已知圆C的方程为: ,直线l过点P(1,2),且与圆C交于A …

合集下载

高中数学必修二好题解答题精选(附答案)

高中数学必修二好题解答题精选(附答案)

一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).参考答案与试题解析一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.【解答】解:(1)不存在点M,使得FM⊥平面BDM.证明如下:∵正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,∴DA,DC,DE所在直线两两互相垂直,以D为坐标原点,分别以DA,DC,DE所在直线为x,y,z轴建立空间直角坐标系.则D(0,0,0),F(2,0,2),B(2,2,0),设M(0,b,c),则,,.设平面DBM的一个法向量为,由,取y=﹣1,则.若与共线,则,即c2﹣2c+2=0,此方程无解.∴不存在点M,使得FM⊥平面BDM;(2)由(1)知,是平面BDM的一个法向量,而ABF的一个法向量为.由|cos<>|==,得,即b=2c.再由与共线,可得b=2c=2.即点M为EC中点,此时,S△DEM=2,AD为三棱锥B﹣DEM的高,∴.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.【解答】解:(1)连接BD1,在△DD1B中,E、F分别为线段DD1、BD的中点,∴EF为中位线,∴EF∥D1B,∵D1B?面ABC1D1,EF?面ABC1D1,∴EF∥平面ABC1D1;(2)由(1)知EF∥D1B,故∠D1BC即为异面直线EF与BC所成的角,∵四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,∴四棱柱ABCD﹣A1B1C1D1的外接球的半径R=2,设AA1=a,则,解得a=,在直四棱柱ABCD﹣A1B1C1D1中,∵BC⊥平面CDD1C1,CD1?平面CD﹣D1C1,∴BC⊥CD1,在RT△CC1D1中,BC=2,CD1=,D1C⊥BC,∴tan∠D1BC=,则∠D1BC=60°,∴异面直线EF与BC所成的角为60°.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.【解答】(1)解:∵PA⊥平面ABCD,且四边形ABCD为矩形.∴,…(3分)∴…(6分)(2)证明:∵PA⊥平面ABCD,∴PA⊥AB,又∵PA=AB=1,且点F是PB的中点,∴AF⊥PB…(8分)又PA⊥BC,BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,又AF?平面PAB,∴BC⊥AF…(10分)由AF⊥平面PBC,又∵PE?平面PBC∴无论点E在边BC的何处,都有AF⊥PE成立.…(12分)4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.【解答】解:(I)连接AB1交A1B于点M,连接MD.∵三棱柱ABC﹣A1B1C1是正三棱柱,∴四边形BAA1B1是矩形,∴M为AB1的中点.∵D是AC的中点,∴MD∥B1C.又MD?平面A1BD,B1C?平面A1BD,∴B1C∥平面A1BD.(II)作CO⊥AB于点O,则CO⊥平面ABB1A1,以O为坐标原点建立空间直角坐标系,假设存在点E,设E(1,a,0).∵AB=2,AA1=,D是AC的中点,∴A(1,0,0),B(﹣1,0,0),C(0,0,),A1(1,,0),B1(﹣1,,0),C1(0,,).∴D(,0,),=(,0,),=(2,,0).设是平面A1BD的法向量为=(x,y,z),∴,,∴,令x=﹣,得=(﹣,2,3).∵E(1,a,0),则=(1,a﹣,﹣),=(﹣1,0,﹣).设平面B1C1E的法向量为=(x,y,z),∴,.∴,令z=﹣,得=(3,,﹣).∵平面B1C1E⊥平面A1BD,∴=0,即﹣3+﹣3=0,解得a=.∴存在点E,使得平面B1C1E⊥平面A1BD,且AE=.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.【解答】证明:(1)延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.又MF不在平面ABCD内,AN?平面ABCD,∴MF∥平面ABCD.(2)连BD,由直四棱柱ABCD﹣A1B1C1D1,可知A1A⊥平面ABCD,又∵BD?平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC,A1A?平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA∥BN且DA=BN,∴四边形DANB为平行四边形,故NA∥BD,∴NA⊥平面ACC1A1,又∵NA?平面AFC1,∴平面AFC1⊥ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.【解答】(Ⅰ)证明:连接AC,交BD于O,则O为AC的中点,连接OM,∵M为PC的中点,则OM∥PA,∵OM?平面BMD,PA?平面BMD,∴PA∥平面BMD,∵PA?平面GPA,平面GPA∩平面MDB=GH,∴PA∥GH,而PA?平面PAD,GH?平面PAD,∴GH∥面PAD;(Ⅱ)解:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,0),A(2,0,0),P(0,0,2),M(0,1,1),设=(0,λ,λ),则,=(0,λ,λ﹣2),设平面PAG的一个法向量为.由,取z=1,得.,由PD与面GAP所成的角的正弦值为,得|cos<>|=,解得:或λ=﹣1(舍).∴G为DM的中点,则H为OD的中点,此时,PA=,GH==,.D到平面PCAH的距离d==.由,,得cos<>===.∴sincos<>=.则GH与PA间的距离为h=.∴四棱锥D﹣PAHG的体积V==.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.【解答】(Ⅰ)证明:取CD的中点M,连接BM,可得四边形BMDE是正方形.BC2=BM2+MC2=2.∵BD2+BC2=DE2+BE2+BC2=DC2,∴∠CBD=90°,∴BD⊥BC.又AC⊥平面CDE,BD?平面BCDE,∴BD⊥AC,故BD⊥平面ABC.∵BD?平面ABD,∴平面ABD⊥平面ABC.(Ⅱ)解:过点D作DH⊥CE.∵AC⊥DH,∴DH⊥平面ACE.∴∠DAH即为AD与平面ACE所成的角.AB=DC=2.在Rt△DCE中,DE=1,CD=2,∴CE=,∴DH===.∵AC==,∴AD==,在Rt△AHD中,sin∠DAH==.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.【解答】(Ⅰ)证明:∵AD⊥平面PCD,∴AD⊥PC,又∵CD⊥PC,AD∩CD=D,∴PC⊥平面ABCD,∵BD?平面ABCD,∴PC⊥BD,设AB=AD=1,则CD=2,由题意知在梯形ABCD中,有BD=BC=,∴BD2+BC2=CD2,∴BD⊥BC,又PC∩BC=C,∴BD⊥平面BCP.∵BD?平面BDP,∴平面BPD⊥平面BCP.(2)解:以点D为原点,DA、DC、DQ为x轴、y轴、z轴建立空间直角坐标系.设AB=1,PC=a,则D(0,0,0),A(1,0,0),B(1,1,0),P(0,2,a),=(1,0,0),=(0,2,a),设=(x,y,z)为平面ADP的一个法向量,则==0,可得,令z=﹣2,则y=a,∴=(0,a,﹣2).同理可得平面ABP的一个法向量=(a,0,1).∴|cos|===,解得:a=,∴λ=.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.【解答】解:(Ⅰ)化圆C:x2+y2﹣2mx﹣y=0(m>0)为.则圆心坐标为C(m,),∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k=,∴m=2或m=﹣2.∴圆心为C(2,1)或C(﹣2,﹣1),∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x﹣2)2+(y﹣1)2=5;(Ⅱ)点A(0,2)关于直线x+y+2=0的对称点为A′(﹣4,﹣2),则|PA|+|PQ|=|PA′|+|PQ|≥|A′Q|,又A′到圆上点Q的最短距离为|A′C|﹣r=﹣=3﹣=2.∴|PA|+|PQ|的最小值为2,直线A′C的方程为y=x,则直线A′C与直线x+y+2=0的交点P的坐标为(﹣,﹣).10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.【解答】(1)解:由题意可得点C和点M(﹣6,6)关于直线x﹣y+6=0对称,且圆C和圆M的半径相等,都等于r.设C(m,n),由且,解得:m=0,n=0.故原C的方程为x2+y2=r2.再把点P(2,2)代入圆C的方程,求得r=.故圆的方程为:x2+y2=8;(2)证明:过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,则得直线OP和AB平行,理由如下:由题意知,直线PA和直线PB的斜率存在,且互为相反数,故可设PA:y﹣2=k(x﹣2),PB:y﹣2=﹣k(x﹣2).由,得(1+k2)x2+4k(1﹣k)x+4(1﹣k)2﹣8=0,∵P的横坐标x=2一定是该方程的解,∴,同理,x B=.由于AB的斜率k AB====1=k OP(OP的斜率),∴直线AB和OP一定平行.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.【解答】解:①由题意可知,设圆心为(a,a+1),则圆C为:(x﹣a)2+[y﹣(a+1)]2=2,∵圆C经过点P(3,6)和点Q(5,6),∴,解得:a=4.则圆C的方程为:(x﹣4)2+(y﹣5)2=2;②当直线l的斜率存在时,设直线l的方程为y=k(x﹣3)即kx﹣y﹣3k=0,∵过点(3,0)的直线l截圆所得弦长为2,∴,则.∴直线l的方程为12x﹣5y﹣36=0,当直线l的斜率不存在时,直线l为x=3,此时弦长为2符合题意,综上,直线l的方程为x=3或12x﹣5y﹣36=0.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.【解答】解:(Ⅰ)设圆C的标准方程为:(x﹣1)2+(y﹣1)2=r2(r>0),则圆心C(1,1)到直线x+y﹣1=0的距离为:,…(2分)则,∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1;…(5分)(Ⅱ)①当切线的斜率不存在时,切线方程为:x=2,此时满足直线与圆相切;…(6分)②当切线的斜率存在时,设切线方程为:y﹣3=k(x﹣2),即y=kx﹣2k+3;则圆心C(1,1)到直线kx﹣y﹣2k+3=0的距离为:,…(8分)化简得:4k=3,解得,∴切线方程为:3x﹣4y+6=0;…(11分)综上,切线的方程为:x=2和3x﹣4y+6=0.…(12分)13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【解答】解:(1)过点(2,﹣1)且与直线x+y﹣1=0垂直的直线方程为x﹣y﹣3=0,…(2分)由解得,所以圆心M的坐标为(1,﹣2),…(4分)所以圆M的半径为r=,…(6分)所以圆M的方程为(x﹣1)2+(y+2)2=2.…(7分)(2)因为直线l被圆M截得的弦长为,所以圆心M到直线l的距离为d==,…(9分)若直线l的斜率不存在,则l为x=0,此时,圆心M到l的距离为1,不符合题意.若直线l的斜率存在,设直线l的方程为y=kx,即kx﹣y=0,由d==,…(11分)整理得k2+8k+7=0,解得k=﹣1或﹣7,…(13分)所以直线l的方程为x+y=0或7x+y=0.…(14分)14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.【解答】解:(Ⅰ)由题可设圆心C(a,a),半径r,∵.∴a=±1.又∵圆C与x轴正半轴相切,∴a=1,r=1.∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1.(Ⅱ)①当直线l的斜率不存在时,直线l的方程为x=1,此时弦长|AB|=2.②当直线l的斜率存在时,设直线l的方程:点C到直线l的距离,弦长,当k=0时,弦长|AB|取最小值,此时直线l的方程为.由①②知当直线l的方程为时,弦长|AB|取最小值为.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.【解答】解:(1)∵AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,∴直线AD的斜率为﹣3.又因为点T(﹣1,1)在直线AD上,∴AD边所在直线的方程为y﹣1=﹣3(x+1),3x+y+2=0.(2)由,解得点A的坐标为(0,﹣2),∵矩形ABCD两条对角线的交点为M(2,0).∴M为矩形ABCD外接圆的圆心,又|AM|2=(2﹣0)2+(0+2)2=8,∴.从而矩形ABCD外接圆的方程为(x﹣2)2+y2=8.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.【解答】解:(1)解方程组,得交点M(1,2).……………………………(3分)将点M(1,2)的坐标代入直线l3:2x+my﹣8=0的方程,得m=3.…………(6分)(2)法一:设点N的坐标为(m,n),则由题意可………(9分)解得…………………………………………………………………………(12分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)法二:由(1)知M(1,2),所以,过M且与x﹣3y﹣5=0垂直的直线方程为:y﹣2=﹣3(x﹣1),即3x+y﹣5=0.…………………………………………………………………(8分)解方程组得交点为H(2,﹣1)………………………………………(10分)因为M,N的中点为H,所以,x N=2×2﹣1=3,y N=2×(﹣1)﹣2=﹣4.……(13分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.【解答】解:(Ⅰ)经过点(2,1)与点(﹣2,﹣3)的直线方程为,即y=x﹣1.由题意可得,圆心在直线y=3上,联立,解得圆心坐标为(4,3),故圆C1的半径为4.则圆C1的方程为(x﹣4)2+(y﹣3)2=16;(Ⅱ)∵圆C1的方程为(x﹣4)2+(y﹣3)2=16,即x2+y2﹣8x﹣6y+9=0,圆C2:x2+y2﹣6x﹣3y+5=0,两式作差可得两圆公共弦所在直线方程为2x+3y﹣4=0.圆C1的圆心到直线2x+3y﹣4=0的距离d=.∴两圆的公共弦MN的长为2=2.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.【解答】(Ⅰ)解:由题意,,即2a2﹣a﹣1=0,解得a=1(a>0).∴圆心坐标为(0,1),半径为1,由圆心到直线2x+y+m=0的距离d==,可得m=0或m=﹣2,∵点F(,)在直线2x+y+m=0上,∴m=﹣2.故m=﹣2,圆C的方程为x2+(y﹣1)2=1;(Ⅱ)证明:设Q(t,﹣2),则QC的中点坐标为(),以QC为直径的圆的方程为,即x2+y2﹣tx+y﹣2=0.联立,可得AB所在直线方程为:tx﹣3y+2=0.∴直线AB恒过定点(0,);(Ⅲ)解:由题意可设直线l的方程为y=kx+t,△ABC的面积为S,则S=|CA|?|CB|?sin∠ACB=sin∠ACB,∴当sin∠ACB最大时,S取得最大值.要使sin∠ACB=,只需点C到直线l的距离等于,即=,整理得:k2=2(t﹣1)2﹣1≥0,解得t≤1﹣.①当t∈[0,1﹣]时,sin∠ACB最大值是1,此时k2=2t2﹣4t+1,即u=2t2﹣4t+1.②当t∈(1﹣,1)时,∠ACB∈(,π).∵y=sin x是(,π)上的减函数,∴当∠ACB最小时,sin∠ACB最大.过C作CD⊥AB于D,则∠ACD=∠ACB,∴当∠ACD最大时,∠ACB最小.∵sin∠CAD=,且∠CAD∈(0,),∴当|CD|最大时,sin∠CAD取得最大值,即∠CAD最大.∵|CD|≤|CP|,∴当CP⊥l时,|CD|取得最大值|CP|.∴当△ABC的面积最大时,直线l的斜率k=0,∴u=0.综上所述,u=.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.【解答】解:(1)由题意知,a=4时圆心M坐标为(0,﹣2),半径为2,圆心到直线距离d=,∴弦|AB|=;(2)设A(x1,y1),B(x2,y2),联立,整理得50y2+(28+a)y+4=0.∵△=(28+a)2﹣16×50>0,∴.,则,.于是==.∴a=2.∴圆的方程为x2+y2+2y=0.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.【解答】解:(1)①设点P的坐标为(,y0),∵OP=,∴+y02=,解得y0=±1.又点P在第一象限,∴y0=1,即P的坐标为(,1).易知过点P的圆O的切线的斜率必存在,可设切线的斜率为k,则切线为y﹣1=k(x﹣),即kx﹣y+1﹣k=0,于是有=1,解得k=0或k=.因此过点P的圆O的切线方程为:y=1或24x﹣7y﹣25=0;②设A(x,y),则B(,),∵点A、B均在圆O上,∴有圆x2+y2=1与圆(x+)2+(y+y0)2=4有公共点.于是1≤≤3,解得﹣≤y0≤,即点P纵坐标的取值范围是[﹣,];(2)设M(x,y),假设存在点D(m,n),使为定值t(t>0),则MC2=t2MD2,即(x﹣2)2+y2=t2(x﹣m)2+t2(y﹣n)2,∴,∵M在圆O:x2+y2=1上,∴,解得t=,m=,n=0.∴存在定点D(),使为定值.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.【解答】(Ⅰ)证明:因为ABC﹣A1B1C1是正三棱柱,所以CC1⊥平面ABC因为AD?平面ABC,所以CC1⊥AD因为△ABC是正三角形,D为BC中点,所以BC⊥AD,…(4分)因为CC1∩BC=C,所以AD⊥平面B1BCC1.…(5分)(Ⅱ)证明:连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是正三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.又D为BC中点,所以OD为△A1BC中位线,所以A1B∥OD,…(8分)因为A1B?平面ADC1,OD?平面ADC1,所以A1B∥平面ADC1;(10分)(Ⅲ)解:V C1﹣ADB1=V A﹣C1DB1==.…(14分)22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).【解答】解:(1)因为PA⊥底面ABC,PB与底面ABC所成的角为所以因为AB=2,所以(2)连接PM,取AB的中点,记为N,连接MN,则MN∥AC 所以∠PMN为异面直线PM与AC所成的角计算可得:,MN=1,异面直线PM与AC所成的角为。

高中人教版数学A版必修2(课时作业与单元测试卷):第三、四章 滚动检测 Word版含解析

高中人教版数学A版必修2(课时作业与单元测试卷):第三、四章 滚动检测 Word版含解析
A.4 B.3
C.2 D.1
答案:B
解析:由离为d,则由三角形ABC的面积为1可得1= ×2 ×d,解得d= ,即 = ,解得b=3-a或b=1-a,又因为|OC|= = ,所以a2+(3-a)2= 或a2+(1-a)2= ,整理得4a2-12a+9=0或4a2-4a-7=0,解得a= ,a= + ,a= - ,即a有三个不同的解,所以点C的个数为3.
6.若P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()
A.x-y-3=0 B.2x+y-3=0
C.x+y-1=0 D.2x-y-5=0
答案:A
解析:圆心为C(1,0),∵AB⊥CP,kCP= =-1,∴kAB=1,且直线AB过点P(2,-1),∴直线方程为x-y-3=0.
答案:3x+y-6=0
解析:设A(m,0),B(0,n).由P(1,3)是AB的中点可得m=2,n=6,即A,B的坐标分别为(2,0),(0,6).
由两点式直接得方程 = ,即3x+y-6=0.
15.已知圆C的方程为x2+y2-2y-3=0,过点P(-1,2)的直线l与圆C交于A,B两点,若使|AB|最小,则直线l的方程是________.
即不论m取什么实数,它恒过两直线2x+y-10=0与x+3y-15=0的交点.两方程联立,解得交点为(3,4).
又有(3-2)2+(4-3)2=2<16,
∴点(3,4)在圆内部,
∴不论m为何实数,直线l与圆恒相交.
(2)解:从(1)的结论和直线l过定点M(3,4)且与过此点的圆C的半径垂直时,l被圆所截的弦长|AB|最短,由垂径定理得
第三、四章滚动检测
班级____姓名____考号____分数____
本试卷满分150分,考试时间120分钟.

