第六讲小学五年级奥数计算图形的面积(真题归类)

合集下载

【应用题专项】北师大版数学五年级上册 第六单元 组合图形的面积(知识梳理+典例精讲+专项训练)含答案

【应用题专项】北师大版数学五年级上册 第六单元 组合图形的面积(知识梳理+典例精讲+专项训练)含答案

第六单元组合图形的面积(讲义)小学数学五年级上册专项训练(知识梳理+典例精讲+专项训练)1. 组合图形的意义。

由几个简单的图形,通过不同的方式组合而成的图形。

2. 组合图形的面积的求法。

方法一:分割法。

根据图形和所给条件的关系,将图形进行合理分割,分成几个规则图形,几个规则图形的面积和就是组合图形的面积。

方法二:添补法。

将图形所缺部分进行添补,组成几个基本图形。

几个基本图形的面积减去添补图形的面积就是组合图形的面积。

方法三:割补法。

割下不规则图形的一部分,并补在适当的位置上,以形成规则的图形。

割补前后,图形面积不发生改变。

3. 不规则图形面积的估算与计算。

方法一:借助方格纸用数格子的方法进行估计。

数格子时,不满1格的可按半格来算(数格子时要有顺序,做到不重复,不遗漏)。

方法二:根据图形的特点把不规则图形近似地看作规则图形,应用规则图形的面积公式计算面积。

4. 公顷和平方千米。

边长是100米的正方形的面积是1公顷。

边长是1000米的正方形的面积是1平方千米。

测量和计算土地面积时,通常用公顷、平方千米( k㎡)做单位。

公顷和平方千米都是比平方米大的面积单位。

5. 公顷、平方米、平方千米之间的关系。

1公顷=10000平方米,1平方千米=100公顷=1000000平方米。

温馨提示:大单位化成小单位,要乘进率;小单位化成大单位,要除以进率。

【典例一】一块梯形小麦地里有一条平行四边形的小路(如下图),种小麦的面积是多少平方米?【分析】用梯形面积减去平行四边形的小路面积即可。

【详解】(50+64)×25÷2-2×25=1425-50=1375(平方米)答:种小麦的面积是1375平方米。

【点睛】熟悉组合图形面积的一般计算方法为本题考查重点。

【典例二】学校要为班级制作流动红旗,如图所示。

(1)这面流动红旗的面积是多少?(2)一块边长为2m的正方形布,最多能做多少面这样的流动红旗?(提示:流动红旗不能拼接,可以画图帮助思考哦!)【分析】(1)如图:把流动红旗分成两个面积相等的梯形,梯形的面积=(上底+下底)×高÷2;据此解答。

五年级奥数平面图形的面积

五年级奥数平面图形的面积

学生课程讲义例题1在梯形中阴影部分面积是150平方厘米,上底15厘米,下底25厘米,求梯形面积。

随堂练习1如图,已知平行四边形面积是48平方厘米,求阴影部分面积。

梯形的上底5厘米,高6厘米。

例题2如图,将长为9厘米,宽为6厘米的长方形,划分成四个三角形,其面积分别为S1、S2、S3、S4,且S1=S2=S3+S4,求S4。

随堂练习2如图,四边形ABCD 是直角梯形,其中AD=12厘米,AB=8厘米,BC=15厘米,且△ADC 、四边形DEBF 及△CDF 的面积相等,求三角形EBF 的面积。

A ED例题3如图,AE=5厘米,CF=2厘米,AB=6厘米,CD=4厘米,∠B=∠D=90度,求四边形AFCE 的面积。

随堂练习3如图,四边形ABCD 中,AE=5厘米,AB=10厘米,FC=12厘米,DC=15厘米,∠B=∠D=90度,求四边形AFCE 的面积。

例题4如图,在大正方形ABCD 里有一个内接长为6厘米,宽为1厘米的长方形,而且长方形的对称轴与正方形的对角线重合,求正方形的面积。

A EBF CDAEDB F CAH D EC B F G随堂练习4 如图,正方形的面积为18.75平方厘米,在正方形内有两条平行于对角线的线段,将正方形平均分为面积相等的三份,求平行线段AB 的长。

例题5如图,平行四边形ABCD 的边长BC=10厘米,直角三角形BCE 的的直角边EC 长8厘米。

已知△BAG 和△FDC 面积的和比三角形FEG 的面积大10平方厘米,求CF 的长。

随堂练习5如图,正方形ABCD 的边长是12厘米,已知DE 是EC 的长度的2倍。

求 1) △DEF 的面积 2) CF 的长。

例题6B A A D BC G F EA B C F DE如图,长方形ABCD 与三角形EBC 重叠。

已知三角形EFD 的面积比ABF 的面积大6平方厘米,且CD=4厘米,BC=6厘米。

求ED 的长。

随堂练习6如图,ABCD 是长方形,长是5厘米,宽4厘米。

组合图形的面积——小学奥数专题

组合图形的面积——小学奥数专题

组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。

(单位:厘米)?2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

《3、有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4.5平方厘米。

求原来梯形的面积。

例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

;练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。

2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。

[3、求下图长方形ABCD的面积(单位:厘米)。

例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。

三角形CDH的面积是多少平方厘米?—练习三1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。

%2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?】例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?~练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。

2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)(3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。

求平行四边形的面积。

例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。

~练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。

求AH长多少厘米?2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。

五年级奥数三角形的面积计算习题正规版

五年级奥数三角形的面积计算习题正规版

五年级奥数三角形的面积计算习题(可以直接使用,可编辑优秀版资料,欢迎下载)第九讲 三角形的面积计算 1、如图,等腰直角三角形ABC 中,∠A=90o ,BC 长2.4厘米,求三角形ABC 的面积。

2、如图所示,阴影部分面积是空白部分的2倍,求x ?3、如图,正方形ABCD 边长8厘米,三角形CEF 的面积比三角形ABE 的面积小12平方厘米。

三角形ACF 的面积是多少平方厘米?4、如图,四边形ABCD 中,∠B=∠D=90 o ∠C=45o ,AB=1.2厘米,BC=4厘米。

求四边形ABCD 的面积。

CAB C4cm3cmxcmA B D5、如图,直角三角形ABC中,AB=6厘米,BC=8厘米,AC=102厘米,GD垂直于AC,GD的6、如图,长方形ABCD,三角形EFD的面积比三角形ABF的面积大10平方厘米,求ED的长。

7、一块三角形的田地,底是60米,是高的1.5倍,这块三角形田地的面积是多少?8、如图,一个腰长是20厘米的等腰三角形的面积是140平方厘米,在底边上任意取一点,这个点到两腰的垂线段的长分别是a厘米和b厘米。

求a+b的长。

E9、两个相同的直角三角形如图所示(单位:厘米)重叠在一起,求阴影部分的面积?10、如图,三角形BCD 的面积是80平方米,高是8米,三角形ABC 的高是15米,求阴影部分的面积。

11、如图,四边形ABCD 和BEFH 是两个正方形,边长分别是9厘米和6厘米。

求图中三角形AEH 的面积。

12、有一张等腰直角三角形的纸片,沿它的斜边上的高把这个三角形对着,再沿斜边上的高把它对折,再沿斜边上的高把它对折,A B F10ABCAB CEF这时,得到一个直角边的长是2厘米的等腰直角三角形,那么原来的等腰直角三角形纸片的面积是多少平方厘米?13、图中两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是多少平方厘米?14、如图,三角形ABC和三角形DEF为两个重叠放在一起的等腰直角三角形,已知BC=10,CF=1,DE=7。

五年级上册数学课件奥数图形面积通用版

五年级上册数学课件奥数图形面积通用版

提示:注意两个中点的作用。
A
B
可见:把长方形的面积平
N
均分成8份,阴影部分是其 中的3份。
CM
D 解答:
120 4 30cm2
30 2 15cm2 153 45cm2
答:阴影部分的面积是 45cm2
例3:如下图,在一个等腰直角三角形纸板上, 剪去一个等腰直角三角形,AB=10cm, CD=6cm。求阴影部分的面积。
您的内容打在这里,或者通过复制
您的内容打在这里,或 者通过复制您的文本后, 在此框中选择粘贴,并
选择只保留文字
您的内容打在这里,或 者通过复制您的文本后, 在此框中选择粘贴,并
选择只保留文字
您的内容打在这里,或 者通过复制您的文本后, 在此框中选择粘贴,并
选择只保留文字
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字;您的内容打在这里,或 者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字;您的内容打在这里,或者通过复制您的文 本后在此框中选择粘贴并选择只保留文字;您的内容打在这里,或者通过复制您的文本后
BE=EA。三角形BDE的面积是3平方厘米,求三角
形ABC的面积是多少平方厘米?
提示1:以△BDE为突破口,找出与之面积相等的三角形。
A
难点:三角形的高线怎么找?
提示2:做辅助线
E
解答:
B DF C
S△BCE:3 3 9cm2 S△ABC:9 2 18cm2
答:三角形 ABC的面积是18cm2
例8:如下图,D、E、F分别是BC、AD、BE的 三等分点,已知三角形ABC的面积是81平方厘 米,求三角形EFD的面积。
方法一: 剔除法:
6 6 88 100cm2 88 2 32cm2 6 (6 8) 42cm2

完整版)五年级奥数平面图形面积计算

完整版)五年级奥数平面图形面积计算

完整版)五年级奥数平面图形面积计算五年级奥数第六讲——平面图形面积的计算一、知识要点1.基本平面图形特征及面积公式正方形:特征:四条边相等,四个角都是直角,有四条对称轴。

面积公式:S=边长的平方长方形:特征:对边相等,四个角都是直角,有二条对称轴。

面积公式:S=长×宽平行四边形:特征:两组对边平行且相等,对角相等,相邻的两个角之和为180°,容易变形。

面积公式:S=底边×高三角形:特征:两边之和大于第三条边,两边之差小于第三条边,三个角的内角和是180°,具有稳定性。

面积公式:S=底边×XXX÷2梯形:特征:只有一组对边平行,中位线等于上下底和的一半。

面积公式:S=(上底+下底)×高÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。

典型例题】例1】已知平行四边形的面积是28平方厘米,求阴影部分的面积。

例2】求图中阴影部分的面积。

例3】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。

例4】两条对角线把梯形ABCD分割成四个三角形。

已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?练与拓展】1.计算下面图形的面积。

2.下面的梯形中,阴影部分面积是150平方厘米,求梯形的面积。

3.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍,求三角形DEF的面积和CF的长。

4.平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。

5.正方形ABCD的面积是100平方厘米,AE=8厘米,请计算以下图形的面积。

1.在一块长80米、宽30米的长方形地上,修了宽为2米和3米的两条小路,求草地的面积。

【人教版】五年级上册奥数试题:平面图形面积

【人教版】五年级上册奥数试题:平面图形面积

平面图形1、 和差法:分割、合并、倍数比2、 运动法:3、 等积变换法:等底、等高则等积;等积、等高则等底;等积、等底则等高。

例1、求阴影部分的面积。

例2、大、小两个正方形的边长分别是8厘米和6厘米, 求阴影部分的面积。

例3、两个相同的直角三角形如图重叠在一起, 求阴影部分的面积。

例4、求阴影部分面积。

例5、图中长方形ABCD 中AB=5厘米,BC=8厘米。

三角形DEF (甲)的面积 比三角形ABF (乙)的面积大8平方厘米。

求DE 的长。

3cm4cm6cm5cm2cm12cm甲ABCDEF乙AD B C 10cm 10cm24cm45° E5cm例6、在三角形ABC 中,DC=2BD ,CE=3AE ,三角形ADE 的面积是 8平方厘米。

求三角形ABC 的面积。

例7、四边形ABCD 中,AC 和BD 互相垂直,AC=20厘米,BD=15厘米。

求四边形的面积。

例8、在四边形ABCD 中,∠C=45°,∠B=90°,∠D=90°, AD=4cm ,BC=12cm 。

求四边形ABCD 的面积。

例9、AF=2cm,AB=4cm,CD=5cm,DE=8cm,∠B=∠E=90°。

求四边形ACDF 的面积。

例10、已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大10平方厘米。

求大、小正方形的面积各数多少平方厘米。

ABCDC45°AB CDABCDEF 4cm8cm2cm练习1、图中两个正方形的边长是10厘米和7厘米,求阴影部分的面积(如图)练习2、如下图,在三角形ABC中,AD=BD,CE=3BE。

若三角形BED的面积是1平方厘米,则三角形ABC的面积是多少平方厘米?练习3、三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. A B长40厘米, BC长多少厘米.练习4、在右图中(单位:厘米),两个阴影部分面积的和是平方厘米.练习5、ABC是等腰直角三角形. D是半圆周的中点,BC是半圆的直径,已知:AB=BC=10,那么阴影部分的面积是多少?练习6、已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积. C②①A B121520A10DCB练习7、右图中三角形是等腰直角三角形, 阴影部分的面积是 (平方厘米).练习8、如右图,阴影部分的面积是 .练习9、如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π练习10、ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?练习11、在四边形ABCD 中,∠C=135°,∠D=90°。

