[推荐学习]高中数学第2章推理与证明章末分层突破学案11
浙江专用高考数学一轮复习第一章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件课件
![浙江专用高考数学一轮复习第一章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件课件](https://img.taocdn.com/s3/m/0ea531df250c844769eae009581b6bd97f19bc9c.png)
p 是 q 的_充__分__不__必__要___条件
p⇒q 且 q⇒/ p
p 是 q 的_必__要__不__充__分___条件
p⇒/ q 且 q⇒p
p 是 q 的__充__要__条件
p⇔q
p 是 q 的_既__不__充___分__也__不__必__要__条件
p⇒/ q 且 q⇒/ p
常用结论 集合与充要条件的关系
已知条件 p:|x-4|≤6,条件 q:(x-1)2-m2≤0(m>0).若﹁p 是﹁q 的充分不必要条件,则 m 的取值范围为______. 【解析】 条件 p:-2≤x≤10,条件 q:1-m≤x≤1+m,又﹁p 是﹁q
m>0,
的充分不必要条件,则 q 是 p 的充分不必要条件.故有1-m≥-2 ,所以 1+m≤10,
[诊断自测] 1.命题“若 a2+b2=0,a,b∈R,则 a=b=0”的逆否命题是________. 答案:若 a≠0 或 b≠0,a,b∈R,则 a2+b2≠0
2.已知命题“对任意 a,b∈R,若 ab>0,则 a>0”,则它的否命题是________. 答案:对任意 a,b∈R,若 ab≤0,则 a≤0
设 p,q 成立的对象构成的集合分别为 A,B, (1)p 是 q 的充分不必要条件⇔A B;
(2)p 是 q 的必要不充分条件⇔A B; (3)p 是 q 的充要条件⇔A=B.
[思考辨析] 判断正误(正确的打“√”,错误的打“×”) (1)当 q 是 p 的必要条件时,p 是 q 的充分条件.( √ ) (2)q 不是 p 的必要条件时,“p⇒/ q”成立.( √ )
1-m≤1+m, 则1-m≥-2, 所以 0≤m≤3.
1+m≤10, 所以当 0≤m≤3 时,p 是 q 的必要条件, 即所求 m 1.(变问法)本例条件不变,若 x∈P 的必要条件是 x∈S,求 m 的取值范围. 解:由例题知 P={x|-2≤x≤10},若 x∈P 的必要条件是 x∈S,即 x∈S 是
【课堂新坐标】2018版高考数学(人教A版理)一轮复习课件第6章第1节不等式的性质与一元二次不等式
![【课堂新坐标】2018版高考数学(人教A版理)一轮复习课件第6章第1节不等式的性质与一元二次不等式](https://img.taocdn.com/s3/m/b8a38fe2fab069dc502201e0.png)
1 1 1 1 1 C 正确;函数 y=x 在(0,+∞)上为减函数,由 x>y>0⇒x < y⇒x-y<0,
故 A 错误;函数 y=sin x 在(0,+∞)上不单调,当 x>y>0 时,不能比较 sin x 与 sin y 的大小,故 B 错误;x>y>0⇒xy>0⇒/ ln(xy)>0⇒/ ln x+ln y>0,故 D 错误.]
-3x+4>0 的解集为(-4,1).]
上一页 返回首页 下一页
高三一轮总复习
5.若不等式 mx2+2mx+1>0 的解集为 R,则 m 的取值范围是__________. 【导学号:01772195】
[0,1) [①当 m=0 时,1>0 显然成立;
m>0, 时,由条件知 2 Δ = 4 m -4m<0,
1 ac<bd, 故②不正确; 因为函数 y=x3是单调递增的, 所以③正确; 对于④, 由 a>b>0 1 1 可知 a >b >0,所以a2<b2,所以④不正确.]
2 2
上一页
返回首页
下一页
高三一轮总复习
3.(2016· 吉林长春二模)若 a,b∈R,且 a>b,则下列不等式恒成立的是( A.a >b
上一页
返回首页
下一页
高三一轮总复习
1 1 ①当 a=1 时,a=1,x-a(x-1)<0 无解; 1 1 1 ②当 a>1 时,a<1,解 x-a (x-1)<0 得a<x<1; 1 1 1 ③当 0<a<1 时,a>1,解 x-a(x-1)<0 得 1<x<a.10 分
2014年全国高中数学青年教师展评课:直线与平面垂直教学设计(江苏扬中第二中学宫建红)
![2014年全国高中数学青年教师展评课:直线与平面垂直教学设计(江苏扬中第二中学宫建红)](https://img.taocdn.com/s3/m/ea7f8312fad6195f312ba69d.png)
课题:1.2.3 直线与平面垂直教材:苏教版高中数学·必修2江苏省扬中市第二高级中学宫建红【教学内容解析】本节课是苏教版教材必修2中第一章第二节的内容,属于新授概念原理课.其中直线与平面垂直的概念、判定定理的形成是教学重点.这是直线与平面垂直在本节中的位置.线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例.线面平行研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式.线面垂直是线线垂直的拓展,又是面面垂直的基础,且后续内容如:空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用.通过本节课的学习研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象、推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法.因此,学习这部分知识有着非常重要的意义.【教学目标设置】1.学生通过对实例、模型的观察、抽象,概括出直线与平面垂直的定义,发现、猜想、归纳直线与平面垂直的判定定理.2.在定义、定理的探究活动中,学生通过独立思考和合作交流,发展类比、归纳等合情推理能力、逻辑思维能力和空间想象能力.3.学生运用特殊化、类比、化归等数学思想,体验了研究空间关系的一般方法.4.在探究线面垂直的定义和判定的过程中,体会数学的严谨、简洁之美,体验探究发现的乐趣,培养善于观察、勇于探索的良好习惯.【学生学情分析】1.学生已有的认知基础学生能够感知生活中有大量的线面垂直关系,已经掌握了线线垂直、线面平行的相关知识,从而具备了研究空间位置关系的经验,也体会了立体几何中化归的数学思想方法.2.达成标所需要的认知基础要达成本节课的目标,这些已有的知识和经验基础不可或缺,还需要整体上把握本节课的研究内容、方法和途径,能运用类比、化归等数学思想,同时具备较好地观察发现、空间想象、合情推理、抽象概括等能力,以及独立思考、合作交流、反思质疑等良好的数学学习习惯.我校为普通高中,招收的学生大部分基础薄弱,自主学习能力差.进入高一,虽然能领悟一些基本的数学思想与方法,但还没有形成完整、严谨的数学思维习惯,对问题的探究能力也有待培养.3.难点及突破策略难点:1.运用类比、化归等数学思想方法来研究直线与平面垂直的定义,突破“任意”的生成和理解.3.探究、归纳、理解直线与平面垂直判定定理,突破“无限”与“有限”的转化.突破策略:1.启发学生明确研究的内容与方法,从总体上认识研究的目标与手段.2.引导学生经过直观感知、操作确认、思辨论证的过程形成线面垂直的定义和判定定理.3.发动学生通过问题串交流、汇报、展示思维过程,相互启发.【教学策略分析】根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用教法和学法如下:1.教师创设情境,学生列举实例,形成关于线面垂直的直观感知.2.教师启发引导,学生明确按照“定义——判定——性质”的研究程序,强化空间位置关系的常用研究策略——降维化归.3.教师以问题串为载体,驱动学生主动参与知识建构、合作探究.4.教师分层设计知识应用,引导反思,学生深化理解,形成知识体系.【教学过程】一、创设情境、建构定义1.回顾旧知引入课题[问题1]直线和平面有几种位置关系?[问题2] 已经掌握了直线和平面平行的哪些内容?[问题3]直线与平面相交中最特殊的一种位置关系是什么?[问题4] 研究关于“直线与平面垂直”的什么内容?[问题5] 怎样研究“直线与平面垂直”呢?师生活动:通过问题让学生复习了已经学过的知识,让学生利用手中的工具摆出“线面相交”的情形,并指出其中最特殊的情况,并进行命名.学生能说出研究“线面垂直”的哪些内容和怎样去进行研究.设计意图:简单回顾直线与平面的三种位置关系和线面平行的研究内容、研究方法,引出直线与平面相交时的特殊情况——“直线与平面垂直”及其研究内容.2.创设情境启发定义情境1 “直线与平面垂直”在我们的生活中有许多直观的感知,请举例.几何体中“直线与平面垂直”形象吗?请举例.情境2 有没有与地面不垂直的建筑物呢?请举例.[问题6] 为什么感觉斜塔与地面不垂直?[问题7] 关于“垂直”我们已知的是什么?[问题8] 能不能用已知的“线与线的垂直关系”来刻画未知的“线与面的垂直关系”呢?师生活动:学生能够从直观感知入手,通过教师的追问,引起学生思考,何刻画出斜塔与地面不垂直的原因,进而抓住线面“垂直”就是平面内找不到与它不垂直的直线.设计意图:旨在让学生直观感知“线面垂直”.学生自由举例,列举生活中,几何体中“线面垂直”的例子.