第十讲 二项式定理与多项式
使用二项式定理展开多项式:
使用二项式定理展开多项式:使用二项式定理展开多项式介绍二项式定理是代数学中的基本定理,它描述了如何展开多项式。
在代数学、数学分析以及其他数学领域中,我们经常需要展开和简化多项式。
二项式定理为我们提供了一种简化和计算多项式的方法。
二项式定理的表达式二项式定理可以用如下的表达式表示:$$(a+b)^n = \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^1 + \binom{n}{2} a^{n-2} b^2 + ... + \binom{n}{n-1} a^1 b^{n-1} +\binom{n}{n} a^0 b^n$$其中,$n$是一个非负整数,$a$和$b$是任意实数或复数,$\binom{n}{k}$表示从$n$个元素中选择$k$个元素的组合数。
展开多项式的步骤使用二项式定理展开多项式的步骤如下:1. 将多项式中的$a$和$b$替换为给定的实数或复数。
2. 对于多项式中每一项的指数和系数,使用二项式系数来计算。
3. 将所有项相加得到最终的展开多项式。
例子让我们通过一个例子来展示如何使用二项式定理展开多项式。
假设我们要展开 $(x+y)^3$:$$(x+y)^3 = \binom{3}{0} x^3 y^0 + \binom{3}{1} x^2 y^1 +\binom{3}{2} x^1 y^2 + \binom{3}{3} x^0 y^3$$计算组合数:$$\binom{3}{0} = 1$$$$\binom{3}{1} = 3$$$$\binom{3}{2} = 3$$$$\binom{3}{3} = 1$$将计算结果代入二项式定理的表达式中:$$(x+y)^3 = 1 \cdot x^3 \cdot y^0 + 3 \cdot x^2 \cdot y^1 + 3 \cdot x^1 \cdot y^2 + 1 \cdot x^0 \cdot y^3$$化简得到:$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$因此,展开多项式 $(x+y)^3$ 的结果是 $x^3 + 3x^2y + 3xy^2 + y^3$。
如何利用二项式定理处理多项式问题
如何利用二项式定理处理多项式问题二项式定理是一个适用于处理多项式问题的重要数学工具。
它描述了如何将一个二元多项式的n次方展开成一个和式,可用于求解各种复杂的数学问题,如求多项式的系数、计算多项式的值、证明恒等式等。
本文将详细介绍如何利用二项式定理处理多项式问题。
一、二项式定理的表述二项式定理又称为牛顿-莱布尼兹公式,表述为:$$(x+y)^n=\sum_{i=0}^n C_n^ix^i y^{n-i}$$其中,$C_n^i$表示从n个不同元素中选取i个元素的组合数,也即是二项式系数,它满足以下等式:$$C_n^i=\frac{n!}{i!(n-i)!}$$二、求解多项式系数二项式定理最广泛的应用之一就是用于求解多项式的系数。
多项式系数是指多项式中每一项的系数,如4x^3+3x^2-2x+1中的系数分别为4、3、-2和1。
通过利用二项式定理展开多项式,可以轻松地求得多项式中每一项的系数。
假设我们要展开的多项式为:$$(x+y)^4$$那么,我们可以使用二项式定理展开它:$$(x+y)^4=C_4^0x^4y^0+C_4^1x^3y^1+C_4^2x^2y^2+C_4^3x^1y^3+ C_4^4x^0y^4$$然后,我们就可以直接提取出多项式每一项的系数:$$C_4^0=1$$$$C_4^1=4$$$$C_4^2=6$$$$C_4^3=4$$$$C_4^4=1$$因此,我们可以将展开后的多项式写成:$$(x+y)^4=1x^4+4x^3y+6x^2y^2+4xy^3+1y^4$$这样,我们就成功地求出了多项式中每一项的系数。
三、利用二项式定理计算多项式的值除了可以求解多项式的系数之外,二项式定理还可以用于计算多项式在某个特定点的值,这在数学分析和离散数学中都是非常常见的问题。
计算多项式的值需要我们将多项式的每一项均按照指数次幂排序,然后用目标点代入每一项中的变量并相加,即可得到多项式在目标点的值。
二项式定理(讲解部分)
考法二 求二项式系数和与展开式中各项系数和的问题
例2 (1)(2019陕西师大附中模拟)在二项式(1-2x)n的展开式中,偶数项的二 项式系数之和为128,则展开式的中间项的系数为 ( )
A.-960 B.960
C.1 120 D.1 680
(2)若
x2
-
1 x
n
的展开式中含x的项为第6项,设(1-3x)n=a0+a1x+a2x2+…+anxn,则
的展开式的常
数项是60,则a的值为 ( )
A.4 B.±4 C.2 D.±2
(2)(2018山东枣庄二模,8)若(x2-a)
x
+
1 x
10
的展开式中x6的系数为30,则a等
于( )
A. 1 B. 1 C.1 D.2
3
2
解题导引 (1)常数项是指x0项的系数,展开式的通项是什么?化简通项时
用到什么运算,指数幂的运算性质有哪些?根式如何化成指数幂形式?结合
令10-2r=6,解得r=2, 所以x6项的系数为C120,
所以(x2-a)·
x
+
1 x
10
的展开式中x6的系数为C130
-a
C120=30,
解得a=2.故选D.
答案 (1)D (2)D
方法总结 求二项展开式中的特定项,一般是利用通项公式进行,化简通项 后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数 等),解出r,代回通项即可.
指数幂运算化通项为最简形式再求解.
(2)的展开式中x6项的来源有几个?结合多项式乘法法则,可分析出来有2个
来源,分别是哪两个?写出
二项式定理ppt
二项式定理简介二项式定理是高中数学中的一个重要定理,是关于二项式展开的公式。
二项式展开是将一个二项式的幂次展开成一系列项的乘积的形式。
它在数学和物理等领域中都有重要的应用。
本文将详细介绍二项式定理的定义、推导过程以及应用。
定义在数学中,二项式指两项的和,具体表示为:(a + b)^n二项式定理给出了这个二项式的展开式,形式如下:(a + b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1)b^1 +C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1 b^(n-1) +C(n,n)a^0 b^n其中,C(n,k)表示组合数,即从n个元素中选取k个元素的方式数。
推导过程为了推导出二项式定理,我们可以通过数学归纳法进行演绎。
下面是推导的过程:Step 1:当n = 1时,二项式定理成立。
因为此时(a +b)^1 = a + b。
Step 2:假设当n = k时,二项式定理成立。
即(a + b)^k = C(k,0)a^k b^0 + C(k,1)a^(k-1)b^1 + ... + C(k,k-1)a^1 b^(k-1) + C(k,k)a^0 b^k。
Step 3:考虑当n = k+1时,我们可以将(a + b)^(k+1)展开为(a + b) * (a + b)^k。
通过展开乘法运算,我们可以得到:(a + b) * (a + b)^k = a * (a + b)^k + b * (a + b)^k = a * (C(k,0)a^k b^0 + C(k,1)a^(k-1)b^1 + ... + C(k,k-1)a^1 b^(k-1) + C(k,k)a^0 b^k) + b * (C(k,0)a^k b^0 + C(k,1)a^(k-1)b^1 + ... +C(k,k-1)a^1 b^(k-1) + C(k,k)a^0 b^k)。
Step 4:对上式进行整理和合并同类项,可以得到(a +b)^(k+1)的展开式:(a + b)^(k+1) = C(k,0)a^(k+1)b^0 + (C(k,1) + C(k,0))a^k b^1 + ... + (C(k,k-1) + C(k,k))a^1 b^k + C(k,k) a^0 b^(k+1)。
二项式定理
二项式定理二项式定理是高中数学的重要内容之一、它是一个基本的公式,用来展开二项式的幂次。
在代数学中有广泛应用,并在组合数学、高等数学等领域中发挥了重要作用。
本文将介绍二项式定理的概念、基本公式以及一些常见的应用。
一、二项式定理的概念和基本公式二项式定理的概念:二项式定理是用来展开二项式的幂次的公式。
简而言之,就是把形如(a+b)^n的表达式展开成多项式的形式。
基本公式:根据二项式定理,我们可以得到二项式的展开式。
对于(a+b)^n,其中a和b为任意实数,n为非负整数,根据二项式定理,展开式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,k)a^(n-k)b^k+...+C(n,n)b^n其中,C(n,k)表示组合数,即从n个元素中选择k个元素的组合数。
C(n,k)可以用组合数公式计算得到:C(n,k)=n!/(k!(n-k)!)C(n,k)即为"n choose k",读作"n中取k"。
二、二项式定理的应用1.二项式定理的应用于计算:二项式定理可以用于计算各种二项式的展开式,特别是高次幂的情况。
通过展开式,我们可以计算出结果,以及每一项的系数。
例如,我们可以用二项式定理来计算(a+b)^4的展开式为:(a+b)^4 = C(4,0)a^4 + C(4,1)a^3b + C(4,2)a^2b^2 + C(4,3)ab^3 + C(4,4)b^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^42.二项式定理的应用于排列组合问题:二项式定理在排列组合问题中也有广泛的应用。
对于排列组合问题,可以使用组合数来解决。
而组合数又可以使用二项式定理来计算。
例如,我们要从n个元素中选取k个元素,所有可能的方案数可以用组合数C(n,k)表示。
由于组合数可以用二项式定理来计算,我们可以直接得到结果。
第十章 第三节 二项式定理 课件(共47张PPT)
赋值法求系数和的应用技巧 (1)“赋值法”对形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R)的式子求其展 开式的各项系数之和,常用赋值法,只需令 x=1 即可;对形如(ax+by)n(a, b∈R)的式子求其展开式各项系数之和,只需令 x=y=1 即可. (2)若 f(x)=a0+a1x+a2x2+…+anxn,则 f(x)展开式中各项系数之和为 f(1), 偶次项系数之和为 a0+a2+a4+…=f(1)+2f(-1) ,奇次项系数之和为 a1+a3+a5+…=f(1)-2f(-1) .令 x=0,可得 a0=f(0).
令
x=1
代入2x-
1 x
6
=1;
故所有项的系数之和为 1;故选 AC.]
求形如(a+b)n(n∈N*)的展开式中与特定项相关的量 (常数项、参数值、特定项等)的步骤
(1)利用二项式定理写出二项展开式的通项公式 Tr+1=Crn an-rbr,常把字 母和系数分离开来(注意符号不要出错);
(2)根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整 数)先列出相应方程(组)或不等式(组),解出 r;
故选 B.]
3.(x+1x -2)6(x>0)的展开式中含 x3 项的系数为________.