第九章 第二节 第1课时 系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系

第九章  第二节 第1课时 系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系

第二节圆与方程[考纲要求]1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.3.能根据给定直线、圆的方程判断直线与圆的位置关系.4.能根据给定两个圆的方程判断两圆的位置关系.5.能用直线和圆的方程解决一些简单的问题.6.初步了解用代数方法处理几何问题的思想.第1课时系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系圆的方程1.圆的定义及方程定义平面内到定点的距离等于定长的点的轨迹叫做圆标准方程(x-a)2+(y-b)2=r2(r>0)圆心:(a,b) 半径:r一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心:⎝⎛⎭⎫-D2,-E2半径:r=D2+E2-4F2点M(x0,y0),圆的标准方程(x-a)2+(y-b)2=r2.理论依据点到圆心的距离与半径的大小关系三种情况(x0-a)2+(y0-b)2=r2⇔点在圆上(x0-a)2+(y0-b)2>r2⇔点在圆外(x0-a)2+(y0-b)2<r2⇔点在圆内[提醒]不要把形如x2+y2+Dx+Ey+F=0的结构都认为是圆,一定要先判断D2+E2-4F的符号,只有大于0时才表示圆.[谨记常用结论]若x 2+y 2+Dx +Ey +F =0表示圆,则有:(1)当F =0时,圆过原点.(2)当D =0,E ≠0时,圆心在y 轴上;当D ≠0,E =0时,圆心在x 轴上.(3)当D =F =0,E ≠0时,圆与x 轴相切于原点;E =F =0,D ≠0时,圆与y 轴相切于原点.(4)当D 2=E 2=4F 时,圆与两坐标轴相切.[小题练通]1.[人教A 版教材P124A 组T4]圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为____________.答案:(x -2)2+y 2=102.[教材改编题]经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为________________.答案:(x -1)2+(y -1)2=13.[教材改编题]圆心为(1,1)且过原点的圆的方程是________. 答案:(x -1)2+(y -1)2=24.[易错题]已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A 的圆的切线有两条,则a 的取值范围是________.答案:⎝⎛⎭⎫-233,2335.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是________. 答案:(-2,2)6.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________. 答案:x 2+y 2-2x =0直线与圆的位置关系1.直线与圆的位置关系(半径r ,圆心到直线的距离为d ) 相离相切相交图形量化 方程观点Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆的切线(1)过圆上一点的圆的切线①过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程是x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点M (x 0,y 0)的切线方程是(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(2)过圆外一点的圆的切线过圆外一点M (x 0,y 0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k ,从而得切线方程;若求出的k 值只有一个,则说明另一条直线的斜率不存在,其方程为x =x 0.(3)切线长①从圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点M (x 0,y 0)引圆的两条切线,切线长为x 20+y 20+Dx 0+Ey 0+F .②两切点弦长:利用等面积法,切线长a 与半径r 的积的2倍等于点M 与圆心的距离d 与两切点弦长b 的积,即b =2ard .[提醒] 过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数. 3.圆的弦问题直线和圆相交,求被圆截得的弦长通常有两种方法:(1)几何法:因为半弦长L2、弦心距d 、半径r 构成直角三角形,所以由勾股定理得L =2r 2-d 2.(2)代数法:若直线y =kx +b 与圆有两交点A (x 1,y 1),B (x 2,y 2),则有: |AB |=1+k 2|x 1-x 2|= 1+1k2|y 1-y 2|. [谨记常用结论]过直线Ax +By +C =0和圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0.,[小题练通]1.[教材改编题]若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案:C2.[教材改编题]直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是( ) A .相切B .相交C.相离D.随a的变化而变化解析:选B∵直线y=ax+1恒过定点(0,1),又点(0,1)在圆(x-1)2+y2=4的内部,故直线与圆相交.3.[教材改编题]已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是________.解析:由题意知点M在圆外,则a2+b2>1,圆心到直线的距离d=1a2+b2<1,故直线与圆相交.答案:相交4.[易错题]过点(2,3)且与圆(x-1)2+y2=1相切的直线的方程为________________.解析:当切线的斜率存在时,设圆的切线方程为y=k(x-2)+3,由圆心(1,0)到切线的距离为1,得k=43,所以切线方程为4x-3y+1=0;当切线的斜率不存在时,易知直线x=2是圆的切线,所以所求的直线方程为4x-3y+1=0或x=2.答案:x=2或4x-3y+1=05.以M(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是________.答案:(x-1)2+y2=86.直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.解析:由x2+y2+2y-3=0,得x2+(y+1)2=4.∴圆心C(0,-1),半径r=2.圆心C(0,-1)到直线x-y+1=0的距离d=|1+1|2=2,∴|AB|=2r2-d2=24-2=2 2.答案:2 2圆与圆的位置关系圆与圆的位置关系(两圆半径为r1,r2,d=|O1O2|)相离外切相交内切内含图形量的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|d<|r1-r2|[提醒]涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.[谨记常用结论]圆C1:x2+y2+D1x+E1y+F1=0与C2:x2+y2+D2x+E2y+F2=0相交时:(1)将两圆方程直接作差,得到两圆公共弦所在直线方程;(2)两圆圆心的连线垂直平分公共弦;(3)x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0表示过两圆交点的圆系方程(不包括C2).[小题练通]1.[人教A版教材P133A组T9]圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为________.答案:2 22.[教材改编题]若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则实数a=________.答案:±25或03.[教材改编题]圆x2+y2=r2与圆(x-3)2+(y+1)2=r2外切,则半径r=________.解析:由题意,得2r=32+(-1)2,所以r=10 2.答案:10 24.[易错题]若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是________.答案:[1,121]5.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21 B.19C.9 D.-11解析:选C圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y -4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=25-m(m<25).从而|C1C2|=32+42=5.由两圆外切得|C1C2|=r1+r2,即1+25-m=5,解得m=9,故选C.6.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有() A.1条B.2条C.3条D.4条解析:选A两圆分别化为标准形式为C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则两圆圆心距|C1C2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.[课时跟踪检测]1.(2019·广西陆川中学期末)圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是()A .内含B .外离C .外切D .相交解析:选D 圆C 1的标准方程为(x +1)2+(y +4)2=25,圆C 2的标准方程为(x -2)2+(y -2)2=9,两圆的圆心距为(2+1)2+(2+4)2=35,两圆的半径为r 1=5,r 2=3,满足r 1+r 2=8>35>2=r 1-r 2,故两圆相交.故选D.2.(2019·闽侯第八中学期末)若圆Ω过点(0,-1),(0,5),且被直线x -y =0截得的弦长为27,则圆Ω的方程为( )A .x 2+(y -2)2=9或(x +4)2+(y -2)2=25B .x 2+(y -2)2=9或(x -1)2+(y -2)2=10C .(x +4)2+(y -2)2=25或(x +4)2+(y -2)2=17D .(x +4)2+(y -2)2=25或(x -4)2+(y -1)2=16解析:选A 由于圆过点(0,-1),(0,5),故圆心在直线y =2上,设圆心坐标为(a,2),由弦长公式得|a -2|2=a 2+(5-2)2-7,解得a =0或a =-4.故圆心为(0,2),半径为3或圆心为(-4,2),半径为5,故选A.3.(2019·北京海淀期末)已知直线x -y +m =0与圆O :x 2+y 2=1相交于A ,B 两点,且△OAB 为正三角形,则实数m 的值为( )A.32B.62 C.32或-32D.62或-62解析:选D 由题意得圆O :x 2+y 2=1的圆心坐标为(0,0),半径r =1. 因为△OAB 为正三角形,则圆心O 到直线x -y +m =0的距离为32r =32,即d =|m |2=32,解得m =62或m =-62,故选D. 4.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B.-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.5.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1 D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1. 6.(2019·西安联考)直线y -1=k (x -3)被圆(x -2)2+(y -2)2=4所截得的最短弦长等于( )A. 3 B .2 3 C .2 2D. 5解析:选C 圆(x -2)2+(y -2)2=4的圆心C (2,2),半径为2,直线y -1=k (x -3), ∴此直线恒过定点P (3,1),当圆被直线截得的弦最短时,圆心C (2,2)与定点P (3,1)的连线垂直于弦,弦心距为(2-3)2+(2-1)2=2,所截得的最短弦长为222-(2)2=22,故选C.7.(2019·山西晋中模拟)半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( )A .(x -1)2+(y +2)2=4B .(x -2)2+(y +2)2=2C .(x -2)2+(y +2)2=4D .(x -22)2+(y +22)2=4解析:选C 设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,∴a =2,∴该圆的标准方程为(x -2)2+(y +2)2=4,故选C. 8.(2018·唐山二模)圆E 经过A (0,1),B (2,0),C (0,-1)三点,且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A.⎝⎛⎭⎫x -322+y 2=254B.⎝⎛⎭⎫x +342+y 2=2516C.⎝⎛⎭⎫x -342+y 2=2516D.⎝⎛⎭⎫x -342+y 2=254解析:选C 根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r , 则有⎩⎪⎨⎪⎧(a -2)2=r 2,a 2+(0+1)2=r 2,a 2+(0-1)2=r 2,解得a =34,r 2=2516,则圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516.故选C.9.(2018·合肥二模)已知圆C:(x-6)2+(y-8)2=4,O为坐标原点,则以OC为直径的圆的方程为()A.(x-3)2+(y+4)2=100 B.(x+3)2+(y-4)2=100C.(x-3)2+(y-4)2=25 D.(x+3)2+(y-4)2=25解析:选C因为圆C的圆心的坐标C(6,8),所以OC的中点坐标为E(3,4),所求圆的半径|OE|=32+42=5,故以OC为直径的圆的方程为(x-3)2+(y-4)2=25.故选C.10.(2018·荆州二模)圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,则k的值是() A.2 B.-2C.1 D.-1解析:选B∵圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,∴直线y=kx+3过圆心(1,1),即1=k+3,解得k=-2.故选B.11.(2019·厦门质检)圆C与x轴相切于T(1,0),与y轴正半轴交于两点A,B,且|AB|=2,则圆C的标准方程为()A.(x-1)2+(y-2)2=2 B.(x-1)2+(y-2)2=2C.(x+1)2+(y+2)2=4 D.(x-1)2+(y-2)2=4解析:选A由题意得,圆C的半径为1+1=2,圆心坐标为(1,2),∴圆C的标准方程为(x-1)2+(y-2)2=2,故选A.12.(2019·孝义一模)已知P为直线x+y-2=0上的点,过点P作圆O:x2+y2=1的切线,切点为M,N,若∠MPN=90°,则这样的点P有()A.0个B.1个C.2个D.无数个解析:选B连接OM,ON,则OM=ON,∠MPN=∠ONP=∠OMP=90°,∴四边形OMPN为正方形,∵圆O的半径为1,∴|OP|=2,∵原点(圆心)O到直线x+y-2=0的距离为2,∴符合条件的点P只有一个,故选B.13.(2019·北京东城联考)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k =1”是“|AB|=2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,∴圆心到直线的距离d =11+k 2,则|AB |=21-d 2=21-11+k 2=2k 21+k 2,当k =1时,|AB |=2 12=2,即充分性成立;若|AB |=2,则2k 21+k 2=2,即k 2=1,解得k =1或k =-1,即必要性不成立,故“k =1”是“|AB |=2”的充分不必要条件,故选A.14.已知圆C :(x +1)2+(y -1)2=1与x 轴切于A 点,与y 轴切于B 点,设劣弧AB 的中点为M ,则过点M 的圆C 的切线方程是________________.解析:因为圆C 与两轴相切,且M 是劣弧AB 的中点,所以直线CM 是第二、四象限的角平分线,所以斜率为-1,所以过M 的切线的斜率为1.因为圆心到原点的距离为2,所以|OM |=2-1,所以M ⎝⎛⎭⎫22-1,1-22,所以切线方程为y -1+22=x -22+1,整理得x -y +2-2=0.答案:x -y +2-2=015.(2018·枣庄二模)已知圆M 与直线x -y =0及x -y +4=0都相切,且圆心在直线y =-x +2上,则圆M 的标准方程为________________.解析:∵圆M 的圆心在y =-x +2上, ∴设圆心为(a,2-a ),∵圆M 与直线x -y =0及x -y +4=0都相切,∴圆心到直线x -y =0的距离等于圆心到直线x -y +4=0的距离, 即|2a -2|2=|2a +2|2,解得a =0, ∴圆心坐标为(0,2),圆M 的半径为|2a -2|2=2,∴圆M 的标准方程为x 2+(y -2)2=2. 答案:x 2+(y -2)2=216.(2019·天津联考)以点(0,b )为圆心的圆与直线y =2x +1相切于点(1,3),则该圆的方程为____________________.解析:由题意设圆的方程为x 2+(y -b )2=r 2(r >0). 根据条件得⎩⎪⎨⎪⎧1+(3-b )2=r 2,|-b +1|5=r ,解得⎩⎨⎧b =72,r =52.∴该圆的方程为x 2+⎝⎛⎭⎫y -722=54. 答案:x 2+⎝⎛⎭⎫y -722=5417.(2019·丹东联考)经过三点A (1,3),B (4,2),C (1,-7)的圆的半径是________. 解析:易知圆心在线段AC 的垂直平分线y =-2上,所以设圆心坐标为(a ,-2),由(a -1)2+(-2-3)2=(a -4)2+(-2-2)2,得a =1,即圆心坐标为(1,-2),∴半径为r =(1-1)2+(-2-3)2=5. 答案:518.(2019·镇江联考)已知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A (0,-6),则圆C 的标准方程为____________________.解析:设圆C 的标准方程为(x -a )2+(y -b )2=r 2,其圆心为C (a ,b ),半径为r (r >0). ∵x 2+y 2+10x +10y =0可化简为(x +5)2+(y +5)2=50, ∴其圆心为(-5,-5),半径为5 2.∵两圆相切于原点O ,且圆C 过点(0,-6),点(0,-6)在圆(x +5)2+(y +5)2=50内,∴两圆内切,∴⎩⎨⎧a 2+b 2=r 2,(a +5)2+(b +5)2=52-r ,(0-a )2+(-6-b )2=r 2,解得a =-3,b =-3,r =32, ∴圆C 的标准方程为(x +3)2+(y +3)2=18. 答案:(x +3)2+(y +3)2=18。

