第四章 导热问题的数值解

合集下载

传热学考研题库【名校考研真题】(导热问题的数值解法)【圣才出品】

传热学考研题库【名校考研真题】(导热问题的数值解法)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 4 章 导热问题的数值解法
一、选择题
已知如图 4-1 所示中 t1 20C ,t2 23C ,t3 30C ,t4 20C ,且 x 1.5 y ,
则采用数值法可以估算出下图中 t 处的温度为( )。[湖南大学 2006 研] A.t=26.5℃ B.t=23.25℃ C.t=22.5℃ D.t=22℃

如图 4-2 所示的一根长圆管,管壁内有均匀内热源 W / m3 ,管外壁与温度为 t∞
的流体对流换热,表面传热系数为 h,管壁内温度分布只是半径 r 的函数。若用数值解法求 解稳态时管壁内的温度分布,请根据热平衡法写出外节点 N 的离散方程式。设管壁材料的 导热系数 λ 为常数,径向步长为 Δr。(不需化简)[重庆大学 2012 研]
f
A
2
B
y x
x y
hx
图 4-5
3.试导出二分方程式(不
需要展开、化简)。已知右侧壁绝热;顶端处于温度为 t f ,换热系数为 h 的冷流体环境,同 时受到外界热辐射 qr[W/m2]照射;有内热源Φ[W/m3];网格 x y ;材料热导系数为 λ。
5/7
圣才电子书 十万种考研考证电子书、题库视频学习平台

ti1, j ti, j y ti, j1 ti, j x h x
x 2
y 2 2
t f ti, j
qr
x 2
xy 4
0
4.图 4-7 为一维平壁的非稳态导热,已知边界面周围流体温度 tf 和边界面与流体之间
[上海交通大学 2000 研] 解:本问题的简化模型如图 4-6 所示。
4/7
圣才电子书 十万种考研考证电子书、题库视频学习平台

传热学导热问题的数值解法

传热学导热问题的数值解法

导热问题的数值解法1 、重点内容:① 掌握导热问题数值解法的基本思路;② 利用热平衡法和泰勒级数展开法建立节点的离散方程。

2 、掌握内容:数值解法的实质。

3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。

由前述3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。

但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。

随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1)有限差分法( 2 )有限元方法( 3 )边界元方法数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。

如:几何形状、边界条件复杂、物性不均、多维导热问题。

分析解法与数值解法的异同点:相同点:根本目的是相同的,即确定① t=f(x ,y ,z) ;②。

不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。

§4-1 导热问题数值求解的基本思想及内节点离散方程的建立实质对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。

该方法称为数值解法。

这些离散点上被求物理量值的集合称为该物理量的数值解。

2 、基本思路:数值解法的求解过程可用框图4-1 表示。

由此可见:1 )物理模型简化成数学模型是基础;2 )建立节点离散方程是关键;3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。

一数值求解的步骤如图4-2 (a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下:1 建立控制方程及定解条件控制方程:是指描写物理问题的微分方程针对图示的导热问题,它的控制方程(即导热微分方程)为:(a )边界条件:x=0 时,x=H 时,当y=0 时,当y=W 时,区域离散化(确立节点)用一系列与坐标轴平行的网格线把求解区域划分成若干个子区域,用网格线的交点作为需要确定温度值的空间位置,称为节点( 结点) ,节点的位置用该节点在两个方向上的标号m ,n 表示。

四章节导热问题数值解法

四章节导热问题数值解法

O(h2)
(h)
由式(b)和式(d)消去f (x) 得:
f (x)
f (x)
f
(
x

2h) h2

2
f
(x

h)

O(h2
)
(i)
由式(a)和式(b)消去f (x) 得: f (x) f (x h) f (x h) 2 f (x) O(h3) (j) h2
由(e)式~(j)式分别略去 h 、h2 及 h3 以上各项得一阶、二阶
导数向前、向后及中心差分公式为:

一阶导数向前差分:
f (x) f (x h) f (x)
h
一阶导数向后差分: f (x) f (x) f (x h) h
一阶导数中心差分:
f (x) f (x h) f (x h) 2h
3 三种方法的特点 (1) 分析法
a 能获得所研究问题的精确解,可以为实验和数值计算提供 比较依据;
b 局限性很大,对复杂的问题无法求解; c 分析解具有普遍性,各种情况的影响清晰可见。
(2) 数值法
在很大程度上弥补了分析法的缺点,适应性 强,特别对于 复杂问题更显其优越性;与实验法相比成本低。
(3) 实验法
f (x)
fi ,
f (x h)
f i 1 ,
f (x h)
fi
……
1
x
函数 f(x)在点 x 的一、二阶导数的有限差分表达式分别为:
一阶导数向前差分:fi '
fi1 h
fi
一阶导数向后差分:fi '
fi fi1 h
一阶导数中心差分:fi '

第四章导热问题的数值解法

第四章导热问题的数值解法

第四章导热问题的数值解法1 、重点内容:①掌握导热问题数值解法的基本思路;②利用热平衡法和泰勒级数展开法建立节点的离散方程。

2 、掌握内容:数值解法的实质。

3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。

§4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。

但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。

随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1)有限差分法( 2 )有限元方法( 3 )边界元方法数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。

如:几何形状、边界条件复杂、物性不均、多维导热问题。

一.分析解法与数值解法的异同点:•相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。

•不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。

数值求解的基本思路及稳态导热内节点离散方程的建立二.解法的基本概念•实质对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。

该方法称为数值解法。

这些离散点上被求物理量值的集合称为该物理量的数值解。

2 、基本思路:数值解法的求解过程可用框图 4-1 表示。

由此可见:1 )物理模型简化成数学模型是基础;2 )建立节点离散方程是关键;3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。

第4章 导热问题的数值解法(含控制容积)

第4章 导热问题的数值解法(含控制容积)
(1)建立符合实际的物理模型 对实际导热问题的几何、物理性质进行分析,做必要的、 对实际导热问题的几何、物理性质进行分析,做必要的、合 理的简化,建立符合实际的物理模型; 理的简化,建立符合实际的物理模型; (2)建立控制方程及定解条件 根据物理模型建立完整的数学模型, 根据物理模型建立完整的数学模型,即给出导热微分方程和 单值性条件; 单值性条件; 步是导热问题所有求解方法的基础。 第(1)、(2)步是导热问题所有求解方法的基础。 2012-5-9 4
ti−1, j
二方程相加, 二方程相加,得:
ti+1, j − 2ti, j +ti−1, j ∂2t 2 = + 0(∆x2 ) ∂x ∆x2 i, j ti, j+1 − 2ti, j +ti, j−1 ∂2t 2 = + 0(∆y2 ) ∂y ∆y2 i, j
ti, j −ti−1, j ∂2t ∆x ∂3t ∆x2 ∂t + 2 − 3 +...... = ∂x 2 ∂x ∆x ! ∂x i, j i, j ! i, j 3 = ti, j −ti−1, j ∆x + 0(∆x)
2012-5-9 2
§4-1 导热问题数值求解的基本思想 及内节点离散方程的建立
2012-5-9
3
一、数值解法的基本思想 用导热问题所涉及的空间和时间区域内有限个离散 称为节点 节点) 点(称为节点)的温度近似值来代替物体内实际连续的温 度分布, 度分布 , 将连续温度分布函数的求解问题转化为各节 点温度值的求解问题, 点温度值的求解问题 , 将导热微分方程的求解问题转 化为节点温度代数方程的求解问题。 化为节点温度代数方程的求解问题。 数值解法的基本内容与步骤: 数值解法的基本内容与步骤:

第四章热传导热问题的数值解法

第四章热传导热问题的数值解法
数值求解的高斯-赛德尔(Gauss- Seidel)迭代法
4-1 导热问题数值求解的基本思想
4.1.1 数值求解的基本思想(见P162): 把原来在时间、空间坐标系中连续的
物理量的场,用有限个离散点上的值的集 合来代替,通过求解按一定方法建立起来 的关于这些值的代数方程(组),来获得 离散点上被求物理量的值(其集合称为该 物理量的数值解)
t2(℃)
t3(℃)
0
0
5.675
3.769
4.545 (-1.13) 4.996 (1.227)
4.029 (-0.516) 5.061 (0.065)
3.979 (-0.05) 5.013 (-0.048)
3.994 (0.015) 5.000 (-0.013)
4.000 (0.006) 5.000 (0.000)
y
t4
t0

xy
0
x
△x=△y,且无内热源时,有
t1 t2 t3 t4 4t0 0
即:
t0
1 4
(t1
t2
t3
t4 )
一维问题 推广
三维问题
t0
1 2
(t1
t2
)
t0
1 6
(t1
t2
t3
t4
t5
t6)
一维问题 : t1 t2 2t0 0 二维问题 : t1 t2 t3 t4 4t0 0 三维问题 : t1 t2 t3 t4 t5 t6 6t0 0
流入控制体的总热流量+控制体内热源生成热 = 流出控制体的总热流量+控制体内能的增量 注意:上面的公式对内部节点和边界节点均适用
如图, 以元体(m,n)为研究对象
(1) 元体(m,n)的能量守恒方程为:

第四章_导热问题的数值方法

第四章_导热问题的数值方法

5 热传导问题的数值方法5.1一维稳态导热一维稳态导热在直角坐标系下的控制方程可表示为:0)(=+s dxdT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。

首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得:0)()(=+-⎰dx s dxdTk dx dT k e w w e (5-2)图5.1 控制体和网格然后进行离散化。

如果用分线段性分布来计算方程(5-2)中的微商dxdT,那么最终的方程为:0)()()()(=∆+---x s x T T k x T T k wW P w e P E e δδ (5-3)假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为:b T a T a T a W W E E P P ++= (5-4)式中x s b xs a a a x k a x k a c P W E P w wW ee E ∆=∆-+=δ=δ=)()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。

式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。

进行计算时,物理参数值存储在节点的位置上。

为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。

常用的方法由两种,即算术平均法与调和平均法。

1、算术平均法假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:eeE e e P e x x k x x k k )()()()(δδ+δδ=-+ (5-6)2、调和平均法利用传热学的基本公式可以导出确定界面上当量导热系数的调和平均公式。

控制容积中P 和E 的导热系数不相等,但界面上热流密度应该连续,则由Fourier 定律可得:()()()()EePePE EeeE PePe e k x k x T T k x T T k x T T q +-+-δ+δ-=δ-=δ-=(5-7)而()Pe PE e k x T T q δ-=则()()()Ee Pe eek x k x k x +-+=δδδ (5-8)这就是确定界面上当量导热系数的调和平均公式,它反映了串联过程热阻的迭加原则。

罗大雷-导热问题的数值解法

罗大雷-导热问题的数值解法

导热问题数值解法初次研究对物理物体的数值求解的基本思想可以概括为:把原有的时间、空间坐标系中连续的物理量的场,如导热问题的温度场,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上的值。

这些离散点上的被求解物理量的值的集合称为该物理量的数值解。

物理模型在四个输气的管道中间有一个各边长为10厘米的薄铁片,求导热其达到稳态后,这块铁片的温度分布。

四个输气管道里的气体温度是恒值分别为100℃、200℃、500℃、1000℃。

因此,可以看成是二维矩形域内的稳态、无内热源、常物性的导热问题。

建立数学模型描写物理问题的微分方程称为控制方程,导热微分方程为:22220t t xy∂∂+=∂∂ (1)其四个边界分别为第一类边界条件,1234t =1005002001000===℃、t ℃、t ℃、t ℃。

区域离散化用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为需要确定温度值的空间位置,称为节点。

相邻两节点的距离称为步长,记为x ∆、y ∆。

本模型x 、y 方向是各自均分的,各自为100个子区域。

节点的位置以该节点在两个方向上的标号m 、n 来表示。

每一个节点都可以看成是以它为中心的一个小区域的代表,由相邻的两节点连接的中垂线构成。

为叙述方便,我们把节点所代表的小区域称为元体。

数学模型离散化它的建立是数值求解过程中的重要环节,主要有泰勒级数展开法及热平衡法两种,取节点(m ,n )及其临点为例。

泰勒级数展开法以节点(m ,n )处的二阶偏导数为例用这种方法来导出其差分表达式。

对节点(1,)m n +及(1,)m n -分别写出函数t 对(m ,n )的泰勒级数展开式:2233441,,,,,,2342624m n m n m nm nm nm nt x t x t xtt t xx xxx +∂∆∂∆∂∆∂=+∆++++∂∂∂∂ (2)2233441,,,,,,2342624m n m n m n m nm nm nt x t x t xtt t xxxxx-∂∆∂∆∂∆∂=-∆+-++∂∂∂∂ (3)将式(2)、(3)相加得24421,1,,,,24212m n m n m n m nm nt xtt t t x xx+-∂∆∂+=+∆++∂∂ (4) 将(4)式改写成2,2m n t x∂∂的表达式,有21,,1,2,222()m n m n m n m nt t t t O x xx+--+∂=+∆∂∆ (5)这是用三个离散点上的值来计算二阶导数2,2m nt x∂∂的严格的表达式,其中符号2()O x ∆表示未明确写出的级数余项中x ∆的最低阶数为2。