大量丰富的正面例子有助于学生观察不同的例子所具有的共同特征,形成关于线面垂直的直观感知.再从反例——“比萨斜塔”,借助“比萨斜塔”的“斜”启发定义.正反例的对比中更容易抓住事物的本质与核心.3. 验证猜想建构定义[问题9] 一条直线真的能与一个平面内的所有直线都垂直吗?有这样的实际模型吗?师生活动:通过教师提问:“圆锥的轴所在的直线与底面内所有的直线都垂直吗?”学生独立思考,小组交流,汇报.教师再用几何画板演示,进行说明猜想的合理性.设计意图:对于定义合理性的解释、猜想正确性的检验,直观演示能起到不可替代的效果.因此通过圆锥的实例,说明一条直线与平面内的所有直线都垂直的状态是存在的,也让学生的认知结构中拥有了关于概念的实际模型.4.认识定义巩固深化[问题10] 你能给“直线与平面垂直”下个定义吗?师生活动:通过辨析定义——“‘任意’的含义是什么?等价于‘所有’吗?等价于‘无数’吗?”;通过三种语言表示定义;通用利用定义证明例题1——“求证:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直与这个平面.”等多个环节进一步认识定义,体会定义中“双向叙述”的功能.并在作图的同时介绍垂线,垂面,垂足等概念.设计意图:对定义进行多角度和深入理解,对数学思维方法的渗透和对研究问题的方法的指导能在教学中达到事半功倍的效果.例题1的教学,在学生独立思考后,让学生板演展示和相互评价,让学生得到充分的训练和表达,同时对证明格式提出规范性要求.证明之后,再对此题重新深刻理解,从直观的判断变为理性的思考,符合学生的认知规律.定义的认识和例题的证明中多次使用三种语言转换,也有助于学生空间想象能力的培养.二、简化定义获得猜想[问题11] 工人怎样检验旗杆是否与地面垂直呢?师生活动:通过检验“旗杆与地面是否垂直”的问题激发学生寻求判定线面垂直的新方法.学生有要简化定义中的“任意一条直线”为“有限条直线”的想法. 教师进而追问:简化成“一条直线”行吗?“两条直线”呢?学生进行思考,辩证. 学生能够猜想到:一条直线垂直于平面内的两条相交直线就可以得到一条直线垂直于这个平面.设计意图:通过询问学生工人如何检验旗杆是否与地面垂直的?让学生感受到了寻求判断线面垂直新方法的必要性,又开启了他们简化定义中“任意一条”的想法,于此同时对每一种想法进行辨析,培养了学生的空间想象能力,而后获得关于线面垂直判定定理的猜想.三、汇报交流形成定理1.直观感知师生活动:学生带着猜想,寻找辅证的实例.2.操作试验师生活动:学生带着猜想,通过实验:“(1)怎样将一本书立在桌面上,使得书脊能与桌面垂直?这样的书至少需要几页呢?(2)将手中的练习纸折叠,折痕满足什么条件,折痕与桌面垂直?”进行动手操作,确认猜想.3.直观演示师生活动:教师通过几何画板演示进一步说明猜想的合理性,学生进一步增加直观体验.4.形成判定师生活动:学生叙述线面垂直的判定定理,并用图形语言和符号语言表示“直线与平面垂直”的判定定理.教师进行点评与总结.am n,,a m a n m n A a m n a a a ü^^ïï?轣ýï烫ïþ师:如图,哪一幅作图更具有一般性?说明理由.师:判定定理也是由线“线”垂直推出线“面”垂直.这里的“线”较之定义发生了怎样的变化?生:已经简化为了“面”内两条相交直线.师:“线不在多,相交则行”.现在去判断线面垂直有哪些方法?生:可以用定义,也可以用判定定理.师:这样,除了定以外,我们就又增加了一个判定“线面垂直”的方法.在这里,我们把“线面垂直的问题转化为线线垂直”来解决,充分体现了“降维转化”的思想.我们解决问题时也要选择最佳方法.设计意图:获得猜想是合情推理的第一步,如何让学生在不加证明的情况下,心悦诚服的接受“判定定理”呢?于是引导学生带着猜想,寻找实例验证,再通过折纸试验和几何画板演示双重操作确认,进一步增强学生的直观感受的同时进行理性思考,最终形成定理.接着同样要求学生用三种语言表示它,认识定理.四、数学应用 巩固深化[问题11] 现在你是工人,怎样检验旗杆是否与地面垂直呢?例2:在正方体ABCD-A1B1C1D1中,求证:(1)AC ⊥平面BDD1(2)求证:AC ⊥BD1师生活动:学生分析条件以及要证明的结论,合理选择方法,独立求解,教师板书示范解题过程,线面垂直.设计意图:判定定理的应用分为三个层次进行:第一层次让学生理解、记忆定理并进行简单运用;第二层次通过空间简单位置关系的证明,培养学生逻辑推理能力,重视对学生思考策略的引导和启发,通过教师示范、学生互评规范证明题的书写;第三层次是训练学生灵活应用判定定理和定义,能适当的进行线线和线面位置关系之间的转化.五、概括总结分层作业[问题12]本节课我们学习了哪些知识?掌握了哪些方法?体会了哪些思想?今后我们还要学习什么呢?师生活动:学生思考、回答,教师适当点拨、补充.设计意图:开放式小结,使得不同的学生有不同的学习体验和收获. 引导学生主动建构,形成知识体系;预测未来的学习内容,旨在进一步感悟数学思想;规范立几学习,提出能力要求.课后作业必做题:第34页第1(1)(2),3题;第36页第6,7题选做题:第37页第10题拓展题:运用今天的研究方法,你还能进行其它位置关系的探究吗?设计意图:分层布置作业,满足不同学生的学习能力要求.。
高中数学第2讲证明不等式的基本方法章末分层突破学案新人教A版
![高中数学第2讲证明不等式的基本方法章末分层突破学案新人教A版](https://img.taocdn.com/s3/m/69ce7d62c850ad02de804192.png)
证明不等式的基本方法章末分层突破[自我校对] ①作差法 ②综合法 ③执果索因 ④放缩法 ⑤间接证明作差——恒等变形——判断差值的符号——结论.其中,变形是证明推理中的关键,变形的目的在于判断差的符号.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2. 【规范解答】 3a 3+2b 3-(3a 2b +2ab 2) =3a 2(a -b )+2b 2(b -a )=(a -b )(3a 2-2b 2). ∵a ≥b >0,∴a -b ≥0,3a 2-2b 2≥2a 2-2b 2≥0, 从而(3a 2-2b 2)(a -b )≥0, 故3a 3+2b 3≥3a 2b +2ab 2成立. [再练一题]1.若a =lg 22,b =lg 33,c =lg 55,则( )A .a <b <cB .c <b <aC .c <a <bD.b <a <c【解析】 a 与b 比较:a =3lg 26=lg 86,b =2lg 36=lg 96.∵9>8,∴b >a , b 与c 比较:b =lg 33=lg 3515,c =lg 55=lg 5315.∵35>53,∴b >c ,a 与c 比较:a =lg 2510=lg 3210,c =lg 2510.∵32>25,a >c , ∴b >a >c ,故选C. 【答案】 C步推导出不等式成立的必要条件,两者是对立统一的两种方法,一般来说,对于较复杂的不等式,直接用综合法往往不易入手.因此通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知实数x ,y ,z 不全为零,求证:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).【规范解答】 因为x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2 ≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2,同理可证:y 2+yz +z 2≥y +z2,x 2+xz +z 2≥z +x2.由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号, 所以三式累加得:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ), 所以有x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).[再练一题]2.设a ,b ,c 均为大于1的正数,且ab =10. 求证:log a c +log b c ≥4lg c .【导学号:32750044】【证明】 由于a >1,b >1,故要证明log a c +log b c ≥4lg c , 只要证明lg c lg a +lg clg b ≥4lg c .又c >1,故lg c >0,所以只要证1lg a +1lg b ≥4,即lg a +lg blg a ·lg b ≥4.因ab =10,故lg a +lg b =1, 只要证明1lg a ·lg b≥4.(*)由a >1,b >1,故lg a >0,lg b >0, 所以0<lg a ·lg b ≤⎝ ⎛⎭⎪⎫lg a +lg b 22=⎝ ⎛⎭⎪⎫122=14,即(*)式成立.所以,原不等式log a c +log b c ≥4lg c 得证.差异较大时,可考虑用放缩法进行过渡从而达到证明目的.若a ,b ,c ,x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a ,b ,c 中至少有一个大于0.