2018版高考数学理科专题复习:专题6 数列 第40练含解析
2018届高考数学(理)大一轮复习教师用书第六章第四节数列的综合问题Word版含解析
第四节数列的综合问题突破点(一) 数列求和1.公式法与分组转化法 (1)公式法直接利用等差数列、等比数列的前n 项和公式求和. ①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . ②等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.(2)分组转化法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后相加减.2.倒序相加法与并项求和法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式就是用此法推导的.(2)并项求和法在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧 ①1n (n +1)=1n -1n +1.本节主要包括2个知识点: 1.数列求和;数列的综合应用问题.②1n(n+2)=12⎝⎛⎭⎫1n-1n+2.③1(2n-1)(2n+1)=12⎝⎛⎭⎫12n-1-12n+1.④1n+n+1=n+1-n.4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用错位相减法来求,如等比数列的前n项和公式就是用此法推导的.考点贯通抓高考命题的“形”与“神”分组转化法求和[例1]已知数列n n1n n-1n-1n∈N*),b n=a n-3n(n ∈N*).(1)求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.[解](1)∵a n=2a n-1+3n-1(n∈N*,n≥2),∴a n-3n=2(a n-1-3n-1),∴b n=2b n-1(n∈N*,n≥2).∵b1=a1-3=2≠0,∴b n≠0(n≥2),∴b nb n-1=2,∴{b n}是以2为首项,2为公比的等比数列.∴b n=2·2n-1=2n.(2)由(1)知a n=b n+3n=2n+3n,∴S n=(2+22+…+2n)+(3+32+…+3n)=2(1-2n)1-2+3(1-3n)1-3=2n+1+3n+12-72.[方法技巧]分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组转化法求和.错位相减法求和[例2] (2016·n n {b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .[解] (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,满足上式, 所以a n =6n +5. 设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得⎩⎪⎨⎪⎧b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n=3(n +1)·2n +1, 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2,所以T n =3n ·2n +2.[方法技巧]错位相减法求和的策略(1)如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,可采用错位相减法,一般是和式两边同乘以等比数列{b n}的公比,然后作差求解.(2)在写“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.裂项相消法求和[例3]数列{a n}n n1n1,公差为d(d≠0)的等差数列,且b1,b3,b9成等比数列.(1)求数列{a n}与{b n}的通项公式;(2)若c n=2(n+1)b n(n∈N*),求数列{c n}的前n项和T n.[解](1)当n≥2时,a n=S n-S n-1=2n+1-2n=2n,又a1=S1=21+1-2=2=21,也满足上式,所以数列{a n}的通项公式为a n=2n.则b1=a1=2.由b1,b3,b9成等比数列,得(2+2d)2=2×(2+8d),解得d=0(舍去)或d=2,所以数列{b n}的通项公式为b n=2n.(2)由(1)得c n=2(n+1)b n=1n(n+1)=1n-1n+1,所以数列{c n}的前n项和T n=11×2+12×3+13×4+…+1n×(n+1)=1-12+12-13+…+1n-1n+1=1-1n+1=nn+1.[易错提醒]利用裂项相消法求和时,应注意抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2.能力练通 抓应用体验的“得”与“失”1.[考点一]若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n -2解析:选C S n =a 1+a 2+a 3+…+a n=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n +2n -1) =(2+22+…+2n )+2(1+2+3+…+n )-n =2(1-2n )1-2+2×n (n +1)2-n=2(2n -1)+n 2+n -n =2n +1+n 2-2.2.[考点三](2016·江南十校联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=( )A. 2 016-1B. 2 017-1C. 2 018-1D. 2 018+1解析:选C 由f (4)=2可得4a =2,解得a =12,则f (x )=x 12.所以a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.3.[考点二]已知数列{a n }的前n 项和为S n 且a n =n ·2n ,则S n =________. 解析:∵a n =n ·2n ,∴S n =1×21+2×22+3×23+…+n ×2n .① ∴2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1.②①-②,得-S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1=(1-n )2n +1-2. ∴S n =(n -1)2n +1+2. 答案:(n -1)2n +1+24.[考点一]已知数列{a n }的通项公式是a n =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n .解:S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n -n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.5.[考点三]正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ; (2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n ,故b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. 则T n =1161-132+122-142+132-152+…+1(n -1)2-1(n +1)2+1n 2-1(n +2)2=1161+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564.即对任意的n ∈N *,都有T n <564.突破点(二) 数列的综合应用问题1.等差、等比数列相结合的问题是高考考查的重点,主要有:(1)综合考查等差数列与等比数列的定义、通项公式、前n 项和公式、等差(比)中项、等差(比)数列的性质;(2)重点考查基本量(即“知三求二”,解方程(组))的计算以及灵活运用等差、等比数列的性质解决问题.2.数列与函数的特殊关系,决定了数列与函数交汇命题的自然性,是高考命题的易考点,主要考查方式有:(1)以数列为载体,考查函数解析式的求法,或者利用函数解析式给出数列的递推关系来求数列的通项公式或前n 项和;(2)根据数列是一种特殊的函数这一特点命题,考查利用函数的性质来研究数列的单调性、最值等问题.3.数列与不等式的综合问题是高考考查的热点.考查方式主要有三种:(1)判断数列问题中的一些不等关系,如比较数列中的项的大小关系等.(2)以数列为载体,考查不等式的恒成立问题,求不等式中的参数的取值范围等.(3)考查与数列问题有关的不等式的证明问题.考点贯通 抓高考命题的“形”与“神”等差数列与等比数列的综合问题[例1] n 1020(1)求数列{a n }的通项公式;(2)令b n =2a n -10,证明:数列{b n }为等比数列; (3)求数列{nb n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,则a n =a 1+(n -1)d ,由a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2.所以a n =12+(n -1)×2=2n +10.(2)证明:由(1),得b n =2a n -10=22n +10-10=22n =4n , 所以b n +1b n=4n +14n =4.所以{b n }是首项为4,公比为4的等比数列.(3)由nb n =n ×4n ,得T n =1×4+2×42+…+n ×4n ,① 4T n =1×42+…+(n -1)×4n +n ×4n +1,② ①-②,得-3T n =4+42+ (4)-n ×4n +1=4(1-4n )-3-n ×4n +1. 所以T n =(3n -1)×4n +1+49.[方法技巧]等差数列、等比数列综合问题的两大解题策略(1)设置中间问题:分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意解题细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.[提醒] 在不能使用同一公式进行计算的情况下要注意分类讨论,分类解决问题后还要注意结论的整合.数列与函数的综合问题[例2] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .[解] (1)证明:由已知,b n =2a n >0. 当n ≥1时,b n +1b n=2a n +1-a n =2d .所以数列{b n }是首项为2a 1,公比为2d 的等比数列. (2)函数f (x )=2x 在(a 2,b 2)处的切线方程为 y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意,a 2-1ln 2=2-1ln 2, 解得a 2=2.所以d =a 2-a 1=1,所以a n =n ,b n =2n ,则a n b 2n =n ·4n . 于是S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n , 4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1.因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43.所以S n =(3n -1)4n +1+49.[方法技巧]数列与函数问题的解题技巧(1)数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题; ②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(2)解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常用解法有助于该类问题的解决.数列与不等式的综合问题[例3] n n n a n -2. (1)求数列{a n }的通项公式;(2)设b n =log 2a 1+log 2a 2+…+log 2a n ,求使(n -8)b n ≥nk 对任意n ∈N *恒成立的实数k 的取值范围.[解] (1)由S n =2a n -2可得a 1=2. 因为S n =2a n -2,所以,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n a n -1=2.所以数列{a n }是以a 1=2为首项,2为公比的等比数列, 所以a n =2n (n ∈N *).(2)由(1)知a n =2n,则b n =log 2a 1+log 2a 2+…+log 2a n =1+2+…+n =n (n +1)2.要使(n -8)b n ≥nk 对任意n ∈N *恒成立, 即(n -8)(n +1)2≥k 对任意n ∈N *恒成立.设c n =12(n -8)(n +1),则当n =3或4时,c n 取得最小值,为-10,所以k ≤-10.即实数k 的取值范围为(-∞,-10]. [方法技巧]数列与不等式相结合问题的处理方法(1)如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.(2)如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.能力练通 抓应用体验的“得”与“失”1.[考点一]设{a n } 是首项为a 1 ,公差为-1 的等差数列,S n 为其前n 项和.若 S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12D .-12解析:选D 由S 1=a 1,S 2=2a 1-1,S 4=4a 1-6成等比数列可得(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.2.[考点一]已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________.解析:∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7, ∴(a 1+2d )2=(a 1+d )(a 1+6d ),即2d +3a 1=0.① 又∵2a 1+a 2=1,∴3a 1+d =1.② 由①②解得a 1=23,d =-1.答案:23-13.[考点二](2016·南昌调研)等差数列{a n }的前n 项和为S n ,已知f (x )=2x -12x +1,且f (a 2-2)=sin 2 014π3,f (a 2 014-2)=cos 2 015π6,则S 2 015=________.解析:因为f (x )=2x -12x +1,f (-x )=2-x -12-x +1=1-2x2x +1,所以f (x )+f (-x )=0,即f (-x )=-f (x ).而f (x )=2x -12x +1=1-22x +1,所以f (x )是R 上的增函数.又f (a 2-2)=sin2 014π3=sin ⎝⎛⎭⎫671π+π3=-sin π3=-32,f (a 2 014-2)=cos 2 015π6=cos ⎝⎛⎭⎫336π-π6=cos π6=32,所以f (a 2-2)=-f (a 2 014-2)=f (2-a 2 014),所以a 2-2=2-a 2 014,所以a 2+a 2 014=4.所以S 2 015=2 015(a 1+a 2 015)2=2 015(a 2+a 2 014)2=2 015×42=4 030.答案:4 0304.[考点一]已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为d . 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n ∈N *). (2)设等比数列{b n }的公比为q . 因为b 2=a 3=8,b 3=a 7=16, 所以q =2,b 1=4. 所以b 6=4×26-1=128. 由128=2n +2得n =63,所以b 6与数列{a n }的第63项相等.5.[考点三]设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解:(1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1. 又因为a 1,a 2+1,a 3成等差数列, 所以a 1+a 3=2(a 2+1),即a 1+4a 1=2(2a 1+1),解得a 1=2.所以数列{a n }是首项为2,公比为2的等比数列.故a n =2n . (2)由(1)得1a n=12n ,所以T n =12+122+…+12n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪1-12n -1<11 000, 即2n >1 000.因为29=512<1 000<1 024=210,所以n ≥10. 于是使|T n -1|<11 000成立的n 的最小值为10.6.[考点二、三](2016·安徽质检)已知函数f (x )=ln x +cos x -⎝⎛⎭⎫6π-92x 的导数为f ′(x ),且数列{a n }满足a n +1+a n =nf ′⎝⎛⎭⎫π6+3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值;(2)若对任意n ∈N *,都有a n +2n 2≥0成立,求a 1的取值范围. 解:f ′(x )=1x -sin x -6π+92,则f ′⎝⎛⎭⎫π6=4, 故a n +1+a n =4n +3.(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d ,a n +1=a 1+nd ,由a n +1+a n =4n +3得(a 1+nd )+[a 1+(n -1)d ]=4n +3,解得d =2,a 1=52.(2)由a n +1+a n =4n +3得a n +2+a n +1=4n +7,两式相减得a n +2-a n =4,故数列{a 2n -1}是首项为a 1,公差为4的等差数列;数列{a 2n }是首项为a 2,公差为4的等差数列,又a 1+a 2=7,a 2=7-a 1,所以a n =⎩⎪⎨⎪⎧2n -2+a 1(n 为奇数),2n +3-a 1(n 为偶数).①当n 为奇数时,a n =2n -2+a 1,则有a 1≥-2n 2-2n +2对任意的奇数n 恒成立, 令f (n )=-2n 2-2n +2=-2⎝⎛⎭⎫n +122+52,n 为奇数, 则f (n )max =f (1)=-2,所以a 1≥-2.②当n 为偶数时,a n =2n +3-a 1,则有-a 1≥-2n 2-2n -3对任意的偶数n 恒成立, 令g (n )=-2n 2-2n -3=-2⎝⎛⎭⎫n +122-52,n 为偶数, 则g (n )max =g (2)=-15,故-a 1≥-15,解得a 1≤15. 综上,a 1的取值范围是[-2,15].[全国卷5年真题集中演练——明规律] 1.(2012·新课标全国卷)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 830解析:选D 不妨令a 1=1,根据题意,得a 2=2,a 3=a 5=a 7=…=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1,当n 为偶数时构成以a 2=2为首项,以4为公差的等差数列.所以前60项和为S 60=30+2×30+30×(30-1)2×4=1 830. 2.(2015·新课标全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n3(2n +3).3.(2014·新课标全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1,即23n -1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.4.(2013·新课标全国卷Ⅰ)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a2n -1a 2n +1的前n 项和.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5,解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=1212n -3-12n -1,从而数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n -1a 2n +1的前n项和为121-1-11+11-13+…+12n -3-12n -1=n 1-2n.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n解析:选C 由题意得a n =1+2n -1, 所以S n =n +1-2n 1-2=n +2n -1.2.(2017·长沙模拟)已知数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10等于( )A .15B .12C .-12D .-15解析:选A ∵a n =(-1)n (3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.3.(2016·南昌三模)若数列{a n }的通项公式为a n =2n +1,令b n =1a 1+a 2+…+a n,则数列{b n }的前n 项和为( )A.n +12(n +2)B.34-2n +32(n +1)(n +2) C.n -1n +2D.34-2n +3(n +1)(n +2)解析:选B 易得a 1+a 2+…+a n =n (3+2n +1)2=n (n +2),所以b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2,故T n =121+12-1n +1-1n +2=34-2n +32(n +1)(n +2). 4.12+12+38+…+n 2n 的值为________. 解析:设S n =12+222+323+…+n 2n ,①得12S n =122+223+…+n -12n +n 2n +1,②①-②得,12S n =12+122+123+…+12n -n 2n +1=12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-n 2n +1,∴S n =2n +1-n -22n =2-n +22n .答案:2-n +22n5.(2017·江西八校联考)在数列{a n }中,已知a 1=1,a n +1+(-1)n a n =cos(n +1)π,记S n为数列{a n }的前n 项和,则S 2 017=________.解析:∵a n +1+(-1)n a n =cos(n +1)π=(-1)n +1,∴当n =2k 时,a 2k +1+a 2k =-1,k ∈N *,∴S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1+(-1)×1 008=-1 007.