解析:
法一:因为(x+1x -2)6=(
x
-
1 x
)12,所以其展开式的通项公
式为 Tr+1=C1r2 (
x
)12-r(-
1 x
)r=Cr12
(-1)r(
x )12-2r=Cr12 (-1)rx6-r,由 6
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)Ckn an-kbk 是二项展开式的第 k 项.( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a+b)n 的展开式中,每一项的二项式系数与 a,b 无关.( ) (4)(a+b)n 某项的系数是该项中非字母因数部分,包括符号等,与该项的 二项式系数不同.( ) 答案: (1)× (2)× (3)√ (4)√
二项式定理与多项式展开
二项式定理与多项式展开二项式定理和多项式展开是高中数学中的重要概念,它们在代数学习中扮演着极为重要的角色。
二项式定理是指将一个二项式的幂展开成一系列项的和的规律,而多项式展开则是将一个多项式进行拆解和合并,以求得更简化的形式。
本文将详细介绍二项式定理和多项式展开的概念、公式及应用。
一、二项式定理的概念与公式二项式是指由两个项构成的代数式,常写成(a+b)^n的形式,其中a和b为实数,n为非负整数。
二项式定理是指将(a+b)^n展开成一系列项的和的规律。
根据二项式定理,当n为非负整数时,展开的式子将由多个组合而成的项组成,而每个组合项的系数则和展开式中的位置有关。
二项式定理可以表示为以下公式:(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + C(n,2)*a^(n-2)*b^2+ … + C(n,n-1)*a^1*b^(n-1) + C(n,n)*a^0*b^n其中C(n,k)表示从n个元素中选取k个元素的组合数,计算公式为:C(n,k) = n! / (k! * (n-k)!)在展开式中,每一项的次数和系数满足以下规律:- 当k为偶数时,系数为正整数。
- 当k为奇数时,系数为负整数。
二项式定理可以用于求解二项式的幂及其性质,例如二次方、三次方等。
二、多项式展开的概念与公式多项式是指由多个项构成的代数式,其中每个项包含变量的幂和系数。
多项式展开是将一个多项式进行拆解和合并,以求得更简化的形式。
多项式展开涉及到各种计算方法,比如乘法法则、分配率等。
下面以一个简单的示例来说明多项式展开。
假设我们有一个多项式表达式为(a+b)^3,按照展开的规则,我们可以将其展开为:(a+b)^3 = (a+b)(a+b)(a+b) = a^3 + 3a^2b + 3ab^2 + b^3在展开的过程中,我们需要运用乘法法则和分配率,逐步计算得到每个项的系数。
多项式展开不仅可以用于简化多项式的形式,还能帮助我们解决实际问题。
利用二项式定理展开多项式的方法和技巧
利用二项式定理展开多项式的方法和技巧在数学中,二项式定理是一种非常有用的工具。
它可以用于展开任意次数的多项式,从而简化复杂的计算过程。
本文将介绍利用二项式定理展开多项式的方法和技巧。
一、二项式定理的表达式和理解二项式定理的一般表达式如下:$$(a + b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2}b^2 + ... + C_n^r a^{n-r} b^r + ... + C_n^n a^0 b^n$$其中,$$C_n^r$$是组合数,表示从n个元素中选取r个元素的组合数。
理解二项式定理的关键是明确其中的模式。
在定理的展开式中,每一项都有两个分量:一个是$$a^{n-r}$$,另一个是$$b^r$$。
这两个分量的幂次之和一定为n,且随着r的增大而交替变化,从而产生类似于二项式的形式。
二、利用二项式定理展开多项式的方法和技巧1. 确定多项式的次数要利用二项式定理展开一个多项式,首先需要确定该多项式的次数n。
这个次数决定了展开式中的项数。
2. 确定各项的系数展开后的每一项都有一个系数,这个系数可以通过组合数$$C_n^r$$来确定。
3. 识别多项式中的各项分解给定的多项式,并识别每一项的形式。
例如,对于$$ (2x +3)^3$$,可以识别出三项为$$2x^3$$,$$3^3$$和$$3 * 2x^2$$。
4. 利用二项式定理展开多项式根据二项式定理展开式的形式,将识别出的各项分别展开,并相加得到最终的展开式。
例如,上述的$$ (2x + 3)^3$$可以展开为:$$C_3^0 (2x)^3 3^0 + C_3^1 (2x)^2 3^1 + C_3^2 (2x)^1 3^2 + C_3^3 (2x)^0 3^3$$以上就是利用二项式定理展开多项式的方法和技巧。
通过理解二项式定理的表达式和模式,并运用展开式中各项的系数和形式,我们可以简化多项式的计算过程,从而更高效地进行数学运算。
二项式定理课件-完美版
二项式定理的证明
二项式定理的证明可以采用数学归纳法,将其分成多个步骤,逐步推导出结 论。
二项式定理的应用
二项式定理在概率论、组合数学、排列组合等领域具有广泛的应用。它可以 用于求解二项式系数、展开多项式、计算概率等。
相关例题分析
通过具体的例题分析,我们可以更好地理解和应用二项式定理。我们将解答 一些典型的问题,帮助您掌握其中的关键思想和技巧。
二项式定理课件-完美版
欢迎来到二项式定理课件-完美版!在本次课程中,我们将深入探讨二项式定 理,包括定义、公式、证明、应用、相关例题分析、扩展以及结论和总结。
二项式定理的定义
二项式定理是一种代数公式,用于展开一个二项式的n次幂。
பைடு நூலகம்
二项式定理的公式
二项式定理的公式可以表示为:(a+b)×(a+b)=n!(n-k)!×a×a+b+n!k!×a×b+a
二项式定理的扩展
除了传统的二项式定理,还存在许多拓展的定理和公式,如多项式定理、卢 卡斯定理等。它们进一步延伸了二项式定理的应用范围。
结论和总结
通过学习本次课件,我们详细了解了二项式定理的定义、公式、证明、应用、 相关例题分析和扩展。希望您能够喜欢并从中获益。
二项式定理知识点
二项式定理知识点二项式定理是高中数学中的重要知识点,也是进一步学习数学分析、概率论和数学推理的基础。
它是关于多项式的一个重要的数学定理,通过二项式定理,我们可以用简洁的方式表示多项式展开的结果。
在本文中,我们将深入探讨二项式定理的概念、性质以及应用。
首先,让我们来了解什么是二项式。
二项式是指两个单项式之和的代数式,其中包含两个不同的变量,每个变量的指数均为非负整数。
例如,(a + b)就是一个二项式,其中a和b为变量,且指数分别为1和0。
根据二项式定理,我们可以将二项式展开为多项式。
二项式定理的表述如下:对于任意非负整数n和实数a、b,有(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + C(n, 2)a^(n-2) b^2 + ... + C(n, n)a^0 b^n,其中C(n, k)表示组合数,计算公式为C(n, k) = n!/(k!(n-k)!)。
这个定理告诉我们,二项式(a + b)的展开式中的每一项都可以通过组合数进行系数的计算。
二项式定理的证明可以通过数学归纳法进行,但为了保持本文的简洁性,我将不涉及具体的证明过程。
而是着重介绍一些二项式定理的性质以及它的一些重要应用。
首先,二项式定理的性质之一是二项式展开式的系数的和等于2的n次方。
也就是说,展开式中每一项的系数相加,结果等于2的n次方。
这个性质可以通过将展开式中的每一项进行二项式系数的求和来证明。
二项式定理还可以用于计算多项式的平方、立方等高次幂。
通过使用二项式定理展开多项式的高次幂,我们可以更简洁地计算出结果。
另一个重要的应用是二项式定理在概率论中的应用。
在概率论中,我们经常需要计算一些事件的概率,而这些概率通常涉及到组合数的计算。
二项式定理为我们提供了一个快速计算组合数的方法,从而简化了概率计算的过程。
除此之外,二项式定理还在数学推理和数学分析中有重要的应用。
在数学推理中,我们经常需要进行代数式的变形和化简,而二项式定理可以帮助我们将复杂的代数式转化为更简单的形式。
初中数学知识归纳二项式定理与多项式的因式分解
初中数学知识归纳二项式定理与多项式的因式分解初中数学知识归纳:二项式定理与多项式的因式分解一、二项式定理的定义与应用二项式定理是数学中重要的定理之一,它描述了任意非负整数指数的两个数相加的多项式的展开结果。
公式形式如下:(a + b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)b^1 + C(n,2)a^(n-2)b^2 + ...+ C(n,n-1)a^1*b^(n-1) + C(n,n)a^0*b^n其中,C(n, k)表示组合数,表示从n个元素中选取k个元素的组合数。
二项式定理的展开结果中每一项的系数恰好是组合数。
二项式定理的应用非常广泛,特别是在代数、概率、统计等课程中。
它可以用来求解数学问题,简化计算,展开多项式等。
二、多项式的因式分解多项式的因式分解是将多项式写成几个多项式的乘积形式的过程。
这在解方程、求根、化简表达式等问题中起到重要作用,可以简化计算和理解。
下面介绍两种常见的因式分解方法。
1. 提公因式法提公因式法是将多项式中的公因式提取出来的方法。
具体步骤如下:(1)将给定多项式进行整理,按照降幂排列,即从高次项到低次项;(2)观察各项的系数和变量部分,判断是否存在公因式;(3)将公因式提取出来,写在括号外,并用除法将原多项式除以公因式;(4)将原多项式除以公因式后得到的商即为因式分解的结果。
例如,对于多项式3x^2 + 6x,可以发现公因式为3x,因此可以将公因式提取出来,得到3x(x + 2)。
2. 平方法平方法是将多项式写成两个平方和的形式的方法,适用于形如a^2 + 2ab + b^2和a^2 - 2ab + b^2的情况。
具体步骤如下:(1)将多项式按照降幂排列;(2)观察各项的系数和变量部分,判断是否适用平方法;(3)将多项式写成两个平方和的形式,并组合成完全平方;(4)将多项式写成完全平方后进行因式分解,得到因式分解的结果。
例如,对于多项式x^2 + 4x + 4,可以将其写成(x + 2)^2的形式,进而得到因式分解的结果为(x + 2)^2。
完整版)二项式定理知识点及典型题型总结
完整版)二项式定理知识点及典型题型总结二项式定理一、基本知识点1、二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +。
+ C(n,n)b^n (n∈N*)2、几个基本概念1)二项展开式:右边的多项式叫做(a+b)^n的二项展开式2)项数:二项展开式中共有n+1项3)二项式系数:C(n,r) = n!/r!(n-r)!4)通项:展开式的第r+1项,即T(r+1) = C(n,r) * a^(n-r) * b^r3、展开式的特点1)系数都是组合数,依次为C(n,1)。
C(n,2)。
…。
C(n,n)2)指数的特点①a的指数由n到0(降幂)。
②b的指数由0到n(升幂)。
XXX和b的指数和为n。
3)展开式是一个恒等式,a,b可取任意的复数,n为任意的自然数。
4、二项式系数的性质:1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.2)增减性与最值: 二项式系数先增后减且在中间取得最大值当n是偶数时,中间一项取得最大值C(n,n/2)当n是奇数时,中间两项相等且同时取得最大值C(n,(n-1)/2)C(n-1.m) = C(n。
m) + C(n。
m-1)C(n,0) + C(n,1) +。
+ C(n,n) = 2^n3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即 C(n,0) - C(n,2) + C(n,4) -。
= 2^(n-1)二项式定理的常见题型一、求二项展开式1.“(a+b)^n”型的展开式例1.求(3x+2y)^42.“(a-b)^n”型的展开式例2.求(3x-2y)^43.二项式展开式的“逆用”例3.计算1-3C(n,1) + 9C(n,2) - 27C(n,3) +。
+(-1)^n*3nC(n,n)二、通项公式的应用1.确定二项式中的有关元素例4.已知((-ax)/(9x^2+1))^9的展开式中x^3的系数为9,常数a的值为1/32.确定二项展开式的常数项例5.(x-3/x)^10展开式中的常数项是2433.求单一二项式指定幂的系数例6.(x^2-3y)^6中x^3y^3的系数为-540三、求几个二项式的和(积)的展开式中的条件项的系数例7.(x-1)^-1(x-1)^2(x-1)^3(x-1)^4(x-1)^5的展开式中,x^2的系数等于-101.展开式中,求(x-2)(x^2+1)^7展开式中x^3的系数。
高中数学二项式与多项式的展开与合并
高中数学二项式与多项式的展开与合并在高中数学中,二项式与多项式的展开与合并是一个重要的概念和技巧。
本文将详细介绍二项式与多项式的展开与合并的方法和步骤,帮助学生更好地理解和掌握这一知识点。
一、二项式的展开1.1 二项式的定义二项式是指只含有两个项的多项式,一般形式为(a+b)^n,其中a和b是实数,n是正整数。
1.2 二项式的展开公式二项式展开公式可以通过二项式定理推导得到,其一般形式为:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + C(n,2)a^(n-2) b^2 + ... + C(n,n-1)a^1 b^(n-1) + C(n,n)a^0 b^n其中,C(n,k)表示组合数,表示从n个不同元素中选取k个元素的组合数。