【规范解答】 设a ,b ,c 都不大于0, 则a ≤0,b ≤0,c ≤0,∴a +b +c ≤0, 由题设知,a +b +c=⎝⎛⎭⎪⎫x 2-2y +π2+⎝ ⎛⎭⎪⎫y 2-2z +π3+⎝ ⎛⎭⎪⎫z 2-2x +π6=(x 2-2x )+(y 2-2y )+(z 2-2z )+π =(x -1)2+(y -1)2+(z -1)2+π-3, ∴a +b +c >0,这与a +b +c ≤0矛盾, 故a ,b ,c 中至少有一个大于0. [再练一题]3.如图21,已知在△ABC 中,∠CAB >90°,D 是BC 的中点,求证:AD <12BC .图21【证明】 假设AD ≥12BC .(1)若AD =12BC ,由平面几何定理“若三角形一边上的中线等于该边长的一半,那么这条边所对的角为直角”,知∠A =90°,与题设矛盾,所以AD ≠12BC .(2)若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD , 从而∠B >∠BAD . 同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD , 即∠B +∠C >∠A .因为∠B +∠C =180°-∠A ,所以180°-∠A >∠A ,即∠A <90°,与已知矛盾, 故AD >12BC 不成立.由(1)(2)知AD <12BC 成立.然后利用不等式的传递性,达到证明的目的.运用放缩法证明的关键是放缩要适当,既不能太大,也不能太小.已知a ,b ,c 为三角形的三条边,求证:a 1+a ,b 1+b ,c1+c也可以构成一个三角形.【规范解答】 设f (x )=x1+x ,x ∈(0,+∞).设0<x 1<x 2,则f (x 2)-f (x 1)=x 21+x 2-x 11+x 1=x 2-x 1+x 1+x 2>0,∴f (x )在(0,+∞)上为增函数.∵a ,b ,c 为三角形的三条边,于是a +b >c , ∴c1+c <a +b 1+a +b =a 1+a +b +b 1+a +b <a 1+a +b 1+b ,即c 1+c <a 1+a +b1+b,同理b 1+b <a 1+a +c 1+c ,a 1+a <b 1+b +c1+c ,∴以a1+a ,b 1+b ,c1+c 为边可以构成一个三角形.[再练一题]4.已知|x |<ε3,|y |<ε6,|z |<ε9,求证:|x +2y -3z |<ε.【证明】 ∵|x |<ε3,|y |<ε6,|z |<ε9,∴|x +2y -3z |=|1+2y +(-3z )| ≤|x |+|2y |+|-3z | =|x |+2|y |+3|z | <ε3+2×ε6+3×ε9=ε. ∴原不等式成立.1.(2015·湖南高考)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2 B .2 C .2 2D.4【解析】 由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.【答案】 C2.(2015·重庆高考)设a ,b >0,a +b =5,则a +1+b +3的最大值为________. 【解析】 令t =a +1+b +3,则t 2=a +1+b +3+2a +b +=9+2a +b +≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2. 【答案】 3 23.(2015·江苏高考)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由; (3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k3,a n +3k4依次构成等比数列?并说明理由.【解】 (1)证明:因为2a n +12a n=2a n +1-a n =2d(n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列.(2)不存在,理由如下:令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0). 假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =da,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0,化简得t 3+2t 2-2=0(*),且t 2=t +1.将t 2=t +1代入(*)式,得t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)不存在,理由如下:假设存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列,则a n1(a 1+2d )n +2k=(a 1+d )2(n +k ),且(a 1+d )n +k(a 1+3d )n +3k=(a 1+2d )2(n +2k ),分别在两个等式的两边同除以a n +k1及a n +2k1,并令t =d a 1⎝ ⎛⎭⎪⎫t >-13,t ≠0, 则(1+2t )n +2k=(1+t )2(n +k ),且(1+t )n +k(1+3t )n +3k=(1+2t )2(n +2k ).将上述两个等式两边取对数,得 (n +2k )ln(1+2t )=2(n +k )ln(1+t ),且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ). 化简得2k [ln(1+2t )-ln(1+t )]=n [2ln(1+t )-ln(1+2t )], 且3k [ln(1+3t )-ln(1+t )]=n [3ln(1+t )-ln(1+3t )]. 再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t ) =4ln(1+3t )ln(1+t ).(**)令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ),则g ′(t )=+3t2+3t -+2t2+2t ++t2+t+t +2t+3t.令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+3(1+t )2ln(1+t ), 则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ′1(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )]. 令φ2(t )=φ′1(t ),则φ′2(t )=12+t+2t+3t>0.由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎝ ⎛⎭⎪⎫-13,0和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立. 所以不存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列.4.(2015·湖南高考)已知a >0,函数f (x )=e axsin x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.证明:(1)数列{f (x n )}是等比数列; (2)若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.【证明】 (1)f ′(x )=a e axsin x +e axcos x =e ax(a sin x +cos x ) =a 2+1e axsin(x +φ). 其中tan φ=1a ,0<φ<π2.令f ′(x )=0,由x ≥0得x +φ=m π, 即x =m π-φ,m ∈N *.对k ∈N ,若2k π<x +φ<(2k +1)π,即2k π-φ<x <(2k +1)π-φ,则f ′(x )>0; 若(2k +1)π<x +φ<(2k +2)π,即(2k +1)π-φ<x <(2k +2)π-φ,则f ′(x )<0. 因此,在区间((m -1)π,m π-φ)与(m π-φ,m π)上,f ′(x )的符号总相反.于是当x =m π-φ(m ∈N *)时,f (x )取得极值,所以x n =n π-φ(n ∈N *).此时,f (x n )=e a (n π-φ)sin(n π-φ)=(-1)n +1e a (n π-φ)·sin φ.易知f (x n )≠0,而f x n +1f x n =-n +2ean +π-φ]sin φ-n +1ea n π-φsin φ=-e a π是常数,故数列{f (x n )}是首项为f (x 1)=e a (π-φ)sin φ,公比为-e a π的等比数列.(2)由(1)知,sin φ=1a 2+1,于是对一切n ∈N *,x n <|f (x n )|恒成立,即n π-φ<1a 2+1ea (n π-φ)恒成立,等价于a 2+1a <ea n π-φa n π-φ(*)恒成立(因为a >0).设g (t )=e tt(t >0),则g ′(t )=ett -t 2.令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减; 当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增. 