答案:-1 007[练常考题点——检验高考能力]一、选择题1.(2017·皖西七校联考)在数列{a n }中,a n =2n -12n ,若{a n }的前n 项和S n =32164,则n =( )A .3B .4C .5D .6解析:选D 由a n =2n -12n =1-12n 得S n =n -12+122+…+12n =n -⎝⎛⎭⎫1-12n ,则S n =32164=n -⎝⎛⎭⎫1-12n ,将各选项中的值代入验证得n =6. 2.已知等差数列{a n }的各项均为正数,a 1=1,且a 3,a 4+52,a 11成等比数列.若p -q=10,则a p -a q =( )A .14B .15C .16D .17解析:选B 设等差数列{a n }的公差为d ,由题意分析知d >0,因为a 3,a 4+52,a 11成等比数列,所以⎝⎛⎭⎫a 4+522=a 3a 11,即⎝⎛⎭⎫72+3d 2=(1+2d )·(1+10d ),即44d 2-36d -45=0,所以d =32⎝⎛⎭⎫d =-1522舍去,所以a n =3n -12.所以a p -a q =32(p -q )=15.3.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n ,那么S 100的值为( ) A .2 500B .2 600C .2 700D .2 800解析:选B 当n 为奇数时,a n +2-a n =0,所以a n =1,当n 为偶数时,a n +2-a n =2,所以a n =n ,故a n =⎩⎪⎨⎪⎧1(n 为奇数),n (n 为偶数),于是S 100=50+(2+100)×502=2 600.4.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为( )A .2 017B .2 016C .1 009D .1 007解析:选C 因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,n ≥1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009,故选C.5.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin 2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:选C 由已知可得,数列{a n }为等差数列,f (x )=sin 2x +cos x +1,∴f ⎝⎛⎭⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin 2x -cos x +1,∴f (π-x )+f (x )=2.∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.6.设S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52,则数列⎩⎨⎧⎭⎬⎫1(2n +1)a n 的前n 项和T n =( ) A .-n2n +1 B.n 2n +1 C .-2n2n +1D.2n 2n +1解析:选C 设{a n }的公差为d ,因为S 1=a 1,S 2=2a 1+d =2a 1+a 3-a 12=32a 1-54,S 4=3a 3+a 1=a 1-152,S 1,S 2,S 4成等比数列,所以⎝⎛⎭⎫32a 1-542=⎝⎛⎭⎫a 1-152a 1,整理得4a 21+12a 1+5=0,所以a 1=-52或a 1=-12.当a 1=-52时,公差d =0不符合题意,舍去;当a 1=-12时,公差d =a 3-a 12=-1,所以a n =-12+(n -1)×(-1)=-n +12=-12(2n -1),所以1(2n +1)a n =-2(2n -1)(2n +1)=-12n -1-12n +1,所以其前n 项和T n =-1-13+13-15+…+12n -1-12n +1=-⎝ ⎛⎭⎪⎫1-12n +1=-2n 2n +1,故选C. 二、填空题7.(2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1,∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432,∴S 5=121. 答案:1 1218.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 016项的和等于________.解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 016项的和等于S 2 016=1 008×⎝⎛⎭⎫1+12=1 512. 答案:1 5129.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2.答案:2n +1-210.(2017·福建泉州五中模拟)已知lg x +lg y =1,且S n =lg x n +lg(x n -1y )+lg(x n -2y 2)+…+lg(xy n -1)+lg y n ,则S n =________.解析:因为lg x +lg y =1, 所以lg(xy )=1.因为S n =lg x n +lg(x n -1y )+lg(x n -2y 2)+…+lg(xy n -1)+lg y n , 所以S n =lg y n +lg(xy n -1)+…+lg(x n -2y 2)+lg(x n -1y )+lg x n ,两式相加得2S n =(lg x n +lg y n )+[lg(x n -1y )+lg(xy n -1)]+…+(lg y n +lg x n )=lg(x n ·y n )+lg(x n -1y ·xy n -1)+…+lg(y n ·x n )=n [lg(xy )+lg(xy )+…+lg(xy )]=n 2lg(xy )=n 2,所以S n =n 22.答案:n 22三、解答题11.数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.(1)求数列{a n },{b n }的通项公式; (2)设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.解:(1)由题意知,{a n }是首项为1,公比为2的等比数列, ∴a n =a 1·2n -1=2n -1.∴S n =2n -1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7, ∴d =2,则b n =1+(n -1)×2=2n -1. (2)证明:∵log 2a 2n +2=log 222n +1=2n +1, ∴c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1= 12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. ∵n ∈N *,∴T n =12⎝ ⎛⎭⎪⎫1-12n +1<12,当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0, ∴数列{T n }是一个递增数列,∴T n ≥T 1=13. 综上所述,13≤T n <12. 12.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n . 解:(1)设二次函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5.当n =1时,a 1=S 1=3×12-2×1=1=6×1-5,所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1, 故T n =121-17+⎝⎛⎭⎫17-113+…+16n -5-16n +1=12⎝⎛⎭⎪⎫1-16n +1=3n 6n +1.。
【备战2018】高考数学分项汇编 专题06 数列(含解析)文
专题06 数列一.基础题组1. 【2014上海,文10】设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .【考点】无穷递缩等比数列的和.2. 【2013上海,文2】在等差数列{a n }中,若a 1+a 2+a 3+a 4=30,则a 2+a 3=______.【答案】15 3. 【2013上海,文7】设常数a ∈R .若25()a x x+的二项展开式中x 7项的系数为-10,则a =______.【答案】-2 4. 【2012上海,文7】有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则12lim ()n n V V V →∞+++=…__________.【答案】875. 【2012上海,文8】在(x -1x)6的二项展开式中,常数项等于__________.【答案】-206. 【2012上海,文14】已知1()1f xx=+,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n).若a2010=a2 012,则a20+a11的值是__________.7. 【2012上海,文18】若π2ππsin sin sin777nnS=+++…(n∈N*),则在S1,S2,…,S100中,正数的个数是( )A.16 B.72 C.86 D.100【答案】 C 8. 【2008上海,文14】若数列{}n a 是首项为1,公比为32a =的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A.1 B.2 C.12 D.54【答案】B9. 【2007上海,文14】数列{}n a 中,22211100010012n n n a n n n n⎧⎪⎪=⎨⎪⎪-⎩,≤≤, 则数列{}n a 的极限值( )A.等于0B.等于1C.等于0或1D.不存在【答案】B二.能力题组1. 【2014上海,文23】(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=.(1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000m a =,正整数m 的最小值,以及m 取最小值时相应{}n a 的仅比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.【答案】(1)[3,6];(2)1[,2]3;(3)k的最大值为1999,此时公差为11999d=-.【考点】解不等式(组),数列的单调性,分类讨论,等差(比)数列的前n项和.2. 【2013上海,文22】已知函数f(x)=2-|x|,无穷数列{a n}满足a n+1=f(a n),n∈N*.(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值;(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.【答案】(1)a2=2,a3=0,a4=2 ;(2)a1=2-舍去)或a1=2+(3) 当且仅当a1=1时,a1,a2,a3,…构成等差数列3. 【2012上海,文23】对于项数为m的有穷数列{a n},记b k=max{a1,a2,…,a k}(k=1,2,…,m),即b k为a1,a2,…,a k中的最大值,并称数列{b n}是{a n}的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n}的控制数列为2,3,4,5,5,写出所有的{a n};(2)设{b n}是{a n}的控制数列,满足a k+b m-k+1=C(C为常数,k=1,2,…,m),求证:b k=a k(k=1,2,…,m);(3)设m=100,常数a∈(12,1),若(1)22(1)n nna an n+=--,{b n}是{a n}的控制数列,求(b1-a1)+(b2-a2)+…+(b100-a100).【答案】(1)参考解析;(2) 参考解析;(3) 2 525(1-a)4.【2011上海,文23】已知数列{a n }和{b n }的通项公式分别为a n =3n +6,b n =2n +7(n ∈N *).将集合{x |x =a n ,n ∈N *}∪{x |x =b n ,n ∈N *}中的元素从小到大依次排列,构成数列c 1,c 2,c 3,…c n ,….(1)求三个最小的数,使它们既是数列{a n }中的项又是数列{b n }中的项;(2) c 1,c 2,c 3,…,c 40中有多少项不是数列{b n }中的项?请说明理由;(3)求数列{a n }的前4n 项和S 4n (n ∈N *).【答案】(1)9,15,21; (2)10; (3)241233n S n n=+5. 【2010上海,文21】已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n ∈N *.(1)证明:{a n -1}是等比数列;(2)求数列{S n }的通项公式,并求出使得S n +1>S n 成立的最小正整数n .【答案】(1)参考解析; (2) S n =n +75·(56)n -1-90, 最小正整数n =156. (2009上海,文23)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?请说明理由;(2)若b n=aq n(a,q为常数,且aq≠0),对任意m存在k,有b m·b m+1=b k,试求a、q满足的充要条件;(3)若a n=2n+1,b n=3n,试确定所有的p,使数列{b n}中存在某个连续p项的和是数列{a n}中的一项,请证明.【答案】(1)不存在m、k∈N*, (2) a=q c,其中c是大于等于-2的整数;(3) p为奇数7. 【2008上海,文21】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记112233n n n T b a b a b a b a =++++ .(1)若1231264a a a a ++++= ,求r 的值;(2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +, ,1212m T +中有4项为100.求r 的值,并指出哪4项为100.【答案】(1)4;(2)参考解析;(3)293294297298,,,T T T T()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r nn m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,8. 【2007上海,文20】(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123m a a a a ,,,,(m 为正整数)满足条件m a a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m = ,,,),我们称其为“对称数列”. 例如,数列12521,,,,与数列842248,,,,,都是“对称数列”.(1)设{}n b 是7项的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是49项的“对称数列”,其中492625,,c c c ⋅⋅⋅是首项为1,公比为2的等比数列,求{}n c 各项的和S ;(3)设{}n d 是100项的“对称数列”,其中5152100d d d ,,,是首项为2,公差为3的等差数列.求{}n d 前n 项的和n S (12100)n = ,,,.【答案】(1)25811852,,,,,,;(2)67108861;(3)参考解析9. 【2006上海,文20】(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分。
2018年江苏高考数学二轮复习:专题限时集训6数列有答案
专题限时集训(六) 数列(对应学生用书第92页) (限时:120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填写在题中横线上.)1.(四川省凉山州2017届高中毕业班第一次诊断性检测)设数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n ∈N *),若数列{a n }是常数列,则a =________.-2 [因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2-2a +1,即a (a +1)=a 2-2,解得a =-2.]2.(江苏省南京市、盐城市2017届高三第一次模拟)设{a n }是等差数列,若a 4+a 5+a 6=21,则S 9=________.63 [由a 4+a 5+a 6=21得a 5=7,所以S 9=a 1+a 92=9a 5=63.]3.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________.1 830 [当n =2k 时,a 2k +1+a 2k =4k -1; 当n =2k -1时,a 2k -a 2k -1=4k -3. 所以a 2k +1+a 2k -1=2,所以a 2k +1+a 2k +3=2, 所以a 2k -1=a 2k +3,所以a 1=a 5=…=a 61. 所以a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61) =3+7+11+…+(2×60-1) =30×3+1192=30×61=1 830.]4.(江苏省泰州中学2017届高三上学期第二次月考)等差数列{a n }的前n 项和S n ,若a 1=2,S 3=12,则a 6=________.12 [∵S 3=12,∴S 3=3a 1+3×22d =3a 1+3d =12.解得d =2, 则a 6=a 1+5d =2+2×5=12.]5.(2017·江苏省苏、锡、常、镇四市高考数学二模)已知等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=533,则a 3=________.3 [∵等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=533,∴a 13-3-1+a 14-3-1=533,解得a 1=13.则a 3=13×32=3.] 6.(2017·江苏省无锡市高考数学一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列.且a 2+a 5=4,则a 8的值为________.2 [∵等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列.且a 2+a 5=4,∴⎩⎪⎨⎪⎧2×a 1-q 91-q =a 1-q 31-q +a 1-q61-q,a 1q +a 1q 4=4,解得a 1q =8,q 3=-12,∴a 8=a 1q 7=(a 1q )(q 3)2=8×14=2.]7.(2017·江苏省泰州市高考数学一模)《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为________升.1322[设最上面一节的容积为a 1, 由题设知⎩⎪⎨⎪⎧4a 1+4×32d =3,⎝ ⎛⎭⎪⎫9a 1+9×82d -⎝ ⎛⎭⎪⎫6a 1+6×52d =4,解得a 1=1322.]8.(2017·江苏省淮安市高考数学二模)已知{a n }是公差不为0的等差数列,S n 是其前n 项和,若a 2a 3=a 4a 5,S 9=1,则a 1的值是________.【导学号:56394041】-527[设等差数列{a n }的公差为d (d ≠0), ∵a 2a 3=a 4a 5,S 9=1,∴⎩⎪⎨⎪⎧a 1+d a 1+2d =a 1+3d a 1+4d ,9a 1+9×82d =1,解得a 1=-527.]9.(广东湛江市2017届高三上学期期中调研考试)在各项均为正数的等比数列{a n }中,若log 2a 2+log 2a 8=1,则a 3·a 7=________.2 [由log 2a 2+log 2a 8=1得log 2(a 2a 8)=1,所以a 2a 8=2,由等比数列性质可得a 3a 7=a 2a 8=2.]10.(2017·江苏省盐城市高考数学二模)记公比为正数的等比数列{a n }的前n 项和为S n .若a 1=1,S 4-5S 2=0,则S 5的值为________.31 [若等比数列的公比等于1,由a 1=1,则S 4=4,5S 2=10,与题意不符. 设等比数列的公比为q (q ≠1), 由a 1=1,S 4=5S 2,得a 1-q 41-q=5a 1(1+q ),解得q =±2.∵数列{a n }的各项均为正数,∴q =2. 则S 5=1-251-2=31.]11.(广东郴州市2017届高三第二次教学质量监测试卷)在△ABC 中,A 1,B 1分别是边BA ,CB 的中点,A 2,B 2分别是线段A 1A ,B 1B 的中点,…,A n ,B n 分别是线段A n -1A ,B n -1B (n ∈N *,n >1)的中点, 设数列{a n },{b n }满足:向量B n A n →=a n CA →+b n CB →(n ∈N *),有下列四个命题,其中假命题是:________.【导学号:56394042】①数列{a n }是单调递增数列,数列{b n }是单调递减数列; ②数列{a n +b n }是等比数列; ③数列⎩⎨⎧⎭⎬⎫a nb n 有最小值,无最大值;④若△ABC 中,C =90°,CA =CB ,则|B n A n →|最小时,a n +b n =12.③ [由BA n →=⎝ ⎛⎭⎪⎫1-12n BA →=⎝ ⎛⎭⎪⎫1-12n (CA →-CB →),B n B →=12n CB →,B n A n →=B n B →+BA n →=⎝ ⎛⎭⎪⎫1-12n CA →+⎝ ⎛⎭⎪⎫12n -1-1CB →,所以a n =1-12n ,b n =12n -1-1.则数列{a n }是单调递增数列,数列{b n }是单调递减数列,故①正确;数列{a n +b n }即为⎩⎨⎧⎭⎬⎫12n 是首项和公比均为12的等比数列,故②正确;而当n =1时,a 1=12,b 1=0,a n b n 不存在;n >1时,a nb n =2n -12-2n =-1+12-2n 在n ∈N *上递增,无最小值和最大值,故③错误;在△ABC 中,C =90°,CA =CB ,则|B n A n →|2=(a 2n +b 2n )CA →2+2a n b n CA →·CB →=5⎝ ⎛⎭⎪⎫12n -352-15,当n =1时,取得最小值,即有|B n A n →|最小时,a n +b n =12,故④正确.]12.(天津六校2017届高三上学期期中联考)已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -2λ)·⎝ ⎛⎭⎪⎫1a n+1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围是________.