动点B,连结AB,过B点作直线l⊥x轴,交AB的垂直平分线于点P(x,y),在B点运动过程中,P点的运动轨迹是________。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案
14、C
15、C
二、填空题(共10题,共计30分)
16、
17、
18、
19、
20、
21、
22、
23、
24、
25、
三、解答题(共5题,共计25分)
26、
27、
28、
29、
30、
苏科版八年级上册数学第三章勾股定理含答案
一、单选题(共15题,共计45分)
1、下列各组数中,以a,b,c为边长的三角形不是直角三角形的是()
A.a=3,b=4,c=5 B.a=4,b=5,c=6 C.a=6,b=8,c=10 D.a=5,b=12,c=13
2、如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )
21、如图,把矩形纸片 沿 折叠,使点B落在边 上的点 处,点A落在点 处,已知 .则 ________.
22、如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=________.
23、现有两根木棒的长度分别为40cm和50cm,若要钉成一个直角三角形木架,则所需木棒长度为________.
29、如图所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长.
30、如图,在四边形 中, , , , .
求 的度数.
参考答案
一、单选题(共15题,共计45分)
1、B
2、C
3、A
4、D
5、C
6、C
7、C
8、D
9、C
10、B
11、C

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形2、如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC 边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A. cmB.4cmC. cmD.2 cm3、一直角三角形的斜边比一直角边大4,另一直角边长为8,则斜边长为()A.6B.8C.10D.124、如图,在△ABC中,∠C=90°,AB=5 ,BC=3,则tanB的值是()A. B. C. D.5、已知一个直角三角形的两直角边长分别为3和4,则斜边长是()A. B. C.5 D. 或56、下列各组线段能构成直角三角形的一组是()A.2,3,4B.6,8,11C.1,1,D.5,12,237、己知两边的长分别为8,15若要组成一个直角三角形,则第三边应该为()A.不能确定B.C.D. 或8、如图,中,,,,将折叠,使点与的中点重合,折痕为,则线段的长度为().A. B. C. D.9、如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169B.25C.19D.1310、如图,已知△ABC中,AB=10 ,AC=8 ,BC = 6 ,DE是AC的垂直平分线,DE交AB于点D ,交AC于点E ,连接CD ,则CD的长度为()A.3B.4C.4.8D.511、如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A. B. C. D.12、在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.1,4,9C.5,12,13D.5,11,1213、下列各组数中,是勾股数的是()A. ,,B. ,,C. ,,D. ,,14、如图,5行5列点阵中,左右(或上下)相邻的两个点间距离都是1,若以图中的点为顶点画正方形,共能画出面积互不相等的正方形有()A.7个B.8个C.9个D.10个15、如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为AN的中点,P是直径MN上一动点,则PA+PB的最小值为()A. B. C.1 D.2二、填空题(共10题,共计30分)16、王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为________m.17、如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是________.18、如图,在边长为2的菱形ABCD中,∠A=60°,M是边AD的中点,N是AB 上一动点(不与A、B重合),将△AMN沿MN所在直线翻折得到△A1MN,连接A 1C, A1C的最小值为________.19、抛物线y=﹣x+2与y轴交于点A,顶点为B.点P是x轴上的一个动点,当点P的坐标是________时,|PA﹣PB|取得最小值.20、直角三角形两条直角边的长分别为5、12,则斜边为________.21、如图,在2×2的正方形网格中四个小正方形的顶点叫格点,已经取定格点A和B,在余下的格点中任取一点C,使△ABC为直角三角形的概率是________.22、如图,长方体中,,,,一只蚂蚁从点出发,以秒的速度沿长方体表面爬行到点,至少需要________分钟。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、已知在中,弦AB的长为8,圆心O到AB的距离为3,则的面积是()A. B. C. D.2、下列各组数不是勾股数的是()A.2、3、4B.3、4、5C.6、8、10D.5、12、133、下列长度的三条线段中,不可以构成直角三角形的是()A.5,12,14B.7,24,25C.8,15,17D.9,12,154、△ABC满足下列条件中的一个,其中不能说明△ABC是直角三角形的是()A.b 2=(a+c)(a﹣c)B.a∶b∶c=1∶∶2C.