从而当t =1时,函数g (t )取得最小值g (1)=e.因此,要使(*)式恒成立,只需a 2+1a <g (1)=e ,即只需a >1e 2-1.而当a =1e 2-1时,由tan φ=1a =e 2-1>3且0<φ<π2知,π3<φ<π2.于是π-φ<2π3<e 2-1,且当n ≥2时,n π-φ≥2π-φ>3π2>e 2-1.因此对一切n ∈N *,ax n =n π-φe 2-1≠1,所以g (ax n )>g (1)=e =a 2+1a.故(*)式亦恒成立. 综上所述,若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.章末综合测评(二) (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ,b ,c ,d 都是正数,且bc >ad ,则a b ,a +cb +d ,a +2c b +2d ,cd中最大的是( )A.a bB.a +cb +d C.a +2c b +2d D.cd【解析】 因为a ,b ,c ,d 均是正数且bc >ad , 所以有c d >a b. ①又c d -a +c b +d =c b +d -a +c d d b +d =bc -add b +d >0,∴c d >a +cb +d,② c d -a +2c b +2d =c b +2d -a +2c dd b +2d=bc -add b +2d>0,∴c d >a +2cb +2d.③由①②③知c d最大,故选D. 【答案】 D2.已知x >y >z ,且x +y +z =1,则下列不等式中恒成立的是( )【导学号:32750045】A .xy >yzB .xz >yzC .x |y |>z |y |D.xy >xz【解析】 法一 特殊值法:令x =2,y =0,z =-1,可排除A ,B ,C ,故选D. 法二 3z <x +y +z <3x ,∴x >13>z ,由x >0,y >z ,得xy >xz .故D 正确. 【答案】 D3.对于x ∈[0,1]的任意值,不等式ax +2b >0恒成立,则代数式a +3b 的值( ) A .恒为正值 B .恒为非负值 C .恒为负值D.不确定【解析】 依题意2b >0,∴b >0,且a +2b >0,∴a +2b +b >0,即a +3b 恒为正值. 【答案】 A4.已知数列{a n }的通项公式a n =anbn +1,其中a ,b 均为正数,那么a n 与a n +1的大小关系是( )A .a n >a n +1B .a n <a n +1C .a n =a n +1D.与n 的取值有关【解析】 a n +1-a n =a n +b n ++1-anbn +1=abn +b +bn +.∵a >0,b >0,n >0,n ∈N +, ∴a n +1-a n >0,因此a n +1>a n . 【答案】 B5.若实数a ,b 满足a +b =2,则3a +3b的最小值是( ) A .18 B .6 C .2 3D.43【解析】 3a+3b≥23a·3b=232=2×3=6,选B. 【答案】 B6.设a =lg 2-lg 5,b =e x(x <0),则a 与b 的大小关系是( ) A .a <b B .a >b C .a =bD.a ≤b【解析】 a =lg 2-lg 5=lg 25<0.又x <0,知0<e x<1,即0<b <1,∴a <b . 【答案】 A7.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =( ) A.23B .2C .6 D.2或6 【解析】 ∵|kx -4|≤2,∴-2≤kx -4≤2, ∴2≤kx ≤6,∵不等式的解集为{x |1≤x ≤3}, ∴k =2. 【答案】 B8.设a =x 4+y 4,b =x 3y +xy 3,c =2x 2y 2(x ,y ∈R +),则下列结论中不正确的是( ) A .a 最大 B .b 最小C .c 最小D.a ,b ,c 可以相等【解析】 因为b =x 3y +xy 3≥2x 3y xy 3=2x 2y 2=c ,故B 错,应选B.【答案】 B9.要使3a -3b <3a -b 成立,a ,b 应满足的条件是( ) A .ab <0且a >b B .ab >0且a >bC .ab <0且a <bD .ab >0且a >b 或ab <0且a <b 【解析】3a -3b <3a -b ⇔(3a -3b )3<a -b⇔33ab 2<33a 2b ⇔ab (a -b )>0. 当ab >0时,a >b ;当ab <0时,a <b . 【答案】 D10.已知x =a +1a -2(a >2),y =⎝ ⎛⎭⎪⎫12b 2-2 (b <0),则x ,y 之间的大小关系是( )A .x >yB .x <yC .x =yD.不能确定【解析】 因为x =a -2+1a -2+2≥2+2=4(a >2). 又b 2-2>-2(b <0),即y =⎝ ⎛⎭⎪⎫12b 2-2<⎝ ⎛⎭⎪⎫12-2=4,所以x >y . 【答案】 A11.若a >0,b >0,则p =(a ·b )a +b2,q =a b ·b a的大小关系是( )A .p ≥qB .p ≤qC .p >qD.p <q【解析】 p q =a ·b a +b2a b ·b a=a a -b 2·b b -a 2=⎝ ⎛⎭⎪⎫a b a -b 2. 若a ≥b >0,则a b ≥1,a -b ≥0,从而p q≥1,得p ≥q ; 若b ≥a >0,则0<a b ≤1,a -b ≤0,从而p q≥1,得p ≥q . 综上所述,p ≥q . 【答案】 A12.在△ABC 中,A ,B ,C 分别为a ,b ,c 所对的角,且a ,b ,c 成等差数列,则角B 适合的条件是( )A .0<B ≤π4B .0<B ≤π3C .0<B ≤π2D.π2<B <π【解析】 由a ,b ,c 成等差数列,得2b =a +c ,∴cos B =a 2+c 2-b 22ac =a 2+c 2-a +c242ac,=a 2+c 2-2ac8ac =a 2+c 28ac -14≥12.当且仅当a =b =c 时,等号成立. ∴cos B 的最小值为12.又y =cos B 在⎝ ⎛⎭⎪⎫0,π2上是减函数,∴0<B ≤π3.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 13.用反证法证明命题“三角形中最多只有一个内角是钝角”时的假设是________. 【解析】 “三角形中最多只有一个内角是钝角”的对立事件是“三角形中内角有2个钝角或3个全是钝角”,故应填三角形中至少有两个内角是钝角.【答案】 三角形中至少有两个内角是钝角14.若实数m ,n ,x ,y 满足m 2+n 2=a ,x 2+y 2=b (a ≠b ),则mx +ny 的最大值为________.【导学号:32750046】【解析】 设m =a cos α,n =a sin α,x =b cos β,y =b sin β, 则mx +ny =ab cos αcos β+ab sin αsin β =ab cos(α-β).当cos(α-β)=1时,mx +ny 取得最大值ab . 【答案】ab15.用分析法证明:若a ,b ,m 都是正数,且a <b ,则a +m b +m >ab.完成下列证明过程: ∵b +m >0,b >0,∴要证原不等式成立,只需证明b (a +m )>a (b +m ),即只需证明________. ∵m >0,∴只需证明b >a , 由已知显然成立.∴原不等式成立.【解析】 b (a +m )>a (b +m )与bm >am 等价, 因此欲证b (a +m )>a (b +m )成立, 只需证明bm >am 即可.【答案】 bm >am16.已知a ,b ,c ,d ∈R +,且S =a a +b +c +b b +c +d +c c +d +a +da +b +d,则S 的取值范围是________.【解析】 由放缩法,得aa +b +c +d <a a +b +c <aa +c;b a +b +c +d <b b +c +d <bd +b;c a +b +c +d <c c +d +a <cc +a ;da +b +c +d <d d +a +b <dd +b.以上四个不等式相加,得1<S <2. 【答案】 (1,2)三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m .【证明】 ∵m >0,∴1+m >0. 所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2), 即证m (a 2-2ab +b 2)≥0, 即证(a -b )2≥0, 而(a -b )2≥0显然成立, 故原不等式得证.18.(本小题满分12分)实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.【证明】 假设a ,b ,c ,d 都是非负数, 即a ≥0,b ≥0,c ≥0,d ≥0,则1=(a +b )(c +d )=(ac +bd )+(ad +bc )≥ac +bd , 这与已知中ac +bd >1矛盾,∴原假设错误, ∴a ,b ,c ,d 中至少有一个是负数.19.