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。

2.请将答案正确填写在答题卡上。

第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。

A。

$-2$B。

$-1$C。

$1$D。

$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。

A。

$-0.25$B。

$1$C。

$-1$D。

$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。

A。

$(-3,1)$B。

$(3,1)$C。

$(3,-1)$D。

$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。

A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。

A。

$\left[\frac{3}{4},1\right]$B。

$\left[\frac{3}{4},+\infty\right)$C。

$(1,+\infty)$D。

$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。

新教材高中数学第二章直线和圆的方程5-1直线与圆的位置关系学案新人教A版选择性必修第一册

新教材高中数学第二章直线和圆的方程5-1直线与圆的位置关系学案新人教A版选择性必修第一册

直线与圆的位置关系【学习目标】1.直线与圆的三种位置关系代数法:由⎩⎪⎨⎪⎧Ax +By +C =0,x -a2+y -b2=r2消元得到一元二次方程的判别式Δ【小试牛刀】1.若直线与圆有公共点,则直线与圆相交.( )2.如果直线与圆组成的方程组有解,则直线和圆相交或相切.( )3.若圆心到直线的距离大于半径,则直线与圆的方程联立消元后得到的一元二次方程无解.( )4.过半径外端的直线与圆相切.( )【经典例题】题型一直线与圆的位置关系 直线与圆位置关系判断的三种方法(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系.例1 已知直线方程mx -y -m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线: (1)有两个公共点; (2)只有一个公共点; (3)没有公共点.[跟踪训练]1已知直线l :x -2y +5=0与圆C :(x -7)2+(y -1)2=36,判断直线l 与圆C 的位置关系.题型二圆的切线方程 (1)点在圆上时求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心连线的斜率k ,再由垂直关系得切线的斜率为-1k,由点斜式可得切线方程.如果斜率为零或不存在,则由图形可直接得切线方程y =y 0或x =x 0. (2)点在圆外时①几何法:设切线方程为y -y 0=k (x -x 0).由圆心到直线的距离等于半径,可求得k ,也就得切线方程. ②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程联立,消去y 后得到关于x 的一元二次方程,由Δ=0求出k ,可得切线方程.提醒:切线的斜率不存在的情况,不要漏解.例2 (1)求过圆x 2+y 2-2x -4y =0上一点P (3,3)的切线方程。

苏教版(新教材)数学选择性必修第一册第2章圆与方程2.1圆的方程同步测验

苏教版(新教材)数学选择性必修第一册第2章圆与方程2.1圆的方程同步测验

苏教版(新教材)数学选择性必修第一册第2章圆与方程2.1 圆的方程同步测验共 23 题一、单选题1、圆的圆心坐标和半径分别为()A. B.C. D.2、圆的方程为,则圆心坐标为()A. B.C. D.3、直线恒过定点,则以为圆心,为半径的圆的方程为()A. B.C. D.4、圆关于直线对称的圆的方程为()A. B.C. D.5、已知定点,点在圆上运动,则线段的中点的轨迹方程是()A. B.C. D.6、以为圆心,为半径的圆的方程为()A. B.C. D.7、过点,且圆心在直线上的圆的方程是()A. B.C. D.8、在平面直角坐标系中,矩形的顶点坐标分别为,则矩形的外接圆方程是()A. B.C. D.9、已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16C. D.10、圆心坐标为,半径长为2的圆的标准方程是()A. B.C. D.11、已知方程表示圆,则实数的取值范围是( )A. B.C. D.12、若方程表示以为圆心,4为半径的圆,则F为()A.2B.4C.3D.5二、多选题13、已知分别为圆M:与圆:上的动点,A为x轴上的动点,则的值可能是()A.7B.8C.9D.10三、填空题14、圆心坐标为,半径为的圆的标准方程是________.15、已知,为坐标原点,动点满足,其中,且,则的轨迹方程为________.16、圆C:x2+y2-8x-2y=0的圆心坐标是________;关于直线l:y=x-1对称的圆C'的方程为________.17、已知圆C经过两点,圆心在轴上,则C的方程为________.四、解答题18、根据下列条件,求圆的方程:(1)过点A(1,1),B(﹣1,3)且面积最小;(2)圆心在直线2x﹣y﹣7=0上且与y轴交于点A(0,﹣4),B(0,﹣2).19、已知圆C过A(1,4)、B(3,2)两点,且圆心在直线y=0上.(1)求圆C的方程;(2)判断点P(2,4)与圆C的位置关系.20、求满足下列条件的各圆的标准方程:(1)圆心在原点,半径长为3;(2)圆心为点 ,半径长是(3)圆心为点 ,且经过点21、分别根据下列条件,求圆的方程:(1)过点和原点;(2)与两坐标轴均相切,且圆心在直线上.22、已知中,,,求:(1)直角顶点的轨迹方程;(2)直角边的中点的轨迹方程.23、写出下列方程表示的圆的圆心和半径:(1) ;(2) ;(3) ;(4) .参考答案一、单选题1、【答案】B【解析】【解答】因为圆的方程为:,所以圆心为,半径,故答案为:B.【分析】根据圆的标准方程形式直接确定出圆心和半径.2、【答案】D【解析】【解答】将配方,化为圆的标准方程可得 ,即可看出圆的圆心为 .故答案为:D.【分析】将化为圆的标准方程可看出圆心坐标.3、【答案】B【解析】【解答】直线,化为,时,总有,即直线直线过定点,圆心坐标为,又因为圆的半径是,所以圆的标准方程是,故选B.【分析】利用变形的方法,将直线方程转化为点斜式,从而求出定点C的坐标,进而求出圆心C的坐标,再利用已知条件求出圆的标准方程。

高中数学第2章直线和圆的方程章末核心素养整合新人教版选择性必修第一册

高中数学第2章直线和圆的方程章末核心素养整合新人教版选择性必修第一册
x2+y2等式子的最值,一般运用几何法求解.
【典型例题6】已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任一点.


= ,
= ,
联立③④,解得

= -
= .

= ,
= ,
经检验此时的 l1 与 l2 不重合.故

= -
= .
【跟踪训练2】已知直线l1:ax+2y+6=0,直线l2:x+(a-1)y+a21=0,当l1∥l2时,a=
;当l1⊥l2时,a=
.
答案:-1
解:(1)因为AC⊥BH,所以设边AC所在的直线的方程为
2x+y+t=0.把点A(5,1)代入直线方程2x+y+t=0中,解得t=-11.
所以边AC所在的直线的方程为2x+y-11=0.
(2)设点 B(x0,y0),则边 AB 的中点为
联立得方程组
+ +

,

.
- - = ,
为(A1x+B1y+C1)+λ(A2x+B2y+C2)=0.
【典型例题1】 已知△ABC的顶点A(5,1),AB边上的中线
CM所在的直线方程为2x-y-5=0,AC边上的高BH所在的直线
方程为x-2y-5=0.求:
(1)AC所在的直线的方程;
(2)点B的坐标;
(3)AC边上的中位线所在直线的方程.
(1)求k的取值范围;
(2)若 ·=12,其中 O 为坐标原点,求|MN|.
解:(1)由题设,可知直线l的方程为y=kx+1.

(完整版)经典《极坐标与参数方程》综合测试题(含答案)(2),推荐文档

(完整版)经典《极坐标与参数方程》综合测试题(含答案)(2),推荐文档

《极坐标与参数方程》综合测试题1.在极坐标系中,已知曲线C:ρ=2cosθ,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1,又已知直线l过点P(1,0),倾斜角为,且直线l与曲线C1交于A,B两点.3(1)求曲线C1的直角坐标方程,并说明它是什么曲线;(2)求+.2.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.3.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点P (x ,y )是圆C 上动点,试求x +y 的最大值,并求出此时点P 的直角坐标.4.若以直角坐标系xOy 的O 为极点,Ox 为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是ρ=.(1)将曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l 的参数方程为(t 为参数),,当直线l 与曲线C 3P ,02⎛⎫ ⎪⎝⎭相交于A ,B 两点,求.2AB PA PB⋅5.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 1的参数方程为为参数),曲线C 2的极坐标方3cos (2sin x y θθθ=⎧⎨=⎩程为.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)设P 为曲线C 1上一点,Q 曲线C 2上一点,求|PQ |的最小值及此时P 点极坐标.6.在极坐标系中,曲线C 的方程为ρ2=,点R (2,).(Ⅰ)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(Ⅱ)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值.7.已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ=(ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.8.在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,己知直线l的极坐标方程为ρcosθ﹣ρsinθ=2,曲线C的极坐标方程为ρsin2θ=2pcosθ(p>0).(1)设t为参数,若x=﹣2+t,求直线l的参数方程;(2)已知直线l与曲线C交于P、Q,设M(﹣2,﹣4),且|PQ|2=|MP|•|MQ|,求实数p的值.9.在极坐标系中,射线l:θ=与圆C:ρ=2交于点A,椭圆Γ的方程为ρ2=,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy (Ⅰ)求点A的直角坐标和椭圆Γ的参数方程;(Ⅱ)若E为椭圆Γ的下顶点,F为椭圆Γ上任意一点,求•的取值范围.10.已知在直角坐标系中,曲线的C参数方程为(φ为参数),现以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)在曲线C上是否存在一点P,使点P到直线l的距离最小?若存在,求出距离的最小值及点P的直角坐标;若不存在,请说明理由.11.已知曲线C1的参数方程为(t为参数),以原点O为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(I)求曲线C2的直角坐标系方程;(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.12.设点A为曲线C:ρ=2cosθ在极轴Ox上方的一点,且0≤θ≤,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy,(1)求曲线C的参数方程;(2)以A为直角顶点,AO为一条直角边作等腰直角三角形OAB(B在A的右下方),求B点轨迹的极坐标方程.13.在平面直角坐标系xOy中,曲线C1:(φ为参数,实数a>0),曲线C2:(φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤)与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α=时,|OB|=2.(Ⅰ)求a,b的值;(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.14.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后,曲线为C2,以坐标原点为极点,x轴正半轴为极轴建极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.15.已知半圆C的参数方程为,a为参数,a∈[﹣,].(Ⅰ)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求半圆C的极坐标方程;(Ⅱ)在(Ⅰ)的条件下,设T是半圆C上一点,且OT=,试写出T点的极坐标.16.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)《极坐标与参数方程》综合测试题答案 一.解答题(共16小题)1.在极坐标系中,已知曲线C :ρ=2cosθ,将曲线C 上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C 1,又已知直线l 过点P (1,0),倾斜角为,且直线l 与曲线C 1交于A ,B 两点.3π(1)求曲线C 1的直角坐标方程,并说明它是什么曲线;(2)求+.【解答】解:(1)曲线C 的直角坐标方程为:x 2+y 2﹣2x=0即(x ﹣1)2+y 2=1.∴曲线C 1的直角坐标方程为=1,∴曲线C 表示焦点坐标为(﹣,0),(,0),长轴长为4的椭圆(2)将直线l 的参数方程代入曲线C 的方程=1中,得.2134120t t +-=设A 、B 两点对应的参数分别为t 1,t 2,∴+. 2.在直角坐标系xOy 中,圆C 的参数方程(φ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin (θ+)=3,射线OM :θ=与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.【解答】解:(I )利用cos 2φ+sin 2φ=1,把圆C 的参数方程为参数)化为(x ﹣1)2+y 2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.3.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O 为原点,极轴所在直线为x轴建立平面直角坐标系.(Ⅰ)求圆C的参数方程;(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.【解答】(本小题满分10分)选修4﹣4:坐标系与参数方程解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,所以x2+y2=4x+4y﹣6,所以x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…(4分)所以所求的圆C的参数方程为(θ为参数).…(6分)(Ⅱ)由(Ⅰ)可得,…(7分)当时,即点P的直角坐标为(3,3)时,…(9分)x+y取到最大值为6.…(10分)4.若以直角坐标系xOy 的O 为极点,Ox 为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是ρ=.(1)将曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l 的参数方程为(t 为参数),,当直线l 与曲线C3P ,02⎛⎫⎪⎝⎭相交于A ,B 两点,求.2ABPA PB⋅【解答】解:(1)∵ρ=,∴ρ2sin 2θ=6ρcosθ,∴曲线C 的直角坐标方程为y 2=6x .曲线为以(,0)为焦点,开口向右的抛物线.(2)直线l 的参数方程可化为,代入y 2=6x 得t 2﹣4t ﹣12=0.解得t 1=﹣2,t 2=6.∴||=|t 1﹣t 2|=8.2AB 2PA PB 3=⋅ 5.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 1的参数方程为为参数),曲线C 2的极坐标方程3cos (2sin x y θθθ=⎧⎨=⎩为.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)设P 为曲线C 1上一点,Q 曲线C 2上一点,求|PQ |的最小值及此时P 点极坐标.【解答】解:(1)由消去参数α,得曲线C 1的普通方程为.由得,曲线C2的直角坐标方程为.(2)设P(2cosα,2sinα),则点P到曲线C2的距离为.当时,d有最小值,所以|PQ|的最小值为.6.在极坐标系中,曲线C的方程为ρ2=,点R(2,).(Ⅰ)以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标;(Ⅱ)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,则:曲线C的方程为ρ2=,转化成.点R的极坐标转化成直角坐标为:R(2,2).(Ⅱ)设P()根据题意,得到Q(2,sinθ),则:|PQ|=,|QR|=2﹣sinθ,所以:|PQ|+|QR|=.当时,(|PQ|+|QR|)min=2,矩形的最小周长为4.7.已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ=(ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.【解答】解:(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得:+(y+1)2=9,展开为:x2+y2﹣2x+2y﹣5=0,可得极坐标方程:ρcosθ+2ρsinθ﹣5=0.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.(II)把直线θ=(ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,∴ρ1+ρ2=2,ρ1•ρ2=﹣5,∴|PQ|=|ρ1﹣ρ2|===2.8.在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,己知直线l的极坐标方程为ρcosθ﹣ρsinθ=2,曲线C的极坐标方程为ρsin2θ=2pcosθ(p>0).(1)设t为参数,若x=﹣2+t,求直线l的参数方程;(2)已知直线l与曲线C交于P、Q,设M(﹣2,﹣4),且|PQ|2=|MP|•|MQ|,求实数p的值.【解答】解:(1)直线l的极坐标方程为ρcosθ﹣ρsinθ=2,化为直角坐标方程:x﹣y﹣2=0.∵x=﹣2+t,∴y=x﹣2=﹣4+t,∴直线l的参数方程为:(t为参数).(2)曲线C的极坐标方程为ρsin2θ=2pcosθ(p>0),即为ρ2sin2θ=2pρcosθ(p>0),可得直角坐标方程:y2=2px.把直线l的参数方程代入可得:t2﹣(8+2p)t+8p+32=0.∴t1+t2=(8+2p),t1t2=8p+32.不妨设|MP|=t1,|MQ|=t2.|PQ|=|t1﹣t2|===.∵|PQ|2=|MP|•|MQ|,∴8p2+32p=8p+32,化为:p2+3p﹣4=0,解得p=1.9.在极坐标系中,射线l:θ=与圆C:ρ=2交于点A,椭圆Γ的方程为ρ2=,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy (Ⅰ)求点A的直角坐标和椭圆Γ的参数方程;(Ⅱ)若E为椭圆Γ的下顶点,F为椭圆Γ上任意一点,求•的取值范围.【解答】解:(Ⅰ)射线l:θ=与圆C:ρ=2交于点A(2,),点A的直角坐标(,1);椭圆Γ的方程为ρ2=,直角坐标方程为+y2=1,参数方程为(θ为参数);(Ⅱ)设F(cosθ,sinθ),∵E(0,﹣1),∴=(﹣,﹣2),=(cosθ﹣,sinθ﹣1),∴•=﹣3cosθ+3﹣2(sinθ﹣1)=sin(θ+α)+5,∴•的取值范围是[5﹣,5+].10.已知在直角坐标系中,曲线的C参数方程为(φ为参数),现以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)在曲线C上是否存在一点P,使点P到直线l的距离最小?若存在,求出距离的最小值及点P的直角坐标;若不存在,请说明理由.【解答】解:(1)曲线的C参数方程为(φ为参数),普通方程为(x﹣1)2+(y﹣1)2=4,直线l的极坐标方程为ρ=,直角坐标方程为x﹣y﹣4=0;(2)点P到直线l的距离d==,∴φ﹣=2kπ﹣,即φ=2kπ﹣(k∈Z),距离的最小值为2﹣2,点P的直角坐标(1+,1﹣).11.已知曲线C1的参数方程为(t为参数),以原点O为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(I)求曲线C2的直角坐标系方程;(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.【解答】解:(I)由可得ρ=x﹣2,∴ρ2=(x﹣2)2,即y2=4(x﹣1);(Ⅱ)曲线C1的参数方程为(t为参数),消去t得:2x+y+4=0.∴曲线C1的直角坐标方程为2x+y+4=0.∵M1是曲线C1上的点,M2是曲线C2上的点,∴|M1M2|的最小值等于M2到直线2x+y+4=0的距离的最小值.设M2(r2﹣1,2r),M2到直线2x+y+4=0的距离为d,则d==≥.∴|M 1M 2|的最小值为.12.设点A 为曲线C :ρ=2cosθ在极轴Ox 上方的一点,且0≤θ≤,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系xOy ,(1)求曲线C 的参数方程;(2)以A 为直角顶点,AO 为一条直角边作等腰直角三角形OAB (B 在A 的右下方),求点B 轨迹的极坐标方程.【解答】(1)θ为参数)1cos (0sin 2x y θπθθ=+⎧≤≤⎨=⎩(2):设A (ρ0,θ0),且满足ρ0=2cosθ0,B (ρ,θ),依题意,即代入ρ0=2cosθ0并整理得,,,所以点B 的轨迹方程为,.13.在平面直角坐标系xOy 中,曲线C 1:(φ为参数,实数a >0),曲线C 2:(φ为参数,实数b >0).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α(ρ≥0,0≤α≤)与C 1交于O 、A 两点,与C 2交于O 、B 两点.当α=0时,|OA |=1;当α=时,|OB |=2.(Ⅰ)求a ,b 的值;(Ⅱ)求2|OA |2+|OA |•|OB |的最大值.【解答】解:(Ⅰ)由曲线C 1:(φ为参数,实数a >0),化为普通方程为(x ﹣a )2+y 2=a 2,展开为:x 2+y 2﹣2ax=0,其极坐标方程为ρ2=2aρcosθ,即ρ=2acosθ,由题意可得当θ=0时,|OA|=ρ=1,∴a=.曲线C2:(φ为参数,实数b>0),化为普通方程为x2+(y﹣b)2=b2,展开可得极坐标方程为ρ=2bsinθ,由题意可得当时,|OB|=ρ=2,∴b=1.(Ⅱ)由(I)可得C1,C2的方程分别为ρ=cosθ,ρ=2sinθ.∴2|OA|2+|OA|•|OB|=2cos2θ+2sinθcosθ=sin2θ+cos2θ+1=+1,∵2θ+∈,∴+1的最大值为+1,当2θ+=时,θ=时取到最大值.14.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后的曲线为C2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.【解答】解:(Ⅰ)C2的参数方程为(α为参数),普通方程为(x′﹣1)2+y′2=1,∴C2的极坐标方程为ρ=2cosθ;(Ⅱ)C2是以(1,0)为圆心,2为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,∴圆心到直线的距离d==,∴|PQ|=2=.15.已知半圆C的参数方程为,a为参数,a∈[﹣,].(Ⅰ)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求半圆C的极坐标方程;(Ⅱ)在(Ⅰ)的条件下,设T是半圆C上一点,且OT=,试写出T点的极坐标.【解答】解:(Ⅰ)由半圆C的参数方程为,a为参数,a∈[﹣,],则圆的普通方程为x2+(y﹣1)2=1(0≤x≤1),由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得半圆C的极坐标方程为ρ=2sinθ,θ∈[0,];(Ⅱ)由题意可得半圆C的直径为2,设半圆的直径为OA,则sin∠TAO=,由于∠TAO∈[0,],则∠TAO=,由于∠TAO=∠TOX,所以∠TOX=,T点的极坐标为(,).16.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)【解答】解:(Ⅰ)曲线C1的参数方程式(t为参数),得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,即x2+y2﹣8x﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;(Ⅱ)曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴C1与C2交点的极坐标分别为(,),(2,).。