∠C=∠A﹣∠B D.∠A∶∠B∶∠C=3∶4∶55、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+C.12或7+D.以上都不对6、若的三边长分别是,,,则下列条件:(1);(2);(3);(4)其中能判定是直角三角形的个数有().A.4个B.3个C.2个D.1个7、如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,图中的△ABC为格点三角形,它的三边a,b,c的大小关系是()A.b<c<aB.a<c<bC.c<b<aD.b<a<c8、如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米9、如图,在数轴上点A所表示的数为a,则a的值为()A. B. C. D.10、如图,正方形小方格边长为1,则网格中的△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对11、在△ABC中,AB=15,AC=13,高AD=12,则BC等于()A.14B.4C.14或4D.9或512、如图,O为△ABC内任意一点,OD⊥AB,OE⊥AC,OF⊥BC,若OD=OE=OF,连接OA,OB,OC,下列说法不一定正确的是()A.△BOD≌△BOFB.∠OAD=∠OBFC.∠COE=∠COFD.AD=AE13、如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A. B. C. D.14、如图,正方形的边长为6,点分别在边上,若是的中点,且,则的长为()A. B. C. D.15、若△ABC中,AB=13,BC=5,AC=12,则下列判断正确的是()A.∠A=90°B.∠B=90°C.∠C=90°D.△ABC是锐角三角形二、填空题(共10题,共计30分)16、如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上的点,测得BC =25m,AC=15m,则A,B两点间的距离是________m.17、如图,点O为等腰三角形ABC底边BC的中点, , ,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为________.18、如图,在平面直角坐标系中,矩形ABOC的顶点O在坐标原点,边BO在x 轴的负半轴上,AC长为,若将边AC平移至A'C'处,此时A'坐标为(-4,2),分别连接A'B,C'O,反比例函数y= 的图象与四边形A'BOC'对角线A'O 交于D点,连接BD,则当BD取得最小值时,k的值是________ .19、在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,如果AC=6,AB=8,那么AD的长度为________.20、如图,在中,,,.进行如下操作:①以点C为圆心,以的长为半径画弧交于点D;②以点A为圆心,以的长为半径画弧交于点E.则点E是线段的黄金分割点.根据以上操作,的长为________.21、一个直角三角形的两条直角边边长分别为10和24,则第三边长是________.22、已知A(-1,1),B(1,1),在直线y = - x+4上找一点P,使PA+PB最小,则点P坐标为________.23、如图所示,分别以直角三角形的三边为直径作三个半圆,则半圆的直径等于________.24、如图是拦水坝的横断面.斜坡AB的坡度为1:2,BC⊥AE,垂足为点C,AC 长为12米,则斜坡AB的长为________米.25、在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、如图所示,有一个圆柱体,高为12cm,底面半径为3cm,在圆柱下底面A 处有一只蜘蛛.它想到上底面B处捉住一只苍蝇,则蜘蛛所走的最短路线长应为多少cm(π取3.0).28、已知:如图,四边形ABCD中,AB⊥BC,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、下列能构成直角三角形三边长的是()A.1,2,3B.C.D.4,5,62、如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1 条B.2条C.3条D.4条3、满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:54、正方形网格中,△ABC如图放置,则sin∠BAC=()A. B. C. D.5、已知直角三角形两边的长为3和4,则第三边的长为()A.5B.C.5或﹣1D.以上都不对6、如图,在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有()A.1条B.2条C.3条D.4条7、如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A. B. C. D.8、如图,菱形ABCD中,,,M为AB的中点.动点P在菱形的边上从点B出发,沿的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,,则表示y与x的函数关系的图象大致为()A. B. C. D.9、一个直角三角形,有两边长分别为6和8,下列说法正确的是()A.第三边一定为10B.三角形的周长为25C.三角形的面积为48 D.