(本小题满分12分)设a ,b ,c 是不全相等的正实数.求证:lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .【证明】 法一 要证:lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c ,只需证lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc ),只需证a +b 2·b +c 2·c +a2>abc .∵a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0,∴a +b 2·b +c 2·c +a2≥abc >0成立.∵a ,b ,c 为不全相等的正数,∴上式中等号不成立. ∴原不等式成立.法二 ∵a ,b ,c ∈{正实数}, ∴a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0.又∵a ,b ,c 为不全相等的实数, ∴a +b 2·b +c 2·c +a2>abc ,∴lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc ),即lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .20.(本小题满分12分)若0<a <2,0<b <2,0<c <2,求证:(2-a )b ,(2-b )c ,(2-c )a 不能同时大于1.【证明】 假设三数能同时大于1, 即(2-a )b >1,(2-b )c >1,(2-c )a >1. 那么-a +b 2≥-a b >1, 同理-b +c2>1,-c +a2>1, 三式相加-a +b +-b +c +-c +a2>3,即3>3.上式显然是错误的,∴该假设不成立.∴(2-a )b ,(2-b )c ,(2-c )a 不能同时都大于1. 21.(本小题满分12分)求证:2(n +1-1)<1+12+13+…+1n<2n (n ∈N +). 【导学号:32750047】【证明】 ∵1k =22k>2k +k +1=2(k +1-k ),k ∈N +, ∴1+12+13+…+1n>2[(2-1)+(3-2)+…+(n +1-n )] =2(n +1-1). 又1k =22k <2k +k -1=2(k -k -1),k ∈N +, ∴1+12+13+…+1n<1+2[(2-1)+(3-2)+…+(n -n -1)] =1+2(n -1)=2n -1<2n . ∴2(n +1-1)<1+12+13+…+1n<2n (n ∈N +).22.(本小题满分12分)等差数列{a n }各项均为正整数,a 1=3,前n 项和为S n .等比数列{b n }中,b 1=1,且b 2S 2=64,{b a n}是公比为64的等比数列.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n <34.【解】 (1)设{a n }的公差为d (d ∈N ),{b n }的公比为q ,则a n =3+(n -1)d ,b n =qn -1.依题意⎩⎨⎧b a n +1b an=q3+nd -1q 3+n -d -1=q d=64, ①S 2b 2=+dq =64. ②由①知,q =641d =26d , ③由②知,q 为正有理数,所以d 为6的因子1,2,3,6中之一, 因此由②③知,d =2,q =8. 故a n =3+2(n -1)=2n +1,b n =8n -1.(2)证明:S n =3+5+7+…+(2n +1)=n (n +2), 则1S n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴1S 1+1S 2+1S 3+…+1S n=12⎝⎛⎭⎪⎫1-13+12-14+13-15+…+1n-1n+2=12⎝⎛⎭⎪⎫1+12-1n+1-1n+2<12×32=34.。
华师版七年级下册的数学教学计划
![华师版七年级下册的数学教学计划](https://img.taocdn.com/s3/m/fc3e4110773231126edb6f1aff00bed5b8f37359.png)
华师版七年级下册的数学教学计划根据自己的实际情况,比如工作职责,确定一下工作目标,这样就可以有针对性的明确自己的工作计划,可以先确定一个总的方向,在按时间分段完成。
这里给大家分享一些关于华师版七年级下册的数学教学计划,方便大家学习。
华师版七年级下册的数学教学计划1一、教材分析全期共有六章。
新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算、轴对称图形、数据的分析与比较。
第一章一元一次不等式组本章主要使学生掌握一元一次不等式组的解法,以及怎样利用一元一次不等式组解决实际问题。
重点:一元一次不等式的解法及其简单应用.难点:了解一元一次不等式组的解集,准确利用不等式的基本性质.第二章二元一次方程组本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法.重点:二元一次方程组的解法,列二元一次方程组解决实际问题.难点:二元一次方程组解决实际问题第三章平面上直线的位置关系和度量关系本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计.第四章多项式的运算本章主要要求了解多项式的的有关概念,能进行简单的多项式的加、减、乘运算,以及乘法公式。
注重联系实际,为将来学函数奠定基础让课堂内容生动、趣味化,从学生熟悉的背景引出概念。
重点:对于每个概念的正确理解,以及各项法则的正确、灵活的应用。
难点:探索各项法则的形成原因。
第五章轴对称图形本章主要体会对称之美,利用轴对称进行图案设计,认识和欣赏轴对称在现实中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末分层突破[自我校对]①由部分到整体,由个别到一般②类比推理③演绎推理④由一般到特殊⑤综合法⑥执果索因⑦反证法⑧数学归纳法1.2.类比推理的特点及一般步骤观察式子:1+122<32,1+122+132<53,1+122+132+142<74,……,由此可归纳出的式子为( )A .1+122+132+…+1n 2<12n -1B .1+12+13+…+1n <12n +1C .1+122+132+…+1n 2<2n -1nD .1+122+132+…+1n 2<2n 2n +1(2)两点等分单位圆时,有相应正确关系为sin α+sin(π+α)=0;三点等分单位圆时,有相应正确关系为sin α+sin ⎝ ⎛⎭⎪⎫α+2π3+sin ⎝ ⎛⎭⎪⎫α+4π3=0,由此可以推知,四点等分单位圆时的相应正确关系为__________.【精彩点拨】 (1)观察各式特点,找准相关点,归纳即得. (2)观察各角的正弦值之间的关系得出结论.【规范解答】 (1)由各式特点,可得1+122+132+…+1n 2<2n -1n.故选C.(2)用两点等分单位圆时,关系为sin α+sin(π+α)=0,两个角的正弦值之和为0,且第一个角为α,第二个角与第一个角的差为(π+α)-α=π,用三点等分单位圆时,关系为sin α+sin ⎝ ⎛⎭⎪⎫α+2π3+sin ⎝ ⎛⎭⎪⎫α+4π3=0,此时三个角的正弦值之和为0,且第一个角为α,第二个角与第一个角的差与第三个角与第二个角的差相等,即有⎝⎛⎭⎪⎫α+4π3-⎝ ⎛⎭⎪⎫α+2π3=⎝ ⎛⎭⎪⎫α+2π3-α=2π3.依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为α,第二个角为2π4+α=π2+α,第三个角为π2+α+2π4=π+α,第四个角为π+α+2π4=3π2+α,即其关系为sin α+sin ⎝ ⎛⎭⎪⎫α+π2+sin(α+π)+sin ⎝⎛⎭⎪⎫α+3π2=0.【答案】 (1)C (2)sin α+sin ⎝ ⎛⎭⎪⎫α+π2+sin(α+π)+sin ⎝ ⎛⎭⎪⎫α+3π2=0[再练一题]1.已知函数y =sin 4x +cos 4x (x ∈R )的值域是⎣⎢⎡⎦⎥⎤12,1,则(1)函数y =sin 6x +cos 6x (x ∈R )的值域是__________;(2)类比上述结论,函数y =sin 2nx +cos 2nx (n ∈N +)的值域是__________.【导学号:05410055】【解析】 (1)y =sin 6x +cos 6x =(sin 2x +cos 2x )(sin 4x -sin 2x cos 2x +cos 4x )=sin 4x -sin 2x cos 2 x +cos 4x =(sin 2 x +cos 2 x )2-3sin 2x cos 2x =1-34sin 2(2x )=1-38(1-cos 4x )=58+38cos 4x ∈⎣⎢⎡⎦⎥⎤14,1.(2)由类比可知,y =sin 2nx +cos 2nx 的值域是[21-n,1].【答案】 (1)⎣⎢⎡⎦⎥⎤14,1 (2)[21-n,1]1.法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式.2.分析法和综合法是两种思路相反的推理方法.分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.