1.3 二项式展开的步骤二项式的展开可以按照以下步骤进行:(1)根据二项式展开公式,写出展开后的二项式的表达式。
(2)根据组合数的计算公式,计算出各个项的系数。
(3)计算各项的幂次。
二、多项式的展开2.1 多项式的定义多项式是由多个项相加或相减得到的表达式,每个项都是由常数乘以一个或多个不同变量的幂次得到,一般形式为a_nx^n + a_(n-1)x^(n-1) + ... + a_1x + a_0,其中a_n、a_(n-1)、...、a_1、a_0 是常数,x 是变量。
2.2 多项式的展开方法多项式的展开方法有两种:用分配律展开和用二项式展开。
(1)用分配律展开将多项式中每个项与其他项分别相乘,并合并同类项即可得到多项式的展开式。
(2)用二项式展开当多项式形式满足二项式的形式时,可以直接使用二项式展开公式进行展开。
三、二项式与多项式的合并3.1 合并同类项在多项式展开后,有时需要对多个同类项进行合并。
合并同类项的方法是将具有相同幂次的项的系数相加或相减。
3.2 合并同底项当指数相同时,合并同底项可以简化表达式。
例如,a^n + b^n 和c^n + d^n 就是两个合并了同底项的多项式。
二项式定理与多项式
二项式定理与多项式1.二项工定理∑=-∈=+nk kk n k n nn b a C b a 0*)()(N2.二项展开式的通项 )0(1n r b aC T r rn rn r ≤≤=-+它是展开式的第r+1项.3.二项式系数 ).0(n r C rn ≤≤ 4.二项式系数的性质 (1)).0(n k C C kn nkn ≤≤=-(2)).10(111-≤≤+=---n k C C C k n kn k n (3)若n 是偶数,有nn n nn nnn CCCC C >>><<<-1210,即中间一项的二项式系数2nnC最大.若n 是奇数,有nnn n n nn nnn C C CCC C >>>=<<<-+-1212110 ,即中项二项的二项式系数212+n n nn CC 和相等且最大.(4).221nnn n n n C C C C =++++(5).2153142-=+++=+++n n n n n n n C C C C C C(6).1111----==k n kn k n k n C kn C nC kC 或 (7)).(n k m C C C C C C m m k n mk nmk m n mn mk kn ≤≤=⋅=⋅+----(8).1121++++++=+++++n k n nk n nn nn nn C C C C C以上组合恒等式(是指组合数mn C 满足的恒等式)是证明一些较复杂的组合恒等式的基 本工具.(7)和(8)的证明将在后面给出.5.证明组合恒等式的方法常用的有(1)公式法,利用上述基本组合恒等式进行证明.(2)利用二项式定理,通过赋值法或构造法用二项式定理于解题中. (3)利用数学归纳法.(4)构造组合问题模型,将证明方法划归为组合应用问题的解决方法.例题讲解1.求7)11(xx ++的展开式中的常数项.2.求62)321(x x -+的展开式里x 5的系数.3.已知数列)0(,,,0210≠a a a a 满足 ),,3,2,1(211 ==++-i a a a i i i 求证:对于任何自然数n ,nn n n n n n n n n n n n n xC a x x C a x x C a x x C a x C a x p +-++-+-+-=-----)1()1()1()1()(111222211100 是x 的一次多项式或零次多项式.4.已知a ,b 均为正整数,且,sin )(),20(2sin ,2222θπθθn b a A ba ab b a n n ⋅+=<<+=>其中求证:对一切*N ∈n ,A n 均为整数.5.已知y x ,为整数,P 为素数,求证:)(mod )(P y x y x P P P +≡+6.若)10*,,()25(12<<∈+=++ααN m r m r ,求证:.1)(=+ααm 7.数列}{n a 中,)2(3,311≥==-n a a an n ,求2001a 的末位数字是多少? 8.求N=1988-1的所有形如b a d ba,(,32⋅=为自然数)的因子d 之和. 9.设8219)22015()22015(+++=x ,求数x 的个位数字.10.已知),2,1(8,1,01110 =-===-+n a a a a a n n n 试问:在数列}{n a 中是否有无穷多个能被15整除的项?证明你的结论.课后练习1.已知实数βα,均不为0,多项ββαα++-=x x x x f 23)(的三根为321,,x x x ,求 )111)((321321x x x x x x ++++的值.2.设d cx bx ax x x f ++++=234)(,其中dc b a ,,,为常数,如果,3)3(,2)2(,1)1(===f f f 求)]0()4([41f f +的值.3.定义在实数集上的函数)(x f 满足:).(,1)1()(x f x x xf x f 求+=-+4.证明:当n=6m 时,.033325531=-⋅+⋅+⋅- n n n n C C C C5.设n x x )1(2++展开式为n n x a x a x a a 222210++++ ,求证:.31630-=+++n a a a6.求最小的正整数n ,使得n y x xy )2173(-+-的展开式经同类项合并后至少有1996项.7.设493)12()1()(+-+=x x x x f ,试求: (1))(x f 的展开式中所有项的系数和. (2))(x f 的展开式中奇次项的系数和.8.证明:对任意的正整数n ,不等式nnnn n n )12()2()12(-+≥+成立.例题答案:1.解:由二项式定理得77)]1(1[)11(xx x x ++=++77772271707)1()1()1()1(xx C x x C x x C x x C C r r ++++++++++= ①其中第)70(1≤≤+r r 项为r rr xx C T )1(71+=+ ②在rxx )1(+的展开式中,设第k+1项为常数项,记为,1+k T则)0(,)1(2,1r k x C xx C T kr k r k k r k r k ≤≤==--+ ③由③得r -2k=0,即r=2k ,r 为偶数,再根据①、②知所求常数项为.39336672747172707=+++C C C C C C C评述:求某一项时用二项展开式的通项. 2. 解:因为6662)1()31()321(x x x x -+=-+].1][)3()3()3(31[6665564463362261666633622616x C x C x C x C x C x C x C x C x C x C +-+-+-⋅++⋅+⋅+⋅+= 所以62)321(x x -+的展开式里x 5的系数为26363362624616563)(33)(1C C C C C C C ⋅+-+⋅+- .16813)(356516464-=⋅+-⋅+C C C 评述:本题也可将62)321(x x --化为62)]32(1[x x -+用例1的作法可求得.3. 分析:由}{211n i i i a a a a 知=++-是等差数列,则),,2,1(01 =+=+=-i id a d a a i i 从而可将)(x p 表示成d a 和0的表达式,再化简即可.解:因为),3,2,1(211 ==++-i a a a i i i 所以数列}{n a 为等差数列,设其公差为d 有),3,2,1(0 =+=i id a a i 从而n n n n n n n n n xC nd a x x C d a x x C d a x C a x P )()1()2()1()()1()(022*******+++-++-++-=-- ],)1(2)1(1[])1()1([222111100n n n n n n n n n n n n n n x nC x x C x x C d x C x x C x C a ++-+-⋅+++-+-=--- 由二项定理,知,1])1[()1()1()1(222110=+-=++-+-+---n nn n n n n n n n x x x C x x C x x C x C 又因为,)]!1()1[()!1()!1()!(!!11--=-----⋅=-⋅=k n k n nC k n k n n k n k n k kC 从而nn n n n n n x nC x x C x x C ++-+--- 22211)1(2)1(])1()1[(12111----++-+-=n n n n x x x C x nx .])1[(1nx x x nx n =+-=- 所以.)(0ndx a x P +=当x x P d 为时)(,0≠的一次多项式,当为时)(,0x P d =零次多项式.4. 分析:由θn sin 联想到复数棣莫佛定理,复数需要θcos ,然后分析A n 与复数的关系.证明:因为.sin 1cos ,,20,2sin 2222222ba b a b a b a ab +-=-=><<+=θθπθθ所以且 显然n i n )sin (cos sin θθθ+为的虚部,由于ni )sin (cos θθ+.)()(1)2()(1)2(2222222222222nnn n bi a b a abi b a b a i b a ab b a b a ++=+-+=+++-=所以.)()s in (c o s )(222n n bi a n i n b a +=++θθ从而n n n bi a n b a A 222)(sin )(++=为θ的虚部.因为a 、b 为整数,根据二项式定理,nbi a 2)(+的虚部当然也为整数,所以对一切*N ∈n ,A n 为整数.评述:把A n 为与复数ni )sin (cos θθ+联系在一起是本题的关键.5. 证明:P P p P P P P P P P y xy C y x C y x C x y x +++++=+----1122211)( 由于)1,,2,1(!)1()1(-=+--=P r r r p p p C r P 为整数,可从分子中约去r !,又因为P 为素数,且p r <,所以分子中的P 不会红去,因此有).1,,2,1(|-=P r C P rP 所以 ).(mod )(P y x y x P P P +≡+评述:将P y x )(+展开就与PP y x +有联系,只要证明其余的数能被P 整除是本题的关键. 6. 分析:由已知1)()25(12=++=++αααm m r 和 猜想12)25(+-=r α,因此需要求出α,即只需要证明1212)25()25(++--+r r 为正整数即可.证明:首先证明,对固定为r ,满足条件的α,m 是惟一的.否则,设1112)25(α+=++m r],),1,0(,*,,[2121212122ααααα≠≠∈∈+=m m m m m N则)1,0()0,1(,,021212121⋃-∈-∈-≠-=-ααααZ m m m m 而矛盾.所以满足条件的m 和α是惟一的. 下面求α及m .因为12212212211212012121222)5(2)5()5()25()25(+-++++++++⋅+⋅+=--+r r r r r r r r r C C C ]22)5(2)5()5([12212212211212012+-++++-+⋅+⋅--r r r r r r r C C C*]252525[2]22)5(2)5([21212121231312112123223122112N ∈+++⋅⋅+⋅=++⋅+⋅=+--+-+++-++r r r r r r rr r r r r r CCCC C又因为)1,0()25(),1,0(2512∈-∈-+r 从而所以)2252525(21212121231312112+--+-+++⋅⋅++⋅⋅+⋅⋅=r r r r r r r r r C C C m 12)25(+-=r α 故.)25()(12+-=+r m αα .1)45()25(1212=-=+++r r评述:猜想121212)25()25(,)25(+++-+-=r r r 与α进行运算是关键.7. 分析:利用n 取1,2,3,…猜想n n a a 及的末位数字. 解:当n=1时,a 1=3,3642733321+⨯====a a27)81(3)81(3)3(3336363643642732⨯=⋅=⋅====+⨯a a ,因此32,a a 的末位数字都是7,猜想,.*,34N ∈+=m m a n 现假设n=k 时,.*,34N ∈+=m m a k 当n=k+1时, 34341)14(33+++-===m m a k ka34034342412434124134034034)1(4)1(4)1(4)1(4++++++++++-⋅⋅+-⋅⋅++-⋅⋅+-⋅=m m m m m m m m m m C C C C ,3)1(414+-=-=T T 从而*)(34N ∈+=m m a n 于是.27)81(33341⨯===++m m a n na 故2001a 的末位数字是7.评述:猜想34+=m a n 是关键.8. 分析:寻求N 中含2和3的最高幂次数,为此将19变为20-1和18+1,然后用二项式定理展开.解:因为N=1988-1=(20-1)88-1=(1-4×5)88-1=-888888888787878833388222881885454545454⨯⨯+⨯⨯-+⨯⨯-⨯⨯+⨯⨯C C C C C)552(22552565-=⨯+⨯-=M M 其中M 是整数.上式表明,N 的素因数中2的最高次幂是5. 