第49讲 直线与圆的位置关系(解析版)2021届新课改地区高三数学一轮专题复习

第49讲 直线与圆的位置关系(解析版)2021届新课改地区高三数学一轮专题复习

第49讲直线与圆的位置关系一、课程标准1、能根据给定直线、圆的方程,判断直线与圆的位置关系2、能用直线和圆的方程解决一些简单的数学问题与实际问题.二、基础知识回顾1、直线与圆的位置关系(1)三种位置关系:相交、相切、相离.(2)圆的切线方程的常用结论①过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2;②过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2;③过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.三、自主热身、归纳总结1、若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)与圆的位置关系为()A. 在圆内B. 在圆上C. 在圆外D. 位置不确定【答案】C【解析】∵圆心(0,0)到直线ax+by=1的距离d=1a2+b2<1,∴a2+b2>1,即点P(a,b)在圆外.故选C.2、直线kx-y-4k+3=0与圆x2+y2-6x-8y+21=0的交点个数为()A. 0B. 1C. 2D. 1或2【答案】C【解析】∵直线kx-y-4k+3=0过定点(4,3),且点(4,3)在圆x2+y2-6x-8y+21=0内,∴交点个数为2个.故选C .3、若直线x -y +1=0与圆(x -a)2+y 2=2有公共点,则实数a 的取值范围是( )A . [-3,-1]B . [-1,3]C . [-3,1]D . (-∞,-3]∪[1,+∞) 【答案】C【解析】由题意可得,圆的圆心为(a ,0),半径为2,∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a≤1.故选C .4、过点(2,3)与圆(x -1)2+y 2=1相切的直线的方程为________________. 【答案】 x =2或4x -3y +1=0【解析】 ①若切线的斜率存在时,设圆的切线方程为y =k(x -2)+3,由圆心(1,0)到切线的距离为半径1,得k =43,所以切线方程为4x -3y +1=0;②若切线的斜率不存在,则切线方程为x =2,符合题意,所以直线方程为4x -3y +1=0或x =2.5、直线l :3x -y -6=0与圆x 2+y 2-2x -4y =0相交于A ,B 两点,则AB =________. 【答案】 10【解析】 由x 2+y 2-2x -4y =0,得(x -1)2+(y -2)2=5,所以该圆的圆心坐标为(1,2),半径r =5,又圆心(1,2)到直线3x -y -6=0的距离为d =|3-2-6|32+(-1)2=102,由⎝⎛⎭⎫AB 22=r 2-d 2,得AB 2=4×⎝⎛⎭⎫5-52=10,即AB =10.6、(多选)已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( )A. 6B.5 C .- 6 D .-5【答案】BD【解析】因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =±5,故选B 、D.7、(多选)已知圆C :(x -3)2+(y -3)2=72,若直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则m =( )A .2B .4C .6D .10【答案】AD【解析】圆C :(x -3)2+(y -3)2=72的圆心C 的坐标为(3,3),半径r =62,因为直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点, 所以圆心到直线的距离为22, 则有d =|6-m |1+1=22, 解得m =2或10,故选A 、D.8、(2019·湖南长沙月考)设直线l :(m -1)x +(2m +1)y +3m =0(m ∈R )与圆(x -1)2+y 2=8相交于A ,B 两点,C 为圆心,且△ABC 的面积等于4,则实数m =________. 【答案】-12或-72【解析】设CA ,CB 的夹角为θ,圆的半径为r .所以S △ABC =12r 2sin θ=4sin θ=4,得θ=π2.易知圆心C 到直线l 的距离为2,所以|4m -1|m -12+2m +12=2,解得m =-12或-72.四、例题选讲考点一、直线与圆的位置关系例1、(1)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定(2)已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( )A .m ∥l ,且l 与圆相交B .m ⊥l ,且l 与圆相切C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离 【答案】(1)A (2)C【解析】 (1)由题意知圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. (2)因点P 在圆内,故有a 2+b 2<r 2,直线m 是以P 为中点的弦所在的直线,所以m ⊥OP ,所以直线m的斜率k m =-a b ,因此m ∥l .又直线l 到圆心(0,0)的距离d =r 2a 2+b 2>r 2r =r ,故直线l 与圆相离.故选C.变式1、(1)(2020·杭州模拟)若无论实数a 取何值时,直线ax +y +a +1=0与圆x 2+y 2-2x -2y +b =0都相交,则实数b 的取值范围为( )A .(-∞,2)B .(2,+∞)C .(-∞,-6)D .(-6,+∞)(2)若圆x 2+y 2=r 2(r >0)上恒有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围是( ) A .(2+1,+∞) B .(2-1,2+1) C .(0,2-1) D .(0,2+1)【答案】(1) C (2)A【解析】(1)∵x 2+y 2-2x -2y +b =0表示圆,∴8-4b >0,即b <2.∵直线ax +y +a +1=0过定点(-1,-1),∴点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部,∴6+b <0,解得b <-6,∴b 的取值范围是(-∞,-6).故选C.(2)计算得圆心到直线l 的距离为22=2>1,如图,直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离2+1.变式2、已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)直线l 能否将圆C 分割成弧长之比为1∶3的两段弧?若能,求出直线l 的方程;若不能,请说明理由.【解析】(1)(方法1)将y =kx 代入圆C 的方程x 2+(y -4)2=4,得(1+k 2)x 2-8kx +12=0.∵直线l 与圆C 交于M ,N 两点,∴Δ=(-8k)2-4×12(1+k 2)>0,得k 2>3,(*)∴k 的取值范围是(-∞,-3)∪(3,+∞).(方法2)求圆心到直线的距离d =41+k 2<2解得k >3或k <- 3. (2)假设直线l 将圆C 分割成弧长的比为1∶3的两段弧,则劣弧MN 所对的圆心角∠MCN =90°,由圆C :x 2+(y -4)2=4知圆心C(0,4),半径r =2.在Rt △MCN 中,可求弦心距d =r·sin 45°=2,故圆心C(0,4)到直线kx -y =0的距离||0-41+k2=2,∴1+k 2=8,k =±7,经验证k =±7满足不等式(*),故l 的方程为y =±7x.方法总结:判断直线与圆的位置关系的常见方法(1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 考点二 圆的弦长问题例2、已知直线ax -y +2-a =0与圆C :(x -3)2+(y -1)2=9相交于A ,B 两点,若弦AB 的长为32,求实数a 的值.【解析】 因为圆心到直线ax -y +2-a =0的距离为||2a +1a 2+1,所以⎝ ⎛⎭⎪⎫||2a +1a 2+12+⎝⎛⎭⎫3222=9,解得a =1或a =7.变式1、(1)在平面直角坐标系xOy 中,直线3x -y +1-3=0被圆x 2+y 2-6x -2y +1=0截得的弦长为________.(2)当直线l :ax -y +2-a =0被圆C :(x -3)2+(y -1)2=9截得的弦长最短时,实数a 的值为________. (3)若直线l :ax -y +2-a =0与圆C :(x -3)2+(y -1)2=9相交于A ,B 两点,且∠ACB =90°,则实数a 的值为________.【答案】(1) 2 6 (2)2 (3)1或7【解析】(1) 圆x 2+y 2-6x -2y +1=0的圆心为C(3,1),半径r =3,点C 到直线3x -y +1-3=0的距离d =3,所求弦长为l =2r 2-d 2=2 6.【解析】(2) 由ax -y +2-a =0得直线l 恒过点M(1,2).又因为点M(1,2)在圆C 的内部,当MC 与l 垂直时,弦长最短,所以k MC ·k l =-1,所以2-11-3×a =-1,解得a =2 .(3)由题意,得圆心C(3,1),半径r =3且∠ACB =90°,则圆心C 到直线l :ax -y +2-a =0的距离为22r ,即||2a +1a 2+1=322,解得a =1或a =7.变式2、(1) 过点M(1,2)的直线l 与圆C :(x -3)2+(y -1)2=9相交于A ,B 两点,若弦AB 的长为25,则直线l 的方程为 _(2)已知圆C :(x -1)2+(y -2)2=2截y 轴所得线段与截直线y =2x +b 所得线段的长度相等,则b =________. 【答案】(1) x =1或3x -4y +5=0(2)±5【解析】 (1)当直线l 的斜率不存在时,x =1,符合条件;当直线l 的斜率存在时,设直线l 的方程为y-2=k(x -1),所以圆心到直线kx -y +2-k =0的距离为||2k +1k 2+1,由⎝ ⎛⎭⎪⎫||2k +1k 2+12+⎝⎛⎭⎫2522=9,解得k =34,即直线l 的方程为3x -4y +5=0.综上所述,所求直线l 的方程为x =1或3x -4y +5=0.(2)记圆C 与y 轴的两个交点分别是A ,B ,由圆心C 到y 轴的距离为1,|CA |=|CB |=2可知,圆心C (1,2)到直线2x -y +b =0的距离也等于1才符合题意,于是|2×1-2+b |5=1,解得b =± 5.方法总结:弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2. 考点三 圆的切线问题例3、(徐州一中2019届模拟)已知点P (2+1,2-2),点M (3,1),圆C :(x -1)2+(y -2)2=4.(1)求过点P 的圆C 的切线方程; (2)求过点M 的圆C 的切线方程.【解析】 由题意得圆心C (1,2),半径r =2.(1)因为(2+1-1)2+(2-2-2)2=4,所以点P 在圆C 上. 又k PC =2-2-22+1-1=-1,所以切线的斜率k =-1k PC =1.所以过点P 的圆C 的切线方程是y -(2-2)=1×[x -(2+1)],即x -y +1-22=0. (2)因为(3-1)2+(1-2)2=5>4,所以点M 在圆C 外部. 当过点M 的直线斜率不存在时,直线方程为x =3, 即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r ,即此时满足题意,所以直线x =3是圆的切线. 当切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0,则圆心C 到切线的距离d=|k -2+1-3k |k 2+1=r =2,解得k =34.所以切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.变式1、已知点P(2+1,2-2),点M(3,1),圆C :(x -1)2+(y -2)2=4.(1) 求过点P 的圆C 的切线方程;(2) 求过点M 的圆C 的切线方程,并求出切线长. 【解析】 (1) 由题意得圆心C(1,2),半径r =2.因为(2+1-1)2+(2-2-2)2=4, 所以点P 在圆C 上. 又k PC =2-2-22+1-1=-1,所以切线的斜率k =-1k PC=1,所以过点P 的圆C 的切线方程是y -(2-2)=x -(2+1),即x -y +1-22=0. (2) 因为(3-1)2+(1-2)2=5>4, 所以点M 在圆C 外部.当过点M 的直线斜率不存在时,直线方程为x =3,即x -3=0,满足题意; 当切线的斜率存在时,设切线方程为y -1=k(x -3),即kx -y +1-3k =0, 则圆心C 到切线的距离d =|k -2+1-3k|k 2+1=2,解得k =34,所以切线方程为y -1=34(x -3),即3x -4y -5=0.综上所述,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0. 因为MC =(3-1)2+(1-2)2= 5,所以过点M 的圆C 的切线长为MC 2-r 2=5-4=1.变式2、已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A(4,-1).【解析】(1)设切线方程为x +y +b =0,则|1-2+b|2=10,∴b =1±25,∴切线方程为x +y +1±25=0.(2)设切线方程为2x +y +m =0,则|2-2+m|5=10,∴m =±52,∴切线方程为2x +y±52=0. (3)∵k AC =-2+11-4=13,∴过切点A(4,-1)的切线斜率为-3, ∴过切点A(4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.方法总结:求圆的切线方程应注意的问题求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线.五、优化提升与真题演练1、【2020年天津卷】知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r的值为_________. 【答案】5【解析】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =可得6==5r . 故答案为:5.2、【2020年浙江卷】.设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).(2). 3- 【解析】由题意,12,C C 1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.3、【2020年全国2卷】.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.5D.5【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为12113255d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=. 故选:B.4、【2020年全国3卷】若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12C. y =12x +1 D. y =12x +12【答案】D【解析】设直线l 在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.5、(2020届清华大学附属中学高三第一学期12月月考)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,若OAB ∆为正三角形,则实数m 的值为( ) A.2 B.2CD- 【答案】D【解析】 由题意得,圆22:1O x y +=的圆心坐标为(0,0),半径1r =. 因为OAB ∆为正三角形,则圆心O 到直线0x y m -+==即2d ==,解得2=m或2m =-,故选D. 6、(2020届山东省枣庄、滕州市高三上期末)已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A.B.C.5+D.3+【答案】C 【解析】由0220kx y x ky k +=⎧⎨-+-=⎩,消去参数k 得22(1(1)2x y -+-=),所以A 在以(1,1)C 为半径的圆上,又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,5CD ==,∴AB 的最大值为5CD =+故选:C.7、【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===8、 (2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.【解析】 (1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22.由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m 2.联立⎩⎨⎧ x =-m 2,y -12=x 2⎝⎛⎭⎫x -x 22,又x 22+mx 2-2=0,可得⎩⎨⎧ x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92.故过A ,B ,C 三点的圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。

高中数学 第二章 解析几何初步 2.2.3 直线与圆、圆与圆的位置关系 第一课时 直线与圆的位置关系

高中数学 第二章 解析几何初步 2.2.3 直线与圆、圆与圆的位置关系 第一课时 直线与圆的位置关系

位置关系第一课时直线与圆的位置关系高效测评北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章解析几何初步2.2.3 直线与圆、圆与圆的位置关系第一课时直线与圆的位置关系高效测评北师大版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章解析几何初步2.2.3 直线与圆、圆与圆的位置关系第一课时直线与圆的位置关系高效测评北师大版必修2的全部内容。

与圆的位置关系第一课时直线与圆的位置关系高效测评北师大版必修2(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.直线2x-y+3=0与圆C:x2+(y-1)2=5的位置关系是( )A.相交B.相切C.相离D.不确定解析: 圆C:x2+(y-1)2=5的圆心C为(0,1),半径为错误!.由圆心(0,1)到直线2x-y+3=0的距离:d=错误!=错误!错误!<错误!.∴直线和圆相交.答案:A2.若圆心在x轴上、半径为错误!的圆C位于y轴左侧,且与直线x+2y=0相切,则圆C 的方程是()A.(x-5)2+y2=5 B.(x+错误!)2+y2=5C.(x-5)2+y2=5 D.(x+5)2+y2=5解析:设圆心为(x0,0),则由题意知圆心到直线x+2y=0的距离为错误!,故有错误!=错误!,∴|x0|=5.又圆心在y轴左侧,故x0=-5.∴圆的方程为(x+5)2+y2=5,选D。