第三边可能为1010、如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6B.8C.12D.1011、如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF 的最小值是()A.2B.1C. -1D. -212、如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.C.2+D.2+13、如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BCB.CEC.ADD.AC14、下列三边的长不能成为直角三角形三边的是()A.3,4,5B.4,5,6C.6,8,10D.5,12,1315、如图①,在边长为2cm的正方形ABCD中,点P以每秒1cm的速度从点A出发,沿AB→BC的路径运动,到点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A. cmB. cmC. cmD. cm二、填空题(共10题,共计30分)16、在△ABC中,AB=10,AC=17,BC边上的高为8,则△ABC的面积为________.17、如下图,已知四边形OABC为正方形,边长为6,点A,C分别在x轴、y轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是________.18、如图所示,直线 y=x+2 与两坐标轴分别交于 A、B 两点,点 C 是 OB 的中点,D、E 分别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.19、如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是________.20、如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A处,BC=8,那么线段AE的长度为________.121、在中,,,,则线段AC的长为________.22、如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇生长在它的中央,高出水面的部分为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部恰好碰到岸边的,则这根芦苇的长度是________尺.23、如图,在平行四边形ABCD中,AB=8,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=2,则AE的长为________.24、如图,在等腰△ABC中,底边BC=16,底边上的高AD=6,则腰AB=________.25、如图,BD为长方形ABCD的对角线,BD=10,∠ABD=30°,求长方形ABCD的面积________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=16,AB=CD=34.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,求DE的长.28、在四边ABCD中,∠D=90°,AD= ,CD=2,BC=3,AB=5,,求:四边形ABCD的面积.29、阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.30、由于大风,山坡上的一棵树甲被从点A处拦腰折断,如图,其树恰好落在另一棵树乙的根部C处,已知AB=1米,BC=5米,已知两棵树的水平距离为3米,请计算出这棵树原来的高度(结果保留根号)参考答案一、单选题(共15题,共计45分)1、C2、B4、D5、D6、B7、A8、B9、D10、D11、C12、D13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,在ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB交∠CAB的平分线AE于点O,点P是AC延长线上一点,OP=OB,现有下列结论:①∠OCP=∠OEB;②∠POB=90°;③CP=OD;④SCOP =SCOE;⑤PC2+BC2=OP2+OB2.其中正确的有()A.1个B.2个C.3个D.4个2、如图,直线l为等腰梯形ABCD的对称轴,点P在直线l上,且PC+PB最小,则点P应位于()A.点P1处 B.点P2处 C.点P3处 D.点P4处3、要登上某建筑物,靠墙有一架梯子,底端离建筑物3m,顶端离地面4m,则梯子的长度为()A.2mB.3mC.4mD.5m4、已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为()A.7B.5C.D.5或5、如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a ∥b∥c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A.16B.30C.34D.646、设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根.其中,所有符合题意说法的序号是A.①④B.②③C.①②④D.①③④7、a、b、c为△ABC三边,满足下列条件的三角形不是直角三角形的是()A.∠C=∠A-∠BB.a:b:c = 1 : :C.∠A∶∠B∶∠C=5∶4∶3D. ,8、直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为().A.6B.8.5C.D.9、三角形的三边长分别为6,8,10,它的最长边上的高为()A.6B.4.8C.2.4D.810、在边长为2的正方形ABCD中,P为AB上一动点,E为AD中点,PE交CD 延长线于Q,过E作EF⊥PQ交BC延长线于F,则下列结论:①△APE≅△DQE;②PQ=EF;③当P为AB中点时,CF= ;④若H为QC中点,当P从A移动到B 时,线段EH扫过的面积为.