又因为N=(1+2×9)88-18888888822288188929292⨯⨯++⨯⨯+⨯⨯=C C C=32×2×88+34·P=32×(2×88+9P )其中P 为整数.上式表明,N 的素因数中3的最高次幂是2.综上所述,可知Q N ⋅⋅=2532,其中Q 是正整数,不含因数2和3. 因此,N 中所有形如ba32⋅的因数的和为(2+22+23+24+25)(3+32)=744.9. 分析:直接求x 的个位数字很困难,需将与x 相关数联系,转化成研究其相关数. 解:令])22015()22015[(,)22015()22015(82198219+++=+-+-=y x y 则])22015()22015[(8219-+-+,由二项式定理知,对任意正整数n.)2201515(2)22015()22015(22+⋅⋅+=-++-n n n n n C 为整数,且个位数字为零.因此,x +y 是个位数字为零的整数.再对y 估值,因为2.0255220155220150=<+=-<, 且1988)22015()22015(-<-, 所以.4.02.02)22015(201919<⨯<-<<y 故x 的个位数字为9.评述:转化的思想很重要,当研究的问题遇到困难时,将其转化为可研究的问题.10. 分析:先求出n a ,再将n a 表示成与15有关的表达式,便知是否有无穷多项能被15整除.证明:在数列}{n a 中有无穷多个能被15整除的项,下面证明之.数列}{n a 的特征方程为,0182=+-x x 它的两个根为154,15421-=+=x x , 所以n n n B A a )154()154(-++= (n=0,1,2,…) 由,1521,15211,010-====B A a a 得 则],)154()154[(1521n n n a --+=取),2,1,0(2 ==k k n ,由二项式定理得])15(42)15(421542[15211133311----⋅⋅++⋅⋅+⋅⋅=n n n n n n n n C C C a),(1542)1544(154154154415415441221223232121212232321212223311为整数其中T T k C C C C C C C C C k k k kk k k k k k k k k k k n n nn nn n+⋅=⋅⋅++⋅+⋅=⋅⋅++⋅⋅+⋅=⋅⋅++⋅⋅+⋅=-----------由上式知当15|k ,即30|n 时,15|a n ,因此数列}{n a 中有无穷多个能被15整除的项. 评述:在二项式定理中,nnb a b a )()(-+与经常在一起结合使用.。
初中数学中的二项式定理与多项式
二项式定理展开的实例
展开式:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n)b^n 实例1:(2+3)^3 = 8^3 = 512 实例2:(2-3)^3 = (-1)^3 = -1 实例3:(2+3)^4 = 8^4 = 4096
04
多项式的概念
06
多项式与二项式定理的关系
二项式定理在多项式中的应用
二项式定理的定 义和性质
二项式定理在多 项式中的展开式
二项式定理在多 项式乘法中的应 用
二项式定理在多 项式除法中的应 用
多项式中的二项式定理实例
二项式定理的定义:一个多项式与另一个多项式的乘积,其中每个多项式 的次数不超过2
二项式定理的应用:在多项式中寻找规律,简化计算
多项式的次数和项数
多项式的次数:多项式中最高次 项的次数
例如:多项式x^3+2x^2-3x+1 的次数为3,项数为4
添加标题
添加标题
添加标题
添加标题
多项式的项数:多项式中单项式 的个数
多项式的次数和项数是判断多项 式类型的重要依据
05
多项式的运算
多项式的加减法
定义:多项式相加或相减,合并同类项 法则:合并同类项,系数相加,字母和指数不变 例子:(x^2+2x-3) + (x^2-x+1) = 2x^2+x-2 注意事项:合并同类项时,要注意系数的符号,以及字母和指数的匹配
C(3,3)*b^3
整理展开后的多 项式:将计算得 到的各项按照一 定的顺序排列, 如按指数从大到
小的顺序排列
二项式定理展开的注意事项
数学一轮复习讲义第10章§10-3二项式定理2023年新高考
§10.3 二项式定理考试要求 能用多项式运算法则和计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题.知识梳理1.二项式定理二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n b n (n ∈N *)二项展开式的通项T k +1=C k n a n -k b k ,它表示展开式的第k +1项二项式系数C k n(k =0,1,…,n )2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.(2)增减性与最大值:当n 是偶数时,中间的一项2C n n 取得最大值;当n 是奇数时,中间的两项12C n n -与12C n n +相等,且同时取得最大值.(3)各二项式系数的和:(a +b )n 的展开式的各二项式系数的和等于2n .常用结论1.两个常用公式(1)C 0n +C 1n +C 2n +…+C n =2n .(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.2.二项展开式的三个重要特征(1)字母a 的指数按降幂排列由n 到0.(2)字母b 的指数按升幂排列由0到n .(3)每一项字母a 的指数与字母b 的指数的和等于n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k na n -kb k 是(a +b )n 的展开式的第k 项.( × )(2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ )(3)二项展开式中,系数最大的项为中间一项或中间两项.( × )(4)(a +b )n 的展开式中,某项的系数与该项的二项式系数不同.( × )教材改编题1.(x -1)10的展开式的第6项的系数是( )A .C 610B .-C 610C .C 510D .-C 510答案 D解析 T 6=C 510x 5(-1)5,所以第6项的系数是-C 510.2.(多选)已知(a +b )n 的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10答案 ABC解析 ∵(a +b )n 的展开式中第5项的二项式系数C 4n 最大,∴n =7或n =8或n =9.3.在(1-2x )10的展开式中,各项系数的和是________.答案 1解析 令x =1可得各项系数的和为(1-2)10=1.题型一 通项公式的应用命题点1 形如(a +b )n (n ∈N *)的展开式的特定项例1 (1)(2022·烟台模拟)(1-2x )8展开式中x 项的系数为( )A .28B .-28C .112D .-112答案 C解析 (1-2x )8展开式的通项公式为T k +1=C k 8(-2x )k =28(-2)C k k kx .要求x 项的系数,只需k 2=1,解得k =2,所以x 项系数为(-2)2C 28=4×8×72×1=112.(2)(2022·德州模拟)若n ∈Z ,且3≤n ≤6,则(x +1x 3)n 的展开式中的常数项为______.答案 4解析 (x +1x 3)n 的通项公式为T k +1=C k n x n -k (1x 3)k =C k n x n -4k ,因为3≤n ≤6,令n -4k =0,解得n =4,k =1,所以(x +1x 3)n 的展开式中的常数项为4.命题点2 形如(a +b )m (c +d )n (m ,n ∈N *)的展开式问题例2 (1)(2022·泰安模拟)(x 3-2)(x +1x )6的展开式中x 6的系数为( )A .6 B .10 C .13 D .15答案 C解析 由于(x +1x )6的展开式的通项为T k +1=36-26C k kx ,令6-3k 2=3,求得k =2;令6-3k 2=6,求得k =0,故(x 3-2)(x +1x )6的展开式中x 6的系数为C 26-2C 06=15-2=13.(2)(2022·合肥模拟)二项式(2-x a )(1-2x )4的展开式中x 3项的系数是-70,则实数a 的值为( )A .-2B .2C .-4D .4答案 D解析 因为(2-x a )(1-2x )4=2×(1-2x )4-x a×(1-2x )4,(1-2x )4的展开式的通项公式为T k +1=C k 4(-2x )k =(-2)k C k 4x k ,k =0,1,2,3,4,所以2×(1-2x )4展开式中x 3项的系数是2×(-2)3C 34=-64,x a×(1-2x )4展开式中x 3项的系数是1a ×(-2)2C 24=24a ,所以-64-24a=-70,解得a =4.教师备选1.(2022·菏泽模拟)已知正整数n ≥7,若(x -1x )(1-x )n 的展开式中不含x 5的项,则n 的值为( )A .7B .8C .9D .10答案 D 解析 (1-x )n 的二项展开式中第k +1项为T k +1=C k n(-1)k x k ,又因为(x -1x )(1-x )n =x (1-x )n -1x(1-x )n 的展开式不含x 5的项,所以x C 4n (-1)4x 4-1xC 6n (-1)6x 6=0,C 4n x 5-C 6n x 5=0,即C 4n =C 6n ,所以n =10.2.(2022·烟台模拟)在(x 2+2x +y )5的展开式中,x 5y 2的系数为( )A .60B .30C .15D .12答案 A解析 由(x 2+2x +y )5=[(x 2+2x )+y ]5,由通项公式可得T k +1=C k 5(x 2+2x )5-k y k ,∵要求x 5y 2的系数,故k =2,此时(x 2+2x )3=x 3·(x +2)3,其对应x 5的系数为C 1321=6.∴x 5y 2的系数为C 25×6=60.思维升华 (1)求二项展开式中的特定项,一般是化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.跟踪训练1 (1)(2021·北京)(x 3-1x )4的展开式中常数项为________.答案 -4解析 (x 3-1x )4的展开式的通项T k +1=C k 4(x 3)4-k ·(-1x )k =(-1)k C k 4x 12-4k ,令k =3得常数项为T 4=(-1)3C 34=-4.(2)(2022·攀枝花模拟)(1-1x 2)(1+2x )5的展开式中,含x 3的项的系数是( )A .-112B .-48C .48D .112答案 C解析 由(1-1x 2)(1+2x )5=(1+2x )5-1x 2(1+2x )5,(1+2x )5展开式的通项公式为T k +1=C k 5(2x )k =2k C k 5x k ,其中k =0,1,2,3,4,5,(1+2x )5展开式中含x 3项的系数为23C 35=80,1x 2(1+2x )5展开式中含x 3项的系数为25C 5=32,所以(1-1x 2)(1+2x )5的展开式中,含x 3的项的系数为80-32=48.题型二 二项式系数与项的系数的问题命题点1 二项式系数和与系数和例3 (1)(多选)(2022·十堰调研)在(3x -1x )n 的展开式中,各项系数和与二项式系数和之和为128,则( )A .二项式系数和为64B .各项系数和为64C .常数项为-135D .常数项为135答案 ABD解析 在(3x -1x )n 的展开式中,各项系数和与二项式系数和之和为128,令x =1,得各项系数和为2n ,二项式系数和为2n ,则2×2n =128,得n =6,即二项式系数和为64,各项系数和也为64,故A ,B 正确;(3x -1x )6展开式的通项为T k +1=C k 6·(3x )6-k ·(-1x)k =36-626C (-1)3k kk k x -⋅⋅,令6-32k =0,得k =4,因此展开式中的常数项为T 5=C 46·(-1)4·32=135.故D 正确.(2)已知多项式(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,则a 1=______,a 2+a 3+a 4+a 5+a 6=______.答案 1 23解析 根据题意,令x =1,则(1-2)+(1+1+1)3=a 0+a 1+a 2+…+a 6=26,令x =0,a 0=1+1=2,由于(1-2x )+(1+x +x 2)3=a 0+a 1x +a 2x 2+…+a 6x 6,a 1为展开式中x 项的系数,考虑一次项系数a 1=-2+C 13C 2×12=1,所以a 2+a 3+a 4+a 5+a 6=26-1-2=23.命题点2 系数与二项式系数的最值问题例4 (y -2x 2)6的展开式中二项式系数最大的项为第________项,系数最大的项为________.答案 4 240x -8y 2解析 因为(y -2x2)6的展开式中二项式系数的最大值为C 36,所以二项式系数最大的项为第4项.因为(y -2x 2)6的展开式的通项为T k +1=C k 6·y 6-k (-2x 2)k =C k 6·(-2)k x -2k y 6-k ,所以展开式中系数最大的项为奇数项.展开式中第1,3,5,7项的系数分别为C 06·(-2)0,C 26·(-2)2,C 46·(-2)4,C 6·(-2)6,即1,60,240,64,所以展开式中系数最大的项为240x -8y 2.