高斯小学奥数五年级上册含答案_直线形计算中的倍数关系

高斯小学奥数五年级上册含答案_直线形计算中的倍数关系

第六讲直线型计算中的倍数关系迄今为止,同学们已经学会了很多图形计算面积的方法.在计算这些面积的时候,只要知道相应线段的长度,然后利用公式即可以计算.例如计算长方形的面积,只需知道长方形的长和宽即可利用长方形的面积=⨯长宽进行计算.但很多时候,题目中并不给出长和宽,那怎么来求面积呢?我们来看下面这个例题.例题1. 如图,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?「分析」如果两个长方形的一条边相等,我们可以比较它们的另一条边来求它们的面积关系,看看下图,能利用左上角的三块面积求出①的面积吗?对于长方形,我们总结出:如果两个长方形的长(宽)相等,那么它们的面积的比等于它们宽(长)之比.例如:如图所示的长方形ABCD 与长方形BEFC 宽BC 相同,那么ABCD BEFC AB BE =长方形的面积:长方形的面积:.如图,有7个小长方形,其中的5个小长方形的面积分别为20,4,6,8,10平方厘米.求阴影长方形的面积是多少平方厘米?从上面的例题可以看出,求一个图形的面积不一定要通过公式,有些时候我们也可以利用图形各部分之间的面积关系进行计算.实际问题中,各图形的形状各异.我们很难直接看出面积间的关系,更容易发现的是长度之间的倍数关系.本章重点就是长度的倍数关系与面积倍数关系的转化.过三角形一个顶点的直线将三角形分为两个小三角形,则这两个小三角形面积之比等于84620 10A B CDE481216 20该直线分对边所得的两条线段长度之比,这是由两个小三角形有共同的高决定的.例题2. 下图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍.那么三角形ABE 的面积是多少平方厘米?「分析」你能从图中发现前面讲过的基本图形吗?如何利用其中的比例关系解题呢?如图,三角形ABC 中,D 为AB 的中点,E 为BC 的中点,F 为BE 中点,如果三角形ABC 的面积是120平方厘米,那么三角形DEF 的面积是多少?在实际问题中,给出的图形结构往往只能满足上述形式的一部分.比如知道两条线段的长度关系,却找不到合适的图形引出面积关系.此时,我们可以添加适当的辅助线,使得两个图形之间可以找到一个过渡的量,这个量和两个图形都有比较紧密的联系.例题3. 如图,把三角形DEF 的各边分别向外延长1倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?「分析」容易看出,本题也需要通过边长的倍数关系去求三角形面积之间的关系.但是我们所求的是三角形DEF 的面积,而已知的是三角形ABC 的面积,这两个三角形之间一条直接相连的边也没有.那么我们该怎么办呢?ACBF ED::ABD ADC BD DC 三角形的面积三角形的面积ABDE A DEA B CED F如图,把三角形DEF 的各边分别向外延长1倍、2倍、3倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?除了利用图形间的长度关系寻找面积关系外,我们有时候也利用面积的倍数关系反推出长度的倍数关系.例题4. 如图,E 是AB 上靠近A 点的三等分点,梯形ABCD 的面积是三角形AEC 面积的4倍,那么梯形的下底长是上底长的几倍?「分析」本题中我们并不知道图形的具体面积,而只知道面积的倍数关系.需要求的则是长度的倍数关系,所以我们考虑如何利用面积的关系求出长度关系.我们不妨假设三角形AEC 的面积是“1”份,那么梯形ABCD 的面积就是“5”份.接着可以看看“E 是AB 上的三等分点”这个条件能得出什么结论,看看怎么利用求出的面积来比较梯形的上下底?DEFA BCBCDEA如图,将一个长为18的长方形,分成一个三角形和一个梯形,且梯形的面积是三角形的5倍,那么三角形底边BE 的长是多少?除了利用长度间的倍数关系外,我们有时候也能从公式入手,寻找图形面积的倍数关系.例题5. 把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米,那么原正方形的面积为多少平方厘米?「分析」由于阴影部分是一个不规则图形,我们需要把它转化为规则形状,可以将它分割成几块.如图所示,我们将阴影部分分割为①、②、③三个长方形.其中,③的长和宽分别为4、2,可以求出它的面积.那么①和②的面积能求出来吗?关键是找出它们面积的关系.例题6. 如图,直角三角形ABC 套住了一个正方形CDEF ,E 点恰好在AB 边上.又已知直角边AC 长20厘米,BC 长12厘米,那么正方形的边长为多少厘米? 「分析」注意到EF 垂直于AC ,ED 垂直于BC .我们可以连接CE ,将三角形ABC 分成两个三角形,这两个三角形的底都给出了长度,而它们的高相等.我们的目标就是求这个高.A BCDE2ACBEF D欧拉的故事欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。

组合图形的面积——小学奥数专题

组合图形的面积——小学奥数专题

组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。

(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

3、有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4.5平方厘米。

求原来梯形的面积。

例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。

2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。

3、求下图长方形ABCD的面积(单位:厘米)。

例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。

三角形CDH的面积是多少平方厘米?练习三1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。

2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。

2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。

求平行四边形的面积。

例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。

练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。

求AH长多少厘米?2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。

五年级奥数:图形与面积

五年级奥数:图形与面积

图形与面积转化的方法大体上分两点:(1)利用平移、旋转、弦图、割补法、差不变等技巧解题(2)利用五大模型之高相等面积比=底的比(关键高相等:同一个三角形等高、平行线间的三角形等高)(3)利用五大模型之相似三角形:相似三角形在我们小学的学习过程中常用的就是金字塔和沙漏。

(4)等积变形:两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比1、一点引两条直线分别与两组边平行,见右图。

所分得的四①过矩形内部的个小矩形,其面积满足这样的规律:2、梯形的对角线讲梯形分成的四个三角形有:ab=cd,且c=d对称、旋转、平移、割补等技巧将其转换0、按照图中的样子,在一个平行四边行纸片上割去了甲、乙两个直角三角形,已知甲三角形的两条直角边分别为2厘米和4厘米,乙三角形的两条直角边分别为3厘米和6厘米,求图中阴影部分的面积。

(11)1、有红、黄、绿三块大小一样的正方形纸片,放在一个底面为正方形的盒内,它们之间相互叠合(见下图)。

已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10。

求正方形盒底的面积。

【51.2】2、如图,在正方形ABCD中,红色,绿色正方形的面积分别是52和13,且红、绿两个正方形有一个顶点重合。

黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一顶点位于绿色正方形两条对角线的交点,求黄色正方形面积。

【29.25】3、在正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA边的中点(如图),连接线段AF、BG、CH、DE,由这四条线段在正方形中围成的小正方形的面积占大正方形面积的几分之几?【1/5】4、如图正方形ABCD的边长是5,E,F分别是AB和BC的中点,求四边形BFGE的面积是多少?【5】5、已知正方形的面积是120平方厘米,B、E为正方形边上的中点,求题中阴影部分的面积是多少平方厘米?【14】6、有一个长方形,它的长是宽的4倍,对角线长34厘米,求这个长方形面积。

小学奥数:不规则图形的面积

小学奥数:不规则图形的面积

4-2-6.不规则图形的面积例题精讲本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例 1】你有什么好的方法计算所给图形的面积呢?(单位:厘米)4993499349934993图1图2图3【巩固】如图是学校操场一角,请计算它的面积(单位:米)40303020【巩固】如右图所示,图中的ABEFGD是由一个长方形ABCD及一个正方形CEFG拼成的,线段的长度如图所示(单位:厘米),求ABEFGD的周长和面积.A D4A D4HFE10GCFE10GCB10B10【巩固】求图中五边形的面积.3645【例 2】这是一个楼梯的截面图,高280厘米,每级台阶的宽和高都是20厘米.问,此楼梯截面的面积是多少?【巩固】如图是一个楼梯的截面图,每级台阶的宽和高都是20厘米.这楼梯的截面积是多少平方厘米?【例 3】有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少?2米2米8米2米2米8米16米16米【例 4】有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【例 5】下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.20-55820820【巩固】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.ADBO32ECF【例 6】如图,李大伯给一块长方形田地喷药,喷药器所能喷洒的范围是以李大伯的落脚点为中心,边长2米的正方形区域,他从图中的A点出发,沿最短路线(图中虚线)走,走过88米到达B点,恰好把这块田地全部喷完,这块田地的面积是多少平方米?A1米1米B【例 7】右图中甲的面积比乙的面积大__________平方厘米.4厘米乙8厘米甲6厘米【例 8】右图中,矩形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF 的面积大9平方厘米,求ED的长.A FEDB C【巩固】如图所示,CA=AB=4厘米,△ABE比△CDE的面积小2平方厘米,求CD的长为多少厘米?D CEA B【巩固】如图,平行四边形ABCD种,BC=10cm,直角三角形ECB的边EC=8cm,已知阴影部分的总面积比三角形EFG的面积大10cm2,求平行四边形ABCD的面积.EA F G DB C【例 9】如图,ABCD是7⨯4的长方形,DEFG是10⨯2的长方形,求VBCO与VEFO的面积差.A B A BD G C O EFD C O EFG【例 10】有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?5060680平方米2720平方米【巩固】有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积?3【例 11】一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?12215【例 12】一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?522×5【巩固】一块长方形纸片,在长边剪去5cm,宽边剪去2cm后(如图),得到的正方形面积比原长方形面积少31cm2.求原长方形纸片的面积.552 A22BC【巩固】一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积?6厘米6厘米6厘米6厘米【例 13】一块正方形的钢板,先截去一个宽5分米的长方形,又截去一个宽8分米的长方形(如图),面积就比原来正方形减少181平方分米.原正方形的边长是多少分米?58【巩固】一张长方形纸片,先把长剪去8厘米,这时面积减少了72平方厘米,又把宽剪去5厘米,这时面积又减少了60平方厘米,原来这张长方形纸片的面积是多少平方厘米?长5宽8【巩固】如右图所示,在一个正方形上先截去宽11分米的长方形,再截去宽7分米的长方形,所得图形的面积比原正方形减少301平方分米.原正方形的边长是______分米.711【例 14】如图长方形被分成两部分,已知阴影面积比空白部分面积大34平方厘米,求阴影部分的面积.10cm18cm【例 15】一张长方形纸片,把它的右上角往下折叠(如图甲),阴影部分面积占原纸片面积2的;再把左下角往上折叠(如图乙),乙图中阴影部分面积占原纸片面积的7________(答案用分数表示).甲乙【巩固】折叠后,原平行四边形面积是折叠后图形面积的1.5倍.已知阴影部分面积之和为1,则重叠部分(即空白部分)的面积是多少?【巩固】如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?75【例 16】如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?【例 17】如图所示,直角三角形中有一个长方形,求长方形的面积?464BAD6F C 64【例 18】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积??【巩固】如图是由5个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是8,那么最大的正方形的边长是.第6题【巩固】图中有6个正方形,较小的正方形都由较大的正方形的4边中点连接而成.已知最大的正方形的边长为16厘米,那么最小的正方形的面积等于多少平方厘米?【例 19】已知图中大正方形的面积是22平方厘米,小正方形面积是多少平方厘米?【巩固】如图所示,外侧大正方形的边长是10cm ,在里面画两条对角线、一个圆、两个正方形,阴影的总面积为26cm 2,最小的正方形的边长为多少厘米?A BCZ Y X D【例 20】有一个边长为16厘米的正方形,连接每边的中点构成第二个正方形,再连接每边的中点构成第三个正方形,第四个正方形.求图中阴影部分的面积?【例 21】如图,边长为10的正方形中有一等宽的十字,其面积(阴影部分)为36,则十字中央的小正方形面积为.第2题【例 22】下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)663【巩固】如图所示,四个相叠的正方形,边长分别是5、7、9、11.问灰色区与黑色区的面积的差是多少?11975【例 23】甲、乙、丙三个正方形,它们的边长分别是6、8、10厘米,乙的一个顶点在甲的中心上,丙的一个顶点在乙的中心上.这三个正方形的覆盖面积是多少平方厘米?甲6甲6乙8丙10乙8丙10【巩固】将20张边长为10厘米的正方形纸片,按顺序一张一张地摆放在地板上,摆的时候,要求后摆的纸片必须有一个顶点与前一张的中心重合,且每一张只与其前一张和后一张有重合部分(右图表示已经摆好的5张).地板被这20张纸片所覆盖部分的面积是多少?【例 24】有2个大小不同的正方形A 和B .如下左图所示的那样,在将B 正方形的对角线的交点与A 正方形的一个顶点相重叠时,相重叠部分的面积为A 正方形面积的1.求A 与B 的边长之比.如果当按下右图那样,将A 和B 反向重叠的话,所重9叠部分的面积是B 的几分之几?BAABAB左图右图【例 25】有一个正方形水池(图中阴影部分),在它的周围修一个宽是8米的草地,草地的面积为480平方米,求水池的边长?8888【巩固】一块长方形草坪(图中阴影部分)长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路.求草坪的面积是多少平方米?A C BA CB AA【例 26】如图所示,一个长方形广场的正中央有一个长方形的水池.水池长8米、宽3米.水池周围用边长为1米的方砖一圈一圈地向外铺.恰好铺了若干圈,共用了152块方砖,那么共铺了圈.水池【例 27】用四个相同的长方形拼成一个面积为100cm 2的大正方形,每个长方形的周长是多少平方厘米?【巩固】如图所示,4个相同的长方形和一个小正方形拼成一个大的正方形,大正方形的面积是100平方分米,小正方形的面积是36平方分米,求一个小长方形的面积及周长.【例 28】四个完全相同的长方形拼成右图,大正方形的面积是l00平方分米,小正方形的面积是l6平方分米,求每个长方形的面积是多少?长方形的短边是多少分米?16【巩固】如图,4个相同的长方形和1个小正方形拼成一个大正方形,已知其中小正方形的面积为4平方厘米,大正方形的面积为400平方厘米,则其中长方形的长为厘米,宽厘米.【例 29】街心花园里有一个正方形花坛,四周有一条宽1米的甬道(如图),如果甬道的面积是12平方米,那么中间花坛的面积是多少平方米?第19题1米【巩固】在一个正方形的小花园周围,环绕着宽5米的水池,水池面积为300平方米,那么正方形花园的面积是多少平方米?5【巩固】有大、小两个长方形(如图),对应边的距离均为1cm ,已知两个长方形之间部分的面积是16cm 2,且小长方形的长是宽的2倍,求大长方形的面积.AB【例 30】已知大正方形比小正方形边长多4厘米,大正方形面积比小正方形面积大96平方厘米.问大、小正方形面积各是多少?44ABC4D 4【巩固】两个正方形的面积相差9cm 2,边长相差1cm .求两个正方形的面积和.C AB【巩固】有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米.小正方形的面积是多少平方厘米?【例 31】在一个正方形中放入一个四个顶点与大正方形相接的一个小正方形(如图),如果两个正方形的周长相差16厘米,面积相差96平方厘米,求小正方形的面积是多少平方厘米?(1)(2)cabc【例 32】用两块长方形纸片和一块正方形纸片拼成一个大正方形,长方形纸片面积分别为44平方厘米与28平方厘米,原正方形纸片面积是多少平方厘米?【例 33】计划修建一个正方形的花坛,并在花坛周围种上3米宽的草坪,草坪的面积为300平方米,那么修建这个花坛需要占地多少平方米?(1)(2)【巩固】有大、小两个长方形(右图),对应边的距离均为1厘米,已知两个长方形之间部分的面积是16平方厘米,且小长方形的长是宽的2倍,求大长方形的面积.【巩固】一块长方形的草坪(见图中阴影部分),长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路,求草坪的总面积是多少平方米?A C AB BA C A【例 34】一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米(如图虚线所示),则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?3030【例 35】从一块正方形的玻璃板上锯下宽为0.5米的一个长方形玻璃条后,剩下的长方形的面积为5平方米,请问锯下的长方形玻璃条的面积等于多少?0.55【巩固】从一个正方形的木板上锯下宽1m 的一个长方形木条后,剩下的长方形面积为6m 2,问锯下的长方形木条面积是多少?【巩固】从一块正方形木板锯下宽为165米的一个木条以后,剩下的面积是平方米.问锯218下的木条面积是多少平方米?【例 36】图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40平方厘米.求乙正方形的面积.【例 37】有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米?图a图b【例 38】如图,边长是整数的四边形AFED的面积是48平方厘米,FB为8厘米.那么,正方形ABCD的面积是平方厘米.F8AB48C【例 39】如图,一个正方形被分成4个小长方形,它们的面积分别是ED11平方米、平方米、10532平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平105方米?【例 40】长方形ABCD 的周长是30厘米,以这个长方形的每一条边为边长向外画正方形.已知这四个正方形的面积之和为290平方厘米,那么长方形ABCD 的面积是多少平方厘米?E 1D 1EDC 1C BA 1A【巩固】如图,长方形ABCD 的周长是16厘米,在它的每一条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68平方厘米,求长方形ABCD 的面积?IH DG FADAB C B C E【例 41】一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道黑条,黑条宽都是2厘米,这条手帕白色部分的面积是多少?【例 42】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?图1图2【例 43】7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?24【巩固】如图所示,7个完全相同的长方形拼成了图中的阴影部分,图中空白部分的面积是多少平方厘米?【例 44】如右图所示,在长方形ABCD中,放入六个形状大小相同的长方形(尺寸如图),图中阴影部分的面积是__________.D C6A14B【例 45】若干同样大小的长方形小纸片摆成了如图所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?【例 46】一个大长方形若能分割成若干个大小不同的小正方形,则称为完美长方形.下面一个长方形是由9个小正方形组成的完美长方形.图中正方形A 和B 的边长分别是7厘米和4厘米,那么这个完美长方形的面积分别是多少平方厘米?DABE A HBFCG【巩固】如图:有一个矩形可以被分割为11个正方形,其中最小的正方形(阴影部分)面积为81cm 2,请问这个矩形之面积为多少平方厘米?jg ehca bif d教师寄语:拼一个春夏秋冬,换一生无怨无悔。