其中正确的是()A.①②B.①②④C.②③④D.①②③11、下列数组中,不是勾股数组的是 ( )A.8,12,15B.7,25,24C.5,12,13D.3k,4k,5k(k为正整数)12、已知一个直角三角形的两条边长分别是6和8,则第三边长是()A.10B.8C.2D.10或213、若直角三角形的两直角边长分别为5、12,则这个直角三角形的斜边长是()A.13B.C.169D.14、如图,菱形ABCD中,AB=2,∠A=120°,点P是直线BD上一动点,连接PC,当PC+ 的值最小时,线段PD的长是()A. B. C. D.15、如图,在四边形ABCD中,AB=BC=2 ,AD=2,∠B=∠D=90°,则CD 等于()A.2B.C.2D.二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD于点E,AE=CD,若⊙O的半径为5,则弦CD的长为________.17、如图,半径为且坐标原点为圆心的圆交轴、轴于点、、、,过圆上的一动点(不与重合)作,且在右侧)⑴连结,当时,则点的横坐标是________.⑵连结,设线段的长为,则的取值范围是________.18、如图,在中,,.将绕点B 逆时针旋转60°,得到,则边的中点D与其对应点的距离是________.19、如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E 处,点F在BC边上,若CD=6,则AD=________.20、如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱.21、如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为________.22、如图,已知直线AB∥CD,AB与CD之间的距离为,∠BAC=60°,则AC=________.23、如图,已知图中每个小方格的边长为1,则点C到AB所在直线的距离等于________.24、如图,在由12个边长都为1且有一个锐角为60°的小菱形组成的网格中,点P是其中的一个顶点,以点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长________ .25、如图,AD是的中线,,把沿着直线AD对折,点C落在点E的位置,如果,那么线段BE的长度为________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC的长和cos∠ADC的值.27、如图(1),在∆ABC中,AB=BC=5,AC=6,∆ABC沿BC方向平移得到△ECD,连接AE、AC和BE相交于点O。

苏科版八年级数学上册《3.1 勾股定理》同步练习题-带答案

苏科版八年级数学上册《3.1 勾股定理》同步练习题-带答案

苏科版八年级数学上册《3.1 勾股定理》同步练习题-带答案一、单选题1.已知如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形,若斜边AB =10,则图中阴影部分的面积为 ( )A .50B .502C .100D .10022.如图,已知1S 、2S 和3S 分别是Rt ABC △的斜边AB 及直角边BC 和AC 为直径的半圆的面积,则12S S 、和3S 满足关系式为( ).A .123S S S =+B .123S S S <+C .123S S S >+D .无法判断3.如图,点A ,C 都是数轴上的点,AB=AC ,则数轴上点C 所表示的数为( )A .110B .5-C .51-D .101-4.如图,在等腰1Rt OAA 中190OAA ∠=︒,OA=1,以OA 1为直角边作等腰12Rt OA A ,以OA 2为直角边作等腰23Rt OA A ,则2n OA 的长度为( )A .2nB .2nC .2nD .225.在等腰ABC 中,AB=AC=5,13BC )A .12B .3C .32D .186.已知直角三角形的两条直角边长为6,8,那么斜边上的高为( )A .4.8B .5C .7D .107.如图,在Rt△ABC 中,△B=90°,AB=8,BC=4,斜边AC 的垂直平分线分别交AB 、AC 于点E 、O ,连接CE ,则CE 的长为( )A .5B .6C .7D .4.58.四张正方形纸片如图放置,知道下列哪两个点之间的距离,可求最大正方形与最小正方形的面积之和( )A .点K ,FB .点K ,EC .点C ,FD .点C ,E9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为( )A .27cmB .228cmC .242cmD .249cm10.如图,在Rt △ABC 中,△C =90°,D 为AC 上一点,且DA =DB =5,又△DAB 的面积为10,那么△ABC 的面积是( )A .14B .15C .16D .403二、填空题11.在ABC 中30ABC ∠=︒,AE ⊥BC ,AD ⊥AB ,交直线BC 于点D ,若3AB =CD=1,则: (1)AE 的长为 ;(2)AC 的长为 .12.如图,ABC 中=90C ∠︒,AD 平分BAC ∠交BC 于点D ,CD=6,BD=10,AC 长为 .13.在平面直角坐标系xOy 中,点()48,33E t t +--是该平面内任意一点,连接OE ,则OE 的最小值是 . 14.