教师备选1.(多选)已知(1-2x )2 022=a 0+a 1x +a 2x 2+…+a 2 022x 2 022,下列命题中正确的是( )A .展开式中所有项的二项式系数的和为22 022B .展开式中所有奇次项系数的和为32 022-12C .展开式中所有偶次项系数的和为32 022+12D.a 12+a 222+a 323+…+a 2 02222 022=-1答案 ACD解析 选项A ,由二项式知,C 02 022+C 12 022+…+C 2 022=(1+1)2 022=22 022,A 正确;当x =1时,有a 0+a 1+a 2+…+a 2 022=1,当x =-1时,有a 0-a 1+a 2-a 3+…-a 2 021+a 2 022=32 022,选项B ,由上可得a 1+a 3+a 5+…+a 2 021=1-32 0222,B 错误;选项C ,由上可得a 0+a 2+a 4+…+a 2 022=32 022+12,C 正确;选项D ,令x =12可得a 0+a 12+a 222+a 323+…+a 2 02222 022=0,又a 0=1,所以a 12+a 222+a 323+…+a 2 02222 022=-1,D 正确.2.(多选)已知(x -3)8=a 0+a 1(x -2)+a 2(x -2)2+…+a 8(x -2)8,则下列结论正确的有( )A .a 0=1B .a 6=-28C.a 12+a 222+…+a 828=-255256D .a 0+a 2+a 4+a 6+a 8=128答案 ACD解析 对于A ,取x =2,得a 0=1,A 正确;对于B ,(x -3)8=[-1+(x -2)]8展开式中第7项为C 68(-1)2(x -2)6=28(x -2)6,即a 6=28,B 不正确;对于C ,取x =52,得a 0+a 12+a 222+…+a 828=(52-3)8=1256,则a12+a222+…+a828=1256-a0=-255256,C正确;对于D,取x=3,得a0+a1+a2+a3+…+a7+a8=0,取x=1,得a0-a1+a2-a3+…-a7+a8=(-2)8=256,两式相加得2(a0+a2+a4+a6+a8)=256,即a0+a2+a4+a6+a8=128,D正确.思维升华 赋值法的应用一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+a n x n,令g(x)=(a+bx)n,则(a+bx)n的展开式中各项的系数和为g(1),(a+bx)n的展开式中奇数项的系数和为12[g(1)+g(-1)],(a+bx)n的展开式中偶数项的系数和为12[g(1)-g(-1)].跟踪训练2 (1)已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|等于( )A.1 B.243C.121 D.122答案 B解析 令x=1,得a5+a4+a3+a2+a1+a0=1,①令x=-1,得-a5+a4-a3+a2-a1+a0=-243,②①+②,得2(a4+a2+a0)=-242,即a4+a2+a0=-121.①-②,得2(a5+a3+a1)=244,即a5+a3+a1=122.所以|a0|+|a1|+…+|a5|=122+121=243.(2)(多选)(2022·济南模拟)在(2x-x)6的展开式中,下列说法正确的是( )A.常数项为160B.第4项的二项式系数最大C.第3项的系数最大D.所有项的系数和为64答案 BC解析 展开式的通项为T k+1=C k6·(2x)6-k·(-x)k=26-k(-1)k·C k6x2k-6,由2k-6=0,得k=3,所以常数项为23(-1)3C36=-160,A错误;展开式共有7项,所以第4项二项式系数最大,B正确;第3项的系数最大,C正确;令x=1,得(2x-x)6=1,所有项的系数和为1,D 错误.题型三 二项式定理的综合应用例5 (1)设a∈Z,且0≤a≤13,若512 021+a能被13整除,则a等于( )A.0 B.1 C.11 D.12答案 B解析 因为a∈Z,且0≤a≤13,所以512 021+a=(52-1)2 021+a,2 02152-C2 021+a,=C02 021522 021-C12 021522 020+C22 021522 019-…+C2 020因为512 021+a能被13整除,结合选项,所以-C2 021+a=-1+a能被13整除,所以a=1.(2)利用二项式定理计算1.056,则其结果精确到0.01的近似值是( )A.1.23 B.1.24C.1.33 D.1.34答案 D解析 1.056=(1+0.05)6=C06+C16×0.05+C26×0.052+C36×0.053+…+C6×0.056=1+0.3+0.037 5+0.002 5+…+0.056≈1.34.教师备选已知n为满足S=n+C127+C227+C327+…+C27(n≥3)能被9整除的正数n的最小值,则(x-1x)n 的展开式中,系数最大的项为( )A.第6项B.第7项C.第11项D.第6项和第7项答案 B解析 S=n+C127+C227+C327+…+C27=n+(1+1)27-C027=(9-1)9+n-1=9(98-C1997+…+C89)+n-2,∵n≥3,∴S能被9整除的正数n的最小值是n-2=9,∴n=11.∴(x-1x)11的展开式中的通项公式为T k+1=C k11x11-k(-1x)k=(-1)k C k11x11-2k,只考虑k为偶数的情况,由T5=C411x3,T7=C611x-1,T9=C811x-5,可知系数最大的项为第7项.思维升华 二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(2)二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,(1+x)n≈1+nx.跟踪训练3 (1)设n为奇数,那么11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是( )A.-3 B.2C.10 D.11答案 C解析 11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1=C0n·11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11+C n-2=(11+1)n-2=12n-2=(13-1)n-2=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13+(-1)n·C n-2,因为n为奇数,则上式=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-3=[C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-13]+10,所以11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是10.(2)0.996的计算结果精确到0.001的近似值是( )A.0.940 B.0.941C.0.942 D.0.943答案 B解析 (0.99)6=(1-0.01)6=C06×1-C16×0.01+C26×0.012-C36×0.013+…+C6×0.016=1-0.06+0.001 5-0.000 02+…+0.016≈0.941.课时精练1.(2022·济南模拟)(x +1x)6的展开式中,含x 4项的系数为( )A .4B .6C .10D .15答案 B 解析 (x +1x)6的展开式通项为T k +1=C k 6·x 6-k ·(1x)k =C k 6·x 6-2k ,令6-2k =4,解得k =1,因此,展开式中含x 4项的系数为C 16=6.2.(2022·武汉部分重点中学联考)在(x 2-1x)n 的展开式中,只有第7项的二项式系数最大,则展开式常数项是( )A.552B .-552C .-28 D .28答案 B解析 展开式中,只有第7项的二项式系数最大,可得展开式有13项,所以n =12,展开式的通项为T k +1=C k 12(x 2)12-k ·(-1x)k=12-412-3121C (-1) 2kk k k x⎛⎫⎪⎝⎭,若为常数项,则12-43k =0,所以k =9 ,得常数项为T 10=C 912(-1)9(12)12-9=-2208=-552.3.(2022·邯郸模拟)(x 2-x )(1+x )6的展开式中x 3项的系数为( )A .-9 B .9C .-21D .21答案 A解析 展开式中x3项的系数为C16-C26=-9.4.(2022·芜湖质检)已知(x-m)(x+2)5=a0+a1x+a2x2+…+a6x6,其中m为常数,若a4=30,则a0等于( )A.-32 B.32C.64 D.-64答案 A解析 由多项式乘法知,第一个因式中x乘以(x+2)5展开式中的x3项得一个x4项,第一个因式中的常数-m乘以(x+2)5展开式中的x4项得另一个x4项,两项合并同类项得系数即为a4,所以a4=C25×22-m×C15×2=30,解得m=1,再令x=0,得a0=-25=-32.5.(2022·大连模拟)(ax-y)(x+y)4的展开式中x3y2的系数为-2,则实数a的值为( )A.-13B.-1 C.1 D.13答案 D解析 化简得(ax-y)(x+y)4=ax·(x+y)4-y·(x+y)4,∵(x+y)4的展开式的通项公式T k+1=C k4x4-k y k,当k=2时,ax·(x+y)4的展开式中x3y2的系数为C24a=6a,当k=1时,-y·(x+y)4的展开式中x3y2的系数为-C14=-4,综上,(ax-y)(x+y)4的展开式中x3y2的系数为6a-4=-2,∴a=1 3 .6.已知在(2x-1)n的二项展开式中,奇次项系数的和比偶次项系数的和小38,则C1n+C2n+C 3n+…+C n的值为( )A.28B.28-1C.27D.27-1答案 B解析 设(2x-1)n=a0+a1x+a2x2+…+a n x n,且奇次项的系数和为A,偶次项的系数和为B.则A=a1+a3+a5+…,B=a0+a2+a4+a6+….由已知得,B-A=38,令x=-1,得a0-a1+a2-a3+…+a n(-1)n=(-3)n,即(a0+a2+a4+a6+…)-(a1+a3+a5+a7+…)=(-3)n,即B-A=(-3)n,∴(-3)n=38=(-3)8,∴n=8,由二项式系数性质可得C1n+C2n+C3n+…+C n=2n-C0n=28-1.7.(多选)(2022·邯郸模拟)已知(5x-3x)n的展开式中,二项式系数之和为64,下列说法正确的是( )A.2,n,10成等差数列B.各项系数之和为64C.展开式中二项式系数最大的项是第3项D.展开式中第5项为常数项答案 ABD解析 由(5x-3x)n的二项式系数之和为2n=64,得n=6,得2,6,10成等差数列,A正确;令x=1,(5x-3x)6=26=64,则(5x-3x)6的各项系数之和为64,B正确;(5x-3x)6的展开式共有7项,则二项式系数最大的项是第4项,C不正确;(5x-3x)6的展开式中的第5项为C46(5x)2(-3x)4=15×25×81为常数项,D正确.8.(多选)(2022·烟台模拟)已知(2-3x)6=a0+a1x+a2x2+…+a6x6,则下列选项正确的是( ) A.a3=-360B.(a0+a2+a4+a6)2-(a1+a3+a5)2=1C.a1+a2+…+a6=(2-3)6D.展开式中系数最大的为a2答案 BD解析 (2-3x)6的展开式通项为T k+1=C k6·26-k·(-3x)k=C k6·(-3)k·26-k·x k,对于A,令k=3,则a3=C36×23×(-3)3=-4803,A错误;对于B,令x=1,则a0+a1+…+a6=(2-3)6;令x=-1,则a0-a1+a2-…+a6=(2+3)6,∴(a0+a2+a4+a6)2-(a1+a3+a5)2=(a0+a1+a2+…+a6)(a0-a1+a2-…+a6)=[(2-3)×(2+3)]6=1,B正确;对于C,令x=0,得a0=26,∴a1+a2+…+a6=(2-3)6-26,C错误;对于D,∵a0,a2,a4,a6为正数,a1,a3,a5为负数,又a0=26=64,a2=C26×24×3=720,a4=C46×22×32=540,a6=33=27,∴展开式中系数最大的为a2,D正确.9.(2021·天津)在(2x3+1x)6的展开式中,x6的系数是________.答案 160解析 (2x3+1x)6的展开式的通项为T k+1=C k6(2x3)6-k·(1x)k=26-k C k6·x18-4k,令18-4k=6,解得k=3,所以x6的系数是23C36=160.10.(2022·济宁模拟)已知(x-2x)n的展开式中各项的二项式系数的和为128,则这个展开式中x3项的系数是________.答案 84解析 依题意,2n=128,解得n=7,(x-2x)7的展开式的通项为T k+1=C k7x7-k·(-2x)k=(-2)k C k7x7-2k(k∈N,k≤7),由7-2k=3得k=2,所以所求展开式中x3项的系数是(-2)2C27=4×7×62×1=84.11.(2022·温州模拟)若(x +2x)n 的展开式中共有7项,则常数项为________(用数字作答).