06 第四章 导热问题数值解法基础 2010

06 第四章 导热问题数值解法基础 2010

2
0
9
二、边界节点离散方程的建立
第一类边界条件:给定温度(很好处理)
第二、三类边界条件:给定 q 或者 h (ti,j - tf)
ti , j ci , j
必须针对边界节点所在的网格单元,利用热平衡方 法予以导出.
i, j+1
例如, 图4-3 所示的边界节点
i-1, j
i, j i, j-1
x 3 ... (A)
i
3 !
ti-1
ti
ti+1
t 2t ti 1 ti x 2 x i x
x 2 3t x 3 ...
i
2 !
x 3
i
3 !
( B)
二阶微分的差分(A+B)
ti 1 2ti ti 1 2t x 2 i x 2
控制体热平衡法和控制容积积分法 利用傅里叶定律和能量守恒原理,对微元体进行分析,直 接导出方程。优点是推导过程的物理概念清晰、离散方程系数 具有一定物理意义、保证差分方程具有守恒特性。缺点是不便 于对离散方程进行数学特性分析。
5
1 泰勒(Taylor)级数展开法
ti 1 t 2t ti x 2 x i x
y
i, j j-1 i-1 i i+1 x j
时间的离散化
y
x
x
0, , 2, ....
4
j+1
二、节点方程的建立方法
建立离散节点的温度应遵循方程的方法分为两大类 泰勒(Taylor)级数展开法和多项式拟合法 在导热微分方程的基础上,利用有限差分近似代替微分的 方法。偏重于从数学的角度进行推导,优点是便于对离散方程 进行数学特性分析,缺点是变步长网格的离散方程形式复杂、 导出过程的物理概念不清晰、不能保证差分方程具有守恒特性。

热传导问题的数值解法

热传导问题的数值解法

热平衡法不是在控制方程的基础上进行离
散,而是直接对元体应用热力学第一定律
和傅里叶定律,从而得到该节点温度的离 w
e
散方程。
二维稳态常导热系数无内热源的稳态导热
问题,对元体(m,n)列出能量守恒方程:
s
w e n s 0
➢ 从元体西界面导入的热量为: ➢ 从元体东界面导入的热量为: ➢ 从元体北界面导入的热量为: ➢ 从元体南界面导入的热量为:
控制方程
t
a
2t x2
对该方程,扩散项在i时刻采用中心差分格式, 非稳态项取向前差分格式进行离散,得:
t (i1) n
t (i) n
a
t (i) n1
2tn(i)
x2
t (i) n1
t (i1) n
a x 2
t t (i)
(i)
n1 n1
1
2a x 2
t
(i n
)
上述离散方程一旦i时层各节点温度已知,每一个离散方程中只有一个未 知量,因此可以立即求出i+1时层上各内部节点的温度,而不必联立求解
2t x2
x2
1 12
4t x4
x4 ...
m,n
m,n
tm1,n
tm1,n
2tm,n
2t x2
x2
1 12
4t x4
x4 ...
m,n
m,n
2t x 2
tm1,n
tm1,n x 2
2tm,n
0(x2 )
m,n
略去截断误差,得到温度在x方向二阶导数的中心差分表达式:
2t
tm1,n tm1,n 2tm,n
数值解: 用导热体内有限个离散点上的温度值的集合来代替实际连续的温度场 分布