答案: D3.若点P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( ) A.x+y-1=0 B.2x+y-3=0C.2x-y-5=0 D.x-y-3=0解析: 圆心是点C(1,0),由CP⊥AB,得k AB=1,所以直线AB的方程为x-y-3=0,故选D。

2.5 直线与圆、圆与圆的位置关系(精练)(原卷版)

2.5 直线与圆、圆与圆的位置关系(精练)(原卷版)

2.5 直线与圆、圆与圆的位置关系(精练)【题组一 直线与圆的位置关系】1.(2021·江西南昌市)直线4320x y --=与圆+-+-=2224110x y x y 的位置关系是( )A .相交B .相切C .相离D .以上都不对2.(2021·全国)直线1x y +=和圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .不确定3.(2021·白银市第十中学)直线l :10mx y m -+-=与圆C :22(1)5x y +-=的位置关系是( ) A .相交B .相切C .相离D .不确定4.(2021·北京高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为( ) A .相交B .相切C .相离D .不能确定5.(2021·北京高二期末)直线34x y b +=与圆22(1)(1)1x y -+-=相切,则b 的值是( ) A .-2或12B .2或-12C .-2或-12D .2或126.(2021·全国高二课时练习)若直线0x y +=与圆()()2212x m y -+-=相切,则m =( ) A .1B .1-C .1-或3D .3-或17.(2021·浙江高二期末)已知直线y x b =+与曲线3y =b 的取值范围是( )A .[1,1-+B .(1-+C .(1-D .(11]--8.(2021·浙江高二期末)直线()20ax y a a R --=∈与圆229x y +=的位置关系是( ) A .相离B .相交C .相切D .不确定9.(2021·全国)(多选)直线l 与圆C 有公共点,则直线l 与圆C 的位置关系可能是( ) A .相交 B .相切 C .相离 D .不能确定10.(2021·全国)(多选)已知圆x 2+y 2-2x +4y +3=0与直线x -y =1,则( )A .圆心坐标为(1,-2)B .圆心到直线的距离为2C .直线与圆相交 D11.(2021·内蒙古包头市·高二月考(理))已知(),P a b 是圆221x y +=内一点,则直线1ax by +=与圆221x y +=公共点的个数为( )A .0B .1C .2D .以上都有可能【题组二 直线与圆的弦长】1.(2021·陕西安康市·高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于A ,B 两点,则||AB = 。

21人教版高中a版数学同步必修2 第四章 圆与方程达标检测(可编辑word)

21人教版高中a版数学同步必修2  第四章 圆与方程达标检测(可编辑word)

本章达标检测一、选择题(本题共12小题,每小题5分,共60分)1.已知圆C的圆心为(2,-1),半径长是方程(x+1)(x-4)=0的根,则圆C的标准方程为( )A.(x+1)2+(y-2)2=4B.(x-2)2+(y-1)2=4C.(x-2)2+(y+1)2=16D.(x+2)2+(y-1)2=162.圆x2+y2+2x+4y-3=0上到直线x+y+1=0的距离为√2的点共有( )A.1个B.2个C.3个D.4个3.若将直线3x-y+c=0向右平移1个单位再向下平移1个单位,平移后的直线与圆x2+y2=10相切,则c的值为( )A.14或-6B.12或-8C.8或-12D.6或-144.经过三点A(-1,0),B(3,0),C(1,2)的圆的面积是( )A.πB.2πC.3πD.4π5.空间直角坐标系中,点A(3,4,0)和点B(1,y,5)的距离为3√5,则y的值为( )A.0B.8C.0或8D.-8或06.若圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是( )A.x+y-1=0B.2x-y+1=0C.x-2y+1=0D.x-y+1=07.若过点A(3,0)的直线l与曲线(x-1)2+y2=1有公共点,则直线l的斜率的取值范围为( )A.(-√3,√3)B.[-√3,√3]C.(-√33,√33)D.[-√33,√33]8.已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB为等腰直角三角形,则实数a的值为( )A.√6或-√6B.√5或-√5C.√6D.√59.直线l:kx-y+k+1=0与圆x2+y2=8交于A,B两点,且|AB|=4√2,过点A,B分别作l 的垂线与y轴分别交于点M,N,则|MN|等于( )A.2√2B.4C.4√2D.810.设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3),且与圆C交于A,B两点,若|AB|=2√3,则直线l的方程为( )A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=011.已知圆x2+y2=4上有且仅有两个点到直线12x-5y+m=0的距离为1,则实数m的取值范围是( )A.(13,39)∪(-39,-13)B.(-∞,-13)∪(13,+∞)C.(13,+∞)D.(-∞,-13)12.已知圆C的圆心为原点O,且与直线x+y+4√2=0相切.点P在直线x=8上,过点P 引圆C的两条切线PA,PB,切点分别为A,B,如图所示,则直线AB恒过的定点的坐标为( )A.(2,0)B.(0,2)C.(1,0)D.(0,1)二、填空题(本题共4小题,每小题5分,共20分)13.若点P(x,y)满足x2+y2=16,则x-y的最大值为.14.已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为.15.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0对称的点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是.16.若A为圆C1:x2+y2=1上的动点,B为圆C2:(x-3)2+(y+4)2=4上的动点,则线段AB 长度的最大值是.三、解答题(本题共6小题,共70分)17.(10分)已知圆C过点P(2,1),圆心为C(5,-3).(1)求圆C的标准方程;(2)如果过点A(0,1)且斜率为k的直线l与圆C没有公共点,求实数k的取值范围.18.(12分)已知圆C经过P(4,-2),Q(-1,3)两点,且圆心C在直线x+y-1=0上.(1)求圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.19.(12分)已知与曲线C:x2+y2-2x-2y+1=0相切的直线l和x轴、y轴的正半轴分别交于A,B两点,O为坐标原点,|OA|=a,|OB|=b(a>2,b>2).(1)求证:直线l与曲线C相切的条件是(a-2)(b-2)=2;(2)求线段AB中点的轨迹方程.20.(12分)已知圆M:x2+y2=1.(1)求过点(-1,-2)的圆M的切线方程;(2)设圆M与x轴相交于A,B两点,点P为圆M上异于A,B的任意一点,直线PA,PB 分别与直线x=3交于C,D两点.(i)当点P的坐标为(0,1)时,求以线段CD为直径的圆的圆心坐标及半径长; (ii)当点P在圆M上运动时,以线段CD为直径的圆C2被x轴截得的弦长是不是定值?请说明理由.21.(12分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4与圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为2√3,求直线l的方程;(2)设P为平面上的点,且满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.22.(12分)在平面直角坐标系中,已知A(-1,0),B(2,0),动点M(x,y)满足|MA||MB|=12,设动点M的轨迹为曲线C.(1)求动点M的轨迹方程,并说明曲线C是什么图形;(2)过点(1,2)的直线l与曲线C交于E,F两点,若|EF|=4√55,求直线l的方程; (3)设P是直线x+y+8=0上的点,过P点作曲线C的切线PG,PH,切点分别为G,H,设C'(-2,0),求证:过G,P,C'三点的圆必过定点,并求出所有定点的坐标.答案全解全析 基础过关练一、选择题1.C 根据圆C 的半径长是方程(x+1)(x-4)=0的根,可得半径长为4,故要求的圆的标准方程为(x-2)2+(y+1)2=16.2.C 易得圆心坐标为(-1,-2),半径长r=12√4+16+12=2√2,又圆心到直线x+y+1=0的距离d=√2=√2,∴过圆心且平行于直线x+y+1=0的直线与圆有2个交点,另一条与直线x+y+1=0的距离为√2的平行线与圆相切,只有1个交点,∴共有3个点.3.A 将直线3x-y+c=0即y=3x+c 向右平移1个单位再向下平移1个单位,平移后的直线方程为y=3(x-1)+c-1,即3x-y+c-4=0.由直线3x-y+c-4=0与圆x 2+y 2=10相切,得√32+(-1)=√10,即|c-4|=10,所以c=14或c=-6.4.D 由题意可知,线段AB 的中垂线l 1的方程为x=1,线段AC 的中点坐标为(0,1),直线AC 的方程为y=x+1,从而线段AC 的中垂线l 2的方程为x+y-1=0,联立l 1与l 2的方程可得圆心坐标为Q(1,0),从而半径长r=|QB|=√(1-3)2+(0-0)2=2,所以圆的面积S=πr 2=4π.故选D.5.C 由两点间的距离公式得|AB|=√(3-1)2+(4-y )2+(0-5)2=3√5,解得y=0或y=8.6.A 将圆的方程x 2+y 2-2x-5=0,x 2+y 2+2x-4y-4=0化为(x-1)2+y 2=6,(x+1)2+(y-2)2=9.设两圆圆心分别为C 1(1,0),C 2(-1,2).线段AB 的垂直平分线必经过C 1,C 2,所以直线C 1C 2为线段AB 的垂直平分线,直线C 1C 2的方程为x+y-1=0.7.D 作图如下,易知直线l 的斜率存在,设直线l 的方程为y=k(x-3),即kx-y-3k=0,则圆心(1,0)与直线kx-y-3k=0的距离应小于等于半径长1,即√1+k2≤1,解得-√33≤k≤√33.8.B 由题意知,O 到直线AB 的距离为1,由点到直线的距离公式可得√12+(-2)=1,所以a=±√5.9.D 因为圆x 2+y 2=8,所以半径长r=2√2,因为|AB|=4√2=2r,所以AB 为圆x 2+y 2=8的一条直径.所以直线AB 过圆心(0,0),所以k=-1,则直线l 的方程为y=-x,所以两条垂线的斜率均为1,倾斜角为45°, 结合图象(图略)易知|MN|=2×√2×2√2=8.10.B 当直线l 的斜率不存在时,直线l 的方程为x=0,联立得{x =0,x 2+y 2-2x -2y -2=0,解得{x =0,y =1-√3或{x =0,y =1+√3,∴|AB|=2√3,符合题意.当直线l 的斜率存在时,设直线l 的方程为y=kx+3,∵圆x 2+y 2-2x-2y-2=0即(x-1)2+(y-1)2=4,∴圆心为C(1,1),圆的半径长r=2,易知圆心C(1,1)到直线y=kx+3的距离d=√k 2+1=√k 2+1,∵d 2+(|AB |2)2=r 2,∴(k+2)2k 2+1+3=4,解得k=-34,∴直线l 的方程为y=-34x+3,即3x+4y-12=0.综上,直线l 的方程为3x+4y-12=0或x=0.11.A 由题意得,圆心到直线的距离d 满足1<d<3,即1<|m |13<3,解得13<m<39或-39<m<-13.故选A.12.A 依题意得圆C 的半径长r=√2√12+12=4,所以圆C 的方程为x 2+y 2=16.因为PA,PB 是圆C 的两条切线,所以OA⊥AP,OB⊥BP,所以A,B 在以OP 为直径的圆上,设点P 的坐标为(8,b),b∈R,则线段OP 的中点坐标为(4,b2),所以以OP 为直径的圆的方程为(x-4)2+(y -b 2)2=42+(b 2)2,b∈R,化简得x 2+y 2-8x-by=0,b∈R,因为AB 为两圆的公共弦,所以直线AB 的方程为8x+by=16,b∈R,即8(x-2)+by=0.所以直线AB 恒过定点(2,0).二、填空题13.答案 4√2解析 令x-y=t,则y=x-t,将其代入x 2+y 2=16得2x 2-2tx+t 2-16=0,所以Δ=4t 2-8(t 2-16)≥0,所以t 2≤32,所以t 的最大值为4√2,即x-y 的最大值为4√2. 14.答案 (0,-1)解析 圆C 的方程可化为(x +k 2)2+(y+1)2=-34k 2+1.所以当k=0时,圆C 的面积最大,此时C 的坐标为(0,-1). 15.答案 [√2-1,√2+1]解析 C 2关于直线x-y=0对称的圆为圆C:(x-1)2+(y-2)2=1,由题意知,圆C 与圆C 1有交点,所以r-1≤√2≤r+1,所以r 的取值范围是[√2-1,√2+1]. 16.答案 8解析 圆C 1:x 2+y 2=1的圆心为C 1(0,0),半径长r 1=1,圆C 2:(x-3)2+(y+4)2=4的圆心为C 2(3,-4),半径长r 2=2, ∴|C 1C 2|=5.又A 为圆C 1上的动点,B 为圆C 2上的动点, ∴线段AB 长度的最大值是|C 1C 2|+r 1+r 2=5+1+2=8.三、解答题17.解析 (1)由已知可得圆的半径长为|PC|=√(5-2)2+(-3-1)2=5.∴圆C 的标准方程为(x-5)2+(y+3)2=25.(2)由题意可知,直线方程为y=kx+1,即kx-y+1=0. 由√k 2+1>5,解得k>940.∴实数k 的取值范围是(940,+∞). 18.解析 (1)∵P(4,-2),Q(-1,3),∴线段PQ 的中点M 的坐标为(32,12),斜率k PQ =-1,则线段PQ 的垂直平分线的方程为y-12=1×(x -32),即x-y-1=0.解方程组{x -y -1=0,x +y -1=0得{x =1,y =0,∴圆心C(1,0),半径长r=√(4-1)2+(-2-0)2=√13.故圆C 的方程为(x-1)2+y 2=13.(2)由l∥PQ,设l 的方程为y=-x+m.代入圆C 的方程,得2x 2-2(m+1)x+m 2-12=0. 设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=m+1,x 1x 2=m 22-6.故y 1y 2=(m-x 1)(m-x 2)=m 2+x 1x 2-m(x 1+x 2), 依题意知OA⊥OB,∴y 1x 1·y2x 2=-1,即x 1x 2+y 1y 2=0,于是m 2+2x 1x 2-m(x 1+x 2)=0,即m 2-m-12=0.∴m=4或m=-3,经检验,都满足Δ>0. 故直线l 的方程为y=-x+4或y=-x-3.19.解析 (1)证明:设l 的方程为x a +yb =1(a>2,b>2),化为一般式方程为bx+ay-ab=0.圆C 的标准方程为(x-1)2+(y-1)2=1. 因为l 与圆C 相切,所以√a 2+b 2=1,即ab(ab+2-2a-2b)=0,又a>2,b>2,所以ab≠0,所以ab+2-2a-2b=0.所以(a-2)(b-2)=2. (2)设AB 的中点为M(x,y). 由题意得{x =a+02,y =0+b 2,即{a =2x ,b =2y ,代入(a-2)(b-2)=2,得(2x-2)(2y-2)=2 . 又a=2x>2,b=2y>2,所以AB 中点的轨迹方程为(x-1)(y-1)=12(x>1,y>1).20.解析 (1)因为点(-1,-2)在圆M 外,所以圆M 过点(-1,-2)的切线有两条. 当直线的斜率不存在时,直线方程为x=-1,满足条件.当直线的斜率存在时,可设为y+2=k(x+1),即kx-y+k-2=0. 由圆心到切线的距离d=√k 2+1=1,解得k=34.此时切线方程为3x-4y-5=0.综上,圆M 的切线方程为x+1=0或3x-4y-5=0.(2)因为圆M 与x 轴相交于A,B 两点,所以不妨设A(-1,0),B(1,0).(i)当点P 的坐标为(0,1)时,直线PA 的斜率为k PA =1,直线PA 的方程为y=x+1. 直线PA 与直线x=3的交点坐标为C(3,4),同理,直线PB 的斜率为k PB =-1,直线PB 的方程为y=-x+1.直线PB 与直线x=3的交点坐标为D(3,-2).所以以线段CD 为直径的圆的圆心为(3,1),半径长为3. (ii)以线段CD 为直径的圆C 2被x 轴截得的弦长为定值4√2.设点P(x 0,y 0)(y 0≠0),则x 02+y 02=1.直线PA 的斜率为k PA =y 0x 0+1,直线PA 的方程为y=y 0x 0+1(x+1). 直线PA 与直线x=3的交点坐标为C (3,4y 0x 0+1). 同理,直线PB 的斜率为k PB =y 0x 0-1,直线PB 的方程为y=y 0x 0-1(x-1). 直线PB 与直线x=3的交点坐标为D (3,2y 0x 0-1). 所以所求圆的圆心为C 2(3,y 0(3x 0-1)x 02-1),半径长r=|y 0(x 0-3)x 02-1|.解法一:圆C 2被x 轴截得的弦长为2√|y 0(x 0-3)x 02-1|2-[y 0(3x 0-1)x 02-1]2=2√8y 02(1-x 02)(x 02-1)2=2√8(1-x 02)(1-x 02)(x 02-1)2=4√2.所以以线段CD 为直径的圆C 2被x 轴截得的弦长为定值4√2.解法二:圆C 2的方程为(x-3)2+[y -y 0(3x 0-1)x 02-1]2=[y 0(x 0-3)x 02-1]2. 令y=0,解得(x-3)2=[y 0(x 0-3)x 02-1]2-(-y 0(3x 0-1)x 02-1)2=8y 02(1-x 02)(x 02-1)2=8(1-x 02)(1-x 02)(x 02-1)2=8.所以x=3±2√2.所以圆C 2与x 轴的交点坐标分别为(3-2√2,0),(3+2√2,0).所以以线段CD 为直径的圆C 2被x 轴截得的弦长为定值4√2.21.解析 (1)由题意可知直线l 的斜率存在,设直线l 的方程为y=k(x-4),即kx-y-4k=0,所以圆心C 1(-3,1)到直线l 的距离d=√k 2+(-1)=√4-(2√32)2=1,化简得24k 2+7k=0,解得k=0或k=-724. 所以直线l 的方程为y=0或y=-724(x-4),即y=0或7x+24y-28=0.(2)设点P 的坐标为(m,n),不妨设直线l 1,l 2的方程分别为y-n=k'(x-m),y-n=-1k '(x-m),即k'x-y+n-k'm=0,-1k 'x-y+n+m k '=0.因为直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,两圆的半径长也相等,所以圆心C 1(-3,1)到直线l 1的距离与圆心C 2(4,5)到直线l 2的距离相等,即√k '+(-1)=|-4k '-5+n+m k '|√(-1k ')2+(-1),化简得(2-m-n)k'=m-n-3或(m-n+8)k'=m+n-5,关于k'的方程有无穷多解,则{2-m -n =0,m -n -3=0或{m -n +8=0,m +n -5=0, 解得{m =52,n =-12或{m =-32,n =132,故满足条件的点P 的坐标为(52,-12)或(-32,132).22.解析 (1)由题意得√(x+1)2+y 2√(x -2)+y 2=12,化简可得(x+2)2+y 2=4, 所以动点M 的轨迹方程为(x+2)2+y 2=4.曲线C 是以(-2,0)为圆心,2为半径长的圆.(2)①当直线l 的斜率不存在时,直线l 的方程为x=1,不符合题意; ②当直线l 的斜率存在时,设l:y-2=k(x-1),即kx-y+2-k=0, 圆心C(-2,0)到l 的距离为d=√1+k 2. ∵|EF|=2√4-d 2=4√55, ∴d 2=165=(2-3k )21+k 2,即29k 2-60k+4=0,解得k 1=2,k 2=229, ∴l 的方程为2x-y=0或2x-29y+56=0.(3)证明:∵P 在直线x+y+8=0上,∴设P(m,-m-8).∵C'为曲线C 的圆心,由圆的切线的性质可得PG⊥GC',∴经过G,P,C'三点的圆是以线段PC'为直径的圆,则方程为(x+2)(x-m)+y(y+m+8)=0,整理可得x 2+y 2+2x+8y+m(-x-2+y)=0,令x 2+y 2+2x+8y=0,且-x-2+y=0,解得{x =-2,y =0或{x =-5,y =-3.则经过G,P,C'三点的圆必过定点,所有定点的坐标为(-2,0),(-5,-3).。