⎝ ⎛⎭⎪⎫-∞,23 [因为a n +1=a n a n +2⇒1a n +1=2a n +1⇒1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1⇒1a n +1=⎝ ⎛⎭⎪⎫1a 1+12n -1=2n ,所以b n +1=(n -2λ)·2n,因为数列{b n }是单调递增数列,所以当n ≥2时b n +1>b n ⇒(n -2λ)·2n>(n -1-2λ)·2n -1⇒n >2λ-1⇒2>2λ-1⇒λ<32;当n =1时,b 2>b 1⇒(1-2λ)·2>-λ⇒λ<23,因此λ<23.]13. (山西大学附属中学2017级上学期11月模块诊断)设等差数列{a n }的前n 项和为S n ,且满足S 17>0,S 18<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的项为________. S 9a 9[S 17>0⇒a 1+a 172>0⇒a 92>0⇒a 9>0,S 18<0⇒a 1+a 182<0⇒a 9+a 102<0⇒a 10+a 9<0⇒a 10<0,因此S 1a 1>0,S 2a 2>0,…,S 8a 8>0,S 9a 9>0,S 10a 10<0,而S 1<S 2<…<S 9,a 1>a 2>…>a 8>a 9,所以S 1a 1<S 2a 2<…<S 8a 8<S 9a 9.]14.(云南大理2017届高三第一次统测)若数列{a n }的首项a 1=2,且a n +1=3a n +2(n ∈N *);令b n =log 3(a n +1),则b 1+b 2+b 3+…+b 100=________.5 050 [由a n +1=3a n +2(n ∈N *)可知a n +1+1=3(a n +1),∴a n +1+1a n +1=3,所以数列{a n +1}是以3为首项,3为公比的等比数列,所以a n +1=3n,∴a n =3n-1,所以b n =log 3(a n +1)=n ,因此b 1+b 2+b 3+…+b 100=+2=5 050.]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)(泰州中学2017届高三上学期期中考试)已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16.(1)求数列{a n }的通项公式;(2)等比数列{b n }满足:b 1=a 1,b 2=a 2-1,若数列c n =a n ·b n ,求数列{c n }的前n 项和S n . [解] (1)设等差数列{a n }的公差为d ,则依题意设d >0.由a 2+a 7=16,得2a 1+7d =16. ① 由a 3a 6=55,得(a 1+2d )(a 1+5d )=55. ②4分由①得2a 1=16-7d 将其代入②得(16-3d )(16+3d )=220.即256-9d 2=220,∴d 2=4,又d >0,∴d =2.代入①得a 1=1,∴a n =1+(n -1)2=2n -1.6分 (2)∵b 1=1,b 2=2,∴b n =2n -1,∴c n =a n b n =(2n -1)2n -1, 8分S n =1·20+3·21+…+(2n -1)·2n -1,2S n =1·21+3·22+…+(2n -1)·2n .两式相减可得:-S n =1·20+2·21+2·22+…+2·2n -1-(2n -1)·2n=1+2×-2n -11-2-(2n -1)·2n,∴-S n =1+-2n -11-2-(2n -1)·2n=1+2n +1-4-(2n -1)·2n=2n +1-3-(2n -1)·2n, ∴S n =3+(2n -1)·2n-2n +1=3+(2n -3)·2n.14分16.(本小题满分14分)(河南省豫北名校联盟2017届高三年级精英对抗赛)已知各项均不相等的等差数列{a n }的前五项和S 5=20,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式; (2)若T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,且存在n ∈N *,使得T n -λa n +1≥0成立,求实数λ的取值范围.[解] (1)设数列{a n }的公差为d ,则 ⎩⎪⎨⎪⎧5a 1+5×42d =20,a 1+2d 2=a 1a 1+6d ,即⎩⎪⎨⎪⎧a 1+2d =4,2d 2=a 1d . 2分又因为d ≠0,所以⎩⎪⎨⎪⎧a 1=2,d =1.4分 所以a n =n +1. 5分(2)因为1a n a n +1=1n +n +=1n +1-1n +2,所以T n =12-13+13-14+…+1n +1-1n +2=12-1n +2=nn +. 7分因为存在n ∈N *,使得T n -λa n +1≥0成立, 所以存在n ∈N *,使得n n +-λ(n +2)≥0成立, 即存在n ∈N *,使λ≤n n +2成立.10分又n n +2=12⎝⎛⎭⎪⎫n +4n+4≤116(当且仅当n =2时取等号), 所以λ≤116.即实数λ的取值范围是⎝⎛⎦⎥⎤-∞,116. 14分17.(本小题满分14分)(四川省凉山州2017届高中毕业班第一次诊断性检测)已知数列{a n }满足a 1=1,a n a n +1=2n,n ∈N *.(1)若函数 f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值a 4+1,求函数 f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域; (2)求数列{a n }的通项公式. [解] (1)∵a n a n +1=2n,则a n +1a n +2=2n +1,∴a n +2a n=2, 又a 1=1,故a 1a 2=21,即a 2=2, ∴a 3=2,a 4=4,∴A =a 4+1=5,故f (x )=5sin(2x +φ),4分 又x =π6时,f (x )=5,∴sin ⎝ ⎛⎭⎪⎫π3+φ=1,且0<φ<π,解得φ=π6, ∴f (x )=5sin ⎝⎛⎭⎪⎫2x +π6,6分而x ∈⎣⎢⎡⎦⎥⎤-π12,π2,故2x +π6∈⎣⎢⎡⎦⎥⎤0,7π6,从而sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,综上知f (x )∈⎣⎢⎡⎦⎥⎤-52,5. 8分18.(本小题满分16分)(天津六校2017届高三上学期期中联考)已知各项都是正数的数列{a n }的前n 项和为S n ,S n =a 2n +12a n ,n ∈N *.(1) 求数列{a n }的通项公式;(2) 设数列{b n }满足:b 1=1,b n -b n -1=2a n (n ≥2),数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为T n ,求证:T n <2;(3)若T n ≤λ(n +4)对任意n ∈N *恒成立,求λ的取值范围.【导学号:56394043】[解] (1)n =1时,a 1=a 21+12a 1,∴a 1=12.⎩⎪⎨⎪⎧S n -1=a 2n -1+12a n -1S n =a 2n +12a n⇒a n =a 2n -a 2n -1+12a n -12a n -1,⇒(a n +a n -1)⎝ ⎛⎭⎪⎫a n -a n -1-12=0,∵a n >0,∴a n -a n -1=12,∴{a n }是以12为首项,12为公差的等差数列.∴a n =12n .4分(2)证明:b n -b n -1=n ,⎩⎪⎨⎪⎧b 2-b 1=2b 3-b 2=3⋮b n -b n -1=n⇒b n -b 1=n +n -2⇒b n =n n +2.1b n=2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1,即T n <2. (3)由2nn +1≤λ(n +4)得λ≥2nn +n +=2n +4n +5,当且仅当n =2时,2n +4n+5有最大值29,∴λ≥29.16分19.(本小题满分16分)(中原名校豫南九校2017届第四次质量考评)设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25.(1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)nk (a n +4)对所有的正整数n 都成立,求实数k 的取值范围. [解] (1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25,∴a 1=-1,d =3.∴{a n }的通项公式为a n =3n -4. 6分(2)S n =-n +3nn -2,2S n +8n +27=3n 2+3n +27,a n +4=3n ;8分(-1)nk <n +1+9n,当n 为奇数时,k >-⎝ ⎛⎭⎪⎫n +1+9n ;当n 为偶数时,k <n +1+9n,∵n +1+9n ≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n的最小值为7,当n 为偶数时,n =4时,n +1+9n 的最小值为294,∴-7<k <294.16分20.(本小题满分16分)设A (x 1,y 1),B (x 2,y 2)是函数f (x )=12+log 2x1-x 的图象上任意两点,且OM →=12(OA →+OB →),已知点M 的横坐标为12.(1)求证:M 点的纵坐标为定值;(2)若S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝⎛⎭⎪⎫n -1n ,n ∈N *,且n ≥2,求S n;(3)已知a n=⎩⎪⎨⎪⎧23,n =1,1S n+Sn +1+,n ≥2.其中n ∈N *.T n 为数列{a n }的前n 项和,若T n <λ(S n +1+1)对一切n ∈N *都成立,试求λ的取值范围.【导学号:56394044】[解] (1)证明:∵OM →=12(OA →+OB →),∴M 是AB 的中点.设M 点的坐标为(x ,y ),由12(x 1+x 2)=x =12,得x 1+x 2=1,则x 1=1-x 2或x 2=1-x 1.2分 而y =12(y 1+y 2)=12[f (x 1)+f (x 2)]=12⎝ ⎛⎭⎪⎫12+log 2x 11-x 1+12+log 2x 21-x 2 =12⎝ ⎛⎭⎪⎫1+log 2x 11-x 1+log 2x 21-x 2=12⎝ ⎛⎭⎪⎫1+log 2x 11-x 1·x 21-x 2 =12⎝ ⎛⎭⎪⎫1+log 2x 1x 2x 1x 2=12()1+0=12,∴M 点的纵坐标为定值12. 5分(2)由(1),知x 1+x 2=1,f (x 1)+f (x 2)=y 1+y 2=1,S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n 2+…+f ⎝ ⎛⎭⎪⎫n -1n ,S n =f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n -2n +…+f ⎝ ⎛⎭⎪⎫1n , 两式相加,得2S n =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2n +f ⎝ ⎛⎭⎪⎫n -2n +…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫1n =1+1+…+1n -1,∴S n=n -12(n ≥2,n ∈N *).8分(3)当n ≥2时,a n =1S n +S n +1+=4n +n +=4⎝⎛⎭⎪⎫1n +1-1n +2.10分 T n =a 1+a 2+a 3+…+a n =23+4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=23+4⎝ ⎛⎭⎪⎫13-1n +2=2n n +2. 12分由T n <λ(S n +1+1),得2n n +2<λ·n +22.∴λ>4n n +2=4nn 2+4n +4=4n +4n+4. ∵n +4n≥4,当且仅当n =2时等号成立,∴4n +4n+4≤44+4=12. 因此λ>12,即λ的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 16分。
2018届高考数学(理)热点题型:数列(含答案解析)
数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d(d≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列,∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k∈N *,使得等式1-2T k =1b k 成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =a nb n ,求数列{c n }的前n 项和T n .(1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)解 由d>1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n, 故T n =6-2n +32n -1.【类题通法】用错位相减法解决数列求和的模板 第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q. 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【对点训练】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S 2n .(1)证明 由条件,对任意n∈N *,有a n +2=3S n -S n +1+3, 因而对任意n∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2, 所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n∈N *,a n +2=3a n . (2)解 由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1. 于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=32(3n -1).热点三 数列的综合应用 热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x的图象上(n∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2. 所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n. (2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.热点3.2 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-2】 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n. (2)∵S n =3(1+2+3+…+n)=32n(n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
2018版高考数学全国理科专题复习:专题6 数列第39练
一、选择题1.(2016·东营期中)若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12D .-152.(2016·山西晋中联考)已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =32164,则项数n 等于( ) A .13 B .10 C .9D .63.(2016·河南中原名校联考二)已知函数f (x )=x 2+ax 的图象在点A (0,f (0))处的切线l 与直线2x -y +2=0平行,若数列{1f (n )}的前n 项和为S n ,则S 20的值为( )A.325462B.1920C.119256D.2 0102 0114.(2016·衡水期中)1+(1+12)+(1+12+14)+…+(1+12+14+…+1210)的值为( )A .18+129B .20+1210C .22+1211D .18+12105.数列{a n }满足a 1=1,且对于任意的n ∈N *都有a n +1=a 1+a n +n ,则1a 1+1a 2+…+1a 2 013等于( ) A.2 0122 013B.2 0131 007C.2 0121 007D.2 0132 014二、填空题6.(2017·合肥质检)已知数列{a n }的前n 项和为S n ,若S n =2a n -2n ,则S n =________. 7.设f (x )是定义在R 上恒不为零的函数,且对任意的x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是________________.8.数列{a n }的通项公式a n =n cos n π2+1,前n 项和为S n ,则S 2 012=________.9.(2016·云南师大附中月考)设S =1+112+122+1+122+132+1+132+142+…+1+12 0142+12 0152,则不大于S 的最大整数S ]=________. 三、解答题10.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564.答案精析1.A 依题意可知a 1+a 2=3,a 3+a 4=3,…,a 9+a 10=3, ∴a 1+a 2+…+a 10=5×3=15. 故选A.]2.D ∵数列{a n }的通项公式是a n =2n -12n =1-12n ,∴S n =(1-12)+(1-14)+(1-18)+…+(1-12n )=n -(12+14+18+…+12n )=n -12[1-(12)n ]1-12=n -1+12n .由S n =32164=n -1+12n ,可得n =6.故选D.]3.A 因为f (x )=x 2+ax ,所以f ′(x )=2x +a ,又函数f (x )=x 2+ax 的图象在点A (0,f (0))处的切线l 与直线2x -y +2=0平行, 所以f ′(0)=a =2, 所以f (x )=x 2+2x , 所以1f (n )=1n 2+2n =1n (n +2)=12(1n -1n +2), 所以S 20=12(1-13)+(12-14)+(13-15)+…+(120-122)]=12(1+12-121-122)=325462.故选A.]4.B 设a n =1+12+122+…+12n -1=1-12n1-12=2(1-12n )=2-12n -1,∴S n =2n -1-12n1-12=2n -2(1-12n )=2n -2+12n -1,∴S 11=20+1210,故选B.]5.B 因为a n +1=a 1+a n +n =1+a n +n , 所以a n +1-a n =n +1.用累加法:a n =a 1+(a 2-a 1)+…+(a n -a n -1)=1+2+…+n =n (n +1)2,所以1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1.所以1a 1+1a 2+…+1a 2 013=2(1-12+12-13+13-14+…+12 013-12 014)=2⎝⎛⎭⎫1-12 014=2 0131 007,故选B.] 6.n ·2n解析 ∵S n =2a n -2n =2(S n -S n -1)-2n , 即S n =2S n -1+2n (n ≥2), ∴S n 2n =2S n -12n +1=S n -12n 1+1, ∴S n 2n -S n -12n -1=1,且S 1=a 1=2,∴S 12=1, ∴数列{S n 2n }是首项为1,公差为1的等差数列,∴S n2n =n ,∴S n =n ·2n .7.12,1) 解析 由已知可得a 1=f (1)=12,a 2=f (2)=f (1)]2=(12)2,a 3=f (3)=f (2)·f (1)=f (1)]3=(12)3,…,a n =f (n )=f (1)]n =(12)n ,所以S n =12+(12)2+(12)3+…+(12)n =12[1-(12)n ]1-12=1-(12)n ,因为n ∈N *,所以12≤S n <1.8.3 018解析 由于f (n )=cos n π2的值具有周期性,所以可从数列的周期性及从头开始连续四项的和为定值入手解决.当n =4k +1(k ∈N )时,a n =(4k +1)cos 4k +12π+1=1,当n =4k +2(k ∈N )时,a n =(4k +2)cos 4k +22π+1=-(4k +2)+1=-4k -1,当n =4k +3(k ∈N )时,a n =(4k +3)cos 4k +32π+1=1,当n =4k +4(k ∈N )时,a n =(4k +4)cos 4k +42π+1=(4k +4)+1=4k +5,∴a 4k +1+a 4k +2+a 4k +3+a 4k +4=1-4k -1+1+4k +5=6. ∴S 2 012=a 1+a 2+a 3+a 4+a 5+…+a 2 012=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 2 009+a 2 010+a 2 011+a 2 012) =6×503=3 018. 9.2 014 解析 ∵1+1n 2+1(1+n )2=(n 2+n )2+2(n 2+n )+1n 2(1+n )2=n 2+n +1n (n +1)=1+(1n -1n +1),∴S =1+(11-12)+1+(12-13)+…+1+(12 014-12 015)=2 015-12 015,故S ]=2 014.10.(1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0. 所以S n =n 2+n (n ∈N *). n ≥2时,a n =S n -S n -1=2n , n =1时,a 1=S 1=2适合上式. 所以a n =2n (n ∈N *). (2)证明 由a n =2n (n ∈N *),得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎡⎦⎤1n 2-1(n +2)2, T n =116⎝⎛⎭⎫1-132+⎝⎛⎭⎫122-142+⎝⎛⎭⎫132-152+…+ ⎝⎛⎭⎫1(n -1)2-1(n +1)2+⎝⎛⎭⎫1n 2-1(n +2)2]=116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2 <116⎝⎛⎭⎫1+122=564(n ∈N *). 即对于任意的n ∈N *,都有T n <564.。
2018年高三数学(理)专题06数列(第01期)Word版含解析
A .27 【答案】 D 【解析】
B. 36
C
. 45
D . 54
试题分析:由等差数列的性质知 a5 2a6 a7 6 , S9 9a5 54 ,故选 D.