答案 240解析 因为(x +2x)n 的展开式中共有7项,所以n +1=7,可得n =6,所以(x +2x)6展开式的通项为T k +1=1626C 2k k kkxx--=3626C 2k k kx-令6-32k =0,可得k =4,所以常数项为C 4624=15×16=240.12.(2021·浙江)已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.答案 5 10解析 (x -1)3展开式的通项T r +1=C r 3x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4x 4-k ,则a 1=C 03+C 14=1+4=5;a 2=C 13(-1)1+C 24=3;a 3=C 23(-1)2+C 34=7;a 4=C 3(-1)3+C 4=0.所以a 2+a 3+a 4=3+7+0=10.13.已知n 为正整数,若1.1510∈[n ,n +1),则n 的值为( )A .2 B .3 C .4 D .5答案 C解析 因为1.155=(1+320)5=C 05·(320)0+C 15·(320)1+C 25·(320)2+C 35·(320)3+C 45·(320)4+C 5·(320)5=1+34+940+27800+(5×320+9400)(320)3=2+7800+309400×(320)3,而2<2+7800+309400×(320)3<2+7800+278 000<2+7800+308 000=2+180<2.1,所以2<1.155<2.1,因此4<1.1510<4.41,又n 为正整数,1.1510∈[n ,n +1),所以n =4.14.(2022·浙江Z20名校联盟联考)设(x -1)(2+x )3=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 1=________,2a 2+3a 3+4a 4=________.答案 -4 31解析 因为x ·C 03·23·x 0-C 13·22·x 1=-4x ,所以a 1=-4,对所给等式,两边对x 求导,可得(2+x )3+3(x -1)(2+x )2=a 1+2a 2x +3a 3x 2+4a 4x 3,令x =1,得27=a 1+2a 2+3a 3+4a 4,所以2a 2+3a 3+4a 4=31.15.已知S n 是数列{a n }的前n 项和,若(1-2x )2 022=b 0+b 1x +b 2x 2+…+b 2 022x 2 022,数列{a n }的首项a 1=b 12+b 222+…+b 2 02222 022,a n +1=S n ·S n +1,则S 2 022等于( )A .-12 022B.12 022C .2 022 D .-2 022答案 A解析 令x =12,得(1-2×12)2 022=b 0+b 12+b 222+…+b2 02222 022=0.又因为b 0=1,所以a 1=b 12+b 222+…+b 2 02222 022=-1.由a n +1=S n S n +1=S n +1-S n ,得S n +1-S n S n S n +1=1S n -1S n +1=1,所以1S n +1-1S n =-1,所以数列{1S n}是首项为1S1=-1,公差为-1的等差数列,所以1Sn =-1+(n -1)·(-1)=-n ,n n所以S2 022=-12 022.16.(多选)(2022·南京模拟)已知n∈N*,n≥2,p,q>0,p+q=1,设f(k)=C k2n p k q2n-k,其中k∈N,k≤2n,则( )A.2n∑k=0f(k)=1 B.2n∑k=0k f(k)=2npqC.若np=4,则f(k)≤f(8) D.n∑k=0f(2k)<12<n∑k=1f(2k-1)答案 AC解析 2n∑k=0f(k)=2n∑k=0C k2n p k q2n-k=(q+p)2n=1,A正确;k C k2n=k(2n)!k!(2n-k)!=2n×(2n-1)!(k-1)![(2n-1)-(k-1)]!=2n C k-12n-1,所以2n∑k=0k f(k)=2n∑k=1k C k2n p k q2n-k=2n∑k=12n C k-12n-1p k q2n-k=2npq2n∑k=1C k-12n-1p k-1q2n-1-k=2np 2n-1∑k=0C k2n-1p k q2n-1-k=2np(q+p)2n-1=2np≠2npq(除非p=0),B错;设f(m)是f(k)中最大项,Error!即Error!注意到C m2nC m-12n=(2n)!m!(2n-m)!(2n)!(m-1)!(2n-m+1)!mC m2n C m+12n =m+12n-m,又np=4,不等式组可解为8-q≤m≤8+p,所以m=8,所以f(k)≤f(8),C正确;例如n=2时,p=13,q=23,n∑k=0f(2k)=(13)4+6(13)2(23)2+(23)4=4181,n∑k=1f(2k-1)=4081,D错误.。
高中数学 奥赛辅导精品第十讲 二项式定理与多项式
第十讲 二项式定理与多项式知识、方法、技能Ⅰ.二项式定理 1.二项工定理∑=-∈=+nk kk n k n nn b a C b a 0*)()(N2.二项展开式的通项)0(1n r b a C T r r n r n r ≤≤=-+它是展开式的第r+1项.3.二项式系数).0(n r C r n ≤≤4.二项式系数的性质(1)).0(n k C C kn n k n ≤≤=-(2)).10(111-≤≤+=---n k C C C k n k n k n(3)若n 是偶数,有nn n nn nnn CCCC C >>><<<-1210 ,即中间一项的二项式系数2nnC 最大.若n 是奇数,有nnn n n nn nnnC C CCC C >>>=<<<-+-1212110 ,即中项二项的二项式系数212+n nnnCC 和相等且最大. (4).2210nn n n n n C C C C =++++(5).21531420-=+++=+++n n n n n n n C C C C C C(6).1111----==k n kn k n k n C kn C nC kC 或 (7)).(n k m C C C C C C mm k n m k n m k m n m n m k k n ≤≤=⋅=⋅+---- (8).1121++++++=+++++n k n n k n n n n n n n C C C C C以上组合恒等式(是指组合数mn C 满足的恒等式)是证明一些较复杂的组合恒等式的基 本工具.(7)和(8)的证明将在后面给出. 5.证明组合恒等式的方法常用的有(1)公式法,利用上述基本组合恒等式进行证明.(2)利用二项式定理,通过赋值法或构造法用二项式定理于解题中. (3)利用数学归纳法.(4)构造组合问题模型,将证明方法划归为组合应用问题的解决方法.赛题精讲 例1:求7)11(xx ++的展开式中的常数项. 【解】由二项式定理得77)]1(1[)11(xx x x ++=++77772271707)1()1()1()1(xx C x x C x x C x x C C r r ++++++++++= ①其中第)70(1≤≤+r r 项为r rr xx C T )1(71+=+②在rxx )1(+的展开式中,设第k+1项为常数项,记为,1+k T则)0(,)1(2,1r k x C xx C T kr k r k k r k r k ≤≤==--+③由③得r -2k=0,即r=2k ,r 为偶数,再根据①、②知所求常数项为.39336672747172707=+++C C C C C C C【评述】求某一项时用二项展开式的通项. 例2:求62)321(x x -+的展开式里x 5的系数.【解】因为6662)1()31()321(x x x x -+=-+].1][)3()3()3(31[6665564463362261666633622616x C x C x C x C x C x C x C x C x C x C +-+-+-⋅++⋅+⋅+⋅+= 所以62)321(x x -+的展开式里x 5的系数为26363362624616563)(33)(1C C C C C C C ⋅+-+⋅+- .16813)(356516464-=⋅+-⋅+C C C【评述】本题也可将62)321(x x --化为62)]32(1[x x -+用例1的作法可求得. 例3:已知数列)0(,,,0210≠a a a a 满足 ),,3,2,1(211 ==++-i a a a i i i 求证:对于任何自然数n ,n n n n n n n n n n n n n n xC a x x C a x x C a x x C a x C a x p +-++-+-+-=-----)1()1()1()1()(111222211100 是x 的一次多项式或零次多项式. (1986年全国高中数学联赛试题) 【思路分析】由}{211n i i i a a a a 知=++-是等差数列,则),,2,1(01 =+=+=-i id a d a a i i 从而可将)(x p 表示成d a 和0的表达式,再化简即可.【解】因为),3,2,1(211 ==++-i a a a i i i 所以数列}{n a 为等差数列,设其公差为d 有),3,2,1(0 =+=i id a a i 从而nn n n n n n n n xC nd a x x C d a x x C d a x C a x P )()1()2()1()()1()(022*******+++-++-++-=-- ],)1(2)1(1[])1()1([222111100n n n n n n n n n n n n n n x nC x x C x x C d x C x x C x C a ++-+-⋅+++-+-=--- 由二项定理,知,1])1[()1()1()1(222110=+-=++-+-+---n nn n n n n n n n x x x C x x C x x C x C又因为,)]!1()1[()!1()!1()!(!!11--=-----⋅=-⋅=k n k n nC k n k n n k n k n k kC 从而nn n n n n n x nC x x C x x C ++-+--- 22211)1(2)1(])1()1[(12111----++-+-=n n n n x x x C x nx .])1[(1nx x x nx n =+-=- 所以.)(0ndx a x P +=当x x P d 为时)(,0≠的一次多项式,当为时)(,0x P d =零次多项式. 例4:已知a ,b 均为正整数,且,sin )(),20(2sin ,2222θπθθn b a A ba ab b a n n ⋅+=<<+=>其中求证:对一切*N ∈n ,A n 均为整数.【思路分析】由θn sin 联想到复数棣莫佛定理,复数需要θcos ,然后分析A n 与复数的关系.【证明】因为.sin 1cos ,,20,2sin 2222222ba b a b a b a ab +-=-=><<+=θθπθθ所以且 显然ni n )sin (cos sin θθθ+为的虚部,由于ni )sin (cos θθ+.)()(1)2()(1)2(2222222222222n nn n bi a b a abi b a b a i b a ab b a b a ++=+-+=+++-= 所以.)()sin (cos )(222n n bi a n i n b a +=++θθ从而n n n bi a n b a A 222)(sin )(++=为θ的虚部. 因为a 、b 为整数,根据二项式定理,nbi a 2)(+的虚部当然也为整数,所以对一切*N ∈n ,A n 为整数.【评述】把A n 为与复数ni )sin (cos θθ+联系在一起是本题的关键. 例5:已知y x ,为整数,P 为素数,求证:)(m od )(P y x y x PP P +≡+【证明】P P p P P P P P P P y xy C y x C y x C x y x +++++=+----1122211)(由于)1,,2,1(!)1()1(-=+--=P r r r p p p C r P 为整数,可从分子中约去r !,又因为P 为素数,且p r <,所以分子中的P 不会红去,因此有).1,,2,1(|-=P r C P rP 所以).(m od )(P y x y x P P P +≡+【评述】将P y x )(+展开就与PP y x +有联系,只要证明其余的数能被P 整除是本题的关键. 例6:若)10*,,()25(12<<∈+=++ααN m r m r ,求证:.1)(=+ααm【思路分析】由已知1)()25(12=++=++αααm m r 和 猜想12)25(+-=r α,因此需要求出α,即只需要证明1212)25()25(++--+r r 为正整数即可.【证明】首先证明,对固定为r ,满足条件的α,m 是惟一的.否则,设1112)25(α+=++m r],),1,0(,*,,[2121212122ααααα≠≠∈∈+=m m m m m N则)1,0()0,1(,,021212121⋃-∈-∈-≠-=-ααααZ m m m m 而α是惟一的. 下面求α及m .