抛物线的简单几何性质(第2课时)课件-高二上学期数学人教A版(2019)选择性必修第一册

抛物线的简单几何性质(第2课时)课件-高二上学期数学人教A版(2019)选择性必修第一册

|MF|=|MN|= (3 + 1)2 + (2 3 − 2 3)2
=4.
∴△MNF是边长为4的等边三角形.
∴点M到直线NF的距离为2 3.
2
=4.
1−cos60°
点M到直线NF的距离为4×
3
=2
2
3.
典例精析
题型二:与抛物线有关的定点、定值问题
例3 已知动圆经过定点D(1,0),且与直线x=-1相切,设动圆圆心E的轨迹为曲线C.
(−2)2
设A(x1,y1),则x1= 2

=
2 −4+4
.
2
典例精析
题型二:与抛物线有关的定点、定值问题
例3 已知动圆经过定点D(1,0),且与直线x=-1相切,设动圆圆心E的轨迹为曲线C.
(1)求曲线C的方程.
(2)设过点P(1,2)的直线l1,l2分别与曲线C交于A,B两点,直线l1,l2的斜率存在,且倾斜角互补.
A.4p
B.5p
C.6p
D.8p
解 由焦点弦长公式知|PQ|=x1+x2+p=4p.
跟踪练习
3.设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则C的圆心轨迹为( A )
A.抛物线
B.双曲线
C.椭圆
D.圆
解 设圆C的半径为r,则圆心C到直线y=0的距离为r,
由两圆外切可得,圆心C到点(0,3)的距离为r+1,
或(x-11)2+(y+6)2=144.
典例精析
题型一:抛物线的焦点弦
例2 过抛物线C:y2=4x的焦点F,且斜率为 3的直线交C于点M(M在x轴的上方),
l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为(

考向33 一类与圆有关的最值与范围问题(七大经典题型)(原卷版)

考向33 一类与圆有关的最值与范围问题(七大经典题型)(原卷版)

考向33 一类与圆有关的最值与范围问题经典题型一:斜率型 经典题型二:直线截距型 经典题型三:两点距离型 经典题型四:周长、面积型 经典题型五:数量积型 经典题型六:坐标与角度型 经典题型七:弦长型(多选题)(2021·全国·高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =(2022·全国·高考真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是________.涉及与圆有关的最值,可借助图形性质,利用数形结合求解.一般地:(1)形如ax by --=μ的最值问题,可转化为动直线斜率的最值问题. (2)形如by ax t +=的最值问题,可转化为动直线截距的最值问题.(3)形如22)()(b y a x m -+-=的最值问题,可转化为曲线上的点到点(a ,b )的距离平方的最值问题解决圆中的范围与最值问题常用的策略: (1)数形结合 (2)多与圆心联系 (3)参数方程(4)代数角度转化成函数值域问题经典题型一:斜率型1.(2022·全国·高三专题练习)曲线211y x =-()21y k x -=-有两个交点,则实数k 的取值范围为( ) A .()0,∞+B .10,2⎛⎤⎥⎝⎦C .()1,1,2⎛⎫-∞-⋃-+∞ ⎪⎝⎭D .11,23⎛⎤-- ⎥⎝⎦2.(2022·浙江·模拟预测)已知圆22:(3)(2)1O x y ++-=,过点(1,0)A -与圆上一点的直线的斜率范围是_______;若点A 恰好为过其所在的直线中对圆O 张角最大的点(张角是指这个点到圆所作两条切线的夹角),则此直线的表达式为_______________.3.(2022·上海市光明中学模拟预测)设有直线30l kx y l +-=:,的倾斜角为α.若在直线l 上存在点A 满足2OA =,且tan 0α<,则k 的取值范围是____________.4.(2022·江苏苏州·模拟预测)已知点P 是圆221x y +=上任意一点,则2yx -的取值范围为________.经典题型二:直线截距型5.(2022·全国·高三专题练习)已知点(,)P x y 是圆2264120x y x y +--+=上的动点,则x y +的最大值为( ) A .52B .52C .6D .56.(2022·全国·高三开学考试(文))已知点(),P x y 是圆C :()()2230x a y a -+=>上的一动点,若圆C 经过点(2A ,则y x -的最大值与最小值之和为( ) A .4B .26C .4-D .26-7.(多选题)(2022·全国·高三专题练习)三角形的外心、重心、垂心所在的直线称为欧拉线.已知圆O '的圆心在OAB 的欧拉线l 上,O 为坐标原点,点()4,1B 与点()1,4A 在圆O '上,且满足O A O B '⊥',则下列说法正确的是( ) A .圆O '的方程为224430x y x y +--+= B .l 的方程为0x y -=C .圆O '上的点到l 的最大距离为3D .若点(),x y 在圆O '上,则x y -的取值范围是32,32⎡-⎣8.(多选题)(2022·湖南·长沙一中高三开学考试)已知11(,)A x y ,22(,)B x y 是圆O :221x y +=上两点,则下列结论正确的是( ) A .若1AB =,则3AOB π∠=B .若点O 到直线AB 的距离为12,则3AB =C .若2AOB π∠=,则112211x y x y +-++-的最大值为22D .若2AOB π∠=,则112211x y x y +-++-的最大值为4经典题型三:两点距离型9.(2022·广东茂名·模拟预测)已知向量,a b 满足1a = ,2b = ,0a b ⋅= ,若向量c 满足21a b c +-= ,则c 的取值范围是( ) A .51⎡⎤⎣⎦B .3131⎡-+⎢⎣⎦C .5151-+⎣⎦D .5152⎡⎤+⎢⎥⎣⎦ 10.(2022·全国·高三专题练习)正方形ABCD 与点P 在同一平面内,已知该正方形的边长为1,且222||||||PA PB PC +=,求||PD 的取值范围.11.(2022·全国·高三专题练习)已知22:(3)(4)1C x y -+-=,点(1,0)A -,(1,0)B ,点P 是圆上的动点,求22||||d PA PB =+的最大值、最小值及对应的P 点坐标.12.(2022·云南省下关第一中学高三开学考试)若圆221x y +=上总存在两个点到点(,1)a 的距离为2,则实数a 的取值范围是( ) A .(2,0)2)-⋃ B .(22,22)- C .(1,0)(0,1)-D .(1,1)-13.(2022·河北衡水·高三阶段练习)已知单位向量a 与向量()0,2b =垂直,若向量c 满足1a b c ++=,则c 的取值范围为( ) A .51⎡⎤⎣⎦B .3131⎡-+⎢⎣⎦C .551⎡⎤⎣⎦D .31⎡⎤+⎢⎥⎣⎦14.(2022·全国·高三专题练习)已知M 是圆22:1C x y +=上一个动点,且直线1:310(R)l mx y m m --+=∈与直线2:310(R)l x my m m +--=∈相交于点P ,则||PM 的取值范围是( )A .31,231⎡⎤⎣⎦B .21,321⎡⎤⎣⎦C .21,221⎤⎦D .21,331⎡⎤⎣⎦经典题型四:周长、面积型15.(2022·辽宁朝阳·高三阶段练习)过圆O :222x y r +=()0r >外一点()22,0引直线l 与圆O 相交于A ,B 两点,当AOB 的面积取得最大值时,直线l 的斜率为2则r =______.16.(2022·湖北·高三开学考试)已知圆22:(3)(4)4C x y -+-=,过点(3,3)P 作不过圆心的直线交圆C 于,A B 两点,则ABC 面积的取值范围是___________.17.(多选题)(2022·全国·模拟预测)已知圆M 上的三个点分别为()0,1A -,()1,2B -,()4,1C ,直线l 的方程为()2120mx m y +-+=,则下列说法正确的是( ) A .圆M 的方程为2230x y x y +-+=B .过C 作直线l '与线段AB 相交,则直线l '的斜率的取值范围为[)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦C .若直线l 被圆M 截得的弦长为2,则l 的方程为12520x y -+=或2y =-D .当点M 到直线l 的距离最大时,过l 上的点R 作圆M 的两条切线,切点分别为P ,Q ,则四边形RPMQ 面积的最小值为21018.(2022·北京·高三开学考试)已知直线l :110ax y a+-=与圆O :221x y +=相交于A ,B 两点,则下面结论中正确的是( ) A .线段AB 长度的最小值为1 B .线段AB 长度的最大值为2 C .OAB 的面积最小值为4D .OAB 的面积最大值为1219.(2022·河北秦皇岛·高三开学考试)若直线:0()l kx y k k +-=∈R 与圆22:4230C x y x y +---=交于A ,B 两点,则ABC 面积的最大值为( )A .4B .8C .23D .43经典题型五:数量积型20.(2022·江苏·扬中市第二高级中学模拟预测)已知圆22:(2)1C x y -+=,点P 在直线:10l x y ++=上,若过点P 存在直线m 与圆C 交于A 、B 两点,且满足2PB PA =,则点P 横坐标0x 的取值范围是___________.21.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,已知圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4i P i =,过动点Pi 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅=,则k 的取值范围为( ) A .4,3∞⎛⎫-- ⎪⎝⎭B .4,03⎛⎫- ⎪⎝⎭C .(,7)(4,13)--∞--D .4(7,)1)30(,---22.(2022·全国·高三专题练习)已知直线l 与圆O :229x y +=相交于不同两点P ,Q ,点M 为线段PQ 的中点,若平面上一动点C 满足()0CP CQ λλ=>,则OC OM ⋅的取值范围是( ) A .[)0,3 B .(0,32C .[)0,9D .(0,6223.(多选题)(2022·全国·高三专题练习)已知圆M :22(4)(5)12x y -+-=,直线l :230mx y m --+=,直线l 与圆M 交于A ,C 两点,则下列说法正确的是( )A .直线l 恒过定点(2,3)B .||AC 的最小值为4C .MA MC ⋅的取值范围为[12,4]-D .当AMC ∠最小时,其余弦值为1224.(多选题)(2022·全国·高三专题练习)已知O 为坐标原点,点()P a b ,在直线()40l kx y k --=∈R :上,PA PB ,是圆222x y +=的两条切线,A B ,为切点,则( ) A .直线l 恒过定点()04,B .当PAB △为正三角形时,22OP =C .当PA PB ⊥时,k 的取值范围为()77⎡-∞+∞⎣,,D .当14PO PA ⋅=时,a b +的最大值为4225.(多选题)(2022·湖北·襄阳五中二模)已知点()2,4P ,若过点()4,0Q 的直线l 交圆C :()2269x y -+=于A ,B 两点,R 是圆C 上一动点,则( )A .AB 的最小值为5B .P 到l 的距离的最大值为5C .PQ PR ⋅的最小值为245-D .PR 的最大值为42326.(2022·全国·高三专题练习)已知(4,0)A ,(0,6)B -,点P 在曲线211y x =-则PA PB ⋅的最小值为___________.经典题型六:坐标与角度型27.(2022·山东泰安·二模)已知以C 为圆心的圆222440x y x y +--+=.若直线220ax by +-=(a ,b 为正实数)平分圆C ,则21a b+的最小值是______;设点()0,3M x ,若在圆C 上存在点N ,使得∠CMN =45°,则0x 的取值范围是______. 故答案为:322+[]0,2.28.(2022·全国·高三专题练习)已知实数x ,y 满足()()22121x y -+-=,则22z x y =+的取值范围是___________.29.(2022·全国·高三专题练习)几何学史上有一个著名的米勒问题:“设点M ,N 是锐角AQB ∠的一边QA 上的两点,试在QB 边上找一点P ,使得MPN ∠最大.”如图,其结论是:点P 为过M ,N 两点且和射线QB 相切的圆与射线QB 的切点.根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点M (-1,2),N (1,4),点P 在x 轴上移动,当MPN ∠取最大值时,点P 的横坐标是( )A .1B .-7C .1或-1D .2或-730.(2022·全国·高三专题练习)已知点A 为圆22:2220C x y x y +---=上一点,点()23,4M m m --,()23,4N n n --,m n ≠,若对任意的点A ,总存在点M ,N ,使得90MAN ∠≥︒,则m n -的取值范围为( )A .[)2,+∞B .[]1,2C .2,5⎡⎫+∞⎪⎢⎣⎭D .20,5⎛⎤⎥⎝⎦31.(2022·福建·三明一中模拟预测)已知圆229:4O x y +=,圆22:()(1)1M x a y -+-=,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得π3APB ∠=,则实数a 的取值范围是( ) A .[15,15]- B .[3,3]-C .[3,15]D .[15,3][3,15]-32.(2022·黑龙江·大庆实验中学模拟预测(理))设(2,0),(2,0)A B -,O 为坐标原点,点P 满足22||||16PA PB +≤,若直线60kx y -+=上存在点Q 使得π4PQO ∠=,则实数k 的取值范围为( ) A .1414⎡⎢⎣⎦B .1414,,2⎛⎡⎫-∞+∞ ⎪⎢⎝⎦⎣⎭C .55,,2⎛⎡⎤-∞+∞ ⎢⎥⎝⎦⎣⎦D .55⎡⎢⎣⎦33.(2022·河北衡水·高三阶段练习)已知直线l :10x my ++=与圆O :2234x y +=相交于不同的两点A ,B ,若∠AOB 为锐角,则m 的取值范围为( ) A .153315⎛⋃ ⎝⎭⎝⎭B .1515⎛ ⎝⎭C .1515,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭D .153⎛ ⎝⎭经典题型七:弦长型34.(2022·全国·高三专题练习)已知直线 l 过点()1,2A ,则直线 l 被圆O :2212x y +=截得的弦长的最小值为( ) A .3B .6C .33D .6335.(2022·广东·高三阶段练习)若圆22:1024880C x y x y +-++=关于直线260ax by ++=对称,则过点(,)a b 作圆C 的切线,切线长的最小值是________.36.(2022·浙江·绍兴一中模拟预测)直线210x y --=与直线20x y +-=相交于点A ,则点A 坐标为_______,过A 的直线与曲线226440x y x y +--+=交于M ,N ,则||MN 的取值范围是________.37.(2022·湖北·宜城市第二高级中学高三开学考试)如图,经过坐标原点O 且互相垂直的两条直线AC 和BD 与圆2242200x y x y +-+-=相交于A ,C ,B ,D 四点,M 为弦AB 的中点,有下列结论:①弦AC 长度的最小值为45; ②线段BO 长度的最大值为105-; ③点M 的轨迹是一个圆;④四边形ABCD 面积的取值范围为205,45⎡⎤⎣⎦.其中所有正确结论的序号为______.1.(2021·北京·高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B .2±C .3D .2±2.(2020·北京·高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A .4B .5C .6D .73.(2020·全国·高考真题(文))已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .44.(2020·全国·高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=5.(多选题)(2021·全国·高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 6.(多选题)(2021·全国·高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =7.(2022·全国·高考真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是________.。