小学五年级数学思维训练(奥数)《长方体和正方体巧算表面积》讲解及练习题(含答案)

小学五年级数学思维训练(奥数)《长方体和正方体巧算表面积》讲解及练习题(含答案)

长方体和正方体巧算表面积专题简析:学了长方体和正方体后,同学们都只知道,长方体和正方体都有6个面,长方体相对的两个面的大小、形状完全一样,正方体6个面的大小、形状都完全一样。

例1 两个棱长是2厘米的小正方体可以拼成一个长方体,这个长方体的表面积是多少?分析与解答先根据题意画图:从图上可以清楚地看出:两个正方体原先各有6个正方形的面,当把它们拼起来时就少了2个正方形的面。

这时,求长方体的表面积只相当于求(12-2=)10个正方形的面积;还可以这样想:当两个正方体拼成一个长方体时,求长方体的表面积,我们可以先分别求出这个长方体的长、宽、高,再求出它的表面积。

方法总结:1.当物体拼合时表面积之和少了,可以根据用原来的面去掉减少了的面,从而求出拼合后物体的面积数量,然后求出表面积。

2.还可以求出拼成后大物体的长、宽、高,再根据物体形状直接求表面积。

随堂练习:把底面积是36平方厘米的两个正方体木块拼成一个长方体,长方体的表面积是多少?例2把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体表面积之和最大,这时表面积之和是多少平方厘米?分析与解答:把长方体截成两个长方体后,两个长方体表面积之和等于原长方体表面积再加上两个截面的面积。

这个长方体几个面中,上、下面的面积最大,所以要看哪个面的面积最大,于是本题就按平行于上、下面的方式去截,才使表面积之和最大。

方法总结:长方体截成两个长方体有三种截法,如图:随堂练习:把两个长3厘米、宽2厘米、高1厘米的长方体拼成一个表面积最大的长方体,这个长方体的表面积是多少平方厘米?例3求出下面立体图形的表面积。

(单位:厘米)分析与解答:从图上看出,这个图形是由一个长方体和一个正方体组成的,求它的表面积时,可以把正方体的右侧面平移到长方体上,这方体的上、下、前、后四个面的面积。