考点:等差数列的性质. 【名师点晴】等差数列问题一般用基本量法解决,即把问题用首项
a1和公差 d 表示出来,从
而求得 a1, d ,然后写出通项公式和前 n 和公式.但有时为了简化计算我们要充分应等差数列
A. 5
B
.7
C
.9
D
. 11
【答案】 A
【解析】
试题分析:因为 a1 a3 a5 3a3 3 ,所以 a3 1 ,所以 S5 5 (a1 a5) 5 2a3 5 ,
2
2
故选 A.
考点: 1、等差数列的性质; 2、等差数列的前 n 项和.
12. 【辽宁省葫芦岛市一高 2016 届上学期期中考试 5】在等差数列 an 中,若
是前 3 项和的 9 倍,则此数列的公比为(
)
A. 2 B. 3 C.
1
D.
1
2
3
【答案】 A
【解析】 试题分析:记题中的等比数列的公比为
q . 依题意
有 S6=9 S3, ?S6- S3=8S3, S6 S3 8 ,即 q3 8 ,得 q 2 ,故选 A. S3
考点:等比数列的性质 .
9. 【河北衡水中学 2016 届高三上学期三调 5】 在等比数列 an 中,若 a4 , a8 是方程
f (x) 满足 f ( x 1) f ( x 1) , 数列 an 错误!未找到引用源。 的前 n 项和为 Sn 错误!未找
到引用源。 , 且 Sn 2an 2 错误!未找到引用源。 , 则 f (an )= ( )
2018全国各地高考数学试题与解答分类汇编大全(06数列)
2018年全国各地高考数学试题及解答分类汇编大全(06数列)一、选择题1.(2018北京文、理)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( )A B C . D .1.【答案】D【解析】因为每一个单音与前一个单音频率比为()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f===,故选D .2.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( )A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>2..答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.3.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a ( )A .12-B .10-C .10D .123. 答案:B 解答:11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-,∴51424(3)10a a d =+=+⨯-=-.二、填空1.(2018北京理)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________.1.【答案】63n a n =- 【解析】13a =,33436d d ∴+++=,6d ∴=,()36163n a n n ∴=+-=-.2.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .2.【答案】27【解析】设=2k n a ,则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k kk k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解,此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.3 (2018上海)记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
【精品】2018届高考数学(理)热点题型:数列(含答案解析)
数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N *,总有-712≤S n -1S n ≤56.所以数列{T n }最大项的值为56,最小项的值为-712.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d(d≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k∈N *,使得等式1-2T k =1b k 成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =a nb n ,求数列{c n }的前n 项和T n .(1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)解 由d>1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1.【类题通法】用错位相减法解决数列求和的模板 第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q. 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【对点训练】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S 2n .(1)证明 由条件,对任意n∈N *,有a n +2=3S n -S n +1+3, 因而对任意n∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2, 所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n∈N *,a n +2=3a n .(2)解 由(1)知,a n ≠0,所以a n +2a n =3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=32(3n -1).热点三 数列的综合应用 热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图象上(n∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n.(2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2. 由题意知,a 2-1ln 2=2-1ln 2, 解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.热点3.2 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-2】 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n. (2)∵S n =3(1+2+3+…+n)=32n(n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
2018版高考数学(人教A版理科)一轮复习真题演练集训:第六章 数列6-1含答案
课外拓展阅读由递推公式求通项的常用方法和技巧递推数列是高考考查的热点,由递推公式求通项时,一般需要先对递推公式进行变形,然后利用转化与化归的思想解决递推数列问题.下面给出几种常见的递推数列,并讨论其通项公式的求法.类型1 a n+1=a n+f(n)把原递推公式转化为a n+1-a n=f(n),再利用累加法(逐差相加法)求解.已知数列{a n}中,a1=2,a n+1=a n+n+1,求数列{a n}的通项公式.因为a1=2,a n+1-a n=n+1,所以a n-a n-1=(n-1)+1,a n-1-a n-2=(n-2)+1,a n-2-a n-3=(n-3)+1,…a2-a1=1+1,由已知,a1=2=1+1,将以上各式相加,得a n=+n+1=错误!+n+1=错误!+n+1=错误!+1。
类型2 a n+1=f(n)a n把原递推公式转化为错误!=f(n),再利用累乘法(逐商相乘法)求解.已知数列{a n}满足a1=错误!,a n+1=错误!·a n,求数列{a n}的通项公式.由a n+1=错误!·a n,得错误!=错误!。
当n ≥2,n ∈N *时,a n =错误!·错误!·…·错误!·a 1=错误!·错误!·…·错误!·错误!=错误!,即a n =错误!。
又当n =1时,错误!=错误!=a 1,故a n =错误!.类型3 a n +1=pa n +q先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =错误!,再利用换元法转化为等比数列求解. 已知数列{a n }中,a 1=1,a n +1=2a n +3,求数列{a n }的通项公式.设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,解得t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且错误!=错误!=2.所以{b n }是以4为首项,以2为公比的等比数列.所以b n =4×2n -1=2n +1, 即a n =2n +1-3。
2018版高考数学专题复习专题6 数列 第40练 Word版含解析
.(·湖北优质高中联考)已知=(∈*),记数列{}的前项和为,若对任意的∈*,(+)≥-恒成立,则实数的取值范围是=..(·天水月考)数列,,,,…,的前项和为..(·南通一模)已知等比数列{}的首项为、公比为,前项和为.若(+)]=,则+的最小值是..(·南京、盐城三模)已知数列{}的通项公式为=-+,数列{}的通项公式为=-.设=(\\(,≤,,>,))若在数列{}中,>(∈*,≠),则实数的取值范围是..(·无锡二模)设(,)是函数=()的图象上一点,向量=(,(-)),=(,-),且满足∥.已知数列{}是公差不为的等差数列,若()+()+…+()=,则++…+=..(·湖北一联)已知等差数列{}满足=,=,若数列{}满足=,+=,则{}的通项公式=..已知数列{}的各项均为正整数,为其前项和,对于=,…有+=(\\(+,为奇数,,(),为偶数,其中是使+为奇数的正整数,))则当=时,+++…+=..(·师大附中期中)已知数列-=-++λ-λ+为单调递减数列,则λ的取值范围是..(·辽宁沈阳期中)设首项不为零的等差数列{}的前项和是,若不等式+≥λ对任意和正整数恒成立,则实数λ的最大值为..(·沈阳期中)已知数列{}是等比数列,首项=,公比>,其前项和为,且+,+,+成等差数列.()求数列{}的通项公式;()若数列{}满足+=(),为数列{}的前项和,若≥恒成立,求的最大值.答案精析.,+∞).()解析由题意可知是与中的较小值,且中的最大值是.如图,若=,则>,即-+>,所以>;若=,则>,即>-+,所以<.综上<<..解析∵向量=(,(-)),=(,-),且∥,∴--(-)=,即=(-)+,∴()=(-)+.令()=(+)-=+,则函数()为奇函数,且是定义域内的增函数,由()+()+…+()=,。
2018高考数学复习:第6章数列第2节数列的通项公式与求和
第2节 数列的通项公式与求和题型74 数列通项公式的求解 1. (2013安徽文19)设数列{}n a 满足12428aa a =+=,,且对任意*n ∈N ,函数()()122cos 2sin n n n n x f x a a a x a x a x ++-+=-++--,满足π02n f ⎛⎫= ⎪⎝⎭.(1)求数列{}x a 的通项公式;;(2)若122x n b a xn ⎛⎫=+⎪⎝⎭,求数列{}n b 的前n 项和nx S . 1. 分析 (1)求导,代入0f π⎛⎫'=⎪2⎝⎭,并对所得式子进行变形,从而证明数列是等差数列,再由题目条件求基本量,得通项公式.(2)将na 代入化简,利用分组求和法,结合等差、等比数列的前n 项和公式计算. 解析 (1)由题设可得()1212sin cos nn n n n f x a a a a x a x ++++'=-+--.对任意*n ∈N ,1210nn n n f a a a a +++π⎛⎫'=-+-=⎪2⎝⎭,即121n nn n a a aa +++-=-,故{}na 为等差数列.由12a =,248a a +=,可得数列{}na 的公差1d =,所以()2111nan n =+⋅-=+.(2)由122n n nb a a ⎛⎫=+= ⎪⎝⎭111212222n n n n +⎛⎫++=++ ⎪⎝⎭知,12nnS b b b =+++()111221221212nn n n ⎡⎤⎛⎫-⎢⎥⎪+⎝⎭⎣⎦=+⋅+-21312nn n =++-. 2.(2013广东文19)设各项均为正数的数列{}n a 的前n 项和为nS,满足21441n n S a n +=--,*n ∈N ,且2514,,a a a 构成等比数列.(1)证明:2a = (2) 求数列{}n a 的通项公式;(3) 证明:对一切正整数n ,有122311111.2n n a a a a a a -++⋅⋅⋅+<2.分析 (1)把1n =代入递推式21441nn S a n +=--,可以得到1a 和2a 的关系式,变形可得2a =(2)鉴于递推式21441nn S a n +=--含有1,n n S a +的特点,常用公式11,1,,2n n n S n a S S n -=⎧=⎨-⎩≥进行化异为同,得到1n a +和n a 的递推式,构造等差数列,进而求出 数列的通项.(3)要证的不等式的左边是一个新数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,因此要求和、化简,因为11n n a a +是一个分式,常常通过裂项相消法逐项相消,然后再通过放缩,得出结论.解析 (1)证明:由21441nn S a n +=--,得212441S a =--,即212441a a =--,所以22145a a =+.因为0n a >,所以2a =(2)因为21441nn S a n +=-- ①所以当2n ≥时,()214411n n S a n -=--- ②由①-②得22144nn n a a a +=--,即()()22214422n n n n a a a a n +=++=+≥.因为0n a >,所以12n n a a +=+,即()122n n a a n +-=≥.因为2514,,a a a 成等比数列,所以25214a a a =,即()()222232122a a a +⨯=+⨯,解得23a =.又由(1)知2a =11a =,所以212a a -=.综上知()12*n n a a n +-=∈N ,所以数列{}n a 是首项为1,公差为2的等差数列.所以()12121na n n =+-=-.所以数列{}n a 的通项公式为()21*n a n n =-∈N .(3)证明:由(2)知()()1112121n n a a n n +=-+11122121n n ⎛⎫=- ⎪-+⎝⎭,所以12231111n n a a a a a a ++++111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭1111112212422n n ⎛⎫=-=-< ⎪++⎝⎭.3. (2013江西文16)正项数列{}n a 满足:2(21)20n n a n a n ---=.(1) 求数列{}n a 的通项公式n a ; (2) 令221(2)n nn b n a +=+,数列{}n b 的前n 项和为n T .3.分析 (1)根据已知的n a 和n 的关系式进行因式分解,通过0n a >得到数列{}n a 的通项公式;(2)把数列{}n a 的通项公式代入n b 的表达式,利用裂项法求出数列{}n b 的前n 项和.解析 (1)由()22120nn a n a n ---=,得()()210n n a n a -+=.由于{}n a 是正项数列,所以2n a n =.(2)由()12,1n n na nb n a ==+,则()11112121n b n n n n ⎛⎫==- ⎪++⎝⎭, 111111111222311n T n n n n ⎛⎫=-+-++-+- ⎪-+⎝⎭()1112121n n n ⎛⎫=-= ⎪++⎝⎭. 4. (2013重庆文16)设数列{}n a 满足:1113n n aa a n ++==∈N ,,.(1)求{}n a 的通项公式及前n 项和nS ;(2)已知{}n b 是等差数列,nT为其前n 项和,且123123b a b a a a ==++,,求20T .4.分析 根据等比、等差数列的通项公式及前n 项和公式直接运算求解. 解析 (1)由题设知{}n a 是首项为1,公比为3的等比数列,所以()11313,31132n n nn n a S --===--.(2)123313,13913,102b a b b b d ===++=-==,所以公差5d =, 故202019203510102T ⨯=⨯+⨯=. 5. (2013湖南文19)设n S 为数列{}n a 的前项和,已知01≠a,2112n n a a S S -=⋅,n *∈Ν.(1)求1a ,2a ,并求数列{}n a 的通项公式;(2)求数列{}n na 的前n 项和.5.分析 根据()12n n n a S S n -=-≥消去n S 得到关于n a 的关系式,求其通项;利用错位相减法求前n 项和.解析 (1)令1n =,得21112a a a -=,即211a a =.因为10a ≠,所以11a =.令2n =,得222211a S a -==+,解得22a =.当2n ≥时,由122n n n a a a --=,即12n n a a -=.于是数列{}n a 是首项为1.公比为2的等比数列.因此,12n n a -=.所以{}n a 的通项公式为12n n a -=.(2)由(1)知,12n n na n -=⋅.记数列{}12n n -⋅的前n 项和为n B ,于是21122322n n B n -=+⨯+⨯++⨯,①2321222322nn B n =⨯+⨯+⨯++⨯ .②①-②,得2112222212n n n n nB n n --=++++-⋅=--⋅.从而()112n nB n =+-⋅.1∙∙∙,a Na 2,开始结束输入NS=1,i=1输出a 1,S是6.(2014陕西文4)根据如图所示框图,对大于2的整数n ,输出的数列的通项公式是( ). A.2na n = B.()21n a n =- C.2n n a = D.12n n a -=7.(2014新课标Ⅱ文16)数列{}n a 满足111n na a +=-,82a =,则1a = .8.(2014江西文17)(本小题满分12分)已知数列{}n a 的前n 项和232n n nS n -=∈,*N . (1)求数列{}n a 的通项公式;(2)求证:对任意1>n ,都有m ∈*N ,使得m n a a a ,,1成等比数列. 9.(2014大纲文17)(本小题满分10分) 数列{}n a 满足12211222n n n a a a a a ++===-+,,.(1)设1nn n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式.10.(2014广东文19)(本小题满分14分) 设各项均为正数的数列{}n a 的前n项和为nS ,且nS 满足()()222*330,n n S n n S n n n -+--+=∈N .(1)求1a 的值; (2)求数列{}n a 的通项公式;(3)求证:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.11.(2014湖南文16)(本小题满分12分)已知数列{}n a 的前n 项和22n n nS n +=∈,*N . (1)求数列{}n a 的通项公式;(2)设()n na na b n 12-+=,求数列{}n b 的前n 2项和.12.(2015陕西文16)观察下列等式:11122-= 11111123434-+-=+11111111123456456-+-+-=++……据此规律,第n 个等式可为______________________.12.解析 观察等式知,第n 个等式的左边有2n 个数相加减,奇数项为正,偶数项为负,且分子为1,分母是1到2n 的连续正整数,等式的右边是111122n n n+++++. 故答案为()*111111111234212122n n n n n n-+-++-=+++∈-++N . 13.(2015江苏卷11)设数列{}n a 满足11a=,且11n n a a n +-=+()*n ∈N ,则数列1na⎧⎫⎨⎬⎩⎭前10项的和为 .13.解析 解法一:可以考虑算出前10项,但运算化简较繁琐.解法二:由题意得212a a -=,323a a -=,…,1n n a a n --=()*2,n n ∈N 故累加得1234n a a n -=++++…,从而1+234n a n =++++…()12n n +=, 当1n =时,满足通项.故()1211211n a n n n n ⎛⎫==⨯- ⎪++⎝⎭()*n ∈N , 则有123101111a a a a ++++...1111121+2231011⎛⎫=⨯--++- ⎪⎝⎭ (120211111)⎛⎫=⨯-= ⎪⎝⎭. 