因为12212212211212012121222)5(2)5()5()25()25(+-++++++++⋅+⋅+=--+r r r r r r r r r C C C ]22)5(2)5()5([12212212211212012+-++++-+⋅+⋅--r r r r r r r C C C *]252525[2]22)5(2)5([21212121231312112123223122112N ∈+++⋅⋅+⋅=++⋅+⋅=+--+-+++-++r r r r r r rr r r r r r CCCC C又因为)1,0()25(),1,0(2512∈-∈-+r 从而所以)2252525(21212121231312112+--+-+++⋅⋅++⋅⋅+⋅⋅=r r r r r r r r r C C C m 12)25(+-=r α故.)25()(12+-=+r m αα.1)45()25(1212=-=+++r r 【评述】猜想121212)25()25(,)25(+++-+-=r r r 与α进行运算是关键. 例7:数列}{n a 中,)2(3,311≥==-n a a an n ,求2001a 的末位数字是多少?【思路分析】利用n 取1,2,3,…猜想n n a a 及的末位数字. 【解】当n=1时,a 1=3,3642733321+⨯====aa27)81(3)81(3)3(3336363643642732⨯=⋅=⋅====+⨯a a ,因此32,a a 的末位数字都是7,猜想,.*,34N ∈+=m m a n 现假设n=k 时,.*,34N ∈+=m m a k当n=k+1时, 34341)14(33+++-===m m a k ka34034342412434124134034034)1(4)1(4)1(4)1(4++++++++++-⋅⋅+-⋅⋅++-⋅⋅+-⋅=m m m m m m m m m m C C C C ,3)1(414+-=-=T T 从而*)(34N ∈+=m m a n于是.27)81(33341⨯===++m m a n na 故2001a 的末位数字是7.【评述】猜想34+=m a n 是关键.例8:求N=1988-1的所有形如b a d ba ,(,32⋅=为自然数)的因子d 之和.【思路分析】寻求N 中含2和3的最高幂次数,为此将19变为20-1和18+1,然后用二项式定理展开.【解】因为N=1988-1=(20-1)88-1=(1-4×5)88-1=-888888888787878833388222881885454545454⨯⨯+⨯⨯-+⨯⨯-⨯⨯+⨯⨯C C C C C)552(22552565-=⨯+⨯-=M M 其中M 是整数.上式表明,N 的素因数中2的最高次幂是5. 又因为N=(1+2×9)88-18888888822288188929292⨯⨯++⨯⨯+⨯⨯=C C C=32×2×88+34·P=32×(2×88+9P )其中P 为整数. 上式表明,N 的素因数中3的最高次幂是2.综上所述,可知Q N ⋅⋅=2532,其中Q 是正整数,不含因数2和3. 因此,N 中所有形如ba 32⋅的因数的和为(2+22+23+24+25)(3+32)=744.例9:设8219)22015()22015(+++=x ,求数x 的个位数字.【思路分析】直接求x 的个位数字很困难,需将与x 相关数联系,转化成研究其相关数. 【解】令])22015()22015[(,)22015()22015(82198219+++=+-+-=y x y 则])22015()22015[(8219-+-+,由二项式定理知,对任意正整数n.)2201515(2)22015()22015(22+⋅⋅+=-++-n n n n n C 为整数,且个位数字为零.因此,x +y 是个位数字为零的整数.再对y 估值,因为2.0255220155220150=<+=-<, 且1988)22015()22015(-<-,所以.4.02.02)22015(201919<⨯<-<<y 故x 的个位数字为9.【评述】转化的思想很重要,当研究的问题遇到困难时,将其转化为可研究的问题. 例10:已知),2,1(8,1,01110 =-===-+n a a a a a n n n 试问:在数列}{n a 中是否有无穷多个能被15整除的项?证明你的结论.【思路分析】先求出n a ,再将n a 表示成与15有关的表达式,便知是否有无穷多项能被15整除.【证明】在数列}{n a 中有无穷多个能被15整除的项,下面证明之.数列}{n a 的特征方程为,0182=+-x x 它的两个根为154,15421-=+=x x ,所以n n n B A a )154()154(-++= (n=0,1,2,…) 由,1521,15211,010-====B A a a 得 则],)154()154[(1521n n n a --+=取),2,1,0(2 ==k k n ,由二项式定理得])15(42)15(421542[15211133311----⋅⋅++⋅⋅+⋅⋅=n n n n n n n n C C C a),(1542)1544(154154154415415441221223232121212232321212223311为整数其中T T k C C C C C C C C C k k k kk k k k k k k k k k k n n nn nn n+⋅=⋅⋅++⋅+⋅=⋅⋅++⋅⋅+⋅=⋅⋅++⋅⋅+⋅=-----------由上式知当15|k ,即30|n 时,15|a n ,因此数列}{n a 中有无穷多个能被15整除的项. 【评述】在二项式定理中,nnb a b a )()(-+与经常在一起结合使用.。
利用二项式定理解决多项式系数问题
利用二项式定理解决多项式系数问题在代数学中,二项式定理是一个基本的公式,描述了将两个项相加的幂的展开式。
但是它也可以用于解决多项式系数问题,因为多项式系数可以表示成二项式系数的和。
本文将详细讨论如何利用二项式定理解决多项式系数问题。
首先,我们来回顾一下二项式定理。
二项式定理表示:$$(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$其中,$\binom{n}{k}$ 是组合数,表示从 $n$ 个元素中选出 $k$ 个元素的组合数,公式为:$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$现在考虑一个多项式$(x+y)^n$,我们想要求出其中某一项的系数。
假设这一项是 $ax^by^c$,其中 $a,b,c$ 都是整数。
根据二项式定理,我们可以展开 $(x+y)^n$ 并且找到具有这个项($ax^by^c$)的项:$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$现在,我们来考虑如何找到具有 $ax^by^c$ 这一项的系数 $a$。
我们需要找到哪些 $k$ 可以使得 $x^{n-k} y^k$ 的指数分别为 $b$ 和 $c$。
我们可以得到下面这个方程:$$n-k = b, k = c$$解这个方程可以得到:$$k = c, n-k = b \Rightarrow k = c, n-b = k \Rightarrow k = c, n-b = c$$因此,我们可以计算出 $k$ 的值,而这个值正是 $x^{n-b} y^c$ 的系数,即:$$\binom{n}{c}$$因此,系数 $a$ 的值就是 $\binom{n}{c}$。
举个例子,假设我们要求解 $(x+y)^5$ 中 $x^2 y^3$ 的系数。
根据上面的方法,我们可以得到:$$\binom{5}{3} = \frac{5\times4\times3}{3\times2\times1} = 10$$因此,$x^2 y^3$ 的系数是 $10$,即 $(x+y)^5$ 中 $x^2 y^3$ 的系数为 $10$。
利用二项式定理计算多项式的值:
利用二项式定理计算多项式的值:利用二项式定理计算多项式的值引言二项式定理是代数中非常重要的一个定理,它可以用来计算多项式的值。
本文将介绍二项式定理的概念以及如何利用它来计算多项式的值。
二项式定理的定义二项式定理陈述了一个关于多项式展开的公式,它可以用来计算 $(a + b)^n$ 的值,其中 $a$、$b$ 是任意实数或复数,$n$ 是任意非负整数。
二项式定理的公式如下:$(a + b)^n = C(n,0) \cdot a^n \cdot b^0 + C(n,1) \cdot a^{n-1}\cdot b^1 + C(n,2) \cdot a^{n-2} \cdot b^2 + \dots + C(n,n-1) \cdot a^1 \cdot b^{n-1} + C(n,n) \cdot a^0 \cdot b^n$其中 $C(n,k)$ 表示从 $n$ 个元素中选取 $k$ 个元素的组合数。
利用二项式定理计算多项式的值为了利用二项式定理来计算一个多项式的值,我们需要确定多项式的系数以及代入的值。
假设有一个多项式 $p(x)$,其中 $p(x) = a_0 \cdot x^n + a_1 \cdot x^{n-1} + a_2 \cdot x^{n-2} + \dots + a_{n-1} \cdot x^1 + a_n \cdot x^0$,我们想要计算当 $x = c$ 时的多项式的值。
根据二项式定理,我们可以写出多项式 $p(x)$ 在 $x = c$ 处的展开式:$p(c) = a_0 \cdot c^n + a_1 \cdot c^{n-1} + a_2 \cdot c^{n-2} +\dots + a_{n-1} \cdot c^1 + a_n \cdot c^0$这个展开式的形式与二项式定理的公式类似,只是多项式$p(x)$ 的系数变成了 $a_i$。
示例让我们通过一个简单的例子来说明如何利用二项式定理计算多项式的值。
二项式定理和多项式定理
二项式定理和多项式定理1.固定分组问题例1 将12本不同的书分给甲、乙、丙、丁4位学生,求分别满足下列条件的分配方法各有多少种:(1)4位学生每人3本;(2)甲、乙各得4本,丙、丁各得2本;(3)甲得5本,乙得4本,丙得2本,丁得1本.解 (1)先从12本书中选取3本分给甲,有312C 种方法;当甲分得3本书后,从剩下的9本书中选取3本分给乙,有39C 种方法;类似可得,丙、丁的分法分别有36C 、33C 种,由乘法原理得所求分法共有312C 39C 36C 33C =4)!3(!12=369600种; (2)与(1)的解法类似可得所求分配方法种数为48412C C 2224C C =!2!2!4!4!12⋅⋅⋅=207900;(3)与(1)的解法类似可得所求分配方法种数为47512C C 1123C C =!1!2!4!5!12⋅⋅⋅=83160.在例1中是将不同的书分给不同的学生,并且指定了每人分得的本数,我们称之为固定分组问题.我们将这个问题总结成如下一般定理:定理1 将n 个不同的元素分成带有编号从1,2,…,r 的r 个组:1A ,,, 2A r A ,使得1A 有n 1个元素,2A 有2n 个元素,…,r A 有r n 个元素,n n n n r =+++ 21,则不同的分组方法共有!!!!21r n n n n ⋅⋅⋅ 种.证明 先从n 个不同的元素中选取n 1个分给1A ,这一步有1n n C 种方法;再从剩下的1n n -个元素中选取2n 个分给2A ,这一步有21n n n C -种方法;如此继续下去,最后剩下的r n 个元素分给r A ,有r rn n C 种方法,由乘法原理得这样的固定分组方法共有1n n C 21n n n C -…r r n n C =!!!!21r n n n n 种.证毕.我们将定理1的分配问题简称为(r n n n n ,,,; 21)固定分组问题.2.不尽相异元素的全排列 多项式定理固定分组数!!!!21r n n n n ⋅⋅⋅ 有多种组合学意义,除了表示固定分组的方法数外,它还有以下两种表示意义:(1)不尽相异元素的全排列种数!!!!21r n n n n ⋅⋅⋅有r 类元素,其中第k 类元素有k n 个(k =1,2,…,r ),同类元素不加区分,不同类元素互不相同,n n n n r =+++ 21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十讲 二项式定理与多项式知识、方法、技能Ⅰ.二项式定理 1.二项工定理∑=-∈=+nk kk n k n nn b a C b a 0*)()(N2.二项展开式的通项 )0(1n r b aC T r rn rn r ≤≤=-+它是展开式的第r+1项.3.二项式系数 ).0(n r C rn ≤≤ 4.二项式系数的性质 (1)).0(n k C C kn nkn ≤≤=-(2)).10(111-≤≤+=---n k C C C k n kn k n (3)若n 是偶数,有nn n nn nnn CCCC C >>><<<-1210,即中间一项的二项式系数2n nC最大.若n 是奇数,有nnn n n nn nnn C C CCC C >>>=<<<-+-1212110 ,即中项二项的二项式系数212+n nnn CC 和相等且最大.(4).221nnn n n n C C C C =++++(5).2153142-=+++=+++n n n n n n n C C C C C C(6).1111----==k n kn k n k n C kn C nC kC 或 (7)).(n k m C C C C C C m m k n mk nmk m n mn mk kn ≤≤=⋅=⋅+----(8).1121++++++=+++++n k n nk n nn nn nn C C C C C以上组合恒等式(是指组合数mn C 满足的恒等式)是证明一些较复杂的组合恒等式的基 本工具.(7)和(8)的证明将在后面给出. 5.证明组合恒等式的方法常用的有(1)公式法,利用上述基本组合恒等式进行证明.(2)利用二项式定理,通过赋值法或构造法用二项式定理于解题中. (3)利用数学归纳法.