随堂练习:1.在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(如图),求这个立体图形的表面积。

五年级奥数图形与面积A含详细答案

五年级奥数图形与面积A含详细答案

2010年五年级奥数题:图形与面积(A)一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图,把三角形ABC的一条边AB延长1倍到D,把它的另一边AC延长2倍到E,得到一个较大的三角形ADE,三角形ADE的面积是三角形ABC面积的_________倍.2.(3分)如图,在三角形ABC中,BC=8厘米,AD=6厘米,E、F分别为AB和AC的中点.那么三角形EBF的面积是_________平方厘米.3.(3分)如图,,那么,三角形AED的面积是三角形ABC面积的_________.4.(3分)如图,三角形ABC的面积是30平方厘米,D是BC的中点,AE的长是ED的长的2倍,那么三角形CDE的面积是_________平方厘米.5.(3分)现有一个5×5的方格表(如图)每个小方格的边长都是1,那么图中阴影部分的面积总和等于_________.6.(3分)如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是_________平方厘米.7.(3分)如图所示,一个矩形被分成A、B、C、D四个矩形.现知A的面积是2cm2,B的面积是4cm2,C的面积是6cm2.那么原矩形的面积是_________平方厘米.A BC D8.(3分)(2011•杭州模拟)有一个等腰梯形,底角为450,上底为8厘米,下底为12厘米,这个梯形的面积应是_________平方厘米.9.(3分)已知三角形ABC的面积为56平方厘米、是平行四边形DEFC的2倍,那么阴影部分的面积是_________平方厘米.10.(3分)(2012•中山市模拟)下图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是_________.二、解答题(共4小题,满分0分)11.已知正方形的面积是50平方厘米,三角形ABC两条直角边中,长边是短边的2.5倍,求三角形ABC的面积.12.如图,长方形ABCD中,AB=24cm,BC=26cm,E是BC的中点,F、G分别是AB、CD的四等分点,H为AD上任意一点,求阴影部分面积.13.有两张正方形纸,它们的边长都是整厘米数,大的一张的面积比小的一张多44平方厘米.大、小正方形纸的边长分别是多少?14.用面积为1,2,3,4的四张长方形纸片拼成如图所示的一个长方形.问:图中阴影部分面积是多少?2010年五年级奥数题:图形与面积(A)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图,把三角形ABC的一条边AB延长1倍到D,把它的另一边AC延长2倍到E,得到一个较大的三角形ADE,三角形ADE的面积是三角形ABC面积的6倍.考点:三角形面积与底的正比关系.分析:要求三角形ADE的面积是三角形ABC面积的多少倍,可连接BE,然后根据题意可得:AC=AE,根据△ABC和△ABE等高,即△ABC的面积是△ABE面积的,即△ABC有1份,则△ABE 有3份,因为AB=BD得出△ABE=△BDE,所以△BDE也有3份,然后根据问题解答即可.解答:解:(1×3×2)÷1,=6(倍);答:三角形ADE的面积是三角形ABC面积的6倍;故答案为:6.点评:此题应结合题意,作出一条辅助线,然后根据三角形的面积特点进行分析、解答即可.2.(3分)如图,在三角形ABC中,BC=8厘米,AD=6厘米,E、F分别为AB和AC的中点.那么三角形EBF的面积是6平方厘米.考点:组合图形的面积.分析:根据三角形的面积公式可先求出三角形ABC的面积,再根据F是边AC的中点,那么三角形ABF的面积等于三角形BCF的面积,即三角形ABF的面积等于三角形ABC的面积,又因为E是边AB的中点,那么三角形EFB的面积就等于三角形AEF的面积,即三角形EFB的面积等于三角形ABF的面积,即三角形EFB的面积等于三角形ABC的面积,列式解答即可得到答案.解答:解:三角形ABC的面积为:8×6÷2=24(平方厘米);三角形EBF的面积为:×24=6(平方厘米);答;三角形EBF的面积为6平方厘米.故答案为:6.点评:此题主要考查的是三角形的面积公式.3.(3分)如图,,那么,三角形AED的面积是三角形ABC面积的.考点:三角形面积与底的正比关系.分析:(1)先看△AEC和△ABC的面积关系:BC边上的高,既是△AEC的高也是△ABC的高,已知BE=BC,则EC=BC,根据三角形的面积公式可得:△AEC是△ABC的面积的;(2)同理,可以推理出△AED和△AEC的面积关系是:△AED是△AEC的面积的;由上述两个结论即可解决问题.解答:解:(1)已知BE=BC,则EC=BC,根据三角形面积公式可得:△AEC是△ABC的面积的;(2)已知CD=AC,则AD=AC,根据三角形面积公式可得:△AED是△AEC的面积的;所以△AED=△AEC=△ABC=△ABC.答:三角形AED的面积是三角形ABC面积的.故答案为:.点评:此题是考查了高相等的情况下,三角形的面积与这条高所在的底成正比关系的灵活应用.4.(3分)如图,三角形ABC的面积是30平方厘米,D是BC的中点,AE的长是ED的长的2倍,那么三角形CDE的面积是5平方厘米.考点:组合图形的面积.分析:因为等底等高的三角形的面积相等,所以三角形ADC的面积=三角形ABD的面积=三角形ABC 的面积的一半;又因AE:ED=2:1,所以S△CAE:S△CDE=2:1,从而可求三角形CDE的面积.解答:解:S△ABD=S△ADC=S△ABC=×30=15(平方厘米);S△CAE:S△CDE=2:1,S△CDE=S△ADC=×15=5(平方厘米);答:三角形CDE的面积是5平方厘米.故答案为:5.点评:此题主要考查等底等高的三角形的面积相等.5.(3分)现有一个5×5的方格表(如图)每个小方格的边长都是1,那么图中阴影部分的面积总和等于10.考点:组合图形的面积.分析:根据图形分别求出三个三角形的面积,相加即可求出图中阴影部分的面积总和.解答:解:2×3÷2+3×2÷2+4×2÷2,=3+3+4,=10.故答案为:10.点评:考查了组合图形的面积,解决此题的关键是分别得到三个三角形的面积.6.(3分)如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是60平方厘米.考点:组合图形的面积.分析:根据题意可阴影部分甲的面积等于正方形ABCD的面积减去长方形EFMN;阴影部分乙的面积等于长方形EFGH减去长方形EFMN;再用阴影部分甲减去阴影部分乙就可得到答案,列式解答.解答:解:阴影部分甲的面积:10×10﹣(EF×EM),阴影部分乙的面积:8×5﹣(EF×EM),阴影部分甲﹣阴影部分乙的面积,=10×10﹣(EF×EM)﹣[8×5﹣(EF×EM)]=100﹣(EF×EM)﹣40+(EF×EM)=100﹣40,=60(平方厘米);答:阴影部分甲与阴影部分乙的面积差是60平方厘米.故填:60.点评:解答此题的关键是图形中的空白部分的即在正方形中也在长方形中,在计算中可以相互抵消.7.(3分)如图所示,一个矩形被分成A、B、C、D四个矩形.现知A的面积是2cm2,B的面积是4cm2,C的面积是6cm2.那么原矩形的面积是24平方厘米.A BC D考点:组合图形的面积.分析:图中的四个矩形是大矩形是被两条直线分割后得到的,矩形的面积等于一组邻边的乘积,从横的方向来看,两个相邻矩形的倍比关系是一致的,B是A的两倍,那么D也是C的两倍,从而求出D的面积,然后把A、B、C、D的面积加在一起即可.解答:解:由题意知:B是A的两倍,那么D也是C的两倍,所以D的面积是2×6=12(cm2),从而原矩形的面积是:2+4+6+12=24(cm2),故答案为:24.点评:此题考查组合图形的面积.8.(3分)(2011•杭州模拟)有一个等腰梯形,底角为450,上底为8厘米,下底为12厘米,这个梯形的面积应是20平方厘米.考点:梯形的面积.分析:根据等腰图形的面积公式可得,只要求出梯形的高就可以解决问题,作出梯形的两条高,根据等腰梯形的性质,可将这个底角为450的梯形分成了两个等腰直角三角形,由此可以得出梯形的高为2厘米.解答:解:梯形的高:(12﹣8)÷2,=4÷2,=2(厘米),梯形的面积:(8+12)×2÷2,=20×2÷2,=20(平方厘米),答:梯形的面积为20平方厘米.故答案为:20.点评:画出梯形的两条高将梯形分成两个直角三角形和长方形,是解决此类问题到的关键.9.(3分)已知三角形ABC的面积为56平方厘米、是平行四边形DEFC的2倍,那么阴影部分的面积是14平方厘米.考点:组合图形的面积.分析:①三角形ABC的面积为56平方厘米、是平行四边形DEFC的2倍,所以平行四边形DEFC的面积=56÷2=28(平方厘米);②△AED与平行四边形DEFC是等底等高的,根据三角形面积公式和平行四边形的面积公式可得,△AED的面积=平行四边形DEFC一半,由此即可计算得出阴影部分的面积.解答:解:根据分析可得:56÷2=28(平方厘米),28÷2=14(平方厘米),答:阴影部分的面积是14平方厘米.故答案为:14.点评:抓住图形中潜在的条件:得出等底等高的三角形与平行四边形的面积关系.10.(3分)(2012•中山市模拟)下图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是97.考点:组合图形的面积.分析:因为长方形的面积等于△ABC与△ECD的面积和,所以△ABC与△ECD重叠部分的面积等于长方形未被这两个三角形盖住部分的面积和,即S=49+35+13=97.解答:解:如图:因为长方形的面积等于△ABC与△ECD的面积和,所以△ABC与△ECD重叠部分的面积等于长方形未被这两个三角形盖住部分的面积和,即:S=49+35+13=97.故答案为:97.点评:本题主要考查对三角形和长方形面积的计算及其之间关系的掌握,以及观察分析能力.二、解答题(共4小题,满分0分)11.已知正方形的面积是50平方厘米,三角形ABC两条直角边中,长边是短边的2.5倍,求三角形ABC的面积.考点:长方形、正方形的面积;三角形的周长和面积.分析:根据图形可知,正方形的边长是三角形的一条较长的直角边,设正方形的边长为a,三角形ABC 两条直角边中,长边是短边的2.5倍,则短边b=a÷2.5,然后利用三角形的面积公式解答.解答:解:正方形面积=a2=50平方厘米,即正方形的边长为a,那么三角形另一条直角边为b,长边是短边的2.5倍,a=2.5b,则b=a÷2.5,三角形面积=ab÷2;=a×a÷2.5÷2,=a2÷5,=50÷5,=10(平方厘米);答:三角形ABC的面积是10平方厘米.点评:此题主要考查正方形和三角形的面积计算方法,解答关键是利用等量代换来求出三角形的面积.12.如图,长方形ABCD中,AB=24cm,BC=26cm,E是BC的中点,F、G分别是AB、CD的四等分点,H为AD上任意一点,求阴影部分面积.考点:组合图形的面积.分析:此题是求图中组合图形的面积,可以利用辅助线将它转换成规则图形,如图,连接BH,将阴影部分分成了三个三角形,求出这三个三角形面积和即可解决问题.利用三角形面积公式进行解决.解答:解:如图,连接BH,AB=CD=24厘米,BC=AD=26厘米,因为F、G分别是四等分点,所以BF=AB==6(厘米),DG=24=6(厘米),S△BFH+S△DHG,=BF×AH DG×HD,=,=3×AH+3×DH,=3×(AH+DH),=3×AD,=3×26,=78(平方厘米),因为E是BC的中点,BE=13厘米,S△BEH=×13×24=156(平方厘米),78+156=234(平方厘米),答:阴影部分的面积为234平方厘米.点评:组合图形的面积计算,转化成规则图形的面积计算时解题的关键.13.有两张正方形纸,它们的边长都是整厘米数,大的一张的面积比小的一张多44平方厘米.大、小正方形纸的边长分别是多少?考点:长方形、正方形的面积.分析:可以分别设出这两个正方形的边长,然后进行讨论,如果有小数的情况就舍去,是整数的就保留,从而可以得到答案.解答:解:设大的正方形纸边长为a厘米,小的为b厘米,由题意b2﹣a2=44 (b+a)(b﹣a)=44 因其边长都是整厘米数,那么(b+a)与(b﹣a)也均为整厘米数而44分解成两个整数相乘只有3种情况,即44×1、22×2、11×4,由此可分别讨论:第一种情况:b+a=44 b﹣a=1 解得a=21.5,b=22.5,不符合题意,舍去;第二种情况:b+a=22 b﹣a=2 解得a=10,b=12,符合题意;第三种情况:b+a=11 b﹣a=4 解得a=3.5,b=7.5,不符合题意,舍去;综上所述,大的正方形纸边长为12厘米,小的为10厘米.答:大、小正方形纸的边长分别是12厘米、10厘米.点评:此题的关键是分情况讨论正方形的边长.14.用面积为1,2,3,4的四张长方形纸片拼成如图所示的一个长方形.问:图中阴影部分面积是多少?考点:组合图形的面积.分析:设面积为1的长方形长、宽分别为a、b,则ab=1,根据面积公式分别计算面积为2、3、4的长、宽,用a、b表示阴影部分的面积,即可解题.解答:解:设面积为1的长方形长、宽分别为a、b,则ab=1,面积为2的长方形宽为a,长为,面积为3的长方形和面积为4的长方形的长相等,则宽的比例为3:4,故面积为3的长方形的宽为,长为,BD=﹣b.阴影部分的面积为△ABD和△BCD面积之和,所以阴影部分的面积为,答:图中阴影部分面积是.点评:本题考查了长方形面积的计算,考查了三角形面积的计算,本题中求BD的长是解题的关键.====Word行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集。