高二数学圆的标准方程与一般方程试题答案及解析

高二数学圆的标准方程与一般方程试题答案及解析

高二数学圆的标准方程与一般方程试题答案及解析1.已知圆的圆心在直线上,且与轴交于两点,.(1)求圆的方程;(2)求过点的圆的切线方程.【答案】(1);(2).【解析】(1)先联立直线的中垂线方程与直线方程,求出交点的坐标即圆心的坐标,然后再计算出,最后就可写出圆的标准方程;(2)求过点的圆的切线方程问题,先判断点在圆上还是在圆外,若点在圆上,则所求直线的斜率为,由点斜式即可写出切线的方程,若点在圆外,则可设切线方程为(此时注意验证斜率不存在的情形),然后由圆心到切线的距离等于半径,求出即可求出切线的方程.试题解析:(1)因为圆与轴交于两点,,所以圆心在直线上由得即圆心的坐标为 2分半径所以圆的方程为 4分(2)由坐标可知点在圆上,由,可知切线的斜率为 6分故过点的圆的切线方程为 8分.【考点】1.圆的方程;2.直线与圆的位置关系.2.已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.【答案】(x+3)2+(y+2)2=25.【解析】设圆心坐标为C(a,a+1),根据A、B两点在圆上利用两点的距离公式建立关于a的方程,解出a值,从而算出圆C的圆心和半径,可得圆C的方程.试题解析:∵圆心在直线x-y+1=0上,∴设圆心坐标为C(a,a+1),根据点A(1,1)和B(2,-2)在圆上,可得(a−1)2+(a+1−1)2=(a−2)2+(a+1+2)2,解之得a=-3,∴圆心坐标为C(-3,2),半径r2=(−3−1)2+(−3+1−1)2=25,r=5,∴此圆的标准方程是(x+3)2+(y+2)2=25.【考点】圆的标准方程.3.(本题11分)已知圆,过原点的直线与圆相交于两点(1) 若弦的长为,求直线的方程;(2)求证:为定值。

【答案】(1);(2)当不存在时,直线为,此时,当存在时,设直线,设,所以。

【解析】(1)设直线方程,所以,………3分解得所以直线方程为……………………………5分(2)当不存在时,直线为,此时……6分当存在时,设直线,设,消y得,……7分所以综上:……………………………11分另法:三点共线,(=【考点】直线与圆的综合应用。

高中数学-直线、圆与方程压轴题(培优、提高)

高中数学-直线、圆与方程压轴题(培优、提高)

高二数学培优直线与圆综合一、填空题1.对于直线l 上任意一点),(y x A ,点)3,24(y x y x B ++仍在直线l 上,则直线l 的方程为 .2.若方程0lg 6=++-+m y x y x 表示一条直线,则实数m 的取值范是 .3.直线2:-=x y l ,点)1,1(-A 和点)1,1(B ,在直线l 上的点P ,使得APB ∠最大,则P 点的坐标为 .4.1122(,),(,)M x y N x y 不同两点,直线:0++=l ax by c ,1122ε++=++ax by c ax by c,以下命题中正确的序号为_________。

(1)不论ε为何值时,点N 都不在直线l 上;(2)若ε=1,则直线MN 与直线l 平行;(3)若1ε=-,则直线l 经过MN 的中点;(4)1ε>,则点M 、N 在直线l 的同色且直线l 与线段MN 的延长线相交。

5.(1)22(4cos 32)(3sin 132)t t θθ+-+++的最小值为 。

(2的最小值为 .6.已知长方形的四个顶点)1,0(),1,2(),0,2(),0,0(D C B A ,一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到AB DA CD ,,上的点432,,P P P .若4P 与0P 重合,则θtan = .7.已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A 、4- B1C、6- D8.(1)已知圆122=+y x 和直线m x y +=2相交于B A ,且OB OA ,与x 轴正方向所成的角是α和β,则=+)sin(βα .(2)直线a y x 1=+与圆a ay x 21222+-=+有公共点),(n m ,且mn t =,则t 的取值范围是二、解答题1.已知圆C :x 2+y 2+2x -3=0.(1)求圆的圆心C 的坐标和半径长;(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于A (x 1,y 1)、B (x 2,y 2)两点,求证:2111x x +为定值;(3)斜率为1的直线m 与圆C 相交于D 、E 两点,求直线m 的方程,使△CDE 的面积最大.2.已知点G (5,4),圆C 1:(x -1)2+(x -4)2=25,过点G 的动直线l 与圆C 1相交于E 、F 两点,线段EF 的中点为C .(1)求点C 的轨迹C 2的方程;(2)若过点A (1,0)的直线l 1与C 2相交于P 、Q 两点,线段PQ 的中点为M ;又l 1与l 2:x +2y +2=0的交点为N ,求证|AM|•|AN|为定值.3.已知点C (1,0),点A ,B 是⊙O :x2+y2=9上任意两个不同的点,且满足0=⋅,设M 为弦AB 的中点.求点M 的轨迹T 的方程;4.已知平面直角坐标系上一动点(,)P x y 到点(2,0)A -的距离是点P 到点(1,0)B 的距离的2倍。

最新人教版高中数学选修一第二单元《直线和圆的方程》检测题(含答案解析)(2)

最新人教版高中数学选修一第二单元《直线和圆的方程》检测题(含答案解析)(2)

一、选择题1.若过直线3420x y +-=上一点M 向圆C :()()22234x y +++=作一条切线切于点T ,则MT 的最小值为( )A B .4C .D .2.若P 是直线l :260x y ++=上一动点,过P 作圆C :22230x y x ++-=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( ) A .1B .2C .3D .43.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=4.已知圆221:4420C x y x y +---=,圆222:2880C x y x y +++-=,则圆1C 与圆2C 的位置关系是( )A .内切B .外切C .相交D .相离5.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .46.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=7.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条8.一艘海监船上配有雷达,其监测范围是半径为26 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10 km/h 这艘外籍轮船能被海监船监测到且持续时间长约为( ) 小时 A .1B .2C .3D .49.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D10.圆心为1,32C ⎛⎫-⎪⎝⎭的圆与直线:230l x y +-=交于P 、Q 两点,O 为坐标原点,且满足0OP OQ ⋅=,则圆C 的方程为( ) A .2215()(3)22x y -+-= B .2215()(3)22x y -++= C .22125()(3)24x y ++-=D .22125()(3)24x y +++=11.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫ ⎪⎝⎭C .39,24⎛⎫⎪⎝⎭D .()1,112.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( ) A .()21,++∞B .()21,21-+ C .()0,21-D .()0,21+二、填空题13.已知圆O :221x y +=,圆M :22()(2)2x a y -+-=.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA PB ⊥,则实数a 的取值范围为______.14.如图,已知圆22:16,,O x y A B +=是圆O 上两个动点,点(2,0)P ,则矩形PACB 的顶点C 的轨迹方程是___________.15.已知圆()222:2400C x y mx y m m +--+=>被直线:30l x y -+=截得的弦长为2 ,则m =______.16.直线()130m x my m ++++=被圆2225x y +=所截的弦长的最小值为________. 17.若P 为直线40x y -+=上一个动点,从点P 引圆2240y x C x +-=:的两条切线PM ,PN (切点为M ,N ),则MN的最小值是________.18.已知点P 是直线:3120l x y +-=上的一点,过P 作圆22(2)1x y -+=的切线,切点为A ,则切线长||PA 的最小值为__________.19.已知等腰三角形的底边所在直线过点()2,1P ,两腰所在的直线为20x y +-=与740x y -+=,则底边所在的直线方程是_____________.20.曲线1y =与直线()35y k x =-+有两个交点,则实数k 的取值范围是______.三、解答题21.已知圆C 经过点A (0,2)和B (2,-2),且圆心C 在直线l :x-y +1=0上. (1)求圆C 的方程;(2)若直线m 过点(1,4),且被圆C 截得的弦长为6,求直线m 的方程.22.已知一个动点M 在圆2216x y +=上运动,它与定点()8,0Q 所连线段的中点为P . (1)求点P 的轨迹方程;(2)若点P 的轨迹的切线在两坐标轴上有相等的截距,求此切线方程.23.设函数()f z 对一切实数m ,n 都有()()(21)f m n f n m m n +-=++成立,且(1)0f =,(0)f c =,圆C 的方程是22(1)()9x y c +++=.(1)求实数c 的值和()f z 的解析式;(2)若直线220ax by -+=(0a >,0b >)被圆C 截得的弦长为6,求4a bab+的最小值.24.已知在平面直角坐标系xOy 中,点()0,3A ,直线l :24y x =-.圆C 的半径为1,圆心C 在直线l 上.(1)若直线34120x y +-=与圆C 相切,求圆C 的标准方程;(2)已知动点(),M x y ,满足2=MA MO ,说明M 的轨迹是什么?若点M 同时在圆C 上,求圆心C 的横坐标a 的取值范围.25.已知点(1,0)M -,(1,0)N ,曲线E 上任意一点到点M 的距离均是到点N 倍.(1)求曲线E 的方程:(2)已知0m ≠,设直线1l :10x my --=交曲线E 于A 、C 两点,直线2l :0mx y m +-=交曲线E 于B 、D 两点,C 、D 两点均在x 轴下方.当CD 的斜率为1-时,求线段AB 的长.26.已知圆C :220x y ax ++=过点,22⎛-⎝⎭. (1)求圆C 的标准方程及其圆心、半径;(2)若直线0x y ++=分别与x 轴,y 轴交于M 、N 两点,点P 为圆C 上任意一点,求MNP △面积的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,求出圆的圆心与半径,由切线长公式可得||MT =||MC 取得最小值时,||MT 的值最小,由点到直线的距离分析||MC 的最小值,进而计算可得答案. 【详解】根据题意,圆22:(2)(3)4C x y +++=,其圆心为(2,3)--,半径2r m =,过点M 向圆C 作一条切线切于点T ,则||MT == 当||MC 取得最小值时,||MT 的值最小,而||MC 的最小值为点C 到直线3420x y +-=的距离,则||4min MC ==,则||MT = 故选:D 【点睛】方法点睛:解析几何中的最值问题,常用的方法有:(1)函数单调性法;(2)导数法;(3)数形结合法;(4)基本不等式法.要结合已知条件灵活选择合适的方法求解.本题利用的是数形结合的方法求最值的.2.B解析:B 【分析】根据题意得要使四边形PACB 面积的最小值,只需PC 取最小即可,再根据几何关系求解即可. 【详解】解:根据题意:要使四边形PACB 面积的最小值,则只需切线长,PA PB 最小, 进而只需PC 取最小即可.由于()2214x y ++=,故圆心为()1,0-,2r,由于P 是直线l :260x y ++=上一动点,所以过圆心作直线l 的垂线,垂足即为P ,此时CP ==此时切线长1PA PB ===,此时四边形PACB 面积为122S =⨯=. 即四边形PACB 面积的最小值为2. 故选:B.【点睛】本题考查直线与圆的位置关系,考查化归转化思想和运算求解能力,是中档题.解题的关键是将问题转化为求PC 取最小值,再结合点到线的距离即可解答.3.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 4.C解析:C 【分析】把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距,大于半径之差,而小于半径之和,可得两个圆位置关系. 【详解】解:圆221:4420C x y x y +---=,22(2)(2)10-+-=x y ,()12,2C,1r =, 圆222:2880C x y x y +++-=,22(1)(4)25x y +++=,()21,4C --,25r =,125r r +=,215r r -=12C C ==55-<<+,∴两圆相交.故选:C. 【点睛】方法点睛:先把圆的一般方程化为标准方程,求出圆心和半径,再求出两圆的圆心距、半径之和、半径之差,根据三者之间的大小关系即可得到两圆的位置关系.5.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上 代入得:12022m c+-+= 整理可得:3m c +=本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.6.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.7.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.8.B解析:B 【分析】根据题意建立合适平面直角坐标系,将问题转化为求直线被圆所截得的弦长问题,然后根据弦长对应的距离求解出监测时间. 【详解】根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴, 所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束, 所以:14030AB x y l +=,即:341200AB l x y +-=, 因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时, 故选:B.【点睛】思路点睛:建立平面直角坐标系求解直线与圆的有关问题的思路:(1)选择合适坐标原点(方便求解直线、圆的方程),建立平面直角坐标系; (2)根据题意写出直线与圆的方程;(3)根据直线与圆的位置关系,采用几何法计算相关长度,完成问题的求解.9.B解析:B 【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短. 【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA bk a =-, AA '的中点为2,22a b +⎛⎫⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =, 要使从点A 到军营总路程最短,即为点f A 到军营最短的距离, 即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径, “将军饮马”的最短总路程为4161251+-=-,故选:B 【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.10.C解析:C 【分析】根据题中所给的圆心坐标,设出圆的标准方程,根据题中所给的条件,求得2r 的值,得出结果. 【详解】因为圆心为1,32C ⎛⎫- ⎪⎝⎭, 所以设圆的方程为:2221()(3)2x y r ++-=, 将直线方程代入圆的方程,得到228552004y y r -+-=,设1122(,),(,)P x y Q x y ,则有21212174,45r y y y y +=⋅=-,因为0OP OQ ⋅=,所以12120x x y y +=, 所以1212(32)(32)0y y y y -⋅-+=,整理得121296()50y y y y -++=,即2179645()045r -⨯+⨯-=,求得2254r =, 所以圆C 的方程为:22125()(3)24x y ++-=, 故选:C. 【点睛】该题考查的是有关圆的方程的求解,涉及到的知识点有圆的标准方程,关于垂直条件的转化,属于简单题目.11.D解析:D 【分析】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离d ==由此能求出抛物线y=x 2上一点到直线2x-y-4=0的距离最短的点的坐标. 【详解】设抛物线y=x 2上一点为A (x 0,x 02), 点A (x 0,x 02)到直线2x-y-4=0的距离d ==∴当x 0=1时,即当A (1,1)时,抛物线y=x 2上一点到直线2x-y-4=0的距离最短. 故选D . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.【分析】将转化为由圆与圆:有公共点可解得结果【详解】因为所以所以所以圆与圆:有公共点所以所以得所以故答案为:【点睛】关键点点睛:转化为圆与圆:有公共点求解是解题关键 解析:22a -≤≤【分析】将PA PB ⊥转化为2PO =,由圆222x y +=与圆M :22()(2)2x a y -+-=有公共点可解得结果. 【详解】因为PA PB ⊥,所以4APO BPO π∠=∠=,所以1PA PB ==,2PO =,所以圆222x y +=与圆M :22()(2)2x a y -+-=有公共点,所以22OM PO PM ≤+=+22=,所以2422a +≤,得24a ≤,所以22a -≤≤. 故答案为:22a -≤≤ 【点睛】关键点点睛:转化为圆222x y +=与圆M :22()(2)2x a y -+-=有公共点求解是解题关键.14.【分析】设点连接交于可写出的坐标再在直角中利用勾股定理列方程可得xy 的关系式即顶点的轨迹方程【详解】设点如图连接交于由矩形可知为的中点连接在直角中则即整理得所以顶点的轨迹方程是故答案为:【点睛】关键 解析:2228x y +=【分析】设点(,)C x y ,连接,AB PC 交于M ,可写出M 的坐标,再在直角OMB △中,OM MB ⊥,利用勾股定理列方程可得x, y 的关系式,即顶点C 的轨迹方程. 【详解】设点(,)C x y ,如图连接,AB PC 交于M ,由矩形PACB 可知M 为PC 的中点,2,22x y M +⎛⎫⎪⎝⎭,PM MB = 连接,OB OM ,在直角OMB △中,OM MB ⊥,则22222OB OM BM OM MP =+=+即2222221622222x y x y +++⎛⎫⎛⎫⎛⎫⎛⎫=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,整理得2228x y +=, 所以顶点C 的轨迹方程是2228x y += 故答案为:2228x y +=【点睛】关键点睛:本题考查求轨迹方程,解题的关键是求谁设谁,设点(,)C x y ,然后再利用图像的几何关系找到x, y 的关系式,即求得轨迹方程,考查学生的直观想象能力与运算求解能力,属于中档题.15.1【分析】根据题意求出圆的圆心与半径由直线与圆的位置关系可得圆心到直线l 的距离d 利用点到直线的距离公式可得解可得m 的值即可得答案【详解】根据题意圆即其圆心C 为半径若圆C 被直线截得的弦长为则圆心到直线解析:1 【分析】根据题意,求出圆的圆心与半径,由直线与圆的位置关系可得圆心到直线l 的距离d ,利用点到直线的距离公式可得d ==m 的值,即可得答案.【详解】根据题意,圆()222:2400C x y mx y m m +--+=>,即()()2224-+-=x m y ,其圆心C 为()m,2,半径2r,若圆C 被直线:30l x y -+=截得的弦长为则圆心到直线l 的距离d ==圆心到直线l 的距离d ==,则有=1m =或-3(舍),故1m =,故答案为:1. 【点睛】思路点睛:涉及直线与圆相交的弦长问题,主要是利用垂径定理,即圆心到直线的距离、弦长的一半以及圆的半径构成直角三角形来解.16.【分析】转化条件为直线过结合垂径定理可得当直线与直线垂直时弦长最小即可得解【详解】直线可变为由可得所以直线过定点又圆的圆心为半径所以点在圆内所以当直线与直线垂直时弦长最小此时弦长为故答案为:【点睛】解析:【分析】转化条件为直线过()3,2A -,结合垂径定理可得当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,即可得解.【详解】直线()130m x my m ++++=可变为()130x y m x ++++=,由1030x y x ++=⎧⎨+=⎩可得32x y =-⎧⎨=⎩,所以直线()130m x my m ++++=过定点()3,2A -, 又圆2225x y +=的圆心为()0,0O ,半径=5r ,所以213AO =,点()3,2A -在圆内,所以当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,此时弦长为2222251343r AO -=-=.故答案为:43. 【点睛】关键点点睛:解决本题的关键是找到直线经过的定点,再利用几何法转化出弦长.17.【分析】根据题意得当的长度最小时取最小值进而根据几何关系求解即可【详解】如图由题可知圆C 的圆心为半径要使的长度最小即要最小则最小因为所以当最小时最小因为所以当最小时最小因为所以所以由于所以故答案为: 解析:473【分析】根据题意得当||MN 的长度最小时,||PC 取最小值,进而根据几何关系求解即可. 【详解】如图,由题可知圆C 的圆心为(2,0)C ,半径2r.要使||MN 的长度最小,即要MCN ∠最小,则MCP ∠最小. 因为||||tan 2PM PM MCP r ∠==, 所以当||PM 最小时,||MN 最小因为2||4PM PC =-∣, 所以当||PC 最小时,||MN 最小. 因为min ||3211PC ==+, 所以2cos 332MCP ∠==, 所以7sin MCP ∠=由于1in 2s 2MCP MN∠=所以min ||MN =.. 【点睛】本题解题的关键是根据已知当||MN 的长度最小,即要MCN ∠最小,进而得当||PC 最小时,||MN 最小.由于||PC 的最小值为C 点到直线40x y -+=,故min ||PC =.考查化归转化思想和运算能力,是中档题.18.【分析】利用切线长最短时取最小值找点:即过圆心作直线的垂线求出垂足点就切线的斜率是否存在分类讨论结合圆心到切线的距离等于半径得出切线的方程【详解】设切线长为则所以当切线长取最小值时取最小值过圆心作直 解析:3【分析】利用切线长最短时,PC 取最小值找点P :即过圆心C 作直线l 的垂线,求出垂足点()3,3P .就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程. 【详解】设切线长为L ,则L =,所以当切线长L 取最小值时,PC 取最小值,过圆心()2,0C 作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为360x y --=,联立3120360x y x y +-=⎧⎨--=⎩,得33x y =⎧⎨=⎩,点P 的坐标为()3,3.此时PC ==,此时,3L ==故答案为:3 【点睛】关键点睛:解题的关键是利用过点的圆的切线方程的求解,在过点引圆的切线问题时, 将直线与圆相切转化为圆心到直线的距离等于半径长,即设切线长为L ,则L =,问题转变为求PC 的最小值,主要考查学生分析问题与解决问题的能力,属于中等题.19.或【分析】在等腰三角形顶角角平分线上任取一点利用点到两腰所在直线的距离相等可求得顶角角平分线方程再由底边所在直线过点且与顶角角平分线垂直可求得所求直线的方程【详解】在等腰三角形顶角角平分线上任取一点解析:370x y +-=或310x y -+= 【分析】在等腰三角形顶角角平分线上任取一点(),M x y ,利用点M 到两腰所在直线的距离相等可求得顶角角平分线方程,再由底边所在直线过点P 且与顶角角平分线垂直可求得所求直线的方程. 【详解】在等腰三角形顶角角平分线上任取一点(),M x y , 则点M 到直线20x y +-=与740x y -+=的距离相等,=7452x y x y -+=+-.所以,()7452x y x y -+=+-或()7452x y x y -+=-+-,所以,该等腰三角形顶角角平分线所在直线的方程为370x y -+=或6230x y +-=. 由于底边与顶角角平分线垂直.当底边与直线370x y -+=垂直时,且直线370x y -+=的斜率为13, 此时底边所在直线方程为()132y x -=--,即370x y +-=;当底边与直线6230x y +-=垂直时,且直线6230x y +-=的斜率为3-,此时底边所在直线方程为()1123y x -=-,即310x y -+=. 故答案为:370x y +-=或310x y -+=.【点睛】本题考查等腰三角形底边所在直线方程的求解,考查了等腰三角形三线合一的性质以及点到直线距离公式的应用,考查计算能力,属于中等题.20.【分析】化简式子可得作出图形然后求出直线与该半圆相切时的依据图形简单计算和判断可得结果【详解】由题可知:所以如图又直线即过定点当直线与半圆相切时则当直线过点时所以故答案为:【点睛】本题考查直线与圆的解析:72,243⎛⎤⎥⎝⎦【分析】化简式子可得()()22191+-=≥x y y ,作出图形,然后求出直线与该半圆相切时的k ,依据图形,简单计算和判断可得结果. 【详解】由题可知:1y =,所以()()22191+-=≥x y y 如图又直线()35y k x =-+,即350kx y k 过定点()A 3,5213573241--+=⇒=+k k k 当直线过点()3,1B -时,()512333-==--k所以72,243⎛⎤∈⎥⎝⎦k 故答案为:72,243⎛⎤⎥⎝⎦【点睛】本题考查直线与圆的应用,数形结合形象直观,考查分析能力以及计算能力,属中档题.三、解答题21.(1)()()223225x y +++=;(2)x =1或512430x y -+= 【分析】(1)根据圆心C 在直线l :x-y +1=0上,设圆心为:(),1a a +,再根据圆C 经过点A (0,2)和B (2,-2),由()()()2222123a a a a +-=-++求解.(2)当直线m 的斜率不存在时,方程为x =1,验证即可,当直线m 的斜率存在时,设方程为()41y k x -=-2425941kx y kk-+-=-+求解.【详解】(1)因为圆心C 在直线l :x-y +1=0上. 设圆心为:(),1a a +又圆C 经过点A (0,2)和B (2,-2), 所以()()()2222123a a a a +-=-++, 解得3a =-,所以圆心为 ()3,2--, ()222125r a a =+-=,所以圆的方程为:()()223225x y +++=;(2)若直线m 的斜率不存在时,方程为x =1,被圆C截得的弦长为6,符合, 若直线m 的斜率存在时,方程为()41y k x -=-,即 40kx y k -+-=,4=,解得512k =, 所以直线方程为512430x y -+=,综上:直线m 的方程为x =1或512430x y -+=. 【点睛】方法点睛:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.22.(1)22(4)4x y -+=;(2)y x =或4x y +=± 【分析】(1)设(),P x y ,()00,M x y ,用,x y 表示出00,x y ,把00(,)x y 代入已知圆方程化简后可得P 点轨迹方程;(2)截距均为0时,设切线y kx =,截距相等且不为0时,设切线(0)x y a a +=≠,由圆心到切线的距离等于半径求出参数即得切线方程. 【详解】解:(1)设(),P x y ,()00,M x y ,根据中点公式得008202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得00282x x y y =-⎧⎨=⎩.由220016x y +=,得22(28)(2)16x y -+=∴点P 的轨迹方程是22(4)4x y -+=.(2)当切线在两坐标轴上截距均为0时,设切线y kx =2=∴k =,所以切线方程为y x =,当切线在两坐标轴上截距相等且不为0时,设切线(0)x y a a +=≠2=,∴4a =±4x y +=±综上:切线方程为y x =或4x y +=± 【点睛】关键点点睛:求动点轨迹方程的方法:直接法:设曲线上动点坐标为(,)x y 后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。