设a >0,b >0,a +b =1,求证:1a +1b +1ab≥8.试用综合法和分析法分别证明.【精彩点拨】 (1)综合法:根据a +b =1,分别求1a +1b 与1ab的最小值.(2)分析法:把1ab 变形为a +b ab =1a +1b求证.【规范解答】 法一:(综合法) ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab ≥4.又1a +1b=(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4,∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). 法二:(分析法) ∵a >0,b >0,a +b =1,要证1a +1b +1ab≥8,只要证⎝ ⎛⎭⎪⎫1a +1b +a +b ab≥8, 只要证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8,即证1a +1b≥4.也就是证a +b a +a +bb≥4. 即证b a +a b≥2,由基本不等式可知,当a >0,b >0时,b a +ab≥2成立,所以原不等式成立.[再练一题]2.(1)已知a ,b ,c 为互不相等的非负数. 求证:a 2+b 2+c 2>abc (a +b +c ).(2)用分析法证明:2cos(α-β)-sin 2α-β sin α=sin βsin α.【解】 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,又因为a ,b ,c 为互不相等的非负数, 所以上面三个式子中都不能取“=”, 所以a 2+b 2+c 2>ab +bc +ac ,因为ab +bc ≥2ab 2c ,bc +ac ≥2abc 2,ab +ac ≥2a 2bc ,又a ,b ,c 为互不相等的非负数, 所以ab +bc +ac >abc (a +b +c ), 所以a 2+b 2+c 2>abc (a +b +c ). (2)要证原等式成立,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,① 因为①左边=2cos(α-β)sin α-sin[(α-β)+α] =2cos(α-β)sin α-sin(α-β)cos α- cos(α-β)sin α=cos(α-β)sin α-sin(α-β)cos α =sin β=右边,所以①成立,即原等式成立.从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果,断定反设不成立,从而肯定结论.反证法的思路:反设→归谬→结论.设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列.【精彩点拨】 (1)利用等比数列的概念及通项公式推导前n 项和公式;(2)利用反证法证明要证的结论.【规范解答】 (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 1 1-q n 1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1 1-q n1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.[再练一题]3.设{a n },{b n }是公比不相等的两个等比数列,c n =a n +b n .证明:数列{c n }不是等比数列.【证明】 假设数列{c n }是等比数列,则 (a n +b n )2=(a n -1+b n -1)(a n +1+b n +1).①因为{a n },{b n }是公比不相等的两个等比数列,设公比分别为p ,q , 所以a 2n =a n -1a n +1,b 2n =b n -1b n +1. 代入①并整理,得 2a n b n =a n +1b n -1+a n -1b n +1=a n b n ⎝ ⎛⎭⎪⎫p q +q p ,即2=p q +q p,②当p ,q 异号时,p q +q p<0,与②相矛盾; 当p ,q 同号时,由于p ≠q , 所以p q +q p>2,与②相矛盾. 故数列{c n }不是等比数列.1.关注点一:其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.2.关注点二:由n =k 到n =k +1时,除等式两边变化的项外还要利用n =k 时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明.已知正数数列{a n }(n ∈N +)中,前n 项和为S n ,且2S n =a n +1a n,用数学归纳法证明:a n =n -n -1.【规范解答】 (1)当n =1时,a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,所以a 21=1(a n >0),所以a 1=1,又1-0=1, 所以n =1时,结论成立.(2)假设n =k (k ≥1,k ∈N +)时,结论成立,即a k =k -k -1. 当n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以a 2k +1+2ka k +1-1=0,解得a k +1=k +1-k (a n >0),所以n =k +1时,结论成立. 由(1)(2)可知,对n ∈N +都有a n =n -n -1. [再练一题]4.设数列{a n }的前n 项和S n =n a n +12(n ∈N +),a 2=2.(1)求{a n }的前三项a 1,a 2,a 3; (2)猜想{a n }的通项公式,并证明. 【解】 (1)由S n =n a n +12,得a 1=1,又由a 2=2,得a 3=3.(2)猜想:a n =n .证明如下:①当n =1时,猜想成立.②假设当n =k (k ≥2)时,猜想成立,即a k =k , 那么当n =k +1时,a k +1=S k +1-S k = k +1 a k +1+1 2-k a k +12=k +1 a k +1+1 2-k k +12.所以a k +1=k 2k -1-1k -1=k +1, 所以当n =k +1时,猜想也成立. 根据①②知,对任意n ∈N +,都有a n =n .殊的转化;数学归纳法体现的是一般与特殊、有限与无限的转化;反证法体现的是对立与统一的转化.设二次函数f (x )=ax 2+bx +c (a ≠0)中的a ,b ,c 都为整数,已知f (0),f (1)均为奇数,求证:方程f (x )=0无整数根.【精彩点拨】 假设方程f (x )=0有整数根k ,结合f (0),f (1)均为奇数推出矛盾. 【规范解答】 假设方程f (x )=0有一个整数根k , 则ak 2+bk +c =0,∵f (0)=c ,f (1)=a +b +c 都为奇数, ∴a +b 必为偶数,ak 2+bk 为奇数.当k 为偶数时,令k =2n (n ∈Z ),则ak 2+bk =4n 2a +2nb =2n (2na +b )必为偶数,与ak 2+bk 为奇数矛盾;当k为奇数时,令k=2n+1(n∈Z),则ak2+bk=(2n+1)·(2na+a+b)为一奇数与一偶数乘积,必为偶数,也与ak2+bk为奇数矛盾.综上可知,方程f(x)=0无整数根.[再练一题]5.用数学归纳法证明:当n为正奇数时,x n+y n能被x+y整除.【证明】设n=2m-1,m∈N+,则x n+y n=x2m-1+y2m-1.要证明原命题成立,只需证明x2m-1+y2m-1能被x+y整除(m∈N+).(1)当m=1时,x2m-1+y2m-1=x+y能被x+y整除.(2)假设当m=k(k∈N+)时命题成立,即x2k-1+y2k-1能被x+y整除,那么当m=k+1时,x2(k+1)-1+y2(k+1)-1=x2k+2-1+y2k+2-1=x2k-1x2-x2k-1y2+y2k-1y2+x2k-1y2=x2k-1(x2-y2)+y2(x2k-1+y2k-1)=x2k-1(x-y)(x+y)+y2(x2k-1+y2k-1).因为x2k-1(x-y)(x+y)与y2(x2k-1+y2k-1)均能被x+y整除,所以当m=k+1时,命题成立.由(1)(2),知原命题成立.1.(2016·北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【解析】通过随机事件直接分析出现情况的可能性.取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加 1.因为红球和黑球个数一样多,所以①和②的情况一样多,③和④的情况完全随机.③和④对B选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上,选B.【答案】 B2.(2015·山东高考)观察下列各式: C 01=40; C 03+C 13=41; C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43; ……照此规律,当n ∈N +时,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=________.