V4-第四章-导热数值解法-2014

V4-第四章-导热数值解法-2014
为什么要建立边界节点的离散方程?
内节点 边界节点
平直边界节点 边界内节点 边界外节点
一类边界条件:方程组封闭,可直接求解 二类、三类边界条件:边界温度未知,方程组不封闭
将第二类边界条件及第三类边界条件合并起来考虑,用qw表示边界上的热流密度或热 流密度表达式。用Φ表示内热源。
边界节点离散方程的推导(热平衡法):
X方向
tm 1 ,n tm ,n x tm ,n x x 2 t2m ,n 2 x !2 x 3 t3m ,n 3 x !3
tm 1 ,n tm ,n x tm ,n x x 2 t2m ,n 2 x !2 x 3 t3m ,n 3 x !3
2. 整理得到二阶导数的中心差分
Step-5: 节点离散(代数)方程的求解 Gauss-Seidel迭代法
判断迭代是否收敛的准则:
max
t
( i
k
1
)
t
( i
k
)
or
max
or
max
t
( i
k
1)
t
( i
k
)
t
( i
k
)
t
( i
k
1)
t
( i
k
)ห้องสมุดไป่ตู้
t
(k max
)
ε 为允许的偏差,一般取10-3~10-6
tm(ka)x 为k次迭代得到的计算域温度最大值
i t
n
隐式格式 隐式格式:空间离散采用(i+1)时层的值。 隐式格式不存在稳定性问题,对时间步长和空间步长没有限制,但是计算量较大。
作业:4-10 ;4-15
传热学 Heat Transfer

第4章_热传导问题的数值解法

第4章_热传导问题的数值解法

式中,Fo=
a h x 网格傅里叶数, Bi 网格毕渥数 x 2
14
4.4.5 一维平板非稳态导热显式格式离散方程及稳定性分析 以第三类边界条件下厚度为2的大平板的数值计算问题作一归纳。如图4-10.
i+1 i i i tn =Fo (t n 1 t n 1 ) (1 2 Fo t n ) 0 tn t0
i+1 i i i i tn tn tn 1 t n 1 2t n a x 2 上式可改写为 i+1 tn =
a i a i i ( t t ) ( 1 2 t ) n 1 n 1 2 2 n x x
求解非稳态导热方程就是从已知的初始温度分布出发,根据 边界条件以次求得以后各个时间层上的温度值,由上式可知, 一旦i时层上各节点的温度已知,可立即求得i+1时层上各节点 的温度,而不必联立方程,因而上式所代表的格式称为显式 差分格式。
4.2 内节点离散方程的建立方法 建立内节点离散方程的方法有: 泰勒级数展开法 热平衡法 考察图4-3。
5
4.2.1 泰勒级数展开法 以节点(m,n)处的二阶偏导数为例,对节点(m+1,n)及(m-1, n)分别写出函数t对(m,n)点的泰勒级数展开式:
t m1,n t m,n t m1,n t m,n t x t x 2t x 2 x m,n 2t x 2 x m,n x 2 3t 3 2 x x 2 3t 3 2 x x 3 (a) 6 x 3 (b) 6
9
(2)外部角点 如图4-5所示。节点(m,n)的离散方程为
y t m1,n t m,n y x x t m,n1 t m,n x y qw qw Φm,n 0 2 x 2 2 2 y 2 2

传热学第四章-导热问题的数值解法-2

传热学第四章-导热问题的数值解法-2
迭代解法有多种:简单迭代(Jacobi迭代)、高斯-赛德尔 迭代、块迭代、交替方向迭代等
高斯-赛德尔迭代的特点:每次迭代时总是使用节点温度的最 新值
例如:根据第 k 次迭代的数值 可以求得节点温度:
t1(k)、t2(k)....tn(k)
t(k1)
1
1 a11
a12t2(k )
......
a1nt
max
ti(k 1) ti(k )
ti(k )
max
ti(k 1) ti(k ) tm(ka)x
— 允许的偏差; 相对偏差 值一般
取103 ~ 106
k及k+1表示迭代次数; tm(ka)x—第k次迭代得到的最大值
当有接近于零的t 时,第三个较好
4-3 非稳态导热问题的数值解法
非稳态导热问题与稳态导热问题的区别是,温度分布不仅 与空间坐标有关,还与时间有关。 本节要求掌握一维非稳态导热问题的数值解法,能够写出 内部节点和边界节点的有限差分方程,掌握显式差分方程 的稳定性条件。
作业:4-10 ;4-15
• 习题课
(1)第一、二、三章思考题讲解; (2)第一、二、三章作业习题讲解;
[t
ti(k ) ]
2标和时间的步长,按选定的坐标步长划分节点网 格,并将节点按位置编号。
2)按节点的情况(位置和具体边界条件)写出各节点的差
分方程,并检查是否符合稳定性条 件。
3)从初始条件出发,逐点计算 时刻各节点的温度,然后
再逐点计算 2 ,3 ,...... 时刻各节点的温度,直到指定
i 1
]
(2) 边界节点
相邻节点导入控制体的热流量+边界
表面对控制体的传热量=边界单元体