小升初奥数专题-第六讲图形面积

小升初奥数专题-第六讲图形面积

小升初奥数专题-第六讲图形面积第六讲图形面积简单的面积计算是小学数学的一项重要内容.要会计算面积,首先要能识别一些特别的图形:正方形、三角形、平行四边形、梯形等等,然后会计算这些图形的面积.如果我们把这些图形画在方格纸上,不但容易识别,而且容易计算.上面左图是边长为 4的正方形,它的面积是 4×4= 16(格);右图是 3×5的长方形,它的面积是 3×5= 15(格).上面左图是一个锐角三角形,它的底是5,高是4,面积是 5×4÷2= 10(格);右图是一个钝角三角形,底是4,高也是4,它的面积是4×4÷2=8(格).这里特别说明,这两个三角形的高线一样长,钝角三角形的高线有可能在三角形的外面.上面左图是一个平行四边形,底是5,高是3,它的面积是 5× 3= 15(格);右图是一个梯形,上底是 4,下底是7,高是4,它的面积是(4+7)×4÷2=22(格).上面面积计算的单位用“格”,一格就是一个小正方形.如果小正方形边长是1厘米,1格就是1平方厘米;如果小正方形边长是1米,1格就是1平方米.也就是说我们设定一个方格的边长是1个长度单位,1格就是一个面积单位.在这一讲中,我们直接用数表示长度或面积,省略了相应的长度单位和面积单位.6.1 三角形的面积用直线组成的图形,都可以划分成若干个三角形来计算面积.三角形面积的计算公式是:三角形面积= 底×高÷2.这个公式是许多面积计算的基础.因此我们不仅要掌握这一公式,而且要会灵活运用.例1 右图中BD长是4,DC长是2,那么三角形ABD的面积是三角形ADC面积的多少倍呢?解:三角形ABD与三角形ADC的高相同.三角形ABD面积=4×高÷2.三角形 ADC面积=2×高÷2.因此三角形ABD的面积是三角形ADC面积的2倍.注意:三角形的任意一边都可以看作是底,这条边上的高就是三角形的高,所以每个三角形都可看成有三个底,和相应的三条高.例2 右图中,BD,DE,EC的长分别是2,4,2.F是线段AE的中点,三角形ABC的高为4.求三角形DFE的面积.解: BC= 2+ 4+ 2= 8.三角形 ABC面积= 8× 4÷2=16.我们把A和D连成线段,组成三角形ADE,它与三角形ABC的高相同,而DE长是4,也是BC的一半,因此三角形ADE面积是三角形ABC面积的一半.同样道理,EF是AE的一半,三角形DFE面积是三角形ADE面积的一半.三角形 DFE面积= 16÷4=4.例3 右图中长方形的长是20,宽是12,求它的内部阴影部分面积.解:ABEF也是一个长方形,它内部的三个三角形阴影部分高都与BE一样长.而三个三角形底边的长加起来,就是FE的长.因此这三个三角形的面积之和是FE×BE÷2,它恰好是长方形ABEF面积的一半.同样道理,FECD也是长方形,它内部三个三角形(阴影部分)面积之和是它的面积的一半.因此所有阴影的面积是长方形ABCD面积的一半,也就是20×12÷2=120.通过方格纸,我们还可以从另一个途径来求解.当我们画出中间两个三角形的高线,把每个三角形分成两个直角三角形后,图中每个直角三角形都是某个长方形的一半,而长方形ABCD是由这若干个长方形拼成.因此所有这些直角三角形(阴影部分)的面积之和是长方形ABCD面积的的一半.例4 右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?解:把A和C连成线段,四边形ABCD就分成了两个,三角形ABC和三角形ADC.对三角形ABC来说,AB是底边,高是10,因此面积=4×10÷2= 20.对三角形 ADC来说, DC是底边,高是 8,因此面积=7×8÷2=28.四边形 ABCD面积= 20+ 28= 48.这一例题再一次告诉我们,钝角三角形的高线有可能是在三角形的外面.例5 在边长为6的正方形内有一个三角形BEF,线段AE=3,DF=2,求三角形BEF的面积.解:要直接求出三角形BEF的面积是困难的,但容易求出下面列的三个直角三角形的面积三角形 ABE面积=3×6×2= 9.三角形 BCF面积= 6×(6-2)÷2= 12.三角形 DEF面积=2×(6-3)÷2= 3.我们只要用正方形面积减去这三个直角三角形的面积就能算出:三角形 BEF面积=6×6-9-12-3=12.例6 在右图中,ABCD是长方形,三条线段的长度如图所示,M是线段DE的中点,求四边形ABMD(阴影部分)的面积.解:四边形ABMD中,已知的太少,直接求它面积是不可能的,我们设法求出三角形DCE与三角形MBE的面积,然后用长方形ABCD的面积减去它们,由此就可以求得四边形ABMD的面积.把M与C用线段连起来,将三角形DCE分成两个三角形.三角形 DCE的面积是 7×2÷2=7.因为M是线段DE的中点,三角形DMC与三角形MCE面积相等,所以三角形MCE面积是 7÷2=3.5.因为 BE= 8是 CE= 2的 4倍,三角形MBE与三角形MCE高一样,因此三角形MBE面积是3.5×4=14.长方形 ABCD面积=7×(8+2)=70.四边形 ABMD面积=70-7- 14= 49.6.2 有关正方形的问题先从等腰直角三角形讲起.一个直角三角形,它的两条直角边一样长,这样的直角三角形,就叫做等腰直角三角形.它有一个直角(90度),还有两个角都是45度,通常在一副三角尺中.有一个就是等腰直角三角形.两个一样的等腰直角三角形,可以拼成一个正方形,如图(a).四个一样的等腰直角三角形,也可以拼成一个正方形,如图(b).一个等腰直角三角形,当知道它的直角边长,从图(a)知,它的面积是直角边长的平方÷2.当知道它的斜边长,从图(b)知,它的面积是斜边的平方÷4例7 右图由六个等腰直角三角形组成.第一个三角形两条直角边长是8.后一个三角形的直角边长,恰好是前一个斜边长的一半,求这个图形的面积.解:从前面的图形上可以知道,前一个等腰直角三角形的两个拼成的正方形,等于后一个等腰直角三角形四个拼成的正方形.因此后一个三角形面积是前一个三角形面积的一半,第一个等腰直角三角形的面积是8×8÷2=32.这一个图形的面积是32+16+ 8+ 4 + 2+1= 63.例8 如右图,两个长方形叠放在一起,小长形的宽是2,A点是大长方形一边的中点,并且三角形ABC是等腰直角三角形,那么图中阴影部分的总面积是多少?解:为了说明的方便,在图上标上英文字母D,E,F,G.三角形ABC的面积=2×2÷2=2.三角形ABC,ADE,EFG都是等腰直角三角形.三角形ABC的斜边,与三角形ADE的直角边一样长,因此三角形 ADE面积=ABC面积×2=4.三角形EFG的斜边与三角形ABC的直角边一样长.因此三角形EFG面积=ABC面积÷2=1.阴影部分的总面积是 4+1=5.例9 如右图,已知一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角 B 和D是直角,角A是45°.求这个四边形的面积.解:这个图形可以看作是一个等腰直角三角形ADE,切掉一个等腰直角三角形BCE.因为A是45°,角D是90°,角E是180°-45°-90°= 45°,所以ADE是等腰直角三角形,BCE也是等腰直角三角形.四边形ABCD的面积,是这两个等腰直角三角形面积之差,即7×7÷2-3×3÷2=20.这是1994小学数学奥林匹克决赛试题.原来试题图上并没有画出虚线三角形.参赛同学是不大容易想到把图形补全成为等腰直角三角形.因此做对这道题的人数不多.但是有一些同学,用直线AC把图形分成两个直角三角形,并认为这两个直角三角形是一样的,这就大错特错了.这样做,角 A是 45°,这一条件还用得上吗?图形上线段相等,两个三角形相等,是不能靠眼睛来测定的,必须从几何学上找出根据,小学同学尚未学过几何,千万不要随便对图形下结论.我们应该从题目中已有的条件作为思考的线索.有45°和直角,你应首先考虑等腰直角三角形.现在我们转向正方形的问题.例10 在右图 11×15的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)面积是多少?解:长方形的宽,是“一”与“二”两个正方形的边长之和,长方形的长,是“一”、“三”与“二”三个正方形的边长之和.长-宽 =15-11=4是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=11-4×2=3.中间小正方形面积=3×3= 9.如果把这一图形,画在方格纸上,就一目了然了.例11 从一块正方形土地中,划出一块宽为1米的长方形土地(见图),剩下的长方形土地面积是15.75平方米.求划出的长方形土地的面积.解:剩下的长方形土地,我们已知道长-宽=1(米).还知道它的面积是15.75平方米,那么能否从这一面积求出长与宽之和呢?如果能求出,那么与上面“差”的算式就形成和差问题了.我们把长和宽拼在一起,如右图.从这个图形还不能算出长与宽之和,但是再拼上同样的两个正方形,如下图就拼成一个大正方形,这个正方形的边长,恰好是长方形的长与宽之和.可是这个大正方形的中间还有一个空洞.它也是一个正方形,仔细观察一下,就会发现,它的边长,恰好是长方形的长与宽之差,等于1米.现在,我们就可以算出大正方形面积:15.75×4+1×1= 64(平方米).64是8×8,大正方形边长是 8米,也就是说长方形的长+宽=8(米).因此长=(8+1)÷2= 4.5(米).宽=8-4.5=3.5(米).那么划出的长方形面积是4.5×1=4. 5(平方米).例12 如右图.正方形ABCD与正方形EFGC 并放在一起.已知小正方形EFGC的边长是6,求三角形AEG(阴影部分)的面积.解:四边形AECD是一个梯形.它的下底是AD,上底是EC,高是CD,因此四边形AECD面积=(小正方形边长+大正方形边长)×大正方形边长÷2三角形ADG是直角三角形,它的一条直角边长DG=(小正方形边长+大正方形边长),因此三角形ADG面积=(小正方形边长+大正方形边长)×大正方形边长÷2.四边形 AECD与三角形 ADG面积一样大.四边形AHCD是它们两者共有,因此,三角形AEH 与三角形HCG面积相等,都加上三角形EHG面积后,就有阴影部分面积=三角形ECG面积=小正方形面积的一半= 6×6÷2=18.十分有趣的是,影阴部分面积,只与小正方形边长有关,而与大正方形边长却没有关系.6.3 其他的面积这一节将着重介绍求面积的常用思路和技巧.有些例题看起来不难,但可以给你启发的内容不少,请读者仔细体会.例13 画在方格纸上的一个用粗线围成的图形(如右图),求它的面积.解:直接计算粗线围成的面积是困难的,我们通过扣除周围正方形和直角三角形来计算.周围小正方形有3个,面积为1的三角形有5个,面积为1.5的三角形有1个,因此围成面积是4×4-3-5-1.5=6.5.例6与本题在解题思路上是完全类同的.例14 下图中 ABCD是 6×8的长方形,AF 长是4,求阴影部分三角形AEF的面积.解:三角形AEF中,我们知道一边AF,但是不知道它的高多长,直接求它的面积是困难的.如果把它扩大到三角形AEB,底边AB,就是长方形的长,高是长方形的宽,即BC的长,面积就可以求出.三角形AEB的面积是长方形面积的一半,而扩大的三角形AFB是直角三角形,它的两条直角边的长是知道的,很容易算出它的面积.因此三角形AEF面积=(三角形 AEB面积)-(三角形 AFB面积)=8×6÷2-4×8÷2= 8.这一例题告诉我们,有时我们把难求的图形扩大成易求的图形,当然扩大的部分也要容易求出,从而间接地解决了问题.前面例9的解法,也是这种思路.例15 下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大?解:我们首先要弄清楚,平行四边形面积有多大.平行四边形的面积是底×高.从图上可以看出,底是2,高恰好是长方形的宽度.因此这个平行四边形的面积与 10×2的长方形面积相等.可以设想,把这个平行四边形换成 10×2的长方形,再把横竖两条都移至边上(如前页右图),草地部分面积(阴影部分)还是与原来一样大小,因此草地面积=(16-2)×(10-2)= 112.例16 右图是两个相同的直角三角形叠在一起,求阴影部分的面积.解:实际上,阴影部分是一个梯形,可是它的上底、下底和高都不知道,不能直接来求它的面积.阴影部分与三角形BCE合在一起,就是原直角三角形.你是否看出, ABCD也是梯形,它和三角形BCE合在一起,也是原直角三角形.因此,梯形ABCD的面积与阴影部分面积一样大.梯形ABCD的上底BC,是直角边AD的长减去3,高就是DC的长.因此阴影部分面积等于梯形 ABCD面积=(8+8-3)×5÷2= 32.5.上面两个例子都启发我们,如何把不容易算的面积,换成容易算的面积,数学上这叫等积变形.要想有这种“换”的本领,首先要提高对图形的观察能力.例17 下图是两个直角三角形叠放在一起形成的图形.已知 AF,FE,EC都等于3, CB, BD 都等于 4.求这个图形的面积.解:两个直角三角形的面积是很容易求出的.三角形ABC面积=(3+3+3)×4÷2=18.三角形CDE面积=(4+4)× 3÷2=12.这两个直角三角形有一个重叠部分--四边形BCEG,只要减去这个重叠部分,所求图形的面积立即可以得出.因为 AF= FE= EC=3,所以 AGF, FGE,EGC是三个面积相等的三角形.因为CB=BD=4,所以CGB,BGD是两个面积相等的三角形.2×三角形DEC面积= 2×2×(三角形 GBC面积)+2×(三角形 GCE面积).三角形ABC面积= (三角形 GBC面积)+3×(三角形GCE 面积).四边形BCEG面积=(三角形GBC面积)+(三角形GCE面积)=(2×12+18)÷5=8.4.所求图形面积=12+ 18- 8.4=21.6.例18 如下页左图,ABCG是4×7长方形,DEFG是 2×10长方形.求三角形 BCM与三角形DEM面积之差.解:三角形BCM与非阴影部分合起来是梯形ABEF.三角形DEM与非阴影部分合起来是两个长方形的和.(三角形BCM面积)-(三角形DEM面积)=(梯形ABEF面积)-(两个长方形面积之和=(7+10)×(4+2)÷2-(4×7 + 2×10)=3.例19 上右图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?解:所求的影阴部分,恰好是三角形ABC与三角形CDE的公共部分,而面积为13,49,35这三块是长方形中没有被三角形ABC与三角形CDE盖住的部分,因此(三角形 ABC面积)+(三角形CDE面积)+(13+49+35)=(长方形面积)+(阴影部分面积).三角形ABC,底是长方形的长,高是长方形的宽;三角形CDE,底是长方形的宽,高是长方形的长.因此,三角形ABC面积,与三角形CDE 面积,都是长方形面积的一半,就有阴影部分面积=13 + 49+ 35= 97.6.4 几种常见模型一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如右图12::S Sa b=③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACDBCDSS =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.D CBA二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D在BA 的延长线上,E 在AC 上),则:():()ABCADE SS AB AC AD AE =⨯⨯△△图⑴ 图⑵三、蝶形定理任意四边形中的比例关系(“蝶形定理”): ①1243::S SS S =或者1324S SS S ⨯=⨯②()()1243::AO OC S S SS =++EDCBAEDCBAS 4S 3S 2S 1O DCB A蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝶形定理”): ①2213::S Sa b =②221324::::::S S SS a b ab ab=;③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型(二) 沙漏模型GF E ABCD ABCDO ba S 3S 2S 1S 4①AD AE DE AFAB AC BC AG===; ②22:ADE ABCSS AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.AB CDEF G相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾模型和风筝模型) 在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABOACO SS BD DC∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.O FEDCBA。

五年级奥数平面图形的面积计算

五年级奥数平面图形的面积计算

7.如下图,梯形ABCD的面积等于72平 方厘米,AB=4厘米,DC=8厘米。求三 角形ABD的面积。
五年级奥数平面图形的面积计算
8.在下图中,阴影部分的面积是 21平方厘米,直角梯形的面积是 多少平方厘米?
五年级奥数平面图形的面积计算
ห้องสมุดไป่ตู้
单位:厘米
谢谢观赏
五年级奥数平面图形的面积计算
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
谢谢
五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
求下面组合图形的面积:
单位:厘米
五年级奥数平面图形的面积计算
求下图中阴影部分的面积:
五年级奥数平面图形的面积计算
单位:厘米
求下图中阴影部分的面积:
五年级奥数平面图形的面积计算
单位:厘米
应用题:
1. 一块梯形木板面 积为9.2平方米,中 位线长2.3米,求梯 形木板的高是多少?
五年级奥数平面图形的面积计算
应用题:
2. 一个梯形的上底为6 厘米,下底为9厘米,面 积为45平方厘米,它的 高是多少厘米?
五年级奥数平面图形的面积计算
应用题:
3. 已知梯形的面积是 21平方米,高6米,下底 长4米,求上底长多少?
五年级奥数平面图形的面积计算
应用题:
4. 某梯形上底与下 底的和为100米,面积 为1500平方米,它的 高是多少米?
五年级第学1期
五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
△ADE 五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
5.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍, 求:(1)三角形的DEF的面积.(2)CF的长.