14.(2015安徽理18)已知数列{}n a 是递增的等比数列,且149aa +=,238a a =.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .14.解析 (1)因为{}n a 是等比数列,且238a a=,所以148a a =.联立141498a a a a +=⎧⎨=⎩,又{}n a 为递增的等比数列,即41a a >.解得1418a a =⎧⎨=⎩或1481a a =⎧⎨=⎩(舍),可得3418a q a ==,得2q =. 所以()11*12n n n a a q n --==∈N . (2)由(1)可知()111221112n nn n a q S q--===---, 所以()()1121121212121n n n n n n b ++==-----, 所以1111111113377152121n n n T +=-+-+-++-=--11112212121n n n +++--=--. 故()1*12221n n n T n ++-=∈-N . 15.(2015北京文16)已知等差数列{}n a 满足1210aa +=,432a a -=.(1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23ba =,37b a =;问:6b 与数列{}n a 的第几项相等?15.解析(1)依题意,设等差数列{}n a 的公差为d ,121210a a a d +=+= ① 432a a d -== ②得2d =,14a =. 数列{}n a 的通项公式为()()()*1142122naa n d n n n =+-=+-=+∈N .(2)等比数列{}n b 中238b a ==,3716b a ==,设等比数列的公比为322b q b ==,()221*2822n n n n b b q n --+=⋅=⨯=∈N .76212822b n ===+,得63n =,则6b 与数列{}n a 的第63项相等.16.(2015福建文17)在等差数列{}n a 中,24a=,4715a a +=.(1)求数列{}n a 的通项公式;(2)设22n a nb n -=+,求12310b b b b ++++的值.16.分析(1)利用基本量法可求得1a ,d ,进而求{}n a 的通项公式;(2)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2n n b n =+,故可采取分组求和法求其前10项和. 解析 (1)设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()()*112n a a n d n n =+-=+∈N . (2)由(1)可得2n n b n =+,所以()()()()231012310212223210b b b b ++++=++++++++=()()2310222212310+++++++++=()()()1011112121101022552532101122-+⨯+=-+=+=-.17.(2015广东文19)设数列{}n a 的前n 项和为nS,*n ∈N .已知11a =,232a =,354a =,且当2n时,211458n n n n S S S S ++-+=+.(1)求4a 的值; (2)求证:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.17.解析(1)当2n =时,4231458S S S S +=+, 即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得478a =. (2)因为211458n n n n S S S S ++-+=+(2n),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ),即2144n n n a a a +++=(2n ),亦即()2114222n n n n a a a a n +++-=-,则()2111112222n n n n a a a a n +++⎛⎫-=- ⎪⎝⎭.当1n =时,3221111222a a a a ⎛⎫-=- ⎪⎝⎭,满足上式. 故数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列. (3)由(2)可得111122n n n a a -+⎛⎫-= ⎪⎝⎭,即1141122n n n na a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪ ⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,4为公差的等差数列, 所以()2144212nn a n n =+-⨯=-⎛⎫⎪⎝⎭,即()11214222nn n n a n --⎛⎫=-⨯= ⎪⎝⎭, 所以数列{}n a 的通项公式是()*1212nn n an --=∈N . 18.(2015湖北文19)设等差数列{}n a 的公差为d ,前n 项和为nS,等比数列{}n b 的公比为q ,已知11b a =,22b =,q d =,10100S =. (1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记nn na cb =,求数列的前n 项和.18.解析 (1)由题意有,1110451002a d a d +=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩.解得112a d =⎧⎨=⎩,或1929a d =⎧⎪⎨=⎪⎩.故1212nn n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪=⋅ ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=++++++, ① 2345113579212222222n nn T -=++++++. ② 式①-式②可得221111212323222222n n n n n n T --+=++++-=-.故12362nn n T -+=-. 19.(2015山东文19)已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为21nn +. (1)求数列{}n a 的通项公式; (2)设(1)2n a nn b a =+⋅,求数列{}n b 的前n 项和n T .19.解析(1)设数列{}n a 的公差为d ,令1n =,得12113a a =,即123a a =. ①令2n =,得12231125a a a a +=,即2315a a =.② 联立①②,解得11a =,2d =.所以()*21n a n n =-∈N . (2)由(1)知21224n n n b n n -==,得到()1211424144n n nT n n -=⨯+⨯++-⨯+⨯,③ 从而()23141424144n n nT n n +=⨯+⨯++-+⨯,④-③④得12134444n n nT n +-=+++-=()11414134441433n n n n n ++---=⨯--, 所以()1143143144999n n n n n T +++--=⨯+=. 19.(2015四川文16)设数列{}n a (1,2,3,n =)的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(1)求数列的通项公式; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 19.解析(1)由已知12n n S a a =-,可得()*11222,n n n n n a S S a a n n --=-=-∈N ,即()*122,n n a a nn -=∈N .则212a a =,32124a a a ==.又因为1a ,21a +,3a 成等差数列,即()13221a a a +=+.所以()1114221a a a +=+,解得12a =.所以数列{}n a 是首项为2,公比为2的等比数列.故2n na =.(2)由(1)可得112n n a =,所以211122111111222212nn n n T ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+++==--. 20.(2015天津文18)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332b b a +=,5237a b -=.(1)求{}n a 和{}n b 的通项公式;(2)设*,nn n c a b n =∈N ,求数列{}n c 的前n 项和.20.分析(1)列出关于q 与d 的方程组,通过解方程组求出q ,d 即可确定通项;(2)用错位相减法求和.解析 (1)设{}n a 的公比为q ,{}n b 的公差为d ,由题意0q >,由已知,有24232310q d q d ⎧-=⎨-=⎩, 消去d 得42280q q --=,解得22q d ==,,所以{}n a 的通项公式为12n n a n -*=∈N ,,{}n b 的通项公式为21n b n n *=-∈N ,.(2)由(1)有()1212n n c n -=-,设{}n c 的前n 项和为n S ,则()0121123252212n nS n -=⨯+⨯+⨯++-⨯, ()1232123252212n n S n =⨯+⨯+⨯++-⨯,两式相减得()()2312222122323n n n n S n n -=++++--⨯=--⨯-,所以()2323n nS n =-+.21.(2015浙江文17)已知数列{}n a 和{}n b 满足,*111212()n n a b a a n +===∈N ,,,*12311111()23n n b b b b b n n+++++=-∈N . (1)求{}n a 与{}n b ;(2)记数列{}n n a b 的前n 项和为nT,求n T .21.解析 (1)由题意知{}n a 是等比数列,12a=,2q =,所以2n na =.当2n时,()*231111111231n n b b b b n b n -++++=-∈-N ,所以11n n n b b b n+=-, 所以11n n n b b n ++=,所以12112n n b b b n n+====+,又11b =,所以n b n =. (或采用累乘法) (2)212222n nT n =⨯+⨯++⋅,所以()21212122n n n T n n +=⨯++-⨯+⋅,所以()()()2111212122222212212n n n n n n T n n n +++--=+++-⋅=-=---,所以()1122n nT n +=-+.22.(2015重庆文16)已知等差数列{}n a 满足32a =,前3项和392S=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足11b a =,415b a =,求{}n b 前n 项和n T .22.解析(1)设{}n a 的公差为d ,则由已知条件得122a d +=,1329322a d ⨯+=, 化简得122a d+=,132a d +=,解得11a =,12d =, 故通项公式112n n a -=+,()*12n n a n +=∈N . (2)由(1)得11b =,41515182b a +===. 设{}n b 的公比为q ,则3418b q b ==,从而2q =, 故{}n b 的前n 项和()*1(1)1(12)21112n n n n b q T n q -⨯-===-∈--N . 23.(2016浙江文17)设数列{}n a 的前n 项和为n S .已知24S =,121n n a S +=+,*n ∈N.(1)求通项公式n a ;(2)求数列{}2n a n --的前n 项和.23.解析 (1)由题意得21221421S a a a a ⎧=+=⎨=+⎩,则1213a a =⎧⎨=⎩.因为121n n a S +=+,121n n a S -=+()2n ,所以()()1121212n n n n n a a S S a +--=+-+=,得13n n a a +=()2n ≥. 又知213a a =,所以数列{}n a 的通项公式为13n n a -=,*n ∈N .(2)对于132n n c n -=--,12c =-,21c =-,当3n 时,有0n c >.设n n b c =,*n ∈N ,12b =,21b =,当3n 时,有n n b c =.设数列{}n b 的前项和为n T ,则12T =,23T =. 当3n时,()()2135351161322nnnn n n n T -+--+=+-=-,2n =时也满足此式,所以2*2,13511,2,2n n n T n n n n =⎧⎪=⎨--+∈⎪⎩N.24.(2017全国3文17)设数列{}n a 满足()123212n a a n a n +++-=.(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.24.解析 (1)令n b = ,则有b ,即S .当2n 时,2n b S n = ①()121n b S n -=- ②-①②得b =,即b ,得()*22,21n a n n n =∈-N .当1n =时,12b =也符合,所以()*221n a n n =∈-N . (2)令()()()*221121212121212121n na n c n n n n n n n -====-∈++-+-+N , 所以1231nc n n S c c c c c -=+++++=111111111111335572321212121n n n n n -+-+-++-+-=-=---++()*21122121n nn n n +-=∈++N . 评注 本题具有一定的难度,第一问要求学生具备一定的转化与化归的思想,将不熟悉的表达形式转化为常规数列求通项问题才能迎刃而解.第二问属于常规裂项相消问题,没有难度,如果学生第一问求解时出现困难的话,可以用找规律的方法求出其通项,这样可以拿到第二问的分数,不失为一种灵活变通的处理方法. 25.(2017山东文19)已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =.(1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和n S ,已知211n n n S b b ++=,求数列nn ba ⎧⎫⎨⎬⎩⎭的前n 项和n T .25.解析 (1)设数列{}n a 的公比为q ,由题意知,1(1)6a q +=,2211a q a q =.又0na >,解得12a =,2q =,所以2n n a =.(2)由题意知,121211(21)()(21)2n n n n b b S n b +++++==+.又211n n n S b b ++=,10n b +≠,所以21n b n =+.令n n n b c a =,则212n n n c +=, 因此12231357212122222n n n n n n T c c c --+=+++=+++++, 又234113572121222222n n n n n T +-+=+++++,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭,所以2552nnn T +=-. 题型75 数列的求和1.(2015湖南文5)执行如图所示的程序框图,如果输入3n =, 则输出的S =( ). A.67 B.37 C.89 D.491.解析 由题意,输出的S 为数列()()12121n n ⎧⎫⎪⎪⎨⎬-+⎪⎪⎩⎭的前3项和,即()()333111111212122121i i S i i i i ==⎛⎫==- ⎪-+-+⎝⎭∑∑1131277⎛⎫=-= ⎪⎝⎭.故选B .2.(2015安徽理18)已知数列{}n a 是递增的等比数列,且149aa +=,238a a =.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .2.解析 (1)因为{}n a 是等比数列,且238a a=,所以148a a =.联立141498a a a a +=⎧⎨=⎩,又{}n a 为递增的等比数列,即41a a >.解得1418a a =⎧⎨=⎩或1481a a =⎧⎨=⎩(舍),可得3418a q a ==,得2q =. 所以()11*12n n n a a q n --==∈N . (2)由(1)可知()111221112n nn n a q S q--===---, 所以()()1121121212121n n n n n n b ++==-----, 所以1111111113377152121n n n T +=-+-+-++-=--11112212121n n n +++--=--. 故()1*12221n n n T n ++-=∈-N . 3. (2014安徽文18)(本小题满分12分) 数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,*n ∈N .(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列; (2)设3nn b ={}n b 的前n 项和n S .3. 解析 (I )由已知可得111n n a a n n +=++,即111n n a a n n +-=+.所以n a n ⎧⎫⎨⎬⎩⎭是以111a=为首项,1为公差的等差数列. (II )由(I )得()111na n n n=+-⋅=,所以2n a n =.从而3n n b n =⋅. 1231323333n n S n =⋅+⋅+⋅++⋅,①()23131323133n n n S n n +=⋅+⋅++-⋅+⋅.②-①②得()()11211313123333333132n n n n n n n S n n +++⋅--⋅-=+++-⋅=-⋅=--2.所以()121334n nn S +-⋅+=.评注 本题考查等差数列定义的应用,错位相减法求数列的前项和,解题时利用题(I )提示对递推关系进行变形是关键. 4.(2015福建文17)在等差数列{}n a 中,24a=,4715a a +=.(1)求数列{}n a 的通项公式;(2)设22n a nb n -=+,求12310b b b b ++++的值.4.分析(1)利用基本量法可求得1a ,d ,进而求{}n a 的通项公式;(2)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2n n b n =+,故可采取分组求和法求其前10项和. 解析 (1)设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()()*112n a a n d n n =+-=+∈N . (2)由(1)可得2n n b n =+,所以()()()()231012310212223210b b b b ++++=++++++++=()()2310222212310+++++++++=()()()1011112121101022552532101122-+⨯+=-+=+=-.5.(2015湖北文19)设等差数列{}n a 的公差为d ,前n 项和为nS,等比数列{}n b 的公比为q ,已知11b a =,22b =,q d =,10100S =. (1)求数列{}n a ,{}n b 的通项公式(2)当1d >时,记nn na cb =,求数列的前n 项和. 5.解析 (1)由题意有,1110451002a d a d +=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩.解得112a d =⎧⎨=⎩,或1929a d =⎧⎪⎨=⎪⎩.故1212nn n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪=⋅ ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=, 故1212n n n c --=,于是2341357921122222nn n T --=++++++,① 2345113579212222222n nn T -=++++++. ② 式①-式②可得221111212323222222n n n n n n T --+=++++-=-.故12362n n n T -+=-. 6.(2015湖南文19)设数列{}n a 的前n 项和为nS,已知11a =,22a =,且()*1133,n n n a S S n +-=-+∈N . (1)证明:23n n a a +=;(2)求n S .6.