如图,△ABC 中,△C =90°,AC+BC =6,△ABC 的面积为114cm 2,则斜边AB 的长是 cm .15.图1是第七届国际数学教育大会(JCME -7)的会徽图案,它是由一串有公共顶点O 的直角三角形演化而成的.若图2中的11223341OA A A A A A A ====⋯=,按此规律继续演化,则910OA A △的面积为 .三、解答题16.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45︒降为30︒,已知原滑滑板AB 的长为6米,点E 、D 、B 、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方留有4米长的空地就能保证安全,已知原滑滑板的前方8米处的E 点有一棵大树,这样的改造是否可行?说明理由.2 1.414 3 1.732 6 2.449≈)17.中国最强发射震撼上演!2024年2月3日7时37分,我国在西昌卫星发射中心使用长征二号丙运载火箭,成功将吉利星座02组卫星发射升空,11颗卫星顺利进入预定轨道,发射任务获得圆满成功.如图,火箭从地面A 处垂直发射,当火箭到达B 点时从D 处的雷达站测得60km BD = 30ADB ∠=;当火箭到达C 点时,测得45ADC ∠=,求BC 的长.2 1.414≈ 3 1.732≈ 5 2.236≈,结果精确到0.1km )18.明代科学家徐光启所著的《农政全书》是中国古代四大农书之一,其中记载了中国古代的一种采桑工具——桑梯(如图1),其示意图如图2,已知180cm,160cm AB AC AD ===,AC 与AB 的张角BAC ∠记为α,为保证采桑人的安全,α可调整的范围是3060α︒≤≤︒,BC 为固定张角α大小的锁链.(1)求锁链BC 长度的最大值;(2)若60α=︒,将桑梯放置在水平地面上,求此时桑梯顶端D 到地面的距离.(结果保留根号) 19.如图,某校数学兴趣小组开展“初二几何现场实践活动”,他们在操场上设立,,,A B C D 四个点,并给出以下信息:点A 在点B 的西北方向上,点D 在点B 的北偏西15︒方向上,点D 在点A 的东北方向上90BCD ∠=︒,30CD =米,25AD =米.(1)求BC 的长;(2)若小明和小亮从点B 同时出发,分别沿B A D →→和B C D →→到达点D ,若两人的速度相同,请判断小明和小亮谁先到达?并说明理由.3 1.73≈ 2 1.41≈)20.如图所示,15只空油桶堆在一起,每只油桶的底面直径均为50厘米.现在要给它们盖一个遮雨棚,遮雨棚起码要多高?(结果精确到0.01厘米)参考答案1.A2.A3.A4.C5.B6.A7.A8.C9.D10.C11.31321 12.1213.125/2.4/22514.515.3 216.(1)2.49米(2)可行,略17.22.0km18.(1)锁链BC长度的最大值为180cm (2)桑梯顶端D到地面的距离为1703cm 19.(1)40米(2)小明先到达,略20.223.20cm。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点AB.点BC.点CD.点D2、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方A、B、C、D的边长分别是3、5、2、3,则最大正方形E 的面积是()A.13B.26C.34D.473、在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.4、满足下列条件的,不是直角三角形的是()A. B. C.D.5、若菱形两条对角线的长分别为6和8,则这个菱形的边长为( )A.5B.10C.20D.146、如图,一只蚂蚁从长宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是()A.(3 +8)cmB.10cmC.14cmD.无法确定7、已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF= ,= 中正确的是()③AF= ,④S△MEFA.①②③B.②③④C.①③④D.①②④8、若直角三角形两直角边长分别为5,12,则斜边上的高为()A.6B.8C.D.9、在Rt△ABC中,∠C=90°,BC=1,AB=2,则tanA等于()A. B. C. D.10、如图,在正方形中,点在边上,且将沿对折至延长交边于点连接,下列结论:①;②;③.其中正确的是()A.①②B.①③C.②③D.①②③11、如图,在Rt△ABC中,∠C=90°,CDEF为内接正方形,若AE=2cm,BE=1cm,则图中阴影部分的面积为()A.1cm 2B. cm 2C. cm 2D.2cm 212、如图,在中,,,,将绕点逆时针旋转得到,使得点落在上,则的值为()A. B. C. D.13、在△ABC中,AB=10,AC=2 ,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或1014、如图,已知在平面直角坐标系xOy中,抛物线y= 与y轴交于点A,顶点为B,直线l:y=- x+b经过点A,与抛物线的对称轴交于点C,点P 是对称轴上的一个动点,若AP+ PC的值最小,则点P的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,)15、如图,点D是正△ABC内的一点,DB=3,DC=4,DA=5,则∠BDC的度数是()A.120°B.135°C.140°D.150°二、填空题(共10题,共计30分)16、如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.17、如图,在中,,点在上,点为外一点,且为等边三角形,,若,,则的边长为________.18、四根小木棒的长分别是5,8,12,13,任选三根组成三角形,其中有________个直角三角形。