(完整版)五年级图形面积奥数题

(完整版)五年级图形面积奥数题

五年级图形1.如图,阴影部分是正方形,则长方形的周长是厘米.2.下图两个正方形的边长分别是8厘米和6厘米,求阴影部分的面积?3.用四个相同的长方形拼成个面积为49平方厘米的大正方形,每个长方形的周长是多少厘米?4.将一个大长方形如下图分割为16个小长方形。

图上已标出部分小长方形的面积。

那么,A长方形的面积是多少?5.如图,三个面积都是20平方厘米正方形,放在一个大正方形的盒内,它们之间互相叠合,一共把大正方形盖住40平方厘米,求大正方形的面积.6.正方形的边长为10,四边形ABCD的面积的面积是6,求阴影部分的面积。

7.正方形边长是6cm, 长方形的长是8cm,求长方形宽?8.长方形ABCD中, 四边形AHEP=12cm2, S△FBP=7cm2, S△HGD=3cm2,求四边形EFCG的面积。

9.如图,长方形中,长和宽分别是8cm和4cm, S△HBF与 S△DEP的面积和是10cm2,求四边形ABCD的面积. 10.长方形的长是10米,宽是8米,ABCD分别在四条边上,且C比B低4米,D在A的右边3米,四边形ABCD的面积?11.长方形的长是10米,宽是8米,ABCD分别在四条边上,且B比D低4米, C在A的左边1米,四边形ABCD的面积?12.长方形ABCD周长为16米,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68平方米,求长方形ABCD的面积13.正方形边长是10cm,BF⊥AE,BF=8cm,求AE长,(18)14.如下图,甲乙丙丁四个长方形拼成一个大正方形,已知甲乙丙丁四个长方形面积的和是48cm2,四边形ABCD的面积是40cm2,求甲乙丙丁四个长方形周长的总和。

五年级奥数题图形与面积含详细答案

五年级奥数题图形与面积含详细答案

五年级奥数题:图形与面积一、填空题共10小题,每小题3分,满分30分1.3分如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是_________ 厘米.2.3分第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是_________ .3.3分如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是_________ 平方厘米.4.3分2014 长沙模拟如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是_________ 平方厘米.5.3分在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于_________ 平方厘米.6.3分如图是边长为4厘米的正方形,AE=5厘米、OB是_________ 厘米.7.3分如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE是_________ 厘米.8.3分如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是_________ .9.3分如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是_________ .10.3分图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是_________ 平方厘米.二、解答题共4小题,满分0分11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.12.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13.一个周长是56厘米的大长方形,按图中1与2所示意那样,划分为四个小长方形.在1中小长方形面积的比是:A:B=1:2,B:C=1:2.而在2中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.14.2012 武汉模拟如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是_________ .2010年五年级奥数题:图形与面积B参考答案与试题解析一、填空题共10小题,每小题3分,满分30分1.3分如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是170 厘米.考点:巧算周长.分析:要求该图形的周长,先求出每个小正方形的面积,根据正方形的面积公式,得出小正方形的边长,然后先算出该图形的外周的长,因为内、外的长相等,再乘2即可得出结论.解答:解:400÷16=25平方厘米,因为5×5=25平方厘米,所以每个小正方形的边长为5厘米,周长为:5×4+5×4+5×3+5×2+5×3+5×2,=85×2,=170厘米;答:它的周长是170厘米.点评:此类题解答的关键是先求出每个小正方形的面积,根据正方形的面积公式,得出小正方形的边长,进而算出该图形的外周的长,因为内、外的长相等,再乘2即可得出结论.2.3分第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是25 .考点:组合图形的面积.分析:此题需要进行图形分解:“7”分成一个长方形、一个等腰直角三角形、一个平行四边形;“2”分成一个梯形、一个平行四边形、一个长方形;“1”分成一个梯形和两个长方形.然后进行图形转换,依据题目条件即可求出结果.解答:解:“7”所占的面积和=+3+4=,“2”所占的面积和=3+4+3=10,“1”所占的面积和=+7=,那么7,2,1三个数字所占的面积之和=++10=25.故答案为:25.点评:此题关键是进行图形分解和转换.3.3分如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是平方厘米.考点:组合图形的面积.分析:由图可以观察出:大正方形的面积减粗线以外的图形面积即为粗线围成的图形面积.解答:解:大正方形的面积为4×4=16平方厘米;粗线以外的图形面积为:整格有3个,左上,右上,右中,右下,左中,右中,共有3++5×=平方厘米;所以粗线围成的图形面积为16﹣=平方厘米;答:粗线围成的图形面积是平方厘米.故此题答案为:.点评:此题关键是对图形进行合理地割补.4.3分2014•长沙模拟如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是24 平方厘米.考点:组合图形的面积.分析:两个正方形的面积减去两个空白三角形的面积.解答:解:4×4+8×8﹣×4×4+8﹣×8×8,=16+64﹣24﹣32,=24cm2;答:阴影的面积是24cm2.故答案为:24.点评:求组合图形面积的化为求常用图形面积的和与差求解.5.3分在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于12 平方厘米.考点:相似三角形的性质份数、比例;三角形的周长和面积.分析:根据题意,连接AD,即可知道△ABD和△ADC的关系,△ADE和△BDE的关系,由此即可求出四边形AEDC的面积.解答:解:连接AD,因为BD=2DC,所以,S△ABD=2S△ADC,即,S△ABD=18×=12平方厘米,又因为,AE=BE,所以,S△ADE=S△BDE,即,S△BDE=12×=6平方厘米,所以AEDC的面积是:18﹣6=12平方厘米;故答案为:12.点评:解答此题的关键是,根据题意,添加辅助线,帮助我们找到三角形之间的关系,由此即可解答.6.3分如图是边长为4厘米的正方形,AE=5厘米、OB是厘米.考点:组合图形的面积.分析:连接BE、AF可以看出,三角形ABE的面积是正方形面积的一半,再依据三角形面积公式就可以求出OB的长度.解答:解:如图连接BE、AF,则BE与AF相交于D点S△ADE=S△BDF则S△ABE=S正方形=×4×4=8平方厘米;OB=8×2÷5=厘米;答:OB是厘米.故答案为:.点评:此题主要考查三角形和正方形的面积公式,将数据代入公式即可.7.3分如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE是厘米.考点:组合图形的面积.分析:连接AG,则可以依据题目条件求出三角形AGD的面积,因为DG已知,进而可以求三角形AGD的高,也就是长方形的宽,问题得解.解答:解:如图连接AGS△AGD=S正方形ABCD﹣S△CDG﹣S△ABG,=4×4﹣3×4÷2﹣1×4÷2=16﹣6﹣2=8平方厘米;8×2÷5=厘米;答:长方形的宽是厘米.故答案为:.点评:依据题目条件做出合适的辅助线,问题得解.8.3分如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是243 .考点:组合图形的面积.分析:从图中可以看出每上、下两个小矩形的一个边是相邻的,也就是说长是相等的,那么根据矩形的面积公式知,如果长相同,面积之比也就是宽之比,反之宽之比也就是面积之比;由中间面积20和16的矩形,可以算出空着的小矩形面积,最后把所有小矩形面积加起来就是大矩形的面积.解答:解:由图和题意知,中间上、下小矩形的面积比是:20:16=5:4,所以宽之比是5:4,那么,A:36=5:4得A=45;25:B=5:4得B=20;30:C=5:4得C=24;D:12=5:4得D=15;所以大矩形的面积=45+36+25+20+20+16+30+24+15+12=243;故答案为:243.点评:此题考查了如果长方形的长相同,宽之比等于面积之比,还考查了比例的有关知识.9.3分如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是60 .考点:组合图形的面积.分析:根据题意:正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,可连接DP,然后再利用三角形的面积公式进行计算即可得到答案.解答:解:阴影部分的面积=×DH×AP+×DG×AD+×EF×AD+×MN×BP=×4×AP+×3×12+×3×12+×4×BP=2AP+18+18+2BP=36+2×AP+BP=36+2×12=36+24=60.答:这个图形阴影部分的面积是60.点评:此题主要考查的是三角形的面积公式.10.3分图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是 4 平方厘米.考点:重叠问题;三角形的周长和面积.分析:因为S△EFC+S△GHC=四边形EFGH面积÷2=12,S△AEF+S△AGH=四边形EFGH面积÷2=12,所以S△ABE+S△ADH=S△BFC+S△DGC=四边形EFGH面积÷2﹣阴影部分的总面积是10平方厘米=2平方厘米.所以:四边形ABCD面积=S△ECH﹣S△ABE+S△ADH=四边形ABCD面积÷4﹣2=6﹣2=4平方厘米.解答:解:由题意推出:S△ABE+S△ADH=S△BFC+S△DGC=四边形EFGH面积÷2﹣阴影面积10平方厘米=2平方厘米.所以:四边形ABCD面积=S△ECH﹣S△ABE+S△ADH=四边形ABCD面积÷4﹣2=6﹣2=4平方厘米.故答案为:4.点评:此题在重叠问题中考查了三角形的周长和面积公式,此题设计的非常精彩.二、解答题共4小题,满分0分11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.考点:等积变形位移、割补.分析:如图,将正六边形ABCDEF等分为54个小正三角形,根据平行四边形对角线平分平行四边形面积,采用数小三角形的办法来计算面积.解答:解:如图,S△PEF=3,S△CDE=9,S四边形ABQP=11.上述三块面积之和为3+9+11=23.因此,阴影四边形CEPQ面积为54﹣23=31.点评:此题主要利用面积分割,用数基本小三角形面积来解决问题.12.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.考点:等积变形位移、割补.分析:由图及题意知,可把涂阴影部分小正六角星形等分成12个小三角形,且都与外围的6个空白小三角形面积相等,已知涂阴影部分的小正六角星形面积是16平方厘米,可求出大正六角星形中心正六边形的面积,而这个正六边形又可等分成6个小正三角形,且它们与外围六个大角的面积相等,进而可求出大正六角星形面积解答:解:如下图所示,涂阴影部分小正六角星形可等分成12个小三角形,且都与外围的6个空白小三角形面积相等,所以正六边形ABCDEF的面积:16÷12×12+6=24平方厘米;又由于正六边形ABCDEF又可等分成6个小正三角形,且它们与外围六个大角的面积相等,所以大正六角星形面积:24×2=48平方厘米;答:大正六角星形面积是48平方厘米.点评:此题要借助求正六边形的面积来解答,它既可看作是18个小正三角形,又可看作是6个大点的正三角形组成.13.一个周长是56厘米的大长方形,按图中1与2所示意那样,划分为四个小长方形.在1中小长方形面积的比是:A:B=1:2,B:C=1:2.而在2中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.考点:比的应用;图形划分.分析:要求大长方形的面积,需求出它的长和宽,由条件“在1中小长方形面积的比是:A:B=1:2,B:C=1:2.而在2中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3”可知:D的宽是大长方形宽的,D′的宽是大长方形宽的,D的长是×28﹣大长方形的宽,D′的长是×28﹣大长方形的宽,由此便可以列式计算.解答:解:设大长方形的宽为x,则长为28﹣x因为D的宽=x,D′的宽=x,所以,D′的宽﹣D的宽=.D长=×28﹣x,D′长=×28﹣x,D′长﹣D长=×28﹣x,由题设可知:=即=,于是=,x=8.于是,大长方形的长=28﹣8=20,从而大长方形的面积为8×20=160平方厘米.答:大长方形的面积是160平方米.点评:此题比较复杂,主要考查比的关系,应利用比的意义,找清数量见的比,再利用题目条件,就可以进行计算求得结果.14.2012•武汉模拟如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是40 .考点:三角形的周长和面积.分析:可以把S看成是一个整体,根据各线段的关系和左右两部分面积的关系,可以列出一个方程,求出S△ADE的△ADE面积,然后再根据所求三角形与S△ADE的关系求出答案.解答:解:由题意知,S△AEG=3S△ADE,S△BFE=S△BEC,设S△ADE=X,则S△AEG=3X,S△BFE=38﹣X,可列出方程:38﹣X+3X=65,解方程,得:x=10,所以S△ADG=10×1+3=40.故答案为:40.点评:此题考查了如何利用边的关系求三角形的面积.。