解析(1)由条件,对任意*n ∈N ,有2133n n n a S S ++=-+, 因而对任意*,2n n ∈N ,有1133n n n a S S +-=-+, 两式相减,得2113n n n n a a a a +++-=-,即()*232,n n a a n n +=∈N ,又121,2a a ==,所以()3121121333333a S S a a a a =-+=-++==,故对一切*n ∈N ,23n n a a +=. (2)由(1)知,0n a ≠,所以23n na a +=,于是数列{}21n a -是首项11a =,公比为3的等 比数列,数列{}2n a 是首项22a=,公比为3的等比数列,所以112123,23n n n n a a ---==⨯,(于是()()21221321242.........nn n n S a a a a a a a a a -=+++=+++++++=()()()()11133113...3213...3313 (32)n n n n ----+++++++=+++=,从而2122n n n S S a -=-()1331232n n --=-⨯()235312n -=⨯-, 综上所述,()()*3*22353121,23312,2n n nn k k S n k k -⎧⎛⎫⨯-=+∈⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪-=∈ ⎪⎪⎝⎭⎩N N .7.(2015山东文19)已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为21nn +. (1)求数列{}n a 的通项公式; (2)设(1)2n a nn b a =+⋅,求数列{}n b 的前n 项和n T .7.解析(1)设数列{}n a 的公差为d ,令1n =,得12113a a =,即123a a = ①令2n =,得12231125a a a a +=,即2315a a = ② 联立①②,解得11a =,2d =.所以()*21n a n n =-∈N . (2)由(1)知21224n n n b n n -==,得到()1211424144n n nT n n -=⨯+⨯++-⨯+⨯,③ 从而()23141424144n n nT n n +=⨯+⨯++-+⨯,④-③④得12134444n n nT n +-=+++-=()11414134441433n n n n n ++---=⨯--, 所以()1143143144999n n n n n T +++--=⨯+=.8.(2015四川文16)设数列{}n a (1,2,3,n =)的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(1)求数列的通项公式; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 8.解析(1)由已知12n n S a a =-,可得()*11222,n n n n n a S S a a n n --=-=-∈N ,即()*122,n n a a nn -=∈N .则212a a =,32124a a a ==.又因为1a ,21a +,3a 成等差数列,即()13221a a a +=+.所以()1114221a a a +=+,解得12a =.所以数列{}n a 是首项为2,公比为2的等比数列.故2n na =.(2)由(1)可得112n n a =,所以211122111111222212nn n n T ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+++==--. 9.(2015天津文18)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332b b a +=,5237a b -=.(1)求{}n a 和{}n b 的通项公式;(2)设*,nn n c a b n =∈N ,求数列{}n c 的前n 项和.9.分析(1)列出关于q 与d 的方程组,通过解方程组求出q ,d 即可确定通项;(2)用错位相减法求和.解析(1)设{}n a 的公比为q ,{}n b 的公差为d ,由题意0q >,由已知,有24232310q d q d ⎧-=⎨-=⎩,消去d 得42280q q --=,解得22q d ==,,所以{}n a 的通项公式为12n n a n -*=∈N ,,{}n b 的通项公式为21n b n n *=-∈N ,.(2)由(1)有()1212n n c n -=-,设{}n c 的前n 项和为n S ,则()0121123252212n nS n -=⨯+⨯+⨯++-⨯, ()1232123252212n n S n =⨯+⨯+⨯++-⨯,两式相减得()()2312222122323n n n n S n n -=++++--⨯=--⨯-,所以()2323n nS n =-+.10.(2015浙江文17)已知数列{}n a 和{}n b 满足,*111212()n n a b a a n +===∈N ,,,*12311111()23n n b b b b b n n+++++=-∈N . (1)求{}n a 与{}n b ;(2)记数列{}n n a b 的前n 项和为nT,求n T .10.解析 (1)由题意知{}n a 是等比数列,12a=,2q =,所以2n na =.当2n时,()*231111111231n n b b b b n b n -++++=-∈-N ,所以11n n n b b b n+=-, 所以11n n n b b n ++=,所以12112n n b b b n n+====+. 又11b =,所以n b n =(或采用累乘法). (2)212222n nT n =⨯+⨯++⋅,所以()21212122n n n T n n +=⨯++-⨯+⋅,所以()()()2111212122222212212n n n n n n T n n n +++--=+++-⋅=-=---,所以()1122n nT n +=-+.11.(2015重庆文16)已知等差数列{}n a 满足32a =,前3项和392S=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足11b a =,415b a =,求{}n b 前n 项和n T .11.解析 (1)设{}n a 的公差为d ,则由已知条件得122a d +=,1329322a d ⨯+=,化简得122a d+=,132a d +=,解得11a =,12d =, 故通项公式112n n a -=+,()*12n n a n +=∈N . (2)由(1)得11b =,41515182b a +===. 设{}n b 的公比为q ,则3418b q b ==,从而2q =, 故{}n b 的前n 项和()*1(1)1(12)21112n n n n b q T n q -⨯-===-∈--N . 12.(2016北京文15)已知{}n a 是等差数列,{}n b 是等比数列,且23b=,39b =,11a b =,144a b =.(1)求{}n a 的通项公式;(2)设n n n c a b =+ ,求数列{}n c 的前n 项和.12.解析 (1)等比数列{}n b 的公比32933b q b ===,所以211b b q==,4327b b q ==. 设等差数列{}n a 的公差为d .因为111a b ==,14427a b ==, 所以11327d +=,即2d =.所以()211,2,3,n a n n =-=⋅⋅⋅. (2)由(1)知,21n a n =-,13n n b -=.因此1213n n n n c a b n -=+=-+.从而数列{}n c 的前n 项和()113521133n n S n -=+++⋅⋅⋅+-+++⋅⋅⋅+=()12113213n n n +--+=-2312n n -+.13.(2016山东文19)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(1)求数列{}n b 的通项公式;(2)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 13.解析 (1)由题意当2n时,561+=-=-n S S a n n n ,当1=n 时,1111==S a ,所以()*65n a n n =+∈N .设数列{}n b 的公差为d ,由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=db d b 321721111,解得3,41==d b ,所以()*31n b n n =+∈N . (2)由(1)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+,又n n c c c c T +⋅⋅⋅+++=321, 即]2)1(242322[31432+++⋅⋅⋅+⨯+⨯+⨯=n n n T , 所以]2)1(242322[322543+++⋅⋅⋅+⨯+⨯+⨯=n n n T ,以上两式两边相减得234123[22222(1)2]n n n T n ++-=⨯+++⋅⋅⋅+-+=224(21)3[4(1)2]3221n n n n n ++-+-+=-⋅-.所以223+⋅=n n n T .14.(2016浙江文17)设数列{}n a 的前n 项和为n S .已知24S =,121n n a S +=+,*n ∈N.(1)求通项公式n a ;(2)求数列{}2n a n --的前n 项和. 14.解析 (1)由题意得:21221421S a a a a ⎧=+=⎨=+⎩,则1213a a =⎧⎨=⎩. 因为121n n a S +=+,121n n a S -=+()2n ,所以()()1121212n n n n n a a S S a +--=+-+=,得13n n a a +=()2n ≥. 又知213a a =,所以数列{}n a 的通项公式为13n n a -=,*n ∈N .(2)对于132n n c n -=--,12c =-,21c =-,当3n 时,有0n c >.设n n b c =,*n ∈N ,12b =,21b =,当3n 时,有n n b c =.设数列{}n b 的前项和为n T ,则12T =,23T =.当3n时,()()2135351161322nnnn n n n T -+--+=+-=-,2n =时也满足此式,所以2*2,13511,2,2n n n T n n n n =⎧⎪=⎨--+∈⎪⎩N.15.(2017全国3文17)设数列{}n a 满足()123212n a a n a n +++-=.(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 15.解析 (1)令n b = ,则有b ,即S .当2n 时,2nb S n = ①()121n b S n -=- ②-①②得b ,即b ,得()*22,21n a n n n =∈-N .当1n =时,12b =也符合,所以()*221n a n n =∈-N . (2)令()()()*221121212121212121n na n c n n n n n n n -====-∈++-+-+N , 所以1231nc n n S c c c c c -=+++++=111111111111335572321212121n n n n n -+-+-++-+-=-=---++()*21122121n nn n n +-=∈++N . 评注 本题具有一定的难度,第一问要求学生具备一定的转化与化归的思想,将不熟悉的表达形式转化为常规数列求通项问题才能迎刃而解.第二问属于常规裂项相消问题,没有难度,如果学生第一问求解时出现困难的话,可以用找规律的方法求出其通项,这样可以拿到第二问的分数,不失为一种灵活变通的处理方法. 16.(2017山东文19)已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =.(1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和n S ,已知211n n n S b b ++=,求数列nn ba ⎧⎫⎨⎬⎩⎭的前n 项和n T .16.解析 (1)设数列{}n a 的公比为q ,由题意知,1(1)6a q +=,2211a q a q =.又0na >,解得12a =,2q =,所以2n n a =.(2)由题意知,121211(21)()(21)2n n n n b b S n b +++++==+.又211n n n S b b ++=,10n b +≠,所以21n b n =+.令n n n b c a =,则212n n n c +=, 因此12231357212122222n n n n n n T c c c --+=+++=+++++, 又234113572121222222n nn n n T +-+=+++++, 两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭,所以2552n n n T +=-.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
高三理科数学一轮复习讲义,复习补习资料:第六章数列6.4数列求和(解析版)
§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x -xn1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x-xn1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+-2×12=9+18=27.(2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤n -+12n 的前n 项和S n =________________. 答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a nn +2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +2=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n2+2n 2=n n +2;当n 为奇数时,T n =T n -1+(-b n )=n -n +2-n (n +1)=-n +22.所以T n=⎩⎪⎨⎪⎧-n +22,n 为奇数,nn +2,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2018·山东模拟]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2018·天津模拟]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +=1n -1n +1. ②1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ③1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2019·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)[证明] 由(1),得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1. 故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2019·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三形如a n =n +1n 2n +2型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)[证明] 由于a n =2n , 故b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -2-1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2018·北京模拟]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧ a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.2.[2018·四川模拟]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1,∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n =-1. 又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴ 1S n=-1+(n -1)×(-1)=-n , ∴ S n =-1n. 3.[2018·山东模拟]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =a n +n +1b n +n ,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n =3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2], 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n 1-2-n +n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 4.[2018·重庆模拟]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知, b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.课外拓展阅读数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n . 当n =1时,上式也成立,故a n =92-n . (2)因为9-2a n 2n =n 2n -1, 所以T n =1+22+322+…+n -12n -2+n 2n -1,① 所以2T n =2+2+32+…+n -12n -3+n 2n -2,② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 故T n =4-n +22n -1. 方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数.3.可以通过当n =1,2时的特殊情况对结果进行验证.。
2018年高考理数: 数列 含答案
核心考点解读——数列考纲解读里的I,II的含义如下:I:对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用,即了解和认识.II:对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用,即理解和应用.(以下同)1.(2017高考新课标I,理4)记错误!未找到引用源。
为等差数列错误!未找到引用源。
的前错误!未找到引用源。
项和.若错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
的公差为A.1 B.2C.4 D.82.(2017高考新课标Ⅲ,理9)等差数列错误!未找到引用源。
的首项为1,公差不为0.若a2,a3,a6成等比数列,则错误!未找到引用源。
前6项的和为A.错误!未找到引用源。
B.错误!未找到引用源。
C.3 D.83.(2017高考新课标II,理15)等差数列错误!未找到引用源。
的前错误!未找到引用源。
项和为错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
____________.4.(2016高考新课标I,理3)已知等差数列错误!未找到引用源。
前9项的和为27,错误!未找到引用源。
,则错误!未找到引用源。
A.100 B.99 C.98 D.975.(2016高考新课标II,理17)错误!未找到引用源。
为等差数列错误!未找到引用源。
的前n项和,且错误!未找到引用源。
记错误!未找到引用源。
,其中错误!未找到引用源。
表示不超过x的最大整数,如错误!未找到引用源。
.(Ⅰ)求错误!未找到引用源。
;(Ⅱ)求数列错误!未找到引用源。
的前1000项和.6.(2016高考新课标III,理17)已知数列错误!未找到引用源。
的前n项和错误!未找到引用源。
,其中错误!未找到引用源。
.(I)证明错误!未找到引用源。
是等比数列,并求其通项公式;(II)若错误!未找到引用源。
,求错误!未找到引用源。
2018版高考数学(江苏专用理科)专题复习专题6 数列 第40练含解析