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,∠A=90°,以△ABC三边为直径的三个半圆的面积分别为S1、S2、S 3,则S1、S2、S3之间的关系为()A.S2+S3=S1B.S1+S2>S3C.S1+S2<S3D.无法判定2、下列线段,不能组成直角三角形的是()A.a=6,b=8,c=10B.a=1,b=,c=C.D.a=2,b=4,c=3、三角形的三边长分别为6、8、10,它的最短边上的高为( )A.6B.4.5C.2.4D.84、直角三角形中,两直角边分别是12和5,则斜边上的中线长是().A.34B.26C.6.5D.8.55、如图,数轴上点C所表示的数是()A. B. C.3.6 D.3.76、如图,折叠长方形纸片的一边,使点落在边上的点处,已知,,则折痕的长为A. B. C. D.137、三角形的三边长分别为a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定8、如图,∠ACB=90°,AC=BC,CD平分∠ACB,点D,E关于CB对称,连接EB 并延长,与AD的延长线交于点F,连接DE,CE.对于以下结论:①DE垂直平分CB;②AD=BE;③∠F不一定是直角;④EF2+DF2=2CD2.其中正确的是()A.①④B.②③C.①③D.②④9、如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为()A.2B.2C.4D.410、如图,小半圆的直径与大半圆的直径AB重合,圆心重合,弦CD与小半圆相切,CD=10,则阴影部分面积为()A.100πB.50πC.25πD.12.5π11、如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A. B. C. D.12、如图,,点P是内的一定点,点M,N分别在,上移动,当的周长最小时,的度数为()A. B. C. D.13、如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变14、将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.7、24、25B.5、12、13C.3、4、5D.2、3、15、在△ABC中,∠A=90°,对应三条边分别为a、b、c,则a、b、c满足的关系为()A.a 2+b 2=c 2B.a 2+c 2=b 2C.b 2+c 2=a 2D.b+c=a二、填空题(共10题,共计30分)16、如图,点D在△ABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=,AD=,CD=13,则线段AC的长为________.17、腰长为10,一条高为8的等腰三角形的底边长为________.18、如图,△ABC与△BED全等,点A,C分别与点B,D对应,点C在BD上,AC与BE交于点F.若∠ABC=90°,∠D=60°,则AF:BD的值为________.19、在中,边,对角线,边的高,则的周长为________.20、如图,正方形ABCD的边长为4,E是边BC上的一点且BE=1,P为对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是________.21、如图,直角三角形纸片的两直角边长分别为6和8,按如图那样折叠,使点A与点B重合,则折痕DE长为________.22、已知△ABC的三边长分别为1,3,,则△ABC的面积为________.23、如图,中,,,点在边上运动(不与点,重合),以为边作正方形,使点在正方形内,连接,则下列结论:①;②当时,;③点到直线的距离为;④面积的最大值是.其中正确的结论是________.(填写所有正确结论的序号)24、如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了________.25、如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.已知CD=2,则AB的长度等于________.三、解答题(共5题,共计25分)26、在Rt△ABC中,∠ACB=90°,AC=3,tanB= ,求AB的值.27、如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,求BC的长.28、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿哪个方向航行吗?29、如图,∠ABD=∠C=90°,AD=9,AC=BC,∠DAB=30°,求BC的长.30、如图,一根旗杆在离地面9 m处断裂,旗杆顶部落在离旗杆底部12 m处,旗杆在折断之前有多高.参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、C5、A6、A8、D9、B10、D11、C12、B13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,在3×4的正方形网格图中,小正方形的边长为1,的顶点均在格点上,则下列关于的说法错误的是()A.是直角三角形B.C.面积为4D. 