(4)构造组合问题模型,将证明方法划归为组合应用问题的解决方法.赛题精讲例1:求7)11(xx ++的展开式中的常数项. 【解】由二项式定理得77)]1(1[)11(xx x x ++=++77772271707)1()1()1()1(xx C x x C x x C x x C C r r ++++++++++= ①其中第)70(1≤≤+r r 项为r rr xx C T )1(71+=+ ②在rxx )1(+的展开式中,设第k+1项为常数项,记为,1+k T则)0(,)1(2,1r k x C xx C T kr k r k k r k r k ≤≤==--+ ③由③得r -2k=0,即r=2k ,r 为偶数,再根据①、②知所求常数项为.39336672747172707=+++C C C C C C C【评述】求某一项时用二项展开式的通项. 例2:求62)321(x x -+的展开式里x 5的系数. 【解】因为6662)1()31()321(x x x x -+=-+].1][)3()3()3(31[6665564463362261666633622616x C x C x C x C x C x C x C x C x C x C +-+-+-⋅++⋅+⋅+⋅+= 所以62)321(x x -+的展开式里x 5的系数为26363362624616563)(33)(1C C C C C C C ⋅+-+⋅+- .16813)(356516464-=⋅+-⋅+C C C【评述】本题也可将62)321(x x --化为62)]32(1[x x -+用例1的作法可求得. 例3:已知数列)0(,,,0210≠a a a a 满足 ),,3,2,1(211 ==++-i a a a i i i 求证:对于任何自然数n ,nn n n n n n n n n n n n n xC a x x C a x x C a x x C a x C a x p +-++-+-+-=-----)1()1()1()1()(111222211100 是x 的一次多项式或零次多项式. (1986年全国高中数学联赛试题) 【思路分析】由}{211n i i i a a a a 知=++-是等差数列,则),,2,1(01 =+=+=-i id a d a a i i 从而可将)(x p 表示成d a 和0的表达式,再化简即可.【解】因为),3,2,1(211 ==++-i a a a i i i 所以数列}{n a 为等差数列,设其公差为d 有),3,2,1(0 =+=i id a a i 从而n n n n n n n n n xC nd a x x C d a x x C d a x C a x P )()1()2()1()()1()(022*******+++-++-++-=-- ],)1(2)1(1[])1()1([222111100n n n n n n n n n n n n n n x nC x x C x x C d x C x x C x C a ++-+-⋅+++-+-=--- 由二项定理,知,1])1[()1()1()1(222110=+-=++-+-+---n nn n n n n n n n x x x C x x C x x C x C 又因为,)]!1()1[()!1()!1()!(!!11--=-----⋅=-⋅=k n k n nC k n k n n k n k n k kC 从而nn n n n n n x nC x x C x x C ++-+--- 22211)1(2)1(])1()1[(12111----++-+-=n n n n x x x C x nx .])1[(1nx x x nx n =+-=- 所以.)(0ndx a x P +=当x x P d 为时)(,0≠的一次多项式,当为时)(,0x P d =零次多项式. 例4:已知a ,b 均为正整数,且,sin )(),20(2sin ,2222θπθθn b a A ba ab b a n n ⋅+=<<+=>其中求证:对一切*N ∈n ,A n 均为整数.【思路分析】由θn sin 联想到复数棣莫佛定理,复数需要θcos ,然后分析A n 与复数的关系.【证明】因为.sin 1cos ,,20,2sin 2222222ba b a b a b a ab +-=-=><<+=θθπθθ所以且显然n i n )sin (cos sin θθθ+为的虚部,由于ni )sin (cos θθ+.)()(1)2()(1)2(2222222222222n nn n bi a b a abi b a b a i b a ab b a b a ++=+-+=+++-= 所以.)()sin (cos )(222n n bi a n i n b a +=++θθ从而n n n bi a n b a A 222)(sin )(++=为θ的虚部. 因为a 、b 为整数,根据二项式定理,nbi a 2)(+的虚部当然也为整数,所以对一切*N ∈n ,A n 为整数.【评述】把A n 为与复数ni )sin (cos θθ+联系在一起是本题的关键. 例5:已知y x ,为整数,P 为素数,求证:)(mod )(P y x y x PP P +≡+【证明】P P p P P P P P P P y xy C y x C y x C x y x +++++=+----1122211)( 由于)1,,2,1(!)1()1(-=+--=P r r r p p p C r P 为整数,可从分子中约去r !,又因为P 为素数,且p r <,所以分子中的P 不会红去,因此有).1,,2,1(|-=P r C P rP 所以 ).(mod )(P y x y x P P P +≡+【评述】将P y x )(+展开就与PP y x +有联系,只要证明其余的数能被P 整除是本题的关键. 例6:若)10*,,()25(12<<∈+=++ααN m r m r ,求证:.1)(=+ααm【思路分析】由已知1)()25(12=++=++αααm m r 和 猜想12)25(+-=r α,因此需要求出α,即只需要证明1212)25()25(++--+r r 为正整数即可.【证明】首先证明,对固定为r ,满足条件的α,m 是惟一的.否则,设1112)25(α+=++m r],),1,0(,*,,[2121212122ααααα≠≠∈∈+=m m m m m N则)1,0()0,1(,,021212121⋃-∈-∈-≠-=-ααααZ m m m m 而矛盾.所以满足条件的m 和α是惟一的. 下面求α及m .因为12212212211212012121222)5(2)5()5()25()25(+-++++++++⋅+⋅+=--+r r r r r r r r r C C C ]22)5(2)5()5([12212212211212012+-++++-+⋅+⋅--r r r r r r r C C C*]252525[2]22)5(2)5([21212121231312112123223122112N ∈+++⋅⋅+⋅=++⋅+⋅=+--+-+++-++r r r r r r rr r r r r r CCCC C又因为)1,0()25(),1,0(2512∈-∈-+r 从而所以)2252525(21212121231312112+--+-+++⋅⋅++⋅⋅+⋅⋅=r r r r r r r r r C C C m 12)25(+-=r α 故.)25()(12+-=+r m αα .1)45()25(1212=-=+++r r【评述】猜想121212)25()25(,)25(+++-+-=r r r 与α进行运算是关键.例7:数列}{n a 中,)2(3,311≥==-n a a an n ,求2001a 的末位数字是多少? 【思路分析】利用n 取1,2,3,…猜想n n a a 及的末位数字. 【解】当n=1时,a 1=3,3642733321+⨯====a a27)81(3)81(3)3(3336363643642732⨯=⋅=⋅====+⨯a a ,因此32,a a 的末位数字都是7,猜想,.*,34N ∈+=m m a n 现假设n=k 时,.*,34N ∈+=m m a k 当n=k+1时, 34341)14(33+++-===m m a k ka34034342412434124134034034)1(4)1(4)1(4)1(4++++++++++-⋅⋅+-⋅⋅++-⋅⋅+-⋅=m m m m m m m m m m C C C C ,3)1(414+-=-=T T 从而*)(34N ∈+=m m a n 于是.27)81(33341⨯===++m m a n na 故2001a 的末位数字是7.【评述】猜想34+=m a n 是关键.例8:求N=1988-1的所有形如b a d ba,(,32⋅=为自然数)的因子d 之和.【思路分析】寻求N 中含2和3的最高幂次数,为此将19变为20-1和18+1,然后用二项式定理展开.【解】因为N=1988-1=(20-1)88-1=(1-4×5)88-1=-888888888787878833388222881885454545454⨯⨯+⨯⨯-+⨯⨯-⨯⨯+⨯⨯C C C C C)552(22552565-=⨯+⨯-=M M 其中M 是整数.上式表明,N 的素因数中2的最高次幂是5. 又因为N=(1+2×9)88-18888888822288188929292⨯⨯++⨯⨯+⨯⨯=C C C=32×2×88+34·P=32×(2×88+9P )其中P 为整数.上式表明,N 的素因数中3的最高次幂是2.综上所述,可知Q N ⋅⋅=2532,其中Q 是正整数,不含因数2和3. 因此,N 中所有形如ba32⋅的因数的和为(2+22+23+24+25)(3+32)=744. 例9:设8219)22015()22015(+++=x ,求数x 的个位数字.【思路分析】直接求x 的个位数字很困难,需将与x 相关数联系,转化成研究其相关数. 【解】令])22015()22015[(,)22015()22015(82198219+++=+-+-=y x y 则])22015()22015[(8219-+-+,由二项式定理知,对任意正整数n.)2201515(2)22015()22015(22+⋅⋅+=-++-n n n n n C 为整数,且个位数字为零.因此,x +y 是个位数字为零的整数.再对y 估值,因为2.0255220155220150=<+=-<, 且1988)22015()22015(-<-,所以.4.02.02)22015(201919<⨯<-<<y 故x 的个位数字为9.【评述】转化的思想很重要,当研究的问题遇到困难时,将其转化为可研究的问题. 例10:已知),2,1(8,1,01110 =-===-+n a a a a a n n n 试问:在数列}{n a 中是否有无穷多个能被15整除的项?证明你的结论.【思路分析】先求出n a ,再将n a 表示成与15有关的表达式,便知是否有无穷多项能被15整除.【证明】在数列}{n a 中有无穷多个能被15整除的项,下面证明之.数列}{n a 的特征方程为,0182=+-x x 它的两个根为154,15421-=+=x x , 所以n n n B A a )154()154(-++= (n=0,1,2,…) 由,1521,15211,010-====B A a a 得 则],)154()154[(1521n n n a --+=取),2,1,0(2 ==k k n ,由二项式定理得])15(42)15(421542[15211133311----⋅⋅++⋅⋅+⋅⋅=n n n n n n n n C C C a),(1542)1544(154154154415415441221223232121212232321212223311为整数其中T T k C C C C C C C C C k k k kk k k k k k k k k k k n n nn nn n+⋅=⋅⋅++⋅+⋅=⋅⋅++⋅⋅+⋅=⋅⋅++⋅⋅+⋅=-----------由上式知当15|k ,即30|n 时,15|a n ,因此数列}{n a 中有无穷多个能被15整除的项. 【评述】在二项式定理中,nnb a b a )()(-+与经常在一起结合使用.针对性训练题1.已知实数βα,均不为0,多项ββαα++-=x x x x f 23)(的三根为321,,x x x ,求 )111)((321321x x x x x x ++++的值.2.设d cx bx ax x x f ++++=234)(,其中d c b a ,,,为常数,如果,3)3(,2)2(,1)1(===f f f 求)]0()4([41f f +的值.3.定义在实数集上的函数)(x f 满足:).(,1)1()(x f x x xf x f 求+=-+4.证明:当n=6m 时,.033325531=-⋅+⋅+⋅- n n n n C C C C5.设n x x )1(2++展开式为n n x a x a x a a 222210++++ ,求证:.31630-=+++n a a a 6.求最小的正整数n ,使得n y x xy )2173(-+-的展开式经同类项合并后至少有1996项.(1996年美国数学邀请赛试题)7.设493)12()1()(+-+=x x x x f ,试求: (1))(x f 的展开式中所有项的系数和. (2))(x f 的展开式中奇次项的系数和.8.证明:对任意的正整数n ,不等式nnnn n n )12()2()12(-+≥+成立.(第21届全苏数学竞赛题)[文章来源:教师之家 / 转载请保留出处] [相关优质课视频请访问:教学视频网 /]。