n n n 若对任意的b ∈N *,(T n +32)k ≥3n -6恒成立,则实数k 的取值范围是=________.2.(2016·天水月考)数列1,11+2,11+2+3,11+2+3+4,…,11+2+3+…+n 的前n 项和为____________.3.(2016·南通一模)已知等比数列{a n }的首项为2、公比为3,前n 项和为S n .若log 312a n (S 4m +1)]=9,则1n +4m的最小值是________.4.(2016·南京、盐城三模)已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5.设c n =⎩⎨⎧a n ,a n ≤b n ,b n ,a n >b n ,若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是________.5.(2016·无锡二模)设P (x ,y )是函数y =f (x )的图象上一点,向量a =(1,(x -2)5),b =(1,y -2x ),且满足a ∥b .已知数列{a n }是公差不为0的等差数列,若f (a 1)+f (a 2)+…+f (a 9)=36,则a 1+a 2+…+a 9=________.6.(2016·湖北一联)已知等差数列{a n }满足a 2=3,a 5=9,若数列{b n }满足b 1=3,b n +1=ab n ,则{b n }的通项公式b n =________.7.已知数列{a n }的各项均为正整数,S n 为其前n 项和,对于n =1,2,3,…有a n +1=⎩⎨⎧3a n+5,a n为奇数,a n 2k,a n为偶数,其中k 是使a n +1为奇数的正整数,则当a 1=1时,S 1+S 2+S 3+…+S 20=____________. 8.(2016·师大附中期中)已知数列a n -1=-n 2+52λn +5λ2-2λ+1为单调递减数列,则λ的取值范围是__________________.9.(2016·辽宁沈阳期中)设首项不为零的等差数列{a n }的前n 项和是S n ,若不等式a 2n +S 2nn2≥λa 21对任意a n 和正整数n 恒成立,则实数λ的最大值为________.10.(2016·沈阳期中)已知数列{a n }是等比数列,首项a 1=1,公比q >0,其前n 项和为S n ,且S 1+a 1,S 3+a 3,S 2+a 2成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足a n +1=(12)a n b n ,T n 为数列{b n }的前n 项和,若T n ≥m 恒成立,求m 的最大值.答案精析1.227,+∞) 2.2nn+13.524.(12,17)解析由题意可知c n是a n与b n中的较小值,且c n中的最大值是c8.如图,若c8=a8,则a8>b7,即-8+p>22,所以p>12;若c8=b8,则b8>a9,即23>-9+p,所以p<17.综上12<p<17.5.18解析∵向量a=(1,(x-2)5),b=(1,y-2x),且a∥b,∴y-2x-(x-2)5=0,即y=(x-2)5+2x,∴f(x)=(x-2)5+2x.令g(x)=f(x+2)-4=x5+2x,则函数g(x)为奇函数,且是定义域内的增函数,由f(a1)+f(a2)+…+f(a9)=36,得g(a1-2)+g(a2-2)+…+g(a9-2)=0,又数列{a n}是公差不为0的等差数列,∴g(a5-2)=0,即a5-2=0,a5=2,∴a1+a2+…+a9=9a5=9×2=18.6.2n+1解析根据题意,在等差数列{a n}中,a2=3,a5=9,则公差d=2,则a n=2n-1,对于{b n},由b n+1=2b n-1,可得b n+1-1=2(b n-1),即{b n-1}是公比为2的等比数列,且首项b1-1=3-1=2,则b n-1=2n,b n=2n+1.7.910解析当a1=1时,a2=3×1+5=8,a3=82k=1,a4=3×1+5=8,a5=82k=1,…,所以{a n}是周期为2的周期数列,它的奇数项是1,偶数项是8,所以S1+S2+…+S20=1+(1+8)+(1×2+8)+(1×2+8×2)+(1×3+8×2)+(1×3+8×3)+…+(1×10+8×9)+(1×10+8×10)=910.8.(0,+∞)解析∵数列a n-1=-n2+52λn+5λ2-2λ+1为单调递减数列,∴当n≥2时,a n-1>a n,∴-n2+52λn+5λ2-2λ+1>-(n+1)2+52λ(n+1)+5λ2-2λ+1,即52λ<2n+1,由于数列{2n+1}在n≥2时单调递增,因此其最小值为5,∴52λ<5,∴2λ>1,∴λ>0.9.1 5解析在等差数列{a n}中,首项不为零,即a1≠0,则数列的前n项和为S n=n(a1+a n)2.由不等式a2n+S2nn2≥λa21,得a2 n +n2(a1+a n)24n2≥λa21,∴54a2n+12a1an+14a21≥λa21,即54(ana1)2+an2a1+14≥λ.设t=ana1,则y=54t2+12t+14=54(t+15)2+15≥15,∴λ≤15,即λ的最大值为15.10.解 (1)由题意可知2(S 3+a 3)=(S 1+a 1)+(S 2+a 2), ∴S 3-S 1+S 3-S 2=a 1+a 2-2a 3, 即4a 3=a 1,于是a 3a 1=q 2=14,∵q >0,∴q =12.∵a 1=1,∴a n =(12)n -1.(2)∵a n +1=(12)a n b n ,∴(12)n =(12)a n b n , ∴b n =n ·2n -1,∴T n =1×1+2×2+3×22+…+n ·2n -1,① ∴2T n =1×2+2×22+3×23+…+n ·2n ,② 由①-②得-T n =1+2+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n =(1-n )2n -1, ∴T n =1+(n -1)2n . 要使T n ≥m 恒成立, 只需(T n )min ≥m .∵T n +1-T n =n ·2n +1-(n -1)·2n =(n +1)·2n >0, ∴{T n }为递增数列, ∴当n =1时,(T n )min =1, ∴m ≤1,即m 的最大值为1.。
2018版高考数学(江苏专用理科)专题复习:专题6 数列 第41练含解析
1.设数列{a n }的前n 项和为S n .已知2S n =3n +3.(1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n .2.(2015·安徽)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 3.已知数列{a n }的各项均为正数,S n 是数列{a n }的前n 项和,且4S n =a 2n +2a n -3.(1)求数列{a n }的通项公式;(2)已知b n =2n ,求T n =a 1b 1+a 2b 2+…+a n b n 的值.4.(2016·苏州、无锡、常州、镇江三模)已知常数λ≥0,若各项均为正数的数列{a n }的前n 项和为S n ,且a 1=1,S n +1=a n +1a nS n +(λ·3n +1)a n +1(n ∈N *). (1)若λ=0,求数列{a n }的通项公式;(2)若a n +1<12a n 对一切n ∈N *恒成立,求实数λ的取值范围.5.已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.(1)当n ∈N *时,求f (n )的表达式;(2)设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2;(3)设b n =(9-n )f (n +1)f (n ),n ∈N *,S n 为{b n }的前n 项和,当S n 最大时,求n 的值.答案精析1.解 (1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3,当n >1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1,即a n =3n -1,显然当n =1时,a 1不满足a n =3n -1,所以a n =⎩⎨⎧ 3,n =1,3n -1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n >1时,b n =31-n log 33n -1=(n -1)·31-n ,所以T 1=b 1=13.当n >1时,T n =b 1+b 2+b 3+…+b n =13+1×3-1+2×3-2+3×3-3+…+(n -1)×31-n ],所以3T n =1+1×30+2×3-1+3×3-2+…+(n -1)×32-n ],两式相减,得2T n =23+(30+3-1+3-2+3-3+…+32-n )-(n -1)×31-n=23+1-31-n 1-3-1-(n -1)×31-n =136-6n +32×3n ,所以T n =1312-6n +34×3n. 经检验,n =1时也适合.综上可得T n =1312-6n +34×3n. 2.解 (1)由题设知a 1·a 4=a 2·a 3=8.又a 1+a 4=9,可解得⎩⎨⎧ a 1=1,a 4=8或⎩⎨⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1(n ∈N *).(2)S n =a 1(1-q n )1-q=2n -1, 又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n=⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+… +⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1. 3.解 (1)当n =1时,a 1=S 1=14a 21+12a 1-34.解得a 1=3.又∵4S n =a 2n +2a n -3,①当n ≥2时,4S n -1=a 2n -1+2a n -1-3.②①-②,得4a n =a 2n -a 2n -1+2(a n -a n -1),即a 2n -a 2n -1-2(a n +a n -1)=0.∴(a n +a n -1)(a n -a n -1-2)=0.∵a n +a n -1>0,∴a n -a n -1=2(n ≥2),∴数列{a n }是以3为首项,2为公差的等差数列. ∴a n =3+2(n -1)=2n +1.(2)T n =3×21+5×22+…+(2n +1)·2n ,③2T n =3×22+5×23+…+(2n -1)·2n +(2n +1)2n +1,④ ④-③,得T n =-3×21-2(22+23+…+2n )+(2n +1)2n +1 =-6+8-2·2n +1+(2n +1)·2n +1=(2n -1)2n +1+2.4.解 (1)当λ=0时,S n +1=a n +1a nS n +a n +1, 所以S n =a n +1a nS n . 因为a n >0,所以S n >0,所以a n +1=a n .因为a 1=1,所以a n =1.(2)因为S n +1=a n +1a nS n +(λ·3n +1)·a n +1,a n >0, 所以S n +1a n +1-S n a n=λ·3n +1, 则S 2a 2-S 1a 1=λ·3+1, S 3a 3-S 2a 2=λ·32+1,…, S n a n -S n -1a n -1=λ·3n -1+1(n ≥2,n ∈N *). 累加,得S n a n-1=λ·(3+32+…+3n -1)+n -1, 则S n =(λ·3n -32+n )·a n (n ≥2,n ∈N *).经检验,上式对n =1也成立,所以S n =(λ·3n -32+n )·a n (n ∈N *),①S n +1=(λ·3n +1-32+n +1)·a n +1(n ∈N *).②②-①,得a n +1=(λ·3n +1-32+n +1)·a n +1-(λ·3n -32+n )·a n ,即(λ·3n +1-32+n )·a n +1=(λ·3n -32+n )·a n .因为λ≥0,所以λ·3n -32+n >0,λ·3n +1-32+n >0.因为a n +1<12a n 对一切n ∈N *恒成立,所以λ·3n -32+n <12·(λ·3n +1-32+n )对一切n ∈N *恒成立,即λ>2n 3n +3对一切n ∈N *恒成立. 记b n =2n 3n +3, 则b n -b n +1=2n 3n +3-2n +23n +1+3=(4n -2)3n -6(3n +3)(3n +1+3). 当n =1时,b n -b n +1=0;当n ≥2时,b n -b n +1>0.所以b 1=b 2=13是一切b n 中最大的项.综上,λ的取值范围是(13,+∞).5.(1)解 令x =n ,y =1,得f (n +1)=f (n )·f (1)=12f (n ),∴{f (n )}是首项为12,公比为12的等比数列,∴f (n )=(12)n . (2)证明 设T n 为{a n }的前n 项和,∵a n =n ·f (n )=n ·(12)n ,∴T n =12+2×(12)2+3×(12)3+…+n ×(12)n ,12T n =(12)2+2×(12)3+3×(12)4+…+(n -1)×(12)n +n ×(12)n +1,两式相减得12T n =12+(12)2+(12)3+…+(12)n -n ×(12)n +1,=1-(12)n -n ×(12)n +1,∴T n =2-(12)n -1-n ×(12)n <2.(3)解 ∵f (n )=(12)n ,∴b n =(9-n )f (n +1)f (n )=(9-n )(12)n +1(12)n=9-n 2. ∴当n ≤8时,b n >0;当n =9时,b n =0;当n >9时,b n <0.∴当n =8或n =9时,S n 取得最大值.。
江苏专用2020版高考数学专题复习专题6数列第40练数列综合练练习文
(江苏专用)2018版高考数学专题复习专题6数列第40练数列综合练练习文10lo2•设/■(.?)=詁飞,利用倒序相加法,则扌吉)+』肩)—1- 4 n I= ___________ •3.(2016 -苏州、无锡、常州、镇江三模)已知等差数列{山满足鼻=一8,炭=一6.若将令, 勿,矗都加上同一个数加所得的三个数依次成等比数列,则实数皿的值为___________ .4.(2016 •南京、盐城三模)已知数列&}的通项公式为&=_卄0数列仏}的通项公式为a” a” W b”乙=2”1设6= 若在数列{胡中,o s>c a(nGN\ 则实数p的取值范ba,国是________ .5.(2016 •厦门期中)已知数列U)满足决=102, —込=4刀(用心,则数列{皂}的最小n值是________ .6.(2016 -湖北一联)已知等差数列{山满足出=3,令=9,若数列仏}满足b,=3,乩=也,则仏,}的通项公式&= _________ .7.已知数列{拥的各项均为正整数,,为其前”项和,对于n=l,2,3,…有卄=则当弘=1时,$+$+&+・・・+5:。
= ___________ .8.(2016 •师大附中期中)已知数列*,= 一川+弄+5尸一2儿+1为单调递减数列,则A的取值范围是__________________ .貝9.(2016 •辽宁沈阳期中)设首项不为零的等差数列UJ的前n项和是S”若不等式£+电n 2久£对任意费和正整数n恒成立,则实数久的最大值为 ____________ •10.(2016 •沈阳期中)已知数列⑴}是等比数列,首项6=1,公比Q0,其前r项和为$,且+ ,+央,$+业成等差数列.(1)求数列{韵的通项公式;⑵若数列仏}满足a…監为数列⑷的前”项和,若T^m恒成立,求m的最大值.答案精析L | 2.5 3. -14. (12, 17)解析 由题意可知C,是站与人中的较小值,且6中的最大值是G.如图,若氏,则铢 >以,即一8+p>2\所以p>12:若6=乩 贝IJ 厶>场,即23>-9+p,所以p<17.综上 12<p<17 ・5. 26所以比=102+ (n-2)(2n+2) (&2), 而a 二一弘=4,所以也=比一4=98,适合上式, 故去=102+(刀一2) (2卄2) (nGN*),厶 102+n —2 2/?+2n n 98 /98 =—+2力一2豪2、/—X2”一2 = 26, n V n当且仅当-=2n,即n=7时取等号, n所以数列{色〉的最小值是26. n6. 2+解析根据题意.在等差数列{/中,决=3,比=9,则公差d=2、则 40=2/2-1,对于{人},由人+,=2氏_1,可得 —1 = 2(6^—1),即{6.-1}是公比为2的等比数列,且首项厶一1 = 3 —1 = 2,令―ai = 16. 令一*I =4(R —1),以上各式相加,得 n~2 [8+4 n~l ] a n —a z ~ o则厶一1 = 2”,bn=2a+l. 7. 910是周期为2的周期数列,它的奇数项是1,偶数项是8,所以$ + $+・・・+久=1+(1+8) + (lX2+8)+ (lX2+8X2) + (lX3+8X2) + (lX3+8X3)+・・・+(IX10+8X9)+ (1X10 +8X10)=910.8. (0, +8)解析•••数列a, x=-n :+pn4-5 /一2人+1为单调递减数列,•••当心2时,去“>比, 55/. —//+尹力+5 人〜—2 久+1> — (n+1)(n+1) + 5 久"―2 人+1,5即尹由于数列(2/2+1)在”22时单调递增, 因此其最小值为5, Ap<5, /. 4 >0.解析 在等差数列{血}中,首项不为零, 即业工0,则数列的前n 项和为W 由不等式止+月$荷,得n即冷+壬+R ・ 设W 则尸討+話+扌・•・久即久的最大值为号解析 当比=1 时,* = 3X1 + 5=& a : = 3X 1 + 5 = 8, …,所以UJ10.解 (1)由题意可知 2 (&+比)=(Si+aj + (S : + aJ ,即4凸=虽,于 M —=<?2=p V Q >0, ai 4 2*•* a’ = 1,・°・ a n = (—) \⑵ V (^)a n b n ^(》"=(I)赵,•••7;=lXl+2X2+3X2:+・・・+i 2小,①•••27;=1X2+2X2::+3X2'+…+/?• 2S ②由①一②得一7;=1 + 2+2'+・・・+2十'一刀• 2'= (l-n)2fl -b ••• L=l+(n -l)2; 要使成立,只需(乙)心2皿V T a =n • 2"+1- (n-1) • 2a= (n+l) • 240,・・・{監}为递增数列,当 n =1 时,(7L )ain= 1,即加的最大值为1. 1 一 2” 2fl。
高考数学一轮复习专题6数列第40练数列的通项练习含解析0520160.docx