边上的高为2、如图,长方形ABCD中,AB=4,BC=3,将其沿直线MN折叠,使点C与点A重合,则CN的长为().A. B. C. D.3、如图,⊙O直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足M,OM:OD=3:5,则AB 的长是()A.2cmB.3cmC.4cmD.2 cm4、已知的两直角边分别是,,则的斜边上的高是()A. B. C. D.5、下列各组数中能作为直角三角形的三边长的是()A.1,2,3B.4,5,6C.6,8,10D.9,11,16、如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上一点,将△ABE沿AE 折叠,使点B落在点F处,连结CF,当△CEF为直角三角形时,BE的长是()A.4B.3C.4或8D.3或67、如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个8、下列四组数据表示三角形的三边长,其中不能构成直角三角形的一组数据是( )A.1 cm, cm, 4cmB.5cm, 12cm, 13cm:C.3cm, 4cm,5cm: D.7cm, 24cm, 25 cm9、一个直角三角形中,两条直角边长为3和4,则它的斜边长为()A.2B.C.5D.2510、如图,O为圆锥的顶点,M为圆锥底面上一点,点P在OM上,一只蜗牛从点P出发,绕圆锥侧面沿最短路线爬行一圈回到点P,若沿OM将圆锥侧面剪开并展开,则所得的侧面展开图是()A. B. C. D.11、矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()A.5B.C.6D.12、如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6B.8C.12D.1013、如图,已知平分,于,于,且.若,,,的长为()A.8B.8.5C.9D.714、如图,在平面直角坐标系中,的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A. B. C. D.15、如图1,园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是()A.24米2B.36米2C.48米2D.72米2二、填空题(共10题,共计30分)16、已知矩形纸片的边,(如图),将它折叠后,点落在边的中点处,那么折痕的长为________.17、在平面直角坐标系中,点P(-, -1)到原点的距离是________ 。

苏科版八年级上册数学第三章 勾股定理含答案

苏科版八年级上册数学第三章 勾股定理含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,在底面周长为12,高为8的圆柱体上有A,B两点,则AB之间的最短距离是()A.10B.8C.5D.42、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.3、下列说法中,不正确的是()A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数之比为3:4:5的三角形是直角三角形C.三边长度之比为3:4:5的三角形是直角三角形D.三边长度之比为9:40:41的三角形是直角三角形4、如图,以边长为4的正方形ABCD的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于E、F两点,则线段EF的最小值为()A.2B.4C.D.25、的三边,且,下列结论正确的是()A. 是等腰直角三角形且B. 是直角三角形或等腰三角形C. 是直角三角形,且D. 是直角三角形,且6、如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是()A.464B.336C.144D.367、如图,矩形纸片ABCD中,点E是AD的中点,且AE=2,BE的垂直平分线MN 恰好过点C,则矩形的一边AB的长度为( )A.2B.2C.4D.28、已知:△ABC中,AB=4,AC=3,BC=,则△ABC的面积是()A.6B.5C.D.29、在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为()A. B. C.5 D.210、若等腰梯形的上、下底边分别为1和3,一条对角线长为4,则这个梯形的面积是()A.16B.8C.4D.211、在下列条件下,△ABC不是直角三角形的是()A. B.C.∠C=∠A—∠BD.∠A: ∠B:∠C=3:4:512、若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.3213、如图,斜靠在墙上的一根竹竿,AB=5m,OB=3m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章《勾股定理》专题练习
(时间:90分钟满分:100分)
一、选择题(每小题3分,共30分)
1.直角三角形两锐角的平分线所成钝角的度数是 ( )
A.115°B.125° C.135° D.无法确定
2.有四个三角形,分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3:4:5;③三边之比为5:12:13;④三边长分别为7,24,25.其中直角三角形有 ( )
A.1个B.2个C.3个D.4个
3.在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13:5,则这个三角形三边长分别为 ( )
A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,10
4.一等腰三角形底边长为10 cm,腰长为13 cm,则腰上的高为 ( )
A.12 cm B.60
13
cm C.
120
13
cm D.