小学奥数图形的面积

小学奥数图形的面积

直线型面积计算(1)对于三角形的面积计算,我们除了熟练运用基本的计算公式,在技巧性很强的奥数题中还要根据相应的性质和结论来解题,下面就是我们小学奥数常用的三条性质:【例 1】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.E BA E BA【分析】 本题是等底等高的两个三角形面积相等的应用.连接BH 、CH . ∵AE EB =, ∴S S AEH BEH =V V .同理,S S BFH CFH =V V ,S =S CGH DGH V V ,∴11S S 562822==⨯=阴影长方形ABCD (平方厘米).[铺垫]你有多少种方法将任意一个三角形分成:⑴2个面积相等的三角形; ⑵3个面积相等的三角形; ⑶4个面积相等的三角形.[分析] ⑴如右图,D 、E 、F 分别是对应边上的中点,这样就将三角形分成了2个面积相等的三角形;CBAEA B CFCB A①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如BCD ACD S S ∆∆=; 反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于CD .DC BA⑵如右图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点;答案不唯一;ED A BC FC BADGDA BC⑶如下图,答案不唯一,以下仅供参考.(5)(4)(3)(2)(1)【例 2】 如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE 的面积是多少?EDCB AEDC B A【分析】 连接CE .∵3AE AB =,∴2BE AB =,2BCE ACB S S ∆∆=.又∵2BD BC =,∴244BDE BCE ABC S S S ∆∆∆===.【例 3】 如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?ECBA 【分析】 ∵3CE AE =,∴4AC AE =,4ADC ADE S S ∆∆=;又∵2DC BD =,∴32BC DC =,361202ABC ADC ADE S S S ∆∆∆===(平方厘米).[铺垫]如图,三角形ABC 被分成了甲、乙两部分,4BD DC ==,3BE =,6AE =,甲部分面积是乙部分面积的几分之几?乙甲E CBAABCDE[分析] 连接AD .∵3BE =,6AE =,∴13BE AB =,13BDE ABD S S ∆∆=.又∵4BD DC ==,∴12ABD ABC S S ∆∆=,∴1136BDE ABD ABC S S S ∆∆∆==,∴15S S =乙甲.[拓展]如图,在三角形ABC 中,8BC =厘米,6AD =厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?FE CBAFE CBA[分析] ∵F 是AC 的中点,∴12ABF ABC S S ∆∆=,同理12BEF ABF S S ∆∆=,∴111866442BEF ABC S S ∆∆==⨯⨯⨯=(平方厘米).【例 4】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.F EDCB A AB CDEF【分析】 本题是性质的反复使用(还可以用燕尾定理,但本讲不用这种方法,燕尾定理我们会放到五年级春季再讲).连接AE 、CD .∵S 1S 1S 1ABC ABC DBC ==V V V ,, ∴S 1DBC =V .同理可得其它,最后三角形DEF 的面积18=.[拓展]如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A A B CDEFGH[分析] 连接BD .设1DCB S S =V ,2DAB S S =V ∵CB BF =,∴2CDF CDB CDB CB BFS S S CB∆∆∆+==,又∵DC CG =,∴12CFG CDF S S S ∆∆==,同理22AEH S S ∆=, ∴2CFG AEH ABCD S S S ∆∆+=连接AC ,同理2HDG BEF ABCD S S S ∆∆+=∴5EFGH CFG AEH HDG BEF ABCD ABCD S S S S S S S ∆∆∆∆=++++=,111355ABCD EFGH S S ==(平方米).[拓展]如图,已知长方形ADEF 的面积16,三角形ADB 的面积是3,三角形ACF 的面积是4,那么三角形ABC 的面积是多少?F E D CA F ED CA[分析] 连接对角线AE .∵ADEF 是长方形∴12ADE AEF ADEF S S S ∆∆==X∴38ADB ADE S DB DE S ∆∆==, 12ACF AEF S FC EF S ∆∆== ∴58BE DE DB DE DE -==,12CE FE CF EF EF -== ∴1515162822BEC S ∆=⨯⨯⨯=∴132ABC ADEF ADB ACF CBE S S S S S ∆∆∆∆=---=X .[拓展]如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF GABCD EF G[分析] 连接AE ,FE .因为:2:3BE EC =,:1:2DF FC =,所以3111()53210DEF ABCD ABCD S S S =⨯⨯=V 长方形长方形.因为12AED ABCD S S =V 长方形,11::5:1210AG GF ==,所以510AGD GDF S S ==V V ,所以12AFD S =V .因为16AFD ABCD S S =V 长方形,所以长方形ABCD 的面积是72平方厘米.【例 5】 (第八届小数报数学竞赛决赛试题)如下图,E 、F 分别是梯形ABCD 的下底BC 和腰CD 上的点,DF FC =,并且甲、乙、丙3个三角形面积相等.已知梯形ABCD 的面积是32平方厘米.求图中阴影部分的面积.BC【分析】 因为乙、丙两个三角形面积相等,底DF FC =.所以A 到CD 的距离与E 到CD 的距离相等,即AE 与CD 平行,四边形ADCE 是平行四边形,阴影部分的面积=平行四边形ADCE 的面积的12,所以阴影部分的面积=乙的面积2⨯.从而阴影部分的面积23212.85=⨯=(平方厘米).[拓展]如图,在平行四边形ABCD 中,BE EC =,2CF FD =.求阴影面积与空白面积的比.B[分析] 因为BE EC =,2CF FD =,所以14ABE ABCD S S =V 四边形,16ADF ABCD S S =V 四边形.因为2AD BE =,所以2AG GE =,所以11312BGE ABE ABCD S S S ==V V 四边形,2136ABG ABE ABCD S S S ==V V 四边形.同理可得,18ADH ABCD S S =V 四边形,124DHF ABCD S S =V 四边形.因为12BCD ABCD S S =V 四边形,所以空白部分的面积111112()21224683ABCD ABCD S S =--++=四边形四边形,所以阴影部分的面积是13ABCD S四边形. 12:1:233=,所以阴影面积与空白面积的比是1:2.【例 6】 如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等.GFECB AGFECB A【分析】 本题主要是让学生了解并会运用等底等高的两个平行四边形面积相等和三角形面积等于与它等底等高的平行四边形面积的一半.证明:连接BE .(我们通过ABE V 把这两个看似无关的平行四边形联系在一起.)∵在平行四边形ABCD 中,12ABE S AB AB =⨯⨯V 边上的高,∴1S S 2ABG ABCD =V W (也就是等积变换的重要依据③的特殊情况).同理,1S S 2ABE AEGF =V Y ,∴平行四边形ABCD 与AEGF 面积相等.[拓展]如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?A BGC E F DABGCEF D[分析] 本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半.证明:连接AG .(我们通过ABG V 把这两个长方形和正方形联系在一起).∵在正方形ABCD 中,G 12AB S AB AB =⨯⨯V 边上的高,∴1S S 2ABG ABCD =V W (三角形面积等于与它等底等高的平行四边形面积的一半)同理,1S S 2ABG EFGB =V .∴正方形ABCD 与长方形EFGB 面积相等. 长方形的宽8810 6.4=⨯÷=(厘米).【例 7】 如图,正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为10厘米,求图中三角形BFD 的面积为多少平方厘米?HGFED C BAHG FED C BA【分析】 连接CF .∵BD ,CF 都是正方形的对角线∴45DBC FCE ∠=∠=︒,BD ∥CF .∴BFD ∆与BCD ∆同底等高,11010502BFD BCD S S ∆∆==⨯⨯=(平方厘米) .【例 8】 (03年西城某重点中学小升初分班考题)右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积.AA【分析】 这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接AD (见右上图),可以看出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形AGD 是三角形ABD 与三角形ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABG 与三角形GCD 面积仍然相等.根据等量代换,求三角形ABC 的面积等于求三角形BCD 的面积,等于4428⨯÷=.[拓展](小学数学夏令营五年级组试题)如图,四边形ABCD 和四边形DEFG 都是正方形,已知三角形AFH 的面积为6平方厘米,求三角形CDH 的面积.[分析] 通常求三角形的面积,都是先求它的底和高.题目中没有一条线段的长度是已知的,所以我们只能通过创造等积的方法来求.直接找三角形HDC 与三角形AFH 的关系还很难,而且也没有利用“四边形ABCD 和四边形DEFG 是正方形”这一条件.我们不妨将它们都补上梯形DEFH 这一块.寻找新得到大三角形CEF 和大直角梯形DEFA 之间的关系.经过验算,可以知道它们的面积是相等的.从而得到三角形HDC 与三角形AFH 面积相等,也是6平方厘米.【例 9】 如右图,在平行四边形ABCD 中,直线CF 交AB 于E ,交DA 延长线于F ,若1ADE S =V ,求BEF V 的面积.AB CDEFABCDEF[分析] 本题主要是让学生并会运用等底等高的两个三角形面积相等(或夹在一组平行线之间的三角形面积相等)和等量代换的思想.连接AC .∵AB ∥CD ,∴ADE ACE S S =V V . 同理AD ∥BC ,∴ACF ABF S S =V V .又ACF ACE AEF S S S =+V V V ,ABF BEF AEF S S S =+V V V ,∴ ACE BEF S S =V V ,即 1BEF ADE S S ==V V .【例10】 (小学数学奥林匹克决赛试题)右图中,ABCD 是74⨯的长方形,DEFG 是102⨯的长方形,求三角形BCO 与三角形EFO 的面积之差. 【分析】 直接求出三角形BCO 与三角形EFO 的面积之差,不太容易做到.如果利用差不变性质,将所求面积之差转化为另外两个图形的面积之差,而这两个图形的面积之差容易求出,那么问题就解决了.法1:连结BE (见右图).三角形BCO 与三角形EFO 都加上三角形BEO ,则原来的问题转OA BCD E F G OA BC D E FG法2:连结CF (见右图).三角形BCO 与三角形EFO 都加上三角形CFO ,则原来的问题转化为求三角形BCF 与三角形ECF 的面积之差.所求为4(107)22(107)23⨯-÷-⨯-÷=.法3:延长BC 交GF 于H (见右图).三角形BCO 与三角形EFO 都加上梯形COFH ,则原来的问题转化为求三角形BHF 与矩形CEFH 的面积之差. 所求为(42)(107)22(107)3+⨯-÷-⨯-=.法4:延长AB ,FE 交于H (见右图).三角形BCO 与三角形EFO 都加上梯形BHEO ,则原来的问题转化为求矩形BHEC 与直角三角形BHF 的面积之差.所求为4(107)(42)(107)23⨯--+⨯-÷=.【例11】 如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?BE【分析】 三角形ABC 的面积+三角形CDE 的面积(133549)+++=长方形面积+阴影部分面积;又因为三角形ABC 的面积=三角形CDE 的面积12=长方形面积,所以可得:阴影部分面积13354997=++=.1. 如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果24AB =厘米,8BC =厘米,求三角形ZCY 的面积.ABC DZ Y【分析】 ∵Y 是BD 的中点,Z 是DY 的中点,∴1122ZY DB =⨯⨯,14ZCY DCB S S =V V ,又∵ABCD 是长方形,∴11124442ZCY DCB ABCD S S S ==⨯=V V Y (平方厘米).2. 如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?A BCD EA BCDE【分析】 连接BE .∵13AE EC = ∴13ABE ABC S S ∆∆=.又∵15AD AB =∴11515ADE ABE ABC S S S ∆∆∆==,∴1515ABC ADE S S ∆∆==.3. 两个正方形组成右图所示的组合图形.已知组合图形的周长是52厘米,4DG =厘米,求阴影部分的面积.A【分析】 组合图形的周长并不等于两个正方形的周长之和,因为CG 部分重合了.用组合图形的周长减去DG ,就得到大、小正方形边长之和的三倍,所以两个正方形的边长之和等于(524)316-÷=(厘米).又由两个正方形的边长之差是4厘米,可求出大正方形边长(164)210=+÷=(厘米),小正方形边长(164)26=-÷=(厘米).阴影部分面积410266238BDG BFG S S =+=⨯÷+⨯÷=V V (平方厘米).HO A BCD E FGH OA B CD E FG4. 在右图中,平行四边形ABCD 的边BC 长10厘米,直角三角形ECB 的直角边EC 长8厘米.已知阴影部分的总面积比三角形EFG 的面积大10平方厘米,求平行四边形ABCD 的面积.[分析] 因为阴影部分比三角形EFG 的面积大10平方厘米,都加上梯形FGCB 后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD 比直角三角形ECB 的面积大10平方厘米,所以平行四边形ABCD 的面积等于10821050⨯÷+=平方厘米.5. 右图中,4CA AB ==厘米,三角形ABE 比三角形CDE 的面积大2平方厘米,求CD 的长.ABCD E 【分析】 连结CB .三角形DCB 的面积为44226⨯÷-=平方厘米,6243CD =⨯÷=厘米.直线型面积计算(2)在小学的学习中几何是一个很重要的部分,每一个几何图形都非常美妙,几何图形的美妙不仅来源于它的外形,更重要的是在几何模型上出现的那些美妙的规律,下面我们就一起来看看几个美妙的几何模型:模型一:任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.模型二:梯形中比例关系(“梯形蝴蝶定理”):A BCDOba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =;③S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.模型三:相似三角形性质:GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形【例 9】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?B【分析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=.【例 10】 (2006年南京智力数学冬令营)如下图,梯形ABCD 的AB ∥CD ,对角线AC ,BD 交于O ,已知AOB V 与BOC V 的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.3525OABCD 【分析】 根据梯形蝴蝶定理,2::25:35AOB BOC S S a ab ==V V ,可得:5:7a b =,再根据梯形蝴蝶定理,2222::5:725:49AOB DOC S S a b ===V V ,所以49DOC S =V (平方厘米).那么梯形ABCD 的面积为25353549144+++=(平方厘米).[铺垫]梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三角形BOC 面积的23,求三角形AOD 与三角形BOC 的面积之比.OA B CD[分析] 根据梯形蝴蝶定理,2::2:3AOB BOC S S ab b ==V V ,可以求出:2:3a b =,再根据梯形蝴蝶定理,2222::2:34:9AOD BOC S S a b ===V V .通过利用已有几何模型,我们轻松解决了这个问题,而没有像以前一样,为了某个条件的缺乏而千辛万苦进行构造假设,所以,请同学们一定要牢记几何模型的结论.【例 11】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABC DOH GA B C D O【分析】 在本题中,四边形ABCD 为任意四边形,对于这种“不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形.看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个“不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题. 解法一:∵::1:3ABD BDC AO OC S S ∆∆==, ∴236OC =⨯=, ∴:6:32:1OC OD ==.解法二:作AH BD ⊥于H ,CG BD ⊥于G .∵13ABD BCD S S ∆∆=,∴13AH CG =,∴13AOD DOC S S ∆∆=,∴13AO CO =,∴236OC =⨯=, ∴:6:32:1OC OD ==.【例 12】 在边长为1的正方形ABCD 中,2BE EC =,2DF FC =.求四边形ABGD 的面积.ABCDE FGABCDE FG【分析】 题目要求四边形ABGD 的面积,可以发现这个四边形是个“不良四边形”,需要对它进行改造.通常在一个四边形中画辅助线,会想到画对角线,又注意到E 、F 都是三等分点,如果连接EF ,因为EF ∥BD ,则可以构造一个梯形,从而应用梯形蝴蝶定理快速求解.因为2BE EC =,2DF FC =,所以:3:1BD EF =.根据梯形蝴蝶定理可以知道,等腰梯形BDFE 四部分面积比为1:3:3:9;而等腰梯形BDFE 的面积为:111141122339⨯⨯-⨯⨯=,所以9113394BDG BDFE S S =⨯=+++V ,得11311244ABGD ADB BDG S S S =+=⨯⨯+=V V .【例 13】如图,正方形ABCD 面积为1,M 是AD 边上的中点.求图中阴影部分的面积.【分析】 因为M 是AD 边上的中点,所以12AM =,可得34AMCB S =梯形,由于:1:2AM BC =,根据梯形蝴蝶定理可以知道22:::1:12:12:21:2:2:4AMG ABG MCG BCG S S S S =⨯⨯=V V V V ()(),所以阴影部分面积占梯形面积的22412249+=+++,所以341493S =⨯=阴影.【例 14】如图,在长方形ABCD 中,6AB =,2AD =,AE EF FB ==,求阴影部分的面积.DD【分析】 如图,连接DE ,DE 将阴影部分的面积分为两个部分,其中三角形AED 的面积为26322⨯÷÷=.由于:1:3EF DC =,根据梯形蝴蝶定理,:3:1DEO EFO S S =V V ,所以34DEO DEF S S =V V ,而2DEF ADE S S ==V V ,所以32 1.54DEO S =⨯=V ,阴影部分的面积为2 1.5 3.5+=.相似三角形性质【例 7】 在图中的正方形中,A ,B ,C 分别是所在边的中点,CDO V 的面积是ABO V 面积的几倍?ABCDO EFABCO【分析】 连接BC ,易知OA ∥EF ,根据相似三角形性质,可知::OB OD AE AD =,且::1:2OA BE DA DE ==,所以CDO V 的面积等于CBO V 的面积;由1124OA BE AC ==可得3CO OA =,所以3CDO CBO ABO S S S ==V V V ,即CDO V 的面积是ABO V 面积的3倍.【例 8】 如图,线段AB 与BC 垂直,已知4AD EC ==,6BD BE ==,那么图中阴影部分面积是多少?A BCDA BDA BD【分析】 解法一:这个图是个对称图形,且各边长度已经给出,不妨连接这个图形的对称轴看看.作辅助线BO ,则图形关于BO 对称,有ADO CEO S S =V V ,DBO EBO S S =V V ,且:4:62:3ADO DBO S S ==V V . 设ADO V 的面积为2份,则DBO V 的面积为3份,直角三角形ABE 的面积为8份.因为610230ABE S =⨯÷=V ,而阴影部分的面积为4份,所以阴影部分的面积为308415÷⨯=.解法二:连接DE 、AC .由于4AD EC ==,6BD BE ==,所以DE ∥AC ,根据相似三角形性质,可知::6:103:5DE AC BD BA ===,根据梯形蝴蝶定理,()()22:::3:35:35:59:15:15:25DOE DOA COE COA S S S S =⨯⨯=V V V V ,所以()():1515:915152515:32ADEC S S =++++=阴影梯形,即1532ADECS S=阴影梯形; 又11101066=3222ADEC S =⨯⨯-⨯⨯梯形,所以151532ADEC S S ==阴影梯形.【例 9】 右图中正方形的面积为1, E 、F 分别为AB 、BD 的中点,13GC FC =.求阴影部分的面积.AB EABE【分析】 题中条件给出的都是比例关系,由此可以初步推断阴影部分的面积要通过比例求解,而图中出现最多的就是三角形,那么首先想到的就是利用相似三角形的性质.阴影部分为三角形,已知底边为正方形边长的一半,只要求出高,便可求出面积. 可以作FH 垂直BC 于H ,GI 垂直BC 于I .根据相似三角形性质,::1:3CI CH CG CF ==,又因为CH HB =,所以:1:6CI CB =,即():61:65:6BI BC =-=,所以115522624BGE S =⨯⨯=V .【例10】 如图,长方形ABCD 中,E 为AD 的中点,AF 与BE 、BD 分别交于G 、H ,OE 垂直AD 于E ,交AF 于O ,已知5AH cm =,3HF cm =,求AG .ABC DEFGHO【分析】 由于AB ∥DF ,利用相似三角形性质可以得到::5:3AB DF AH HF ==,又因为E 为AD 中点,那么有:1:2OE FD =, 所以3:5:10:32AB OE ==,利用相似三角形性质可以得到::10:3AG GO AB OE ==, 而()()1153422AO AF cm ==⨯+=,所以()104041313AG cm =⨯=.【例11】 ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,则图中阴影部分的面积为____平方厘米.BB【分析】 注意引导学生利用三角形的中位线定理以及平行线的相关性质.设G 、H 分别为AD 、DC 的中点,连接GH 、EF 、BD .可得1=4AED ABCD S S V 平行四边形,对角线BD 被EF 、AC 、GH 平均分成四段,又OM ∥EF ,所以23::2:344DO ED BD BD ==,()()::32:31:3OE ED ED OD ED =-=-=,所以 11117263434AEO ABCD S S =⨯=⨯⨯=V 平行四边形(平方厘米),212ADO AEO S S =⨯=V V (平方厘米).同理可得6CFM S =V 平方厘米,12CDM S =V 平方厘米. 所以 366624ABC AEO CFM S S S --=--=V V V (平方厘米), 于是,阴影部分的面积为24121248++=(平方厘米).练习5. (第十届华杯赛)如下图,四边形ABCD 中,对角线AC 和BD 交于O 点,已知1AO =,并且35ABD CBD =三角形的面积三角形的面积,那么OC 的长是多少?ABCDO【分析】 根据蝴蝶定理,ABD AO CBD CO =三角形的面积三角形的面积,所以35AO CO =,又1AO =,所以53CO =.6. 如图,梯形ABCD 中,AOB ∆、COD ∆的面积分别为1.2和2.7,求梯形ABCD 的面积.ODC BA 【分析】 根据梯形蝴蝶定理,22::4:9AOB ACOD S S a b ==V V ,所以:2:3a b =,2:::3:2AOD AOB S S ab a b a ===V V ,31.2 1.82AOD COB S S ==⨯=V V ,1.2 1.8 1.82.77.5ABCD S =+++=梯形.7. 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.【分析】 已知:2:1AF FC =,且EF ∥BC ,利用相似三角形性质可知::2:3EF BC AF AC ==,所以23EF BC =,且:4:9AEF ABC S S =V V .又因为E 是BD 的中点,所以EG 是三角形DBC 的中位线,那么12EG BC =,12::3:423EG EF ==,所以:1:4GF EF =,可得:1:8CFG AFE S S =V V ,所以:1:18CFG ABC S S =V V ,那么18CFG a S =V .8. 在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.A BCDEF【分析】 根据相似三角形性质可知::1:2EF AF BE AD ==,所以33ABE BEF S S ==V V (平方厘米),那么412ABCD ABE S S ==W V (平方厘米).。