第40练 数列的通项[基础保分练]1.若数列的前4项分别是12,-13,14,-15,则此数列的一个通项公式为( )A .a n =-n +1n +1B .a n =-nn +1C .a n =-nnD .a n =-n -1n2.下列四个数中,是数列{n (n +1)}中的一项的是( ) A .380B .39C .35D .233.已知数列{a n }中,a 1=3,a n +1=1a n -1+1,则a 2019等于( ) A .-12B.32C .3D .44.已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 2019等于( ) A .22021B .22020C .22019D .220185.在数列{a n }中,a n +1=2a n 2+a n 对所有的正整数n 都成立,且a 6=23,则a 5等于( )A .1B.23C.25D .-16.一给定函数y =f (x )的图象在下列四个选项中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1<a n .则该函数的图象可能是( )7.已知数列{a n }的首项a 1=2,且(n +1)a n =na n +1,则a 5等于( ) A .8B .9C .10D .118.数列{a n }中,a 1=1,且a n +1=a n +2n,则a 9等于( ) A .1024B .1023C .510D .511 9.数列{a n }中,若a 1=1,a n +1=nn +1a n ,则a n =________. 10.如果数列{a n }的前n 项和S n =2a n -1,n ∈N *,则此数列的通项公式a n =________.[能力提升练]1.已知数列{a n }的通项为a n =n -254n -255,当a n 取得最小值时,n 的值为( )A .16B .15C .17D .142.已知数列{a n },若a 1=2,a n +1+a n =2n -1,则a 2017等于( ) A .2019B .2018C .2017D .20163.设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足2S 2n -(3n 2-n -4)S n -2(3n 2-n )=0,n ∈N *,则数列{a n }的通项公式是( ) A .a n =3n -2 B .a n =4n -3 C .a n =2n -1D .a n =2n +14.对于数列{a n },若对任意m ,n ∈N *(m >n ),都有a m -a n ≥t (m -n )(t 为常数)成立,则称数列{a n }具有性质P (t ),若数列{a n }的通项公式为a n =3n,且具有性质P (t ),则t 的最大值为( )A .6B .3C .2D .15.已知数列{a n }满足a n =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12-a n +1,n <6,a n -5,n ≥6,若对任意n ∈N *,都有a n >a n +1,则实数a的取值范围是______________. 6.设数列{a n }满足na n +1-(n +1)a n =nn +2(n ∈N *),a 1=12,则a n =________.答案精析基础保分练1.A 2.A 3.C 4.C 5.A 6.A 7.C 8.D 9.1n10.2n -1能力提升练1.B [数列的通项公式,a n =n -254n -255=1+255-254n -255,据此可得,1>a 1>a 2>a 3>...>a 15, 且a 16>a 17>a 18>a 19> (1)据此可得当a n 取得最小值时,n 的值为15.] 2.B [由a n +1+a n =2n -1, 可得a n +1-n =-[a n -(n -1)],因为a 1-(1-1)=2-0=2,所以数列{a n -(n -1)}是以2为首项,以-1为公比的等比数列, 所以a n -(n -1)=2×(-1)n -1,所以a n =n -1+2×(-1)n -1,所以a 2017=(2017-1)+2×(-1)2017-1=2018,故选B.]3.A [由满足2S 2n -(3n 2-n -4)S n -2(3n 2-n )=0,n ∈N *. 因式分解可得[2S n -(3n 2-n )](S n +2)=0, ∵数列{a n }的各项均为正数, ∴2S n =3n 2-n ,当n =1时,2a 1=3-1,解得a 1=1.当n ≥2时,2a n =2S n -2S n -1=3n 2-n -[3(n -1)2-(n -1)]=6n -4, ∴a n =3n -2,当n =1时,上式成立. ∴a n =3n -2.故选A.] 4.A [由题意可得,t ≤a m -a nm -n对任意的m >n 恒成立, a n =3n,且具有性质P (t ),则t ≤3m-3nm -n 恒成立,即m-tm -n-tnm -n≥0恒成立,据此可知数列{3n-tn }是递增数列或常数列, 据此可得,3n +1-t (n +1)≥3n-tn ,整理可得,t ≤2×3n恒成立, 由于n ∈N *,故(2×3n )min =2×31=6, 故t ≤6,t 的最大值为6.]5.⎝ ⎛⎭⎪⎫12,712 解析 ∵a n =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12-a n +1,n <6,a n -5,n ≥6,若对任意n ∈N *,都有a n >a n +1, ∴12-a <0,a 5>a 6,0<a <1. ∴12-a <0,⎝ ⎛⎭⎪⎫12-a ×5+1>a , 0<a <1, 解得12<a <712.6.n 2n +1解析 ∵na n +1-(n +1)a n =nn +2(n ∈N *), ∴a n +1n +1-a nn =1n +n +=1n +1-1n +2, ∴a n n -a n -1n -1=1n -1n +1,…,a 22-a 11=12-13. 累加可得a n n -a 1=12-1n +1.∵a 1=12,a n n =1-1n +1=nn +1,∴a n =n 2n +1.精美句子1、善思则能“从无字句处读书”。
【配套K12】上海专用2018版高考数学总复习专题06数列分项练习含解析
第六章 数列一.基础题组1. 【2017高考上海,10】已知数列{}n a 和{}n b ,其中2*,n a n n N =∈ ,{}n b 的项是互不相同的正整数.若对于任意*n N ∈ ,{}n b 的第n a 项等于{}n a 的第n b 项,则()()149161234lg lg b b b b b b b b = .【答案】2【解析】由题意可得:()22n n b b = , 当1n = 时:()211b b = ; 当2n = 时:()242b b = ; 当3n = 时:()293b b = ; 当4n = 时:()2164b b = ; 则:()()()()()222221491612341234b b b b b b b b b b b b == ,据此可得:()()()()214916123412341234lg lg 2lg lg b b b b b b b b b b b b b b b b == . 2、【2016高考上海理数】无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意n *∈N ,{}3,2∈n S ,则k 的最大值为________.【答案】4【解析】试题分析:当1n =时,12a =或13a =;当2n …时,若2n S =,则12n S -=,于是0n a =,若3n S =,则13n S -=,于是0n a =,从而存在N k *∈,当n k …时,0k a =.所以数列{}n a 要涉及最多的不同的项可以为:2,1,−1,0,0⋅⋅⋅从而可看出max 4k =. 【考点】数列的项与和【名师点睛】从分析条件入手,推断数列的构成特点,解题时应特别注意“数列{}n a 由k 个不同的数组成”和“k 的最大值”.本题主要考查考生的逻辑推理能力、基本运算求解能力等.3. 【2016高考上海理数】已知无穷等比数列{}n a 的公比为,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2n S S n *<∈N 恒成立的是( ).(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B【考点】数列的极限、等比数列求和【名师点睛】本题解答时确定不等关系是基础,准确分类讨论是关键,易错点是在建立不等关系之后,不知所措或不能恰当地分类讨论.本题能较好地考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.4. 【2014上海,理8】 设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .【答案】12-+【解析】由题意334lim()1n n a a a a q →∞+++=-,即2111a q a q=-,∵10,1a q ≠<,∴12q -+=. 【考点】无穷递缩等比数列的和.5. 【2013上海,理10】设非零常数d 是等差数列x 1,x 2,…,x 19的公差,随机变量ξ等可能地取值x 1,x 2,…,x 19,则方程D ξ=______. 【答案】30|d |【解析】E ξ=x 10,D ξ|.d =6. 【2013上海,理17】在数列{a n }中,a n =2n-1.若一个7行12列的矩阵的第i 行第j 列的元素c ij =a i ·a j +a i +a j (i =1,2,…,7;j =1,2,…,12),则该矩阵元素能取到的不同数值的个数为( ) A .18B .28C .48D .63【答案】A【解析】a i ,j =a i ·a j +a i +a j =2i +j-1,而i +j =2,3,…,19,故不同数值个数为18,选A.7. 【2013上海,文2】在等差数列{a n }中,若a 1+a 2+a 3+a 4=30,则a 2+a 3=______. 【答案】15【解析】a 1+a 2+a 3+a 4=2(a 2+a 3)=30⇒a 2+a 3=15.8. 【2013上海,文7】设常数a R.若25()a x x+的二项展开式中x 7项的系数为-10,则a =______. 【答案】-2【解析】25()a x x +⇒255C ()()r y r a x x-=-10x 7⇒r =1,15C a =-10⇒5a =-10,a =-29. 【2012上海,理6】有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则12lim ()n n V V V →∞+++=…__________.【答案】87∴128lim ()7n n V V V →∞+++=…. 10. 【2012上海,文8】在(x -1x)6的二项展开式中,常数项等于__________. 【答案】-20【解析】展开式的通项为T r +1=6C rx6-r·(-1x)r,令6-r =r ,可得r =3 所以T 4=36C x 3×(-1x)3=-36C =-20. 11. 【2012上海,文14】已知1()1f x x=+,各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是__________.【答案】326+ 【解析】由a n +2=f (a n )=11na +,a 1=1, 可得311112a a ==+,5311211312a a ===++,7132513a ==+,9153815a ==+, 111851318a ==+. 由a 2 012=201011a +=a 2 010,可得a 2 010=a 2 012则a 2=a 4=…=a 20=a 2n =a 2 010=a 2 012所以a 20+a 11813=. 12. 【2012上海,文18】若π2ππsin sin sin 777n n S =+++…(n ∈N *),则在S 1,S 2,…,S 100中,正数的个数是( )A .16B .72C .86D .100 【答案】 C 【解析】由π8πsinsin 77=-,2π9πsin sin 77=-,…,6π13πsin sin 77=-,7π14πsin sin 077==, 所以S 13=S 14=0.同理S 27=S 28=S 41=S 42=S 55=S 56=S 69=S 70=S 83=S 84=S 97=S 98=0, 所以在S 1,S 2,…,S 100中,其余各项均大于0. 故选C 项.13. 【2011上海,理18】设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件是( ) A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…a 2n ,…均是等比数列,且公比相同 【答案】D 【解析】14. 【2010上海,理11】将直线:0nx y n +-=、:0x n y n +-=(*n N ∈,2n ≥)轴、y轴围成的封闭图形的面积记为n S ,则lim n n S →∞= ;【答案】1【解析】直线:0nx y n +-=、:0x n y n +-=(*n N ∈,2n ≥)轴、y 轴围成的封闭图形为四边形OABC ,其中(0,0)O ,(1,0)A ,,11nn B n n ⎛⎫ ⎪++⎝⎭,(0,1)C ,则1OB k =,1AC k =-,∴OB AC ⊥,故11221n n S OB AC n =⋅==+,于是lim lim11n n n nS n →∞→∞==+,故答案为:1.【点评】本题将直线与直线的位置关系与数列极限结合,考查两直线的交点的求法、两直线垂直的充要条件、四边形的面积计算以及数列极限的运算法则,是本次考题的一个闪光点. 15. (2009上海,理12)已知函数f(x)=sinx+tanx,项数为27的等差数列{a n }满足a n ∈(2π-,2π),且公差d≠0.若f(a 1)+f(a 2)+…+f(a 27)=0,则当k=__________时,f(a k )=0. 【答案】1416. (2009上海,理23)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.已知{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列. (1)若a n =3n+1,是否存在m 、k ∈N *,有a m +a m+1=a k ?说明理由; (2)找出所有数列{a n }和{b n },使对一切n ∈N *,n nn b a a =+1,并说明理由; (3)若a 1=5,d=4,b 1=q=3,试确定所有的p,使数列{a n }中存在某个连续p 项的和是数列{b n }中的一项,请证明.【答案】(1) 不存在;(2) {a n }为非零常数列,{b n }为恒等于1的常数列;(3)参考解析 【解析】(1)由a m +a m+1=a k ,得6m+5=3k+1, 整理后,可得342=-m k , ∵m 、k ∈N *,∴k-2m 为整数. ∴不存在m 、k ∈N *,使等式成立. (2)解法一:若n n n b a a =+1,即1111)1(-=-++n q b dn a nda ,(*)①若d=0,则1=b 1q n-1=b n .当{a n }为非零常数列,{b n }为恒等于1的常数列,满足要求. ②若d≠0,(*)式等号左边取极限得1)1(11lim=-++∞→dn a nda n ,(*)式等号右边的极限只有当q=1时,才可能等于1.此时等号左边是常数, ∴d=0,矛盾.综上所述,只有当{a n }为非零常数列,{b n }为恒等于1的常数列,满足要求. 解法二:设a n =nd+c. 若n nn b a a =+1,对n ∈N *都成立,且{b n }为等比数列, 则q a a a a nn n n =+++112/,对n ∈N *都成立, 即a n a n+2=qa n+12.∴(dn+c)(dn+2d+c)=q(dn+d+c)2对n ∈N *都成立.∴d 2=qd 2.①若d=0,则a n =c≠0,∴b n =1,n ∈N *. ②若d≠0,则q=1,∴b n =m(常数), 即m cdn cd dn =+++,则d=0,矛盾.综上所述,有a n =c≠0,b n =1, 使对一切n ∈N *,n nn b a a =+1. (3)a n =4n+1,b n =3n,n ∈N *.设a m+1+a m+2+…+a m+p =b k =3k,p 、k ∈N *,m ∈N.k p p m m 321)(41)1(4=+++++,∴4m+2p+3=pk3.∵p 、k ∈N *,∴p=3s,s ∈N. 取k=3s+2,4m=32s+2-2×3s -3=(4-1)2s+2-2×(4-1)s-3≥0,由二项展开式可得正整数M 1、M 2, 使得(4-1)2s+2=4M 1+1,2×(4-1)s =8M 2+(-1)s2,∴4m=4(M 1-2M 2)-(-1)s+1]2.∴存在整数m 满足要求.故当且仅当p=3s,s ∈N 时,命题成立.说明:第(3)题若学生从以下角度解题,可分别得部分分(即分步得分). 若p 为偶数,则a m+1+a m+2+…+a m+p 为偶数,但3k 为奇数. 故此等式不成立,∴p 一定为奇数. 当p=1时,则a m+1=b k ,即4m+5=3k, 而3k=(4-1)k=k k k k k k k k k k k M C C C C )1(4)1()1(4)1(4411110-+=-∙+-∙∙++-∙∙+∙--- ,M ∈Z.当k 为偶数时,存在m,使4m+5=3k成立. 当p=3时,则a m+1+a m+2+a m+3=b k , 即3a m+2=b k , 也即3(4m+9)=3k,∴4m+9=3k-1,4(m+1)+5=3k-1.由已证可知,当k-1为偶数即k 为奇数时, 存在m,4m+9=3k 成立.当p=5时,则a m+1+a m+2+…+a m+5=b k ,即5a m+3=b k , 也即5(4m+13)=3k,而3k不是5的倍数, ∴当p=5时,所要求的m 不存在. 故不是所有奇数都成立.17. 【2008上海,理14】 若数列{a n }是首项为1,公比为a -32的无穷等比数列,且{a n }各项的和为a ,则a 的值是( ) A .1 B .2 C .12 D .54【答案】B18. 【2007上海,文14】数列{}n a 中,22211100010012n n n a n n n n ⎧⎪⎪=⎨⎪⎪-⎩,≤≤,,≥, 则数列{}n a 的极限值( )A.等于 B.等于C.等于或D.不存在【答案】B 【解析】19. 【2005上海,理12】用个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2017·湖北优质高中联考)已知a n =3n (n ∈N *),记数列{a n }的前n 项和为T n ,若对任意的b ∈N *,
(T n +32)k ≥3n -6恒成立,则实数k 的取值范围是=________.
2.(2016·天水月考)数列1,
11+2,11+2+3,11+2+3+4,…,11+2+3+…+n 的前n 项和为____________.
3.(2016·南通一模)已知等比数列{a n }的首项为2、公比为3,前n 项和为S n .若log 312a n (S 4m +1)]=9,
则1n +4m 的最小值是________.
4.(2016·南京、盐城三模)已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5.设c n =⎩⎨⎧
a n ,a n ≤
b n ,b n ,a n >b n ,若在数列{
c n }中,c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是________. 5.(2016·无锡二模)设P (x ,y )是函数y =f (x )的图象上一点,向量a =(1,(x -2)5),b =(1,y -2x ),且满足a ∥b .已知数列{a n }是公差不为0的等差数列,若f (a 1)+f (a 2)+…+f (a 9)=36,则a 1+a 2+…+a 9=________.
6.(2016·湖北一联)已知等差数列{a n }满足a 2=3,a 5=9,若数列{b n }满足b 1=3,b n +1=ab n ,则{b n }的通项公式b n =________.
7.已知数列{a n }的各项均为正整数,S n 为其前n 项和,对于n =1,2,3,…有a n +1=
⎩⎪⎨⎪⎧ 3a n
+5,a n 为奇数,a n 2k ,a n 为偶数,其中k 是使a n +1为奇数的正整数,
则当a 1=1时,S 1+S 2+S 3+…+S 20=____________.
8.(2016·师大附中期中)已知数列a n -1=-n 2+52λn +5λ2-2λ+1为单调递减数列,则λ的取值范围
是__________________.
9.(2016·辽宁沈阳期中)设首项不为零的等差数列{a n }的前n 项和是S n ,若不等式
a 2n +S 2n n 2≥λa 21对任意a n 和正整数n 恒成立,则实数λ的最大值为________.
10.(2016·沈阳期中)已知数列{a n }是等比数列,首项a 1=1,公比q >0,其前n 项和为S n ,且S 1+a 1,S 3+a 3,S 2+a 2成等差数列.
(1)求数列{a n }的通项公式;
(2)若数列{b n }满足a n +1=(12)a n b n ,T n 为数列{b n }的前n 项和,若T n ≥m 恒成立,求m 的最大值.
答案精析
1.227,+∞) 2.2n n +1
3.52
4.(12,17)
解析由题意可知c n是a n与b n中的较小值,且c n中的最大值是c8.如图,若c8=a8,则a8>b7,即-8+p>22,所以p>12;若c8=b8,则b8>a9,即23>-9+p,所以p<17.综上12<p<17.
5.18
解析∵向量a=(1,(x-2)5),b=(1,y-2x),且a∥b,
∴y-2x-(x-2)5=0,
即y=(x-2)5+2x,
∴f(x)=(x-2)5+2x.
令g(x)=f(x+2)-4=x5+2x,
则函数g(x)为奇函数,且是定义域内的增函数,
由f(a1)+f(a2)+…+f(a9)=36,
得g(a1-2)+g(a2-2)+…+g(a9-2)=0,
又数列{a n}是公差不为0的等差数列,
∴g(a5-2)=0,即a5-2=0,a5=2,
∴a1+a2+…+a9=9a5=9×2=18.
6.2n+1
解析根据题意,在等差数列{a n}中,
a2=3,a5=9,则公差d=2,
则a n=2n-1,
对于{b n},由b n+1=2b n-1,
可得b n
+1
-1=2(b n-1),
即{b n-1}是公比为2的等比数列,
且首项b1-1=3-1=2,
则b n-1=2n,b n=2n+1.
7.910
解析当a1=1时,a2=3×1+5=8,a3=8
2k=1,a4=3×1+5=8,a5=
8
2k=1,…,所以{a n}是周
期为2的周期数列,它的奇数项是1,偶数项是8,所以S1+S2+…+S20=1+(1+8)+(1×2+8)+(1×2+8×2)+(1×3+8×2)+(1×3+8×3)+…+(1×10+8×9)+(1×10+8×10)=910. 8.(0,+∞)。