13
5
cm
5.如图,在把易拉罐中的水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为 ( )
A.2 cm B.4 cm C.6 cm D.8 cm
6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为 ( )
A.42 B.32 C.37或33 D.42或32
7.如图,一架长2.5 m的梯子,斜靠在竖直的墙上,这时梯子顶端离地面2.4 m,为了安装壁灯.梯子顶端离地面降至2m,请你计算一下,此时梯子底端应再向远离墙的方向移动( )
A.0.4 m B.0.8 m C.1.2 m D.不能确定
8.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为 ( )
A.7 m B.8 m C.9 m D.10 m
9.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为 ( ) A.600 m B.500 m C.400 m D.300 m
10.在一次课外社会实践中,王强想知道学校旗杆的高,但不能爬上旗杆也不能把绳子解下来,可是他发现旗杆上的绳子垂到地面上还多1 m,当他拿着绳子的下端沿水平方向走5m后,发现绳子下端刚好接触地面,则旗杆的高为 ( )
A.13 m B.12 m C.4m D.10 m
二、填空题(每小题3分,共24分)
11.在△ABC中,若AC2+BC2=AB2,则∠C=_______;若∠A=90°,则AC2+_______=_______.
12.直角三角形两条直角边的长分别为6,8,则斜边上的高长为_______.
13.在Rt△ABC中,∠B=90°,BC=3 cm,AC=4 cm,则AB=_______cm.
14.如图,在四边形ABCD中,∠BAD=90°,AD=3 cm,AB=4 cm,BC=12 cm,CD=13 cm,则∠DBC=_______.
15.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积分别为S1,S2,S3,S4,则S1+2S2+2S3+S4=_______.16.如图,在长、宽都是3,高是8的长方体纸箱的外部,一只蚂蚁从顶点A沿纸箱表面
爬到顶点B,那么它所爬行的最短路线的长是_______.
17.如图,在△ABC中,CE平分∠ACB,CF平分外角∠ACD,且EF∥BC交AC于点M,若CM =5,则CE2+CF2=_______.
18.如图,在△ABC中,AB=BC=2,∠ABC=90°,D是BC的中点,且它关于AC的对称点是D',则(BD')2=_______.
三、解答题(共46分)
19.(6分)假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8 km,又往北走2 km,遇到障碍后又往西走了3 km,再折向北走到6 km处往东一拐,仅走了1 km就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米?
20.(8分)如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3 m,BC=4 m,CD=12 m,DA=13 m,∠B=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?
21.(8分)在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过点D作DE⊥DF,交AB于点E,交BC于点F,若AE=4.FC=3,求EF的长.
22.(8分)周老师在一次“探究性学习”课中,设计了如下数表:
(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示: a=_______;b=_______;c=_______;
(2)猜想:以a,b,c为边长的三角形是否是直角三角形?证明你的猜想.
23.(8分)实践与探究
问题情境:勾股定理是一条古老的数学定理,它有多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行了证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.问题1 请你根据图①中的直角三角形叙述勾股定理(用文字及符号语言叙述);
探究2 以图①中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图②),请你利用图②,尝试验证证明勾股定理;
拓展3 利用图②中的直角梯形,我们可以证明a b
c
+
<2,其证明步骤如下:
∵BC=a+b,AD=_______,
又在直角梯形ABCD中,BC_______AD(填“>”“<”或“=”),即_______.
∴a b
c
+
<2.
24.(8分)我们给出如下新定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)如图①,请你在图中画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB:
(2)如图②,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC.若∠DCB=30°,则四边形ABCD是勾股四边形,为什么?
参考答案
1.C
2.C
3.D
4.C
5.C
6.D
7.B
8.A
9.B 10.B 11.90° AB2 BC2 12.24 5
13.7 14.90° 15.3.65 16.10 17.100 18.5
19.AB=10 km.
20.3600(元).
21.5.
22.(1)a=n2-1,b=2n,c=n2+1.(2)是直角三角形
23.(1)直角三角形中两直角边的平方和等于斜边的平方,用式子表示为在△ABC中,如果∠C=90°,那么a2+b2=c2.(2)c < a+b<c
24.(1)如图①,勾股四边形OAMB(或OAM'B).(2)是勾股四边形.。

相关文档
最新文档