第四章_导热问题的数值方法

第四章_导热问题的数值方法

5 热传导问题的数值方法5.1一维稳态导热一维稳态导热在直角坐标系下的控制方程可表示为:0)(=+s dxdT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。

首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得:0)()(=+-⎰dx s dxdTk dx dT k e w w e (5-2)图5.1 控制体和网格然后进行离散化。

如果用分线段性分布来计算方程(5-2)中的微商dxdT,那么最终的方程为:0)()()()(=∆+---x s x T T k x T T k wW P w e P E e δδ (5-3)假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为:b T a T a T a W W E E P P ++= (5-4)式中x s b xs a a a x k a x k a c P W E P w wW ee E ∆=∆-+=δ=δ=)()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。

式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。

进行计算时,物理参数值存储在节点的位置上。

为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。

常用的方法由两种,即算术平均法与调和平均法。

1、算术平均法假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:eeE e e P e x x k x x k k )()()()(δδ+δδ=-+ (5-6)2、调和平均法利用传热学的基本公式可以导出确定界面上当量导热系数的调和平均公式。

控制容积中P 和E 的导热系数不相等,但界面上热流密度应该连续,则由Fourier 定律可得:()()()()EePePE EeeE PePe e k x k x T T k x T T k x T T q +-+-δ+δ-=δ-=δ-=(5-7)而()Pe PE e k x T T q δ-=则()()()Ee Pe eek x k x k x +-+=δδδ (5-8)这就是确定界面上当量导热系数的调和平均公式,它反映了串联过程热阻的迭加原则。

传热学-第四章-热传导问题的数值解法

传热学-第四章-热传导问题的数值解法

23
判断迭代是否收敛的准则:
迭代次数,表示第k次迭代
Monday, March 30, 2020
表示第k次迭代所得计算域内的最大值 当有温度t接近于零的时,选此准则较好
24
例题:
Monday, March 30, 2020
25
Monday, March 30, 20day, March 30, 2020
27
1. 一维非稳态导热的数值求解: 第三类边界条件下,常物性、无内热源无 限大平壁的一维非稳态导热问题为例。
1) 求解域的离散
2) 节点温度差分方程的建立
运用热平衡法可以建立非稳态导热物体内部节点和 边界节点温度差分方程。
Monday, March 30, 2020
29
➢ 两点结论:
(a) 任意一个内部节点n在(i+1)时刻的温度都可以由该节点及 其相邻节点(n-1) 、(n+1)在i 时刻的温度由上式直接求出,不必联 立求解方程组,这是显式差分格式的优点。这样就可以从初始温 度出发依次求出各时刻的节点温度;
(b) 必须满足显式差分格式的稳定性条件,即
物理意义:
15
§4-3 边界节点离散方程的建立及代数方程的求解
第一类边界条件:已知全部边界的温度,作为已知值加入到内节点的离散方程中, 组成封闭的代数方程组,直接求解。
n=N
封闭
(m,n+1)
第二类边界条件或第三类边界 条件:部分边界温度未知。
不封闭
w (m-1,n)
n e
(m,n) s
(m,n-1)
(m+1,n)
y
n=1
m=1
m
x
m=M
Monday, March 30, 2020