高中数学 2.5直线与圆、圆与圆的位置关系 课后练习、课时练习

高中数学  2.5直线与圆、圆与圆的位置关系 课后练习、课时练习

一、单选题1. 直线被圆截得的弦长为,则直线的倾斜角为()A.B.C.D.2. 已知圆,直线与圆交于,两点,则()A.B.C.D.3. 已知直线是圆的对称轴,过点作圆C的两条切线,切点分别为A,B,则三角形PAB的面积等于()A.B.C.D.4. 过点的直线与曲线交于两点,且满足,则直线的斜率为()A.B.C.D.5. 若关于x的方程有两个相异实根,则实数k的取值范围为.A.B.C.D.6. 直线与圆的位置关系是()A.相交B.相切C.相离D.与的值有关二、多选题7. “太极图”是中国传统文化之一,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形,其中黑色阴影区域在y轴右侧部分的边界为一个半圆.则下列命题正确的是()A.黑色阴影区域在轴右侧部分的边界所在圆的方程为B.直线与白色部分有公共点C.点是黑色阴影部分(包括黑白交界处)中一点,则的最大值为4 D.过点作互相垂直的直线、,其中与圆交于点、,与圆交于点、,则四边形面积的最大值是8. 已知直线l:,圆O:,且圆O上至少有三个点到直线l的距离都等于1,则r的值可以是()A.1 B.2 C.3 D.4三、填空题9. 在平面直角坐标系xOy中,已知圆C的半径为,圆心在直线l:y=2x﹣1上,若圆C上存在一点P,使得直线l1:ax﹣y﹣2=0与直线l2:x+ay﹣2=0交于点P,则当实数a变化时,圆心C的横坐标x的取值范围是__.10. 直线被圆所截得的弦长为__________.11. 已知动点到的距离是到的距离的2倍,记动点的轨迹为,直线:与交于,两点,若(点为坐标原点,表示面积),则___________.12. 若经过点的直线与圆相切,则此直线在y轴上的截距是___________.四、解答题13. 已知圆与圆关于直线对称.(1)求圆的标准方程;(2)若点的坐标为为坐标原点,点为圆上的动点,求面积的取值范围.14. 已知三点,,,的外接圆记为圆.(1)求圆的标准方程;(2)若点在圆上运动,求的最大值.15. 已知圆.(1)求过点的圆的切线方程;(2)直线过点且被圆截得的弦长为,求的范围;(3)已知圆的圆心在轴上,与圆相交所得的弦长为,且与相内切,求圆的标准方程.16. 已知圆的圆心在直线,且与直线相切于点.(1)求圆的方程;(2)直线过点且与圆相交,所得弦长为,求直线的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线和圆、圆和圆的位置关系
知识回顾:
1.直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是 。

2.圆224460x y x y +-++=截直线50x y --=所得弦长为 .
3.圆0222=-+x y x 和圆0422=++y y x 的位置关系是 。

巩固:若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数m 的取值集合是 .
4.(2009天津卷文)若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,则a=________.
例题解析:
例1.已知圆C 1:x 2+y 2-2mx+4y+m 2-5=0,圆C 2:x 2+y 2+2x-2my+m 2-3=0,m 为何值时,
(1)圆C 1与圆C 2相外切; (2)圆C 1与圆C 2内含?
例2.(1)已知圆的方程为22
680x y x y +--=.设该圆过点(35),
的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 。

(2)已知圆C 的方程为:.42
2
=+y x ,直线l 过点P (1,2),且与圆C 交于A 、B 两点,且,32||=AB 则直线l 的方程为 。

(3)过点M (2,4)向圆(x-1)2+(y+3)2=1引切线, 求切线的方程
(4)直线y x b =+
与曲线x =b 的取值范围是
例3.已知:⊙O 的方程为2210x y +=,⊙M 的方程为4)6()8(22=-+-y x ,过⊙M 上任一点P 作⊙O 的切线PA 、PB ,切点为A 、B.
(1)若直线PA 与⊙M 的另一交点为Q ,当弦PQ 最大时,求直线PA 的直线方程; (2)求⋅的最大值与最小值.
例4.如图,F 是椭圆()012222>>=+b a b
y a x 的一个焦点,B A ,是椭圆的两个顶点,椭圆的离心率为21

点C 在x 轴上,F C B BF BC ,,,⊥三点确定的圆M 恰好与直线033:1=++y x l 相切。

(1) 求椭圆的方程;
(2) 过点A 的直线2l 与圆M 交与Q P ,两点,且
2-=⋅MQ MP ,求直线2l 的方程。

变式一:若3-=⋅MQ MP ,求直线2l 的方程。

变式二:若改成2OP OQ ⋅=-,求直线2l 的方程。

变式三:若改成是3MA MQ ⋅=-,求直线2l 的方程。

巩固作业:
1.若直线4x-3y-2=0与圆x 2
+y 2
-2ax+4y+a 2
-12=0总有两个不同交点,则a 的取值范围是 . 2.过点A (0,3),被圆(x -1)2
+y 2
=4截得的弦长为23的直线方程是 3.若直线1=+by ax 与圆122=+y x 相切,则实数ab 的取值范围是 . 4
.



(4,0)A 的直线l 与曲线
22(2)1x y -+=有公共点,则
直线l 的斜率的取值范围为
5. 已知圆4)3(2
2=+-y x 和过原点的直线kx y =的交点为P 、Q ,则|OP|·|OQ|的值为
6. 已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .
7.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 . 8. 设圆C :223x y +=,直线063:=-+y x l ,点()
y x P ∈00,使得存在点C Q ∈,使60OPQ ∠=(O 为坐标原点), 则0x 的取值范围是 。

9.如图,在平面直角坐标系xOy 中,(,0)A a (0)a >,(0,)B a ,(4,0)C -,(0,4)D ,设AOB ∆的外接圆圆心为E .
(1)若⊙E 与直线CD 相切,求实数a 的值;
(2)设点P 在圆E 上,使PCD ∆的面积等于12的点P 有且只有三个,试问这样的⊙E 是否存在,若存在,
求出⊙E 的标准方程;若不存在,说明理由.
10. 如图,在平面直角坐标系中,N 为圆A :16)1(2
2
=++y x 上的一动点,点B (1,0),点M 是BN 中
点,点P 在线段AN 上,且.0=⋅BN MP (I )求动点P 的轨迹方程;
(II )试判断以PB 为直径的圆与圆2
2
y x +=4的位置关系,并说明理由.
答案:
1. -6<a <4
2. x =0或y =- 13x+3
3.]2121[,-
4.[
5.5
6.18)1(2
2
=-+y x 7. ⎥⎦⎤

⎛43,125 8.06
05
x ≤≤
8.当PQ 与圆相切,且60OPQ ∠=时,|OP |=2
,当||2OP ==≤
即06
05
x ≤≤
时,圆C 上存在点Q ,使60OPQ ∠= 9. 解:(1)直线CD 方程为4y x =+,圆心(,)22
a a E
,半径2
r a =
.
|
4|
a a a -+=,解得4a =. (2
)∵||CD =
=
∴当PCD ∆面积为12时,点P 到直线CD
的距离为
又圆心E 到直线CD
距离为定值),要使PCD ∆的面积等于12的点P 有且只有三个,只须圆E 半
=10a =, 此时,⊙E 的标准方程为22(5)(5)50x y -+-=. 10.(I )解:由点M 是BN 中点,又0=⋅BN MP , 可知PM 垂直平分BN .所以|PN |=|PB |,又|PA |+|PN |=|AN |, 所以|PA |+|PB |=4.
由椭圆定义知,点P 的轨迹是以A ,B 为焦点的椭圆.
设椭圆方程为122
22=+b
y a x ,
由2a =4,2c =2,可得a 2
=4,b 2
=3.
可知动点P 的轨迹方程为.13
42
2=+y x (II )解:设点PB y x P ),,(00的中点为Q ,则)2
,21(
0y x Q +,
00202002
020202
1
2424143312)1(||x x x x x x y x PB -=+-=-
++-=+-=,
即以PB 为直径的圆的圆心为)2
,21(
00y x Q +,半径为0141
1x r -=,
又圆422=+y x 的圆心为O (0,0),半径r 2=2,
又12
1
161)433(41412141)2()21(||020*********++=-+++=-+=x x x x x y x OQ =04
1
1x +
,故|OQ |=r 2-r 1,即两圆内切.。

相关文档
最新文档