第六讲小学五年级奥数计算图形的面积(真题归类)(2021年整理)

第六讲小学五年级奥数计算图形的面积(真题归类)(2021年整理)

第六讲小学五年级奥数计算图形的面积(真题归类)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(第六讲小学五年级奥数计算图形的面积(真题归类)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为第六讲小学五年级奥数计算图形的面积(真题归类)(word版可编辑修改)的全部内容。

第六讲计算图形的面积姓名:时间。

特殊小数相乘化整,要熟记于心:8× =1,×2=1 ×4=1,×4=3,×16=10 等等. 船的速度=船的速度+ 船的速度=船的速度-。

【例1】如图1,图中的数字分别表示两个长方形与一个直角三角形的面积,求标记“?"的直角三角形的面积。

c【例2】图2中,长方形ABCD的长BC=10厘米,宽AB=6厘米,在BC上取点M,在AD上取点N,使得四边形BMDN是一个菱形。

则菱形BMDN的面积是多少平方厘米?【例3】如图3,在△ABC中,AD,BE,CF为三边的中线,相交于G点。

已知AG=2GD,BG=2GE,CG=2GF;若△ABC的面积为6,那么四边形CEGD的面积是多少?【例4】华罗庚爷爷说:“数学是我国人民所擅长的学科。

"请小朋友求解《九章算术》中的一个古代问题:“今有木长二丈,围之三尺,葛生其相下,缠木七周,上与木齐,问葛长几何?”白话译文:如图,有原木圆柱形木棍直立地面,高20尺,圆柱底面周长3尺.葛藤生于圆柱底部A点,等距缠绕圆柱七周,恰好绕到圆柱上底面的B点。

则葛藤的长度是多少尺?【例5】如图,ABCD是直角梯形,AB=4cm,AD=5厘米,OE⊥DC,DE=3厘米,那么△BOC的面积是多少?C【例6】有一块边长为4米的正方形地面,要铺满边长为20厘米的红、黄两种颜色的正方形地砖,铺设的方法是:从正方形中心按“如图”所示规律向四周铺设,问铺设地面需要多少块红色的地砖?【例7】如图所示,△ABC中,点X,Y,Z分别在线段AZ,BX,CY上,且YZ=2ZC,ZX=3XA,XY=4YB,△XYZ的面积等于24,求△ABC的面积。

奥数拓展第六讲:多边形的面积综合-数学五年级上册含参考答案

奥数拓展第六讲:多边形的面积综合-数学五年级上册含参考答案

奥数拓展第六讲:多边形的面积综合-数学五年级上册一、选择题1.比较下面阴影部分的面积,()是错误的。

①②③④A.图①中阴影部分的面积等于图②中阴影部分的面积B.图②中阴影部分的面积等于图③中阴影部分的面积C.图③中阴影部分的面积不等于图④中阴影部分的面积的是()。

A.面积变大B.面积变小C.面积不变D.无法确定4.七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,把一幅七巧板按如图①所示进行1~7编号,1~7号分别对应着七巧板的七块。

图②所示的“天鹅”是由这幅七巧板拼成的,“天鹅”头颈由3号和6号块构成,其面积为3,则图①大正方形的边长为()。

A.8 B.6 C.4 D.25.将一个梯形割补成一个三角形(如图所示),面积和原来相比(),周长与原来相比()。

A.不变;变大B.不变;变小C.变小;变大D.无法确定6.如图中两个正方形的边长分别是6厘米和4厘米,阴影部分的面积是()平方厘米。

A.20 B.18 C.16 D.22二、填空题7.下图中ABCD是梯形,ABED是平行四边形,其中几个三角形面积如图所示(单位:平方厘米),阴影部分的面积是( )平方厘米。

8.图中ABCD为正方形,E为AB的中点,阴影部分的面积是21cm2,正方形ABCD的面积是( )cm2。

9.如图,在三角形ABC 中,D 是边AB 的中点,可知AD =BD ,则三角形BCD 与三角形ACD 的面积相等。

(1)如图①,在三角形ABC 中,D 、E 分别是AB 和AC 两边的中点。

已知三角形ADE 的面积是2cm 2,则三角形ABC 的面积是( )cm 2。

(2)如图②,在三角形ABC 中,把AB 边三等分、AC 边四等分。

已知三角形ADE 的面积是2cm 2,则三角形ABC 的面积是( )cm 2。

(3)如图③,在平行四边形ABCD 中,把AB 边五等分、AD 边六等分。

已知平行四边形ABCD 的面积是15cm 2,则三角形AEF 的面积是( )cm 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲 计算图形的面积
姓名: 时间 。

特殊小数相乘化整,要熟记于心:
8× =1, ×2=1 ×4=1, ×4=3, ×16=10 等等。

船的 速度=船的 速度+ 船的 速度=船的 速度- .
【例1】如图1,图中的数字分别表示两个长方形与一个直角三角形的面积,求标记“?”的直角三角形的面积。

【例2】图2中,长方形ABCD 的长BC=10厘米,宽AB=6厘米,在BC 上取点M ,在AD 上取点N ,使得四边形BMDN 是一个菱形。

则菱形BMDN 的面积是多少平方厘米?
【例3】如图3,在△ABC 中,AD ,BE ,CF 为三边的中线,相交于G 点。

已知AG=2GD ,BG=2GE ,CG=2GF ;若△ABC 的面积为6,那么四边形CEGD 的面积是多少?
c
【例4】华罗庚爷爷说:“数学是我国人民所擅长的学科。

”请小朋友求解《九章算术》中的一个古代问题:“今有木长二丈,围之三尺,葛生其相下,缠木七周,上与木齐,问葛长几何?”
白话译文:如图,有原木圆柱形木棍直立地面,高20尺,圆柱底面周长3尺。

葛藤生于圆柱底部A 点,等距缠绕圆柱七周,恰好绕到圆柱上底面的B 点。

则葛藤的长度是多少尺?
【例5】如图,ABCD 是直角梯形,AB=4cm ,AD=5厘米,OE ⊥DC ,DE=3厘米,那么△BOC 的面积是多少?
【例6】有一块边长为4米的正方形地面,要铺满边长为20厘米的红、黄两种颜色的正方形地砖,铺设的方法是:从正方形中心按“如图”所示规律向四周铺设,问铺设地面需要多少块红色的地砖?
C
【例7】如图所示,△ABC 中,点X ,Y ,Z 分别在线段AZ ,BX ,CY 上,且YZ=2ZC ,ZX=3XA ,XY=4YB ,△XYZ 的面积等于24,求△ABC 的面积。

【例8】如图,长方形ABCD 的面积为120平方厘米,BE=3AE ,BF=2CF ,求四边形EGFB 的面积。

【例9】如图,四边形ADEF 为正方形,△ABC 为等腰直角三角形,AB=AC ,D 在BC 边上。

△ABC 的面积等于98,BD:DC=2:5。

求正方形ADEF 的面积。

D
F
【例10】如图,四边形CDEF是正方形,ABCD是等腰梯形,AB=CD,AD∥BC,上底AD=23厘米,下底BC=35厘米,求△ADE的面积。

【例11】如图,ABCD是边长为1的正方形,E,F,G,H分别是四条边AB,BC,CD,DA的中点,计算图中阴影八边形的面积。

相关文档
最新文档