传热学第四章-导热问题的数值解法-2

传热学第四章-导热问题的数值解法-2

1. 节点离散方程的建立:
(1)内部节点
相邻节点导入控制单元体的热流量= 单元体内能量增量
i-1
i
i+1
A ti( k 1 ) ti(k )A ti( k 1 ) ti(k )c x A ti(k 1 ) ti(k )
x
x
整理,得:
x
x
ti(k 1 )[12 ( a x )2]ti(k)(a x)2[ti( k1 )ti( k1 )]
取103 ~ 106
k及k+1表示迭代次数; tm(ka)x —第k次迭代得到的最大值
当有接近于零的t 时,第三个较好
4-3 非稳态导热问题的数值解法
非稳态导热问题与稳态导热问题的区别是,温度分布不仅 与空间坐标有关,还与时间有关。 本节要求掌握一维非稳态导热问题的数值解法,能够写出 内部节点和边界节点的有限差分方程,掌握显式差分方程 的稳定性条件。
2.节点方程组的求解: 步骤:
1)选择坐标和时间的步长,按选定的坐标步长划分节点网 格,并将节点按位置编号。
2)按节点的情况(位置和具体边界条件)写出各节点的差
分方程,并检查是否符合稳定性 条 件。
3)从初始条件出发,逐点计算 时刻各节点的温度,然后
再逐点计算 2,3,...... 时刻各节点的温度,直到指定
例 如 t03 t1 3, 但 t0 4<t1 4。
i0 1 2 3 4 5 6 7
t
n
0
100 100 100 100 60
148 -109.6 550
1
100 100 100 80
104 19.2 220.2 -328.9
2
100 100 80
84
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若 ∆x = ∆y −4ti ,j + ti −1,j + ti +1,j + ti ,j −1 + ti ,j +1 = 0
4-1离散化方法中的常用术语
• 离散化(Discretization)——把求解的区域划分称 若干互不重叠的子区域; • 节点(Nodes)——用来表示子区域状态的特征点, 如果节点处于区域的边界则成为边界节点,否则 成为内部节点; • 网格(Grids)——节点间按照一定的规则分割所形 成的几何图形; • 控制容积(微元体)——包围一个节点的子区域
(k ) i
+ Fo ( t
(k ) i −1
+t
(k ) i +1
)
边界节点
∆U = ∆Φ L + ∆Φ R
∆Φ L ⇒
i −1
∆U
i
⇐ ∆Φ R = − h(ti( k ) − t∞ )
x
边界节点的离散化方程(显式)
k) ti( k ) − ti(− ti( k +1) − ti( k ) ∆x (k ) 1 = −λ + h t − t ( ρc ∞ i ) ∆τ 2 ∆x
内部节点的离散化方程(显式)
t −t t −t ∆x = −λ ρc +λ ∆x ∆x λ∆τ ( k +1) (k ) (k ) (k ) (k ) ti = ti + t + ti +1 − 2ti ) 2 ( i −1 ρ c ( ∆x ) t
( k +1) i
−t ∆τ
(k ) i
(k ) i
(k ) i −1
(k ) i +1
(k ) i

t t
( k +1) i ( k +1) i
2a∆τ ( k ) a∆τ ( k ) ( k ) = 1 − t + t + ti +1 ) 2 i 2 ( i −1 ( ∆x ) ( ∆x ) = (1 − 2 Fo ) t
ti ,j − ti −1,j −λ∆y + h ∆y(t ∞ − ti ,j ) ∆x ∆x ti ,j − ti ,j −1 ∆x ti ,j +1 − ti ,j −λ + λ 2 ∆y 2 ∆y 若 ∆x = ∆y 2h ∆x − 4 + λ
若 ∆x = ∆y −4ti ,j + ti −1,j + ti +1,j + ti ,j −1 + ti ,j +1 = 0
边界节点的代数方程
稳态无内热源条件下
∆Φ L + ∆Φ R + ∆Φ B + ∆Φ T = 0 ∆Φ T
i − 1, j + 1

i, j + 1
∆Φ L ⇒
i − 1, j i − 1, j − 1
=
( n +1) t3 = ,2 ( n +1) 2,3
t
=
( n +1) t3 = ,3
1 (n ) (t3,2 4 1 (n ) (t4,2 4 1 (n ) (t3,3 4 1 (n ) (t4,3 4
(n ) (n ) (n ) t t ) + t1 + + ,2 2,3 2, 1 n + 1) (n ) (n ) t t ) + t( + + 2,2 3,3 3, 1
ti( k +1)
(k ) (k ) 2h∆τ t − t 2 ∆ λ τ (k ) (k ) i i −1 = ti − + ( t − t ∞ i ) ρ c∆x ∆x ρ c∆x
(
)
迭代步骤
• 给定各节点初始温度; • 代入迭代公式,计算各点新的温度; • 判断两次得到的温度是否非常接近,如 偏差小于预定值,停止计算输出结果; • 将得到的节点温度作为初值再代入迭代 公式中计算。 • 说明: 计算中总会用到新的值,这种迭 代方法成为G-S方法。
计算例题
迭代公式
t
( n +1) 2,2
−1
t1 a11 a12 t2 a21 a22 = M M M t a n n 1 an 2
b1 b2 M b n
迭代解法的原理
内部节点 −4ti ,j + ti −1,j + ti +1,j + ti ,j −1 + ti ,j +1 = 0 ti ,j 1 = (ti −1,j + ti +1,j + ti ,j −1 + ti ,j +1 ) 4
ti +1, j − ti , j ∂t ≈ ∂x i , j ∆x ti , j +1 − ti , j ∂t ≈ ∂x i , j ∆y ∂t ∂τ
(m) +1) (m) t i(,m t − j i, j
同理,温度对时间的导数为 ≈
i, j
∆τ