【解析】 观察每行等式的特点,每行等式的右端都是幂的形式,底数均为4,指数与等式左端最后一个组合数的上标相等,故有C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=4n -1.【答案】 4n -13.(2015·福建高考)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N +),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.【解析】 因为x 2⊕x 3⊕x 6⊕x 7=0,所以x 2,x 3,x 6,x 7都正确.又因为x 4⊕x 5⊕x 6⊕x 7=1,x 1⊕x 3⊕x 5⊕x 7=1,故x 1和x 4都错误,或仅x 5错误.因为条件中要求仅在第k 位发生码元错误,故只有x 5错误.【答案】 54.(2015·湖南高考)设a >0,b >0,且a +b =1a +1b.证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.【证明】 由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2,当且仅当a =b =1时等号成立.(2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0,得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.5.(2016·北京高考)设数列A:a1,a2,…,a N(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有a k<a n,则称n是数列A的一个“G时刻”.记G(A)是数列A的所有“G时刻”组成的集合.(1)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;(2)证明:若数列A中存在a n使得a n>a1,则G(A)≠∅;(3)证明:若数列A满足a n-a n-1≤1(n=2,3,…,N),则G(A)的元素个数不小于a N-a1.【解】(1)G(A)的元素为2和5.(2)证明:因为存在a n使得a n>a1,所以{i∈N+|2≤i≤N,a i>a1}≠∅.记m=min{i∈N+|2≤i≤N,a i>a1},则m≥2,且对任意正整数k<m,a k≤a1<a m.因此m∈G(A).从而G(A)≠∅.(3)证明:当a N≤a1时,结论成立.以下设a N>a1.由(2)知G(A)≠∅.设G(A)={n1,n2,…,n p),n1<n2<…<n p.记n0=1,则an0<an1<an2<…<an p.对i=0,1,…,p,记G i={k∈N+|n i<k≤N,a k>an i}.如果G i≠∅,取m i=min G i,则对任何1≤k<m i,a k≤an i<am i.从而m i∈G(A)且m i=n i+1,又因为n p是G(A)中的最大元素,所以G p=∅.从而对任意n p≤k≤N,a k≤an p,特别地,a N≤an p.对i=0,1,…,p-1,a ni+1-1≤an i.因此a ni+1=a ni+1-1+(a ni+1-a ni+1-1)≤an i+1.p所以a N-a1≤an p-a1=∑(an i-an i-1)≤p.i=1因此G(A)的元素个数p不小于a N-a1.章末综合测评(二) 推理与证明(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是( ) A .由圆的性质类比推出球的有关性质B .由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C .某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D .蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】 逐项分析可知,A 项属于类比推理,B 项和D 项属于归纳推理,而C 项中各个学生的成绩不能类比,不是合情推理.【答案】 C2.根据偶函数定义可推得“函数f (x )=x 2在R 上是偶函数”的推理过程是( )A .归纳推理B .类比推理C .演绎推理D .非以上答案【解析】 根据演绎推理的定义知,推理过程是演绎推理,故选C. 【答案】 C3.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 【解析】 由归纳推理的特点知,选B. 【答案】 B4.“凡是自然数都是整数,4是自然数,所以4是整数.”以上三段论推理( ) A .完全正确 B .推理形式不正确C .不正确,两个“自然数”概念不一致D .不正确,两个“整数”概念不一致【解析】 大前提“凡是自然数都是整数”正确.小前提“4是自然数”也正确,推理形式符合演绎推理规则,所以结论正确.【答案】 A5.用数学归纳法证明“5n-2n能被3整除”的第二步中,当n =k +1时,为了使用假设,应将5k +1-2k +1变形为( )A .(5k-2k)+4×5k-2kB .5(5k-2k)+3×2kC .(5-2)(5k-2k) D .2(5k-2k)-3×5k【解析】 5k +1-2k +1=5k ·5-2k ·2=5k ·5-2k ·5+2k ·5-2k ·2=5(5k -2k )+3·2k.【答案】 B6.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时等式成立,则还需要用归纳假设再证n =________时等式成立.( )A .k +1B .k +2C .2k +2D .2(k +2)【解析】 根据数学归纳法的步骤可知,n =k (k ≥2且k 为偶数)的下一个偶数为n =k +2,故选B.【答案】 B7.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199【解析】 利用归纳法,a +b =1,a 2+b 2=3,a 3+b 3=4=3+1,a 4+b 4=4+3=7,a5+b 5=7+4=11,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.【答案】 C8.分析法又叫执果索因法,若使用分析法证明:“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”最终的索因应是( ) 【导学号:05410056】A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0【解析】 因为a >b >c ,且a +b +c =0, 所以3c <a +b +c <3a ,即a >0,c <0.要证明b 2-ac <3a ,只需证明b 2-ac <3a 2,只需证明(-a -c )2-ac <3a 2,只需证明2a2-ac -c 2>0,只需证明2a +c >0(a >0,c <0,则a -c >0),只需证明a +c +(-b -c )>0,即证明a -b >0,这显然成立,故选A.【答案】 A9.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19且n ∈N +)成立,类比上述性质,在等比数列{b n }中,若b 11=1,则有( )A .b 1·b 2·…·b n =b 1·b 2·…·b 19-nB .b 1·b 2·…·b n =b 1·b 2·…·b 21-nC .b 1+b 2+…+b n =b 1+b 2+…+b 19-nD .b 1+b 2+…+b n =b 1+b 2+…+b 21-n 【解析】 令n =10时,验证即知选B. 【答案】 B10.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a 2 016-5=( )图1A .2 018×2 014B .2 018×2 013C .1 010×2 012D .1 011×2 013【解析】 a n -5表示第n 个梯形有n -1层点,最上面一层为4个,最下面一层为n +2个.∴a n -5= n -1 n +62,∴a 2 016-5=2 015×2 0222=2 013×1 011. 【答案】 D11.在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图2中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 015+a 2 016+a 2 017=( )图2A .1 006B .1 007C .1 008D .1 009【解析】 依题意a 1=1,a 2=1;a 3=-1,a 4=2;a 5=2,a 6=3;…,归纳可得a 1+a 3=1-1=0,a 5+a 7=2-2=0,…,进而可归纳得a 2 015+a 2 017=0,a 2=1,a 4=2,a 6=3,…,进而可归纳得a 2 016=12×2 016=1 008,a 2 015+a 2 016+a 2 017=1 008.故选C.【答案】 C 12.记集合T ={0,1,2,3,4,5,6,7,8,9},M =⎩⎨⎧⎭⎬⎫a 110+a 2102+a 3103+a 4104| a i ∈T ,i =1,2,3,4,将M 中的元素按从大到小排列,则第2 016个数是( )A.710+9102+8103+4104 B.510+5102+7103+2104 C.510+5102+7103+3104 D.710+9102+9103+1104 【解析】 因为a 110+a 2102+a 3103+a 4104=1104(a 1×103+a 2×102+a 3×101+a 4),括号内表示的10进制数,其最大值为9 999,从大到小排列,第2 016个数为9 999-2 016+1=7 984,所以a 1=7,a 2=9,a 3=8,a 4=4. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为__________.【解析】 圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1. 【答案】 经过椭圆x 2a +y 2b =1上一点P (x 0,y 0)的切线方程为x 0x a +y 0y b=114.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是________ .【导学号:05410057】【解析】 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n n +12个“整数对”,注意到10× 10+1 2<60<11× 11+1 2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).【答案】 (5,7)15.(2016·东莞高二检测)当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,你能得到的结论是__________.【解析】 根据题意,由于当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4, 当n ∈N +时,左边第二个因式可知为a n+a n -1b +…+ab n -1+b n ,那么对应的表达式为(a-b )·(a n+an -1b+…+abn -1+b n)=an +1-bn +1.【答案】 (a -b )(a n +an -1b +…+ab n -1+b n )=a n +1-b n +116.如图3,如果一个凸多面体是n (n ∈N +)棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条,这些直线共有f (n )对异面直线,则f (4)=________,f (n )=__________.(答案用数字或n 的解析式表示)图3【解析】 所有顶点所确定的直线共有棱数+底边数+对角线数=n +n +n n -32=n n +12.从题图中能看出四棱锥中异面直线的对数为f (4)=4×2+4×12×2=12,所以f (n )=n (n -2)+n n -3 2·(n -2)=n n -1 n -22.【答案】n n +1212n n -1 n -22三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2. 【证明】 (1)当a ,b >0时,有a +b2≥ab ,∴lga +b2≥lg ab , ∴lg a +b 2≥12lg ab=lg a +lg b2. (2)要证6+10>23+2, 只要证(6+10)2>(23+2)2, 即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)观察以下各等式: sin 230°+cos 260°+sin 30°cos 60°=34,sin 220°+cos 250°+sin 20°cos 50°=34,sin 215°+cos 245°+sin 15°cos 45°=34.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明. 【解】 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明如下:sin 2α+cos 2(α+30°)+sin αcos(α+30°) =sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α2+sin α⎝⎛⎭⎪⎫32cos α-12sin α=sin 2α+34cos 2α-32sin αcos α+14sin 2α+32sin α·cos α-12sin 2α =34sin 2α+34cos 2α =34. 19.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解】 (1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0, ∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.20.(本小题满分12分)点P 为斜三棱柱ABC A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF ·cos∠DFE .扩展到空间类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.【解】 (1)因为PM ⊥BB 1,PN ⊥BB 1,又PM ∩PN =P , 所以BB 1⊥平面PMN ,所以BB 1⊥MN . 又CC 1∥BB 1,所以CC 1⊥MN .(2)在斜三棱柱ABC A 1B 1C 1中,有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2SBCC 1B 1SACC 1A 1cos α.其中α为平面BCC 1B 1与平面ACC 1A 1所成的二面角. 证明如下:因为CC 1⊥平面PMN ,所以上述的二面角的平面角为∠MNP . 在△PMN 中,因为PM 2=PN 2+MN 2-2PN ·MN cos ∠MNP ,所以PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos ∠MNP , 由于SBCC 1B 1=PN ·CC 1,SACC 1A 1=MN ·CC 1,SABB 1A 1=PM ·BB 1=PM ·CC 1,所以S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2SBCC 1B 1·SACC 1A 1·cos α.21.(本小题满分12分)(2014·江苏高考)如图4,在三棱锥P ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA =6,BC =8,DF =5.求证:图4(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .【证明】 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥PA . 又因为PA ⊄平面DEF ,DE ⊂平面DEF , 所以直线PA ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE =12PA=3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC . 又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .22.(本小题满分12分)在数列{a n }中,a 1=1,a 2=14,且a n +1= n -1 a nn -a n (n ≥2).(1)求a 3,a 4,猜想a n 的表达式,并加以证明; (2)设b n =a n ·a n +1a n +a n +1, 求证:对任意的n ∈N +,都有b 1+b 2+…+b n <n3.【解】 (1)容易求得:a 3=17,a 4=110.故可以猜想a n =13n -2,n ∈N +. 下面利用数学归纳法加以证明: ①显然当n =1,2,3,4时,结论成立,②假设当n =k (k ≥4,k ∈N +)时,结论也成立,即a k =13k -2. 那么当n =k +1时,由题设与归纳假设可知: a k +1= k -1 a kk -a k = k -1 ×13k -2k -13k -2=k -13k 2-2k -1=k -13k +1 k -1=13k +1=13 k +1 -2. 即当n =k +1时,结论也成立,综上,对任意n ∈N +,a n =13n -2成立. (2)b n =a n ·a n +1a n +a n +1=13n -2·13n +113n -2+13n +1=13n +1+3n -2=13(3n +1-3n -2), 所以b 1+b 2+…+b n=13[(4-1)+(7-4)+(10-7)+…+(3n +1-3n -2)]=13(3n+1-1),所以只需要证明13(3n+1-1)<n3⇔3n+1<3n+1⇔3n+1<3n+23n+1⇔0<23n(显然成立),所以对任意的n∈N+,都有b1+b2+…+b n<n 3 .。