i, j
∆τ
微元体能量守恒的近似表达
ti ,j − ti −1,j , ∆Φ R = λ∆y ∆Φ L = −λ∆y ∆x ti ,j − ti ,j −1 , ∆ΦT = λ∆x ∆Φ B = −λ∆x ∆y ti ,j − ti −1,j ti +1,j − ti ,j −λ∆y + λ∆y ∆x ∆x ti ,j − ti ,j −1 ti ,j +1 − ti ,j −λ∆x + λ∆x ∆ y ∆y ti +1,j − ti ,j ∆x ti ,j +1 − ti ,j ∆y = 0
节点的代数方程的建立
稳态无内热源条件下
∆Φ L + ∆Φ R + ∆Φ B + ∆Φ T = 0 ∆Φ T
i − 1, j + 1
⇓i, j + 1
i, j
i + 1, j + 1
∆Φ L ⇒
i − 1, j
⇐ ∆Φ R
i + 1, j
i − 1, j − 1
⇑ ∆Φ B
i, j − 1
i + 1, j + 1
网格、节点、控制容积示意图
内部节点 边界节点
i − 1, j + 1 i, j + 1 i + 1, j + 1 i − 1, j i, j i + 1, j
控制容积
i − 1, j − 1 i, j − 1 i + 1, j − 1
4.2 二维稳态导热问题的计算
• • • • • • • • • 本课程采用基于控制容积能量守恒的有限差分法 首先将求解区域离散化,确定节点和网格 围绕节点划分控制容积 建立控制容积的能量守恒方程 用傅里叶定律表示导入控制容积的热流量 用差商近似表示导数 形成关于节点温度的离散化代数方程 建立每个待求温度的离散化代数方程,形成代数方程组 求解代数方程组,获得离散节点上的温度分布
t
( k + 1) i ,j
( k + 1) ti ,j
1 (k ) (k ) (k ) (k ) = ti −1,j + ti + t + t i ,j −1 i ,j + 1 + 1,j 4 2h ∆x (k ) (k ) (k ) 2ti −1,j + ti ,j −1 + ti ,j +1 + t∞ λ = 2h ∆x 4 + λ
直接解法
a11 a12 a21 a22 M M a n 1 an 2 b1 L a1n t1 L a2n t2 b2 = O M M M t b L ann n n L a1n L a2 n O M L ann
= 0
2h ∆x t∞ = 0 ti ,j + 2ti −1,j + ti ,j −1 + ti ,j +1 + λ
代数方程组的求解方法
直接解法 • 高斯消元法 • 主元消去法 迭代解法 • 高斯(guass)—赛德尔(Seidel)迭代法 • 雅可比(Jacobi)迭代法
边界节点 2h ∆x 2h ∆x − 4 + t∞ = 0 ti ,j + 2ti −1,j + ti ,j −1 + ti ,j +1 + λ λ 2h ∆x 2ti −1,j + ti ,j −1 + ti ,j +1 + t∞ λ ti ,j = 2h ∆x 4 + λ
迭代公式
∂t ∆Φ L = qL ∆y = −λ ∆y ∂x L
i + 1, j + 1
∆Φ T
i − 1, j + 1
⇓i, j + 1
i, j
∆Φ L ⇒
i − 1, j
⇐ ∆Φ R
∂t ∆Φ R = qR ∆y = λ ∆y ∂x R ∂ቤተ መጻሕፍቲ ባይዱ ∆Φ B = qB ∆y = −λ ∆x ∂y B ∂t ∆ΦT = qT ∆y = λ ∆x ∂y T
+t
(n ) 1